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1. INTRODUCTION

The position of a stationary transmitter or radiating
emitter can be estimated from passive measurements of
the arrival times, directions of arrival, or Doppler shifts
of electromagnetic waves received at various sites. This
paper presents a derivation of the principal algorithms and
an analysis of the two most important passive location
systems for stationary transmitters: hyperbolic location
systems and direction-finding location systems [1, 2].

Hyperbolic location systems, often called time
difference of arrival (TDOA) systems, locate a transmitter
by processing signal arrival-time measurements at three or
more stations. The measurements at the various stations
are sent to a station that is designated the master station
and does the processing. The arrival-time measurements
at two stations are combined to produce a relative arrival
time that, in the absence of noise and interference,
restricts the possible transmitter location to a hyperboloid
with the two stations as foci. Transmitter location is
estimated from the intersections of three or more
independently generated hyperboloids determined from at
least four stations. If the transmitter and the stations lie in
the same plane, location is estimated from the
intersections of two or more hyperbolas determined from
three or more stations. Fig. 1 illustrates two hyperbolas,
each of which has two branches, derived from
measurements at three stations. The two hyperbolas have
two points of intersection. The resulting location
ambiguity may be resolved by using a priori information
about the location, bearing measurements at one or more
of the stations, or a fourth station to generate an
additional hyperbola.

Fig. 2 depicts an aircraft with a direction-finding
location system that makes bearing measurements at three
different points in its trajectory. The intersection of two
bearing lines provides an estimate of the location of the
transmitter, which may be on the surface of the Earth or
airborne. In the presence of noise, more than two bearing
lines will not intersect at a single point. However, the
appropriate processing allows an improved estimate of the
transmitter position.

The following three sections of this paper present the
basic methods of estimation applicable to transmitter
location and determine the accuracy of suitable
estimators. Sections 5 and 6, respectively, consider
passive location systems using arrival-time and bearing
measurements. Section 7 summarizes the use of Doppler
information. Since the next three sections provide the
theoretical framework for the statistical analysis of any
passive location system, the reader who is only interested
in the applications may wish to omit this material,
referring to it as necessary while reading Sections 5-7.

1. ESTIMATION METHODS

The components of an n-dimensional vector x that is
to be estimated are the position coordinates in two or
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Fig. 2. Bearing lines from aircraft positions.

three dimensions and possibly other parameters such as
the time of emission of the radiation. A set of N
measurements r;, i = 1, 2, ..., N, is collected at various
positions. In the absence of random measurement errors,

r; is equal to a known function f;(x). In the presence of
additive errors,

ri = fix) + n;, (1

These N equations can be written as a single equation for
N-dimensional column vectors:

r= f(x) + n.

=1,2,

2

The measurement error n is assumed to be a multivariate
random vector with an N X N positive-definite
covariance matrix

= E[(n — E[n])(n — E[r])"]

where E[ ] denotes the expected value and the
superscript T denotes the transpose.

If x is regarded as an unknown but nonrandom vector
and n is assumed to have a zero mean and a Gaussian
distribution, then the conditional density function of r
given x is

3

1
(2,“,)N/2 INI 172

exp{—(1/D[r — fOI'N"'[r = f(0)]}

where |N| denotes the determinant of N and the
superscript — 1 denotes the inverse. Because N is
symmetric and positive definite, its inverse exists. The
maximum likelihood estimator is that value of x which
maximizes (4). Thus the maximum likelihood estimator
minimizes the quadratic form

p(rlx) =
4)

Q(x) = [r = fOI'"N"'[r = f01. ®

Minimization of Q(x) is a reasonable criterion for
determination of an estimator even when the additive
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error cannot be assumed to be Gaussian. In this case, the
resulting estimator is called the least squares estimator
and N ! is regarded as a matrix of weighting
coefficients.

In general, f(x) is a nonlinear vector function. To
determine a reasonably simple estimator, f(x) can be
linearized by expanding it in a Taylor series about a
reference point specified by the vector x, and retaining
the first two terms; that is, we use

Sf@x) = flxg) + G(x — xo) (6)

where x and x; are n X 1 column vectors and G is the N
X n matrix of derivatives evaluated at x,:

I o
ax, r=x, ax,, =x
0
G = @)
fy v
x| r=x, dx, “’=an

Each row of this matrix is the gradient vector of one of
the components of f(x). The vector x, could be an
estimate of x determined from a previous iteration of the
estimation procedure or based upon a priori information.
It is assumed in the subsequent analysis that x, is
sufficiently close to x that (6) is an accurate
approximation.

Combining (5) and (6) gives

Q) = (r, — Gx)TN"'(r, - Gx) (8)
where
rp=r — f(x) + Gx,. (9)

To determine the necessary condition for the estimator £
that minimizes Q(x), we calculate the gradient of Q(x),
defined by

dQ 9@ 9@ |7
\v} = | = =... = 10
Q) { ax, ox, axn} (10)
and then solve for the x such that V.Q(x) = 0. From its

definition, N is a symmetric matrix; that is, NT = N.
Since (N " HT = (NT)™1 it follows that (N~ DHT = N7,
which implies that N™! is a symmetric matrix. Therefore,

V.Qw)|,.. = 2G™N"'Gx - 2G"N 'r, = 0. (11)

We assume that the matrix GTN ™! G is nonsingular. Thus
the solution of (11) is

£ = (G'N"'G)'G"N"'r,
=x5 + (GTN"'G) 'G'N~'[r — fxy)l.

Using (12), direct calculation shows that (8) can be
written in the form

(12)
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Q(x) =[x — x]"G"TN"'G[x — x]

- rINT'GG'™N7'G) " 'ry + rIN"'r,  (13)
where only the first term depends upon x. Since N is
symmetric and positive definite, it has positive
eigenvalues. If Ne = Ae, then N"'e = A 'e. Thusif e
is an eigenvector of N with eigenvalue A, then e is also
an eigenvector of N~ ! with eigenvalue 1/\. Since it is
symmetric and its eigenvalues are positive, N ! is
positive definite. Therefore, x = £ minimizes Q(x). The
estimator of (12) is called the linearized least squares
estimator.

Substituting (2) into (12) and rearranging terms, the
expression for X can be written in the form

x + (GTN7'G) "GN '[f(x) — f(x,)
- Gx — xp) + nj

x,: =
(14)

which shows how the estimator error is affected by the
linearization error and the noise. The bias of the estimator
X is defined as b = E[£] — x. Using (14), we obtain

b= (G'N 'G)'G"N {f(x) — f(xo)

— G(x — x3) + E[n]}. (19

If f(x) is linear, as in (6), and E[r] = 0, then the least
squares estimator is unbiased. If systematic errors occur
in the measurements, then E[n] # 0. To minimize the
estimator bias due to systematic errors, the magnitude
of each E[n,] should be minimized through system
calibrations. If some of the E[n;] are known functions of
various parameters and N is sufficiently large, these
parameters can be made components of the vector x and
estimated along with the other components of x. The bias
due to the nonlinearity of f(x) can be estimated by
expanding f(x) in a Taylor series about x,, and retaining
second-order terms. ,

Let P denote the covariance matrix of £. Equation
(14) yields

P = E[(x — EXD@& ~ E[#D"] = (GTN"'G)™". (16)

The diagonal elements of P give the variances of the
errors in the estimated components of x. Since P is part
of the estimator given by (12), one can compute both
estimate and covariance simultaneously. If n is zero-mean
Gaussian, the maximum likelihood or least squares
estimator for the linearized model is the same as the
minimum variance unbiased estimator [3].

The measurement error vector n is assumed to
encompass all the contributions to error, including
uncertainties in the system or physical parameters, such
as the station coordinates or the speed of propagation. If
q is a vector of the parameters, then the measurement
vector r can often be expressed as

r = fi(x,q) + n, amn

where f;( ) is a vector function and n, is the random
error due to causes unrelated to uncertainties in g. Let g,
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denote the assumed value of g. If g, is sufficiently close
to g, then a Taylor series expansion yields

Jix,q@) = fi(x.q0) + G\(qg — qp) (18)

where G, is the matrix of derivatives with respect to ¢
evaluated at g,. Equation (2) results from making the
identifications

f(x) = fi(x,90),

If g is nonrandom, then the parameter uncertainties
ultimately contribute to the bias of the least squares
estimator. If ¢ is random, then the variance and possibly
the bias are affected.

Any a priori information can be incorporated into the
estimation procedure in several ways. It can be used to
select an accurate reference point x,, for the first iteration
of the least squares estimator. If the transmitter is known
to be located within a region, but the estimated position
is outside this region, a logical procedure is to change the
estimate to the point in the region that is closest to the
original estimate. If an a priori distribution function for
the transmitter position can be specified, a Bayesian
estimator can be determined. However, the Bayesian
estimator is usually too complex a mathematical function
to yield a simple computational algorithm unless
simplifying assumptions are made about the a priori
distribution [4].

The location estimate can be continually refined if a
sequence of measurements is taken. If successive
measurements are uncorrelated, a new least squares
estimate can be determined by combining new
measurements with the old estimate [3]. Since
measurements do not have to be stored after processing, a
significant computational savings is sometimes possible.

n==G(q - q) + n,. 19

. ESTIMATOR ACCURACY

If r is a Gaussian random vector, then (12) indicates
that £ is a Gaussian random vector. Its probability density
function is

f:® = [2m"”|P|'?]!

exp[—(1/2) (§ — m)TP" (£ — m)] (20)
where m = E[£] is the mean vector, and
P =E[(Xx ~ m)(x — m)T] (21)

is the covariance matrix given by (16). By definition, P
is symmetric and positive semidefinite. Thus it has
nonnegative eigenvalues. Equation (16) indicates that P!
exists and in equal to GTN~'G. Therefore, P does not
have zero as an eigenvalue. Thus P is positive definite.

The loci of constant density function values are
described by equations of the form

& —mTP HE - m) =« (22)

where k is a constant that determines the size of the n-
dimensional region enclosed by the surface. In two
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dimensions, the surface is an ellipse; in three dimensions,
it is an ellipsoid; in the general case of n dimensions, it
may be considered a hyperellipsoid. Unless P is a
diagonal matrix, the principal axes of the hyperellipsoids
are not aligned with the coordinate axes.

The probability that £ lies inside the hyperellipsoid of
(22) is

P = [ | [ re ag e, - ae, (23)
R

where the region of integration is

R=1{§:(-mTP ' (§ - m)=«}. (24)

To reduce (23) to a single integral, we perform a
succession of coordinate transformations. First, we
translate the coordinate system so that its origin coincides

with m by making the change of variables y = § — m.

Since the Jacobian is unity, we obtain .
1 -
P.(k) = aff jexp(— —2—'YTP ')
Ry
d‘YI d‘YZ Tt d‘YIZ (25)

where
R ={y:y"P 'y =x} (26)

a = [(211.)"/2|P|1/2]~1. (27)

To simplify (25), we rotate the coordinate axes so that
they are aligned with the principal axes of the
hyperellipsoid. Because P is a symmetric positive-definite
matrix, so is P~ '. Therefore, an orthogonal matrix A
(with eigenvectors as columns) exists that diagonalizes
P! Thus AT = A and

AT 0

AS!

ATP A = =71 (28)

0 A

where A, A,, ..., N, are the eigenvalues of P. A rotation
of axes results in new variables defined by

{=ATy.

Since ATA = I and the determinant of the product of
matrices is equal to the product of the determinants of the
matrices, the determinant of AT, which is the Jacobian of

the transformation, is unity. Substituting (28) and (29)
into (25) and (26) yields

a fff exp(-%gT[Y']g) dby diy--di,
Ry
a L!---Iexp(—%ii %) dg, dty---dig,

(29)

P (k)

[

It

(30)

where

[Tany
i N

€2y

i

>

R2={§:1; SK},

and the {; are the components of {. Regions R, is the
interior of a hyperellipsoid with principal axes of lengths

2VkA;, i = 1,2, ..., n. By introducing new variables
M. = {/VN i=1,2,....n (32)

l

we can simplify (30) further. Since the determinant of P
is equal to the product of the eigenvalues of P, (27) and
(30) to (32) give

P.(k) = Qm)™" J'f f

2
i

‘1]7

M=

=K

W

=1

1 n
em(- = Z} n?) dn, dmy -+ dv,.  (33)

The region of integration, which is indicated below the
integral signs, is the interior of a hypersphere.

It is shown below that the volume of an -
dimensional hypersphere of radius

n 12
p= (; n?)

(34)
is
,n.n/2 pn
1% = ————

) = T T D) (35)
where I'( ) is the gamma function. Therefore, the
differential volume between p and p + dp is

n,.n.n/Z pn =1
dv = ———d
Y F'm/2 + 1) e (36)
and (33) can be reduced to
n Vi pz
_— n—1 P
P = Sitrz + 1) L P exP( 2>dp' (37
Forn = 1, 2, and 3, this integral can be expressed in

simpler terms:

P,(x) = erf(Vk/2), n=1 (38)
P.(k) = 1 — exp(—k/2), n =2 (39)
P.(k) = erf(\/k/2)

- V2x/mexp(—«/2), n =3 (40)
where the error function is defined by
erf(x) = % fo exp(—12) dr. @1

Equation (40) is obtained by integration by parts.
To verify (35), we define the volume of a
hypersphere of radius p by
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V.(p) = jJ J dx, dx, -+ dx,. (42)

A change of coordinates shows that

Va(p) = p"V,(1) (43)

where V,(1) is the volume of a unit hypersphere.

Straightforward calculations give

vih =2, V) == (44)

where the ‘‘volumes’’ are a length and an area,

respectively. We define the sets

B = {(x;x):xi + x5 =<1} (45)

C={0 ....x): 2 x2=1—x}~ x}}. (46)
i=3

For n = 3, Fubini’s theorem for interchanging the order
of integrations [5] and a change of coordinates in (42)
give

v,(1) = ff dx, dxz,ff--'fdx3-'-dx,,

B C
= f] anZ ( \Y 1 — x% - x%) dxl de. (47)
B
Equation (43) and further coordinate changes yield
V,(1) = V,_,(1) _” (1 —x} —x)"=212 dx, dx,
B
2T (]
= V,,_Z(I)J; Jo (1 — D=2 p dr do
1
- ’"Vn—z(l)fo X212 gy
=2aV, (1)/n. (48)
By induction, this recursion relation and (44) imply that
2m"
) = ——————;
212 m—1
Vom-1(1) = Cm) =1,2,.... (49

1:3---Q@m — 1)

We can express V,(1) in terms of a compact formula by
using the properties of the gamma function: I'(z + 1) =
T'(H; T() = 1; T1/2) = V7. We obtain

,.n.n/Z

Vi) = ron Ty

n=1,2, ... (50)

Combining (43) and (50) yields (35).

If P, is specified, say P, = 1/2, then (37), (38),
(39), or (40) can be solved numerically to determine the
corresponding value of k, which in turn defines a
hyperellipsoid by (22). The concentration ellipsoid

corresponding to probability P, is defined to be the
particular hyperellipsoid for which P, is the probability
that £ lies inside it. Thus the concentration ellipsoid is a
multidimensional measure of accuracy for an unbiased
estimator.

A scalar measure of estimator accuracy is the root-
mean-square error €,, which is defined by

€ = [2 (£ = x,~)2]. (51)
i=1
Expanding (51) and using (21), we obtain
€2 = tr(P) + D, b? (52)
i=1

where tr(P) denotes the trace of P and b; = E[£] — x;
denotes a component of the bias vector b.

1IV. TWO-DIMENSIONAL ESTIMATORS

For the estimator of a two-dimensional vector, such as
position coordinates on the surface of the Earth, the
bivariate covariance matrix can be expressed as

(33)

A straightforward calculation yields the eigenvalues:

1
M= [cr% + 0} + Vel — o)) + 4a$2] (54)

A2

% [o% + 03 = Vet - o)? + 40%2] (55)
where the positive square root is used. By definition, \,
= \,.

Suppose that new coordinates are defined by rotating
the axes of the old coordinate system counterclockwise
through an angle 0, as shown in Fig. 3. A vector

[ ~
;"
s
b \9
4 22
Ve N
\ .
\
2\/17\‘ /\/ )\
1 M.,2
\> s VKR,
7

Fig. 3. Concentration ellipse and coordinate axes.
represented by <y in the old coordinates is represented in
the new coordinates by { = ATy, where A is the
orthogonal matrix

cos® —sin@

A= (56)

sin 0 cos 6
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From (53) and (56), direct but lengthy calculation shows
that ATP~'A is a diagonal matrix and the columns of A

are eigenvectors if
1 2
ﬂzitanl(az;‘lz—— SGSE (57)

If 03 = o3 and o, = 0, we take 6 = 0. Since the
determinant of a matrix is equal to the product of the
eigenvalues, \\\, = oo} — o?,. Using this result, the
diagonal matrix can be written in the form

|
q
[ (S]]
N ——
!
NP

[\ 0

A7) = , of =03 (58)
[0 A
AP0

(AT = it o7 < 03. (59)
[0 A

Since P! exists according to (16), neither eigenvalue
can equal zero and [\~ '] is well defined.

A concentration ellipse defined by yTP ™'y = « in
the old coordinates is described by ({;/A;)* + ({2/A,) =
k or by ({;/\2)?> + (L/N\)?* = Kk in the new coordinates,
a fact which indicates that the new axes coincide with the
principal axes of the ellipse. Thus (57) represents the
angular offset of one of the principal axes of the ellipse
relative to the old coordinate axes. Fig. 3 depicts a
concentration ellipse and the appropriate angle of axis
rotation. Since \; = \,, the major and minor axes have
lengths 2k X and 2V/k\,, respectively. If the ellipse
encloses a region that includes a Gaussian random vector
with probability P,, then (39) implies that

—21In(l — P,). (60)

K =

Suppose that a two-dimensional Gaussian random
vector describes the estimated location of a transmitter. A
crude but simple measure of accuracy is the circular error
probable (CEP). The CEP is defined as the radius of the
circle that has its center at the mean and contains half the
realizations of the random vector. The CEP is a measure
of the uncertainty in the location estimator X relative to
its mean E[£]. If the location estimator is unbiased, the
CEP is a measure of the estimator uncertainty relative to
the true transmitter position. If the magnitude of the bias
vector is bounded by B, then with a probability of one-
half, a particular estimate is within a distance of B +
CEP from the true position. The geometrical relations are
depicted in Fig. 4.

TRANSMITTER P =~
s
/ o<_~\\_\nn'ncuum
\ ESTIMATE
BIAS ! |
VEGTOR { CEP
\ MEAN 1
. ESTMATE /
\ /
s
N ~ rd

~— -

Fig. 4. Geometry of transmitter position, mean location estimate,
CEP, estimator bias vector, and particular location estimate.

From the definition, it follows that we can determine
the CEP by solving the equation

1

5= [] 5 az, az, (61)
R

where

R = {£:]|€ — m| = CEP}. (62)

In a manner analogous to the derivation of (30), we

successively translate and rotate coordinates to obtain

1__ 1 f j s

v vl exp( 2 2 %) dhdt (63)

1
where
R, = {({i, L) : (T + {3)"* = CEP} (64)

and the A; are given by (54) and (55). Changing to polar
coordinates by substituting {; = r cos 0 and {; = r sin
0, we get

2w (CEP
™V )\1)\2 = L L r

o ~f cosze+sin29 & db 65
PI72\ 7 n, rdd. (65)

To simplify (65), we do some preliminary
manipulations. The modified Bessel function of the first
kind and zero order can be expressed as

B 1 -[211'
Iyix) = 7 Jo exp(x cos 0) d6. (66)

Because of the periodicity of the integrand, we also have
1 J‘ 2m(nt+1)

I = — 0) do

o(x) -y . exp(x cos 0) 67)

for any integer n. Adding m equations of this form with
successive values of n, we obtain

1 27m
mily(x) = —f exp(xcos ) do, m =1,2, ... (68)
27 Jo
Changing coordinates with 6 = md gives
i 27
Iix) = —-f exp(x cos m)ddb, m=1,2, ... (69)
27 Jo
Trigonometric identities yield
cos?®  sin? 0 1 1
+ =—— + —
N A\, 2N 2\,
+ L ! 20. (70)
—_— - s 20.
IV Y A

Substituting (70) into (65) and using (69), we obtain
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\fmz_rﬂ’ (L, 1Y,
2 Jo TP an, AN,

1 1
ILlt——-—1|r]dr.
4\, 4\,

A final change of coordinates yields

(1)

L+ -

a7 exp(—x)

-y 2 _ M
1°<1 + 72x> ooy
The form of this relation implies that the CEP has the
form CEP = /X, f(y) for some function f( ). If 0}, =
Oand o, = o, = o, then \; = A, = o2 and (72) can
be solved to show that CEP = 1.177c. In the general
case where \; # \,, numerical integration is necessary to

solve for the CEP. A simple approximation that is
consistent with the preceding observations is

CEP = 0.563 VX, + 0.614 VX,

f{(cspﬂmkzm +v2)

(72)

(73)

which is accurate to within 1 percent for y = 0.3 or
larger, underestimates the CEP by less than 10 percent
for 0.1 < vy < 0.3, and underestimates by less than 20
percent elsewhere. Although approximations that are
more accurate for small vy are easily produced, they are
usually irrelevant because the eccentricity of the
concentration ellipse for small y may be too pronounced
for the CEP to be an adequate performance measure. An
approximation that is accurate to within approximately 10
percent for all values of v is

CEP ~ 0.75 V\, + A, = 0.75 Vo? + o2 (74)

where the last relation follows from the fact that the trace
of a matrix is equal to the sum of its eigenvalues. Above
v = 0.4, this approximation underestimates the CEP;
below vy = 0.4, it overestimates the CEP. For an
unbiased estimator, (52) implies that CEP = 0.75 e,.

V. HYPERBOLIC LOCATION SYSTEMS

Suppose that the arrival times ¢, f,, ..., ty of a signal
transmitted at time ¢, are measured at N stations having
positions specified by the column vectors s, s, ..., Sy.
The geometrical configuration is illustrated in Fig. 5. If

TRANSMITTER

/ /N

STATION
STATION N
2

Fig. 5. Geometry of transmitter and N stations.
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the signal velocity is ¢ and if D, is the propagation path
length between the transmitter and station i, then

L =1 + D/c+ ¢, 1,2, ..., N.

1=

(75)

The arrival-time measurement error €; accounts for
propagation anomalies, receiver noise, and errors in the
assumed station positions. In matrix form, (75) becomes

t =11+ Dlc+e (76)

where ¢, D, and € are N-dimensional column vectors with
components t;, D;, and €, i = |, 2, ..., N, respectively,
and 1 is a column vector of ones.

Suppose that we seek to estimate both £, and the
column vector R, with components x, y, and z, that
specifies the transmitter position. Equation (76) has the
form of (2) withr = ¢, f(x) = t,1 + D/c, n = €, and
x = [ty x y z]". For line-of-sight propagation from
the transmitter to the stations, D; = ||[R — s,||, where || |
represents the Euclidean norm. Let the column vector Ry,
with components xq, ¥y, and z,, specify a reference point
near the transmitter position. Let Dy, = |[Ry — ;| denote
the distance from station i to the reference point. Using

(M withx, = [0 x5 yo z0]" after expressing each
IR — sl in terms of its components, we obtain
G =1 Fic 17
where
(Ry — 1)"/Dy,
F = : (78)

(RO = SN)T/DON

Each row of F is the unit vector pointing from one of the
stations to the reference point. Equation (12) with the
above relations and substitutions gives the least squares or
maximum likelihood estimator; (16) provides the
covariance matrix of the estimator.

In hyperbolic systems, no attempt is made to estimate
to. We eliminate it from consideration by measuring the
relative arrival times:

i — tiyy = (D; — Diyple + m,

i=12,.,N—=1 (79

where n; is the measurement error. Measuring time
differences is not the only way to eliminate #,, but it is
the simplest. If the relative arrival times are determined
by subtracting measured arrival times, then

n, = € — i=1,2,....N — 1. (80)

€+1s

The n; have zero means if successive ¢; have equal
means, even if the latter means are nonzero. A nonzero
E[n;] may result from uncalibrated different time delays
or unsynchronized clocks in two receivers. If the relative
arrival times are determined by cross correlation, then
(80) is not necessarily valid.

If the transmitter produces a sequence of pulses, the
corresponding received pulses at stations i and i + 1
must be correctly associated in measuring the time
difference ¢, — ¢;,,. A potential ambiguity arises when
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the time difference exceeds the time between successive
pulse transmissions. This ambiguity may be resolved by
using bearing measurements or a priori information to
eliminate associations that lead to impossible location
estimates.

In matrix form, (79) becomes

Ht = HD/c + n (81)
where we use the (N — 1) X N matrix
I -1 0 -~ 0 0
O (82)
0 0 0 - 1 —I
If (80) is valid, then
n = He. (83)

Since we seek to estimate the position vector R, (81)
has the form of (2) with r = Ht, f(x) = HD/c, and x
= R. A direct calculation of G yields

G = HF/c (84)

where F is defined by (78). Let N, denote the covariance
matrix of the arrival-time errors. If (83) holds, then the
covariance matrix of the measurement errors, defined by
(3), is related to N, by

N = HN_H". (85)

Using (84), equation (12) implies that the least squares
estimator is

R=R,+c(FTHTN"'HF) 'FTH'N""(Ht - HD,/c)  (86)

where D, has components Dy;, i = 1,2, ..., N. The
estimator is unbiased if n is 2 zero-mean random variable
and the linearization error is negligible. The covariance
matrix of R, given by (16), is

P = ¢c*(FTH'N 'HF) . 87

Equation (86) is valid for line-of-sight propagation. If
the signal propagation to the stations involves
atmospheric reflections, the equations for the D; change
and thus the estimator changes.

In general, the least squares estimator requires
knowledge of the statistics of the measurement errors.
However, if (85) applies, if the covariances of the €, are
zero, and if the variances of the €; have the common
value a?, then cancellation in (86) leaves an estimator
that is independent of 2. Equality of the variances is a
reasonable assumption for stations with identical receivers
that are much closer to each other than to the transmitter.

Let o denote the variance of the measured arrival
time ¢; at station i. The mean-square ranging error is
defined as c2o2, where

N

1
N2 o

is the average variance of the arrival times. The
geometric dilution of precision (GDOP) is defined as the

(88)

ol =
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ratio of the root-mean-square position error €, to the root-
mean-square ranging error. It follows from (52) that the
GDOP associated with an unbiased estimator and a
hyperbolic system is

GDOP = ‘/trace[P]/co,. (89)

The GDOP indicates how much the fundamental ranging
error, intuitively measured by co,, is magnified by the
geometric relation among the transmitter position and the
stations. If the geometry is such that the arrival-time
variances are nearly equal, then the GDOP is only weakly
dependent on them. For the two-dimensional location
problem, (74) and (89) yield

CEP = (0.75¢0,)GDOP. (90)

Since the arrival-time variance o? is due primarily to
the thermal and environmental noise, it is often
reasonable to model €; as the sum of a constant bias plus
zero-mean white Gaussian noise. The Cramer—Rao bound
for an arrival-time estimate in the presence of white
Gaussian noise gives [6]

of = [(2E/Np) B71™" oD

where E is the energy in the received signal, Ny/2 is the
two-sided noise power spectral density, and B2 is a
function of the bandwidth of the signal. If S(w) denotes
the Fourier transform of the signal, then

j_ 0?|S(w)|* do

B2 = (92)

|15l da

If the received signal consists of pulses, then E is the
sum of the energies of the individual pulses. An
approximate model for many radar signals is a series of
pulses, each of which results from passing a truncated
sinusoid with an ideal rectangular envelope of duration 7,
through an ideal rectangular bandpass filter of bandwidth
B centered at the sinusoidal frequency. For each pulse
and for the entire radar signal, (92) yields

B2~ 2B/T,, BT, >> 1. (93)

In contrast, for a signal with a uniform Fourier transform
over a bandwidth B, (92) gives

B2 = m2B2/3. (94)

This model might approximate a communications signal.

Let T denote the total signal duration, R, = E/T
denote the average signal power at the receiver, and D
denote the distance between the transmitter and the
receiver. Over a large range of values of D, it is often
possible to approximate R, by [7]

R, = K¢ exp(—aD)/D" (95)

where a, n, and K are independent of D, but may be
functions of other parameters such as the transmitter
power, antenna gains, antenna heights, and the signal
frequency. For optical and millimeter-wave frequencies,
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accurate modeling requires a > 0, but we may usually
set a = 0 at other frequencies. Inequality (91) and (95)
relate o2 to D.

As an important special case, we consider a
transmitter and three stations in the same plane so that
only two position coordinates are to be estimated. The
planar model is reasonable if a transmitter and stations
are near the surface of the Earth and close enough that
the curvature of the Earth’s surface can be neglected. One
of the stations is designated the master station, and the
other two are called slave stations. Arrival-time
measurements at the slave stations are sent to the master
station, where the time differences and then the position
estimate are computed.

We assume that the €; are uncorrelated random
variables so that

gy 0 O
N=]0 0% 0 (96)
0 0 o}
The H matrix for N = 3 is
1 -1 0
H = [0 1 - l]' 97)

Let ¢; denote the bearing angle from station i at
coordinates (x;,y;) to the reference point at coordinates
(x4,¥0), as illustrated in Fig. 6. Thus

bop = tan_’(u>, i=1,23.

Xo — X

(98)
y

STATION 2 Omgp— — = —

REFERENCE

STATION 3 o-{;q

STATION 1 oZ [$o1

Fig. 6. Angle definitions for reference and three stations.

Equation (78) may be expressed as

sin &g,
sin ¢,
sin o3

cos ¢y,
cos &g,
cos o3

F = (99)

The covariance matrix P can be evaluated by
substituting (85), (96), (97), and (99) into (87). The
components of P defined by (53) are

o} = a[af (sin by, — sin dyg3)?

+ o (sin ¢y — sin dg3)?

+ o (sin do; — sin dgp)?] (100)
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S
|

= alo7i(cos gy — cos d3)?
+ 05(cos g — cos dp3)?
+ 03(cos dg — cos bgy)?] (i91)

= a[of(cos dg; — cos dgy)

(sin g, — sin dg3)

+ 0%(cos dg; — cos dy;)

(sin dg; ~ sin dy3)

+ 0%(cos by, — cos o)

(sin &gy — sin dgy)] (102)

where
a = c2[(cos g, — cos by,) (sin by — sin dg3)
— (cos gy — cos dy3)
(sin &g; — sin dgy)1 72 (103)

If any two bearing angles are equal, then o2, o3, and o,
— . These events correspond to reference points that lie
along a line passing through two of the stations.

The least squares or maximum likelihood estimator,
determined from (86), is

£ =x + Val(t, — Dy/c) (sin by — sin dbg)

+ (t; — Dpy/e) (sin &gy — sin dygy)

+ (15 = Dgs/c) (sin &g, — sin )] (104)
Yy = Yo + Va[(ty — Dy/c) (cos dg; — cos dgy)

+ (1, = Dgy/c) (cos by, — cos dy3)

+ (13 — Dgs/c) (cos by — cos dy)]. (105)

To determine the transmitter range, which may be
defined as the distance between the transmitter and the
master station, it is convenient to align the x axis with the
line between the master station and the reference point
and to place the origin of the coordinate system at the
master station. If the reference point is near the
transmitter position, then £ is a suitable range estimator
and o} approximates the variance of the range estimator;
otherwise, the range can be estimated by (£2 + $2)'2. A
suitable estimator for the bearing with respect to the x
axis 1s

é = tan1 (/). (106)

The estimator bias can be determined from (15).
Neglecting the linearization error and using (83), we
obtain

by = Vo {El€;](sin &g, — sin by;)
+ El€;](sin dg; — sin dy))

+ Ele;](sin do; — sin dyy)} (107)
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by = Vo {E[€,](cos by; — cos byy)
+ Ele;](cos &g, — cos dy3)

+ E[e;](cos by, — cos dg))}.

Nonzero values of the E{e,] are caused primarily by
uncertainties in the station positions, synchronization
errors, and the temperature dependence of the receiver
delays and filter characteristics.

Assuming that n = He has a Gaussian distribution,
(54), (55), (73), and (100)—(103) give the CEP in terms
of the bearing angles and the arrival-time variances. For a
fixed deployment of stations, the locus of transmitter
positions with a constant value of the CEP can be
determined numerically. For this purpose, the equations
may be expressed in terms of the Cartesian coordinates
by using (98) and it is assumed that the reference point
coincides with the transmitter position with negligible
etror so that Dy; = DD,.

Let L denote the length of a linear array of three
stations with coordinates (0, —L/2), (0,0), and (0,L/2).
Assuming that the lower bound of inequality (91) is
nearly achieved and using (95), we obtain

(108)

of = o (Doi/L)" expla(Dy;— L)), i=1,2,3

o = NyL” exp(al)/2B2TK, (109)

where o, denotes the lower bound of o,; when Dy, = L.
It is assumed that «, n, K, and hence o, are identical
for all three stations. We assume that the transmitter and
the stations have omnidirectional antennas so that K does
not depend upon the bearing angle to the transmitter.
Figs. 7 and 8 depict loci of constant values of CEP/co,.

yiL
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=== XM <00
— A2/Xy 2 0.01
1.5
- T T~ ~ CEP!
- ~ Coy
”
// \\1\00
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I//,’,” —\\\20 \\ \\
os ’I’,,/f-—‘\ 10 \\ \\ \
5 F e’ e
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\ i
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0.5 1.0 1.5 2.0 2.5 3.0

- 0.5

Fig. 7. Loci of constant CEP/co, for linear array of three stations
with n = 2.
for a = 0. Only the first quadrant is displayed because

of the symmetry of the loci. Fig. 7 assumes n = 2,
which corresponds to free-space propagation. Fig. 8
assumes n = 4, which might model VHF propagation
near the Earth’s surface.
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Fig. 8. Loci of constant CEP/ca, for linear array of three stations

with n = 4.

In Fig. 9, the stations form a nonlinear array with
coordinates (0, —L/2), (—L/2,0), and 0,L/2),
respectively. The most significant features are the

20 O STATION

——— MplAg < 0.0
—— MpfAy = 0.01

0.5

xIL

-0.5 2.0 2.5 3.0

=05

Fig. 9. Loci of constant CEP/co,, for nonlinear array of three stations
with n = 4.

singularities in the values of the CEP along the lines
passing through two of the stations. Consequently, only a
slight spatial nonlinearity is permissible if a broad field of
view is required. However, other important factors in the
choice of station positions are the needs to maintain line-
of-sight paths from potential transmitter positions and to
minimize the potential multipath interference.

In Figs. 7-9, the parts of the loci for which A, <
0.01\, are indicated by dotted lines. For these small
values of \,/\;, the CEP is a questionable measure of
performance of the passive location system. A more
suitable measure may be the length of the major axis of
the concentration ellipse,

L, = 2VKA,. (11D
It follows from (73) that
CEP = 0.563L,/2V/k, Ay < 0.0\, (112)
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where x is given by (60). Thus the dotted lines
approximate the loci of constant values of
L,/3.552\kcoy,.

VI. LOCATION USING BEARING MEASUREMENTS

The bearing measurements of passive direction-finding
systems at two or more stations or points along an aircraft
trajectory can be combined by a direction-finding location
system to produce an estimate of transmitter position. The
transmitted signal may be received at a station by line-of-
sight propagation or after atmospheric reflection at a
known altitude. A single bearing angle may be measured
at each station of the location system. Alternatively,
separate azimuth and elevation angle measurements,
possibly made by orthogonal interferometers, can be used
to determine transmitter position. In the absence of noise
and interference, bearing lines from two or more stations
will intersect to determine a unique location. In the
presence of noise, more than two bearing lines will not
intersect at a single point, as illustrated for a planar
configuration in Fig. 10. Consequently, processing is

TRANSMITTER
POSITION

STATION
1 STA;’!ON

STATION
2

Fig. 10. Bearing lines from three direction-finding systems.

required to determine the optimal position estimate. Let 9,
denote the bearing angle measured at station i relative to
a baseline in a three-dimensional coordinate system
defined so that the x axis is paralle} to the baseline, as
shown in Fig. 11. If the coordinates of the station are

z

STATION Y
(X¥i23)
== ¥~ — — — — BASE LINE
9;
f . TRANSMITTER
(X Y2y

(X, y,2)

X
Fig. 11.  Angle definitions for direction-finding systems.
(x;,¥:,z;) and the coordinates of the transmitter are

(x,,¥,,2,), then in the absence of measurement errors,
line-of-sight propagation implies that

0,-=cos"[ = i ]
\/(xt - X))+ (- yi)2 + (z, — Zi)2

(113)

0=0,=m.

TORRIERE: STATISTICAL THEORY OF PASSIVE LOCATION SYSTEMS

In Fig. 11, the azimuth angle ¢, is defined in the plane
passing through the transmitter and perpendizular to the z
axis. It is positive in the counterclockwise direction
relative to the positive x axis. If the elevation angle ; of
the station relative to the transmitter is known
approximately or is estimated by a suitable means, such
as a vertical interferometer, then ¢; may be calculated
using the geometrical relation

cos B; = cos ¢; cos U, (114)

which is easily derived from Fig. 11. If 4; is sufficiently
small, the measured bearing is well approximated by the
azimuth, which is defined by

b, = tan”’<u>.

X — X
In most applications, the transmitter is known to lie on
the surface of the Earth or at a fixed altitude so that z, is
known and does not have to be estimated. Equation (115)
is used in the estimation of the (x,,y,). The use of this
equation is equivalent to the representation of the three-
dimensional problem by a two-dimensional model. In the
model, the transmitter and the stations are assumed to lie
in the same plane so that the azimuths are identical to the
bearings. If the transmitter and the stations actually lie on
the Earth’s surface, the model is an idealization that
neglects the curvature of the surface. Two-dimensional
position estimation using bearing information is often
called triangulation.

We consider in detail the estimation of the two-
dimensional column vector R having components x and y.
Line-of-sight propagation is assumed. The measured
bearing angle &; and the measurement error n; satisfy

(115)

b, =fi(R) +n;, i=12.,N (116)

where

f(R) = tan“(u>, i=1,2, .., N (117)
X — x,'

and the station coordinates are x; and y;. In matrix form,
we have

b = f(R) + n.

Let the column vector R, with components x, and y,
specify a reference point, which may be chosen to be in
the middle of the polygon bounded by the measured
bearing lines. Let ¢; denote the bearing angle from
station i to the reference point. Then

(118)

sin &y; = &D:(;ﬁ; cos ¢y, = xOD_o,- i,
i=12,..,N (119
where
Dyi = [(xg — x)* + (yo — ¥)?1'7?,
i=1,2,...,N. (120)
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From (7) withx = R and x; =
= (sin ¢g)/Dg;  (cos bg)/ Dy,

R,, we obtain

G = (121)

—(sin boy) /Doy (€08 dop)/ Doy

The least squares or maximum likelihood estimator is

R =R, + (GTN"'G) ' G'N ' &, (122)
where N is the covariance matrix of the bearing
measurement errors and
b, = & — f(Ry). (123)
The ith component of &, is
Oy = & — do; = & — tan-l(M)’
Xo — X;
=1,2,..,N (124)

which is the bearing angle relative to the line between
station i and the reference point, as depicted in Fig. 12.

BEARING
LINE

o TRANSMITTER Y
REFERENCE

x
STATION

Fig. 12. Geometry of transmitter, reference point, and station.

If the bearing measurement errors are independent

It follows from (121), (122), and (125) that the
components of the linearized least squares estimator are

N
X=Xt E

M -
v cos bg; — | Sin &y,
b, 208 o sk %0 (132)
DO: ¢
l N
N
FEdot T ’Z‘
A cos &g; — v sin by,
. boi — v Sin o), (133)

2
D()i0'¢i

Similarly, if the linearization error is negligible, the bias
components are

N
b1: Z

M -
Eln] (v cos &g — ZLL sin dy,) (135)
Do
N
b =
2 p.)\ - v? ,Z
Y . — vsi .
Eln] (X cos dy; 2v sin ¢y,) (135)
Dy, 05,

The dependence of the estimator and bias on ¢, i =
1, 2, ..., N, is eliminated because of cancellation in (132)
to (135) if these variances are all equal. This equality is a
reasonable assumption if the receivers are identical and

random variables with variances o3, i = 1, 2, ..., N, much closer to each other than to the transmitter.
then Let p; denote the shortest distance from the reference
R point to the measured bearing line at station /, as depicted
Ui 0 in Fig. 12. Suppose that the reference point is close to
N = " (125) " the true transmitter position and that the measurement
0 Ogn errors are small. Then
Direct calculation using (16), (121), and (125)Aestablishes &, = pi/ Dy, i=1,2,...,N (136)
that the elements of the covariance matrix of R are
cos &g; = cos b;; sin &g; = sin ¢,
of = E[(F - 0?] = M‘i " (126) = 1,2,...,N (137)
Substituting (136) and (137) into (129) to (133), we
o} = E[(G — ¥’ = A — 12 (127)  obtain the components of an estimator that depends upon
# the measurements p; and &;, i = 1, 2, ..., N. This
_ A . _ v estimator, called the Stansfield algorithm, was originall
o = ElG =0 =l = ph — v? (128) derived from heuristic arguments and the assumptﬁ)n ofy
small bearing measurement errors [8]. If R, is close to R,
where then the linearized least squares estimator is preferable to
Y, cos? cbo, the Stansfield algorithm, which produces a larger
B= ,Zl D303, (129)  estimator bias unless the bearing errors are small.
RS However, if the bearing errors are large, it may not be
A = i sin? &y, (130) possible to choose R close to R. In this case, it is not
= Djiod; clear which estimator is preferable.
N The mean-square ranging error associated with
v="3 sin do; cos o, (131) direction-finding systems is defined as the average
= D}, 0% variance of Dgy;d,;:
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N
2, D (138)

In analogy to (89), the GDOP associated with an
unbiased estimator and a direction-finding location system
is defined as

GDOP = “/trace[P]}/o,.

If the geometry is such that the bearing variances are
nearly equal, then the GDOP is only weakly dependent
on them. From (74), it follows that

CEP = (0.750,)GDOP.

ZI'—

(139)

(140)

The variance of a bearing estimator o3 is due
primarily to the thermal and environmental noise.
Approximate expressions for o, are known for various
direction-finding systems operating in white Gaussian
noise [7]. In most cases, if E/N, is sufficiently large, (rf,,
can be expressed in the form

(141)

where B3 is a function of the system parameters other
than E/N,, and the variation of the signal energy with the
distance to the transmitter can be determined from (95).
For example, consider a planar configuration and a phase
interferometer with its antennas pointing in the direction
of the positive x axis. It can be shown that if the
estimator bias is negligible, then [7]

(< Y (E\" m
%_<2‘"fod008¢> (N) - el<y A

where f; is the carrier frequency of the received signal, d
is the maximum separation between the interferometer
antennas, and ¢ is the true bearing angle.

As a specific example, we consider identical stations
that are symmetrically located with respect to the
reference point so that

doi = —Pow-i+ 1) i=1,2,..,[N/2] (143)
D(z)io'ii = D(2)(N—i+l)0'%¢(N—i+1)’

= 1,2, .., [IN2] (144)

where [x] denotes the largest integer in x. If N is odd, we
further assume that

by = 0, = [N/2] + 1, N is odd.

A possible configuration for N = 5 is illustrated in Fig.
13. This example is probably unrealistic for ground
stations if N = 4, but might adequately represent location
estimation by an aircraft that samples bearing data at
evenly spaced points along its trajectory. Substitution of
(143), (144), and (145) into (131) yields v = 0, which
implies that oy, = 0. We conclude that the symmetrical,
but not necessarily linear, placement of the stations with
respect to an accurately located reference leads to
uncorrelated coordinate estimates. For an aircraft, we

(145)

REFERENCE

Fig. 13. Configuration of five symmetrically located stations.

may interpret o3 as the variance of the ‘‘cross-range’’
estimation error and o7 as the variance of the ‘‘down-
range’’ estimation error.

If N = 2, then (126) to (133) give

2 - D% (146)

9T S sin? bo;
D3,0%

2 _ 01Vl 147
727 2 cos? b, (147)

. Dy

= 14

X X0 — 2 sin &y, (b1 — b,2) (148)

y = ~Dun_ (b + b,2). (149)

Y = Yo 2 cos d)()l rl r2

If the reference point is located at the intersection of the
two measured bearing lines, then ¢,; = ¢,, = 0. It
follows that (£,¥) = (xg,y0), as expected. From (138),
(139), (146), and (147), we obtain

GDOP =

. 150
sin 2, (150)
The minimum value of the GDOP, equal to V72, is
attained when &y, = w/4. Since o, = 0, (54), (55),

and (73) give
CEP = 0.563 max(o,,0,) + 0.614 min(c;,0,). (151)

If N = 3, the variance of £ remains the same, but the
variance of y becomes

2 cos? 1 -!
0_% — ( d)Ol + — )
DmU¢1 D§0%,

which shows that the extra station only improves the
estimation of the y coordinate of the transmitter. As the
transmitter range increases, ¢, decreases and thus o?/o3
increases.

If n in (118) has a Gaussian distribution, then (54),
(55), (73), and (126)—(131) give the CEP in terms of the
bearing angles and their variances. Assuming that the
reference point coincides with the transmitter position so
that Dy; = D; and &y, is equal to the bearing angle to the
transmitter position, the locus of positions with a constant
CEP can be determined numerically by using (119) and
(120).

(152)
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Consider a linear array of three stations with
coordinates (0, —L/2), (0,0), and (0,L/2). Each station
has an interferometer with omnidirectional antennas
pointing in the direction of the positive x axis. Let oy,
denote the value of a4; when Dy, = L and &y, = 0.
Assuming that o, n, and «a are identical for all three
stations and that the lower bound of inequality (142) is
nearly achieved, (95) yields

2 n
04 = e (Do expla(Dy; — L)),
cos? dbg; \ L '

[l <—12I;i =1,2,3 (153)
¢ZNyL"exp(al)

2 S No CXplan) 154

oL = T onfid) TK, (154)

Figs. 14 and 15 depict loci of constant values of CEP/
Loy, for a = 0. The loci are similar in form to those for
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Fig. 14. Loci of constant CEP/Loy, for linear array of three stations
withn = 2.

hyperbolic location systems. From (112), it follows that
the dotted lines approximate the loci of constant values of
L./3.552V/k Lo, . At equal distances from the array,
direction-finding location systems produce less eccentric
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Fig. 15. Loci of constant CEP/La,, for linear array of three stations

with n = 4.

concentration ellipses than similarly deployed hyperbolic
location systems. This feature may be a significant factor
in selecting the appropriate location systems for specific

applications.

In Fig. 16, the stations form a nonlinear array with
coordinates (0, —L/2), (—L/2,0), and (0,L/2). A
comparison with Fig. 9 indicates that the adverse effect
of the nonlinear configuration is usually less for direction-
finding systems than for hyperbolic systems.

O STATION
=TT a2/ M= o001

— )\2/)\, =001

CEPILO¢ L

-0.5

Fig. 16. Loci of constant CEP/Lo,, for nonlinear array of three
stations with n = 4.

Fig. 17 plots the constant CEP/Lay, loci for a linear
array of five stations with coordinates (0, —L/2), (0,
—L/4), (0,0), (0,1/4), and (0,L/2). A comparison with
Fig. 15 shows the CEP improvement from adding two
stations while maintaining a constant baseline length
equal to L. In general, the CEP is roughly inversely
proportional to \V/N.
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Fig. 17. Loci of constant CEP/Lay, for linear array of five stations
with n = 4.

For a two-dimensional transmitter location with three
stations, a comparison of Figs. 14—16 with Figs. 7-9
indicates that for hyperbolic systems to offer a significant
performance advantage over direction-finding location
systems when o = 0, it is necessary that
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gcoy < Loy, (155)

where g = 5. Substituting (154) and (110) and assuming
equal parameter values for the two systems, we obtain the
criterion

V2 mqfyd < LB,.

Consequently, for the radar signal leading to (93),
hyperbolic systems offer a potential advantage only if

(156)

T,(wqfyd)* < BL®. (157)
For the communications signal leading to (94), a
significant advantage requires

V6 gf,d < BL. (158)

Inequalities (157) and (158) indicate that hyperbolic
systems increase in desirability as the array length and
signal bandwidth increase.

VII. OTHER LOCATION METHODS

When the receivers are moving, it may be possible to
use the known receiver trajectories to enhance the
accuracy of the transmitter location. For example, three
bearing measurements and two turns by an aircraft can be
used to greatly reduce the effect of strong unknown
biases in the measurements {9].

Moving receivers can exploit the Doppler shift in
several ways. In the absence of noise, the measured
frequency at a receiver f,, is related to the transmitted
frequency f; by

fn=f ¥+ fvidc = f, + fvcos d/c (159)

where ¢ is the signal velocity, v, is the velocity of the
receiver in the direction to the transmitter,v is the receiver
velocity, and ¢ is the bearing angle to the transmitter
relative to the velocity vector, as shown in Fig. 18.

TRANSMITTER
9 _ VELOCITY
» VECTOR
RECEIVER
Fig. 18. Moving receiver.

Therefore, the bearing angle can be estimated if f,, is
measured and f;, v, and ¢ are known. Bearing
measurements from several receivers can be combined to
obtain a transmitter location estimate, as is done in

TORRIERI: STATISTICAL THEORY OF PASSIVE LOCATION SYSTEMS

Section VI. Another approach, which may be less
sensitive to inaccuracies in the assumed value of f;, is to
measure the Doppler difference, which is defined as

St = Sz = (fi/ €) (v) cos b; — v, cos b,)

where the subscripts 1 and 2 refer to receivers 1 and 2.
The differential Doppler is defined as the integral of f,;
— fn2 over time. If £, does not change too rapidly over
the integration interval, the differential Doppler is

(160)

2
ft (fml - fmZ) dt = (fta/c) [Dl(t2) - Dl(ll)

= Dy(ty) + D,(t))] (161)

where f,, is the average transmitted frequency and D(z)),
i, j = 1, 2, is the distance of receiver i from the
transmitter at time j. The right-hand sides of (160) and
(161) can be expressed in terms of the transmitter
coordinates. Thus, in the absence of noise, a Doppler
difference or a differential Doppler measurement
determines a surface on which the transmitter must lie. A
location estimator can be derived in a manner analogous
to the derivations of Sections V and VI. Because of the
need for a precise estimate of f, or f,,, Doppler location
systems appear to be most useful in the location of
transmitters of narrowband signals.

Doppler, arrival-time, and bearing measurements at
the same or different receivers can be combined in hybrid
location systems. The combined measurements may allow
a reduction in the number of receivers required for a
given location accuracy and may facilitate the resolution
of ambiguities.

To accommodate a moving transmitter, the
observation interval can be decreased so that the
transmitter is nearly stationary during the interval and
points on the trajectory can be located. However,
decreases in the observation interval eventually lead to
unacceptably large estimation errors, and other methods
must be adopted. If the trajectory can be described by a
low-order polynomial in time and if a sufficient number
of stations or measurements are available, it is possible to
estimate the coefficients by expanding the dimension of
the estimator X. Alternatively, if the differential equations
of motion are known, Kalman filters can be used to track
the transmitter movement [10, 11]. However, the
implementation complexity of a passive location system
with Kalman filters is usually considerably greater than
that of a hyperbolic or direction-finding location system
for stationary transmitters.
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