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Statistical Theory of Turbulence
By G. I. TAyLor, F.R.S.
(Received July 4, 1935)

INTRODUCTION AND SUMMARY OF PARTS [-IV

Since the time of Osborne Reynolds it has been known that turbulence
aoproduces virtual mean stresses which are proportional to the coefficient
<Cof correlation between the components of turbulent velocity at a fixed
S point in two perpendicular directions. The significance of correlation
S between the velocity of a particle at one time and that of the same particle
Evat a later time, or between simultaneous velocities at two fixed points
oobwas discussed in 1921 by the present writer in a theory of ** Diffusion by
.5 Continuous Movements.”” The recent improvements in the technique
.2 of measuring turbulence have made it possible actually to measure some
:Of the quantities envisaged in the theory and thus to verify some of the
%relatlonshlps then put forward.

The theory has also been developed in several directions which were
=Znot originally contemplated. The theory, as originally put forward,
>»prov1ded a method for defining the scale of turbulence when the motion
X is defined in the Lagrangian manner, and showed how this scale is related
2 to diffusion. It is now shown that it can be applied either to the
£ Lagrangian or to the Eulerian conceptions of fluid flow.

g Where turbulence is produced in an air stream with a definite scale by
LH means of a honeycomb or regular screen, either conception can be used
S to define a length which is related to certain measurable properties of
flow and is a definite fraction of the mesh-length, M, of the turbulence-
producing screen.

The Lagrangian conception leads to a length /,, which is analogous to
the ** Mischungsweg * of Prandtl. Experiments on diffusion behind
screens, Part IV, show that /; = 0-1 M. The Eulerian conception leads
to a definite length /, which might be regarded as the average size of an
eddy. Correlation measurements with a hot wire, Part 1I, show that
I, is about equal to 0-2 M.

The theory applied in the Eulerian manner to these correlation measure-
ments also contains implicitly a definition of 2, *‘ the average size of the
smallest eddies,” which are responsible for the dissipation of energy by
viscosity.
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It is proved that
W = 15p (*/22),

where #* is the mean square variation in one component of velocity and
W is the rate of dissipation of energy. This relationship is verified experi-
mentally (Part II).

The relationship between 2 and M is discussed and it is predicted that
turbulence in an air stream moving with velocity U will die down so that

U X

i b7 A-M <+ B,

provided that the scale of turbulence is determined by the mesh-length M
where A is a universal constant and B depends on the choice of the
origin taken for x (the down-stream co-ordinate); u is a component of
turbulent velocity. This theoretical relationship is compared with results
of experiments carried out in wind tunnels in England and in America.

The theory is applied in Part III, to determine the distribution of
dissipation across the section of a parallel wall channel (two-dimensional
pipe) and it is shown that in the region near the walls turbulent energy is
produced more rapidly than it is dissipated. In the central region the
reverse is the case.

In Part IV the results of diffusion experiments made in America and at
the National Physical Laboratory are discussed and it is shown that a
complete set of such measurements can give Vi, l;, and a length 2,
which may be regarded as a measure of the * smallest size of eddy ™ in
the Lagrangian system. 2, is connected, through the Lagrangian equations
of motion, with the average spatial rate of change in pressure, namely

cp 2
V(2]
by the formula
op 2 =
\/<§’ = V2 rul

Finally it is shown that the theory leads to the prediction that 2, is a
constant multiple of A. The only set of experiments which exists at
present gives A, = 2 approximately.

All the above results are subject to the restriction that the “Reynolds
Number of Turbulence,” namely / v/ u*|v, is greater than some number
which must be determined by experiment.
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PART 1

At an early stage in the development of the theory of turbulence the
idea arose that turbulent motion consists of eddies of more or less definite
range of sizes. This conception combined with the already existing
ideas of the Kinetic Theory of Gases led Prandtl and me independently

«to introduce the length / which is often called a * Mischungsweg > and is

alogous to the ** mean free path ” of the Kinetic Theory. The length
v] could only be defined in relation to the definite but quite erroneous
oconceptlon that lumps of air behave like molecules of a gas, preserving
<ﬂthe1r identity till some definite point in their path, when they mix with
Stheir surroundings and attain the same velocity and other properties as
Sthe mean value of the corresponding property in the neighbourhood.
@Buch a conception must evidently be regarded as a very rough repre-
csentation of the true state of affairs. If we consider a number of particles
.Sor small volumes of fluid starting from some definite level and carrying,
ésay, heat in a direction transverse to the mean stream lines, their average
Sdistance from the level at which they started will go on increasing
g'indeﬁnitely so that we can only consider a ** Mischungsweg ™ in relation
-8to some arbitrary time of flight during which we must consider that the
@particles preserve their individual properties distinct from those of their
Ssurroundings. Clearly this is an arbitrary conception and if pursued
Caes ) :
Elogically probably leads to a definitely wrong result. The only way in
2 which a small volume can lose its heat is by conductivity to its surround-
Zings. A decrease in molecular conductivity would therefore lead to an
Emcreasmg time during which the small volume would retain its heat
Hdlstmct from its surroundings and consequently a decrease in con-
i ductmty would necessarily lead to an increase in the * Mischungsweg.”
8 In all theories which make use of / it is assumed that / depends only on
'€ the dynamical conditions of the fluid and is nearly independent of such
o physical constants as thermal conductivity.

In all applications of ** Mischungsweg ™ theories the length / is con-
sidered only in relation to further, more or less arbitrary, assumptions
concerning the effect of turbulence on the mean motion or of the mean
motion on turbulence. It appears as a fictitious length, the existence
of which is detected only by observations of the distribution of mean
velocity, temperature, etc.

The difficulty of defining a * Mischungsweg,” or scale of turbulence,
without recourse to some definite hypothetical physical process which
bears no relation to reality does not arise in such applications. The
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difficulty, however, still exists and it led me, some years ago, to introduce
the idea* that the scale of turbulence and its statistical properties i
general can be given an exact interpretation by considering the correlation
between the velocities at various points of the field at one instant of time
or between the velocity of a particle at one instant of time and that of
the same particle at some definite time, Z, later. Some general relations
applicable to either of these two aspects of the turbulent field were dis-
cussed, and the application of the definitions used in the second of them
to diffusion in one dimension was worked out in detail. In this applica-
tion of the theory the particles are conceived to move irregularly but
with continuous velocity, © and ® is supposed to be independent of time,
The diffusion of particles starting from a point (y = 0) is shown to
depend on the correlation R; between the velocity of a particle at any
instant and that of the same particle after an interval of time £. In
continuous turbulent movements R; must be a function of £ such that
R; = 1 when £ = 0 and R; - 0 when £ is large.

If Y2 is the mean square of the distance through which the particles
have diffused in time ¢ it was proved that

d
Lo

If the time of diffusion is small so that R; has not departed appreciably
from its initial value 1-0, (1) becomes

Y9 = Y_u:?ﬂ R, dE. )

3 5.7 =i
so that

: VYR =t 2)
where v = /2.

If the diffusion is taking place in a stream of air moving with velocity
U and if the spread is observed at a small distance x down-stream from
the source ¢ = x/U so that

VI _ o ®
x

cl

If the irregular motion is of such a character that it is possible to define
a time T such that R, = 0 for all values of £ greater than T, so that there
is no correlation between the velocities of a particle at the beginning
and end of the time interval T, then

Y-i/' =7 ‘.T Rede, (4)
+0

* * Proc. Lond. Math. Soc.,” vol. 20, p. 196 (1921).
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Yo is therefore constant for all values of # > T in spite of the fact that the
value of Y? is continually increasing and ¢* is constant.
Under these circumstances it is possible to define a length /;, such that

= M d
I, Vi = erj Ridi=14 % (Y. (5)
! [l
It will be seen from (5) that the length /;, defined as
e "r
[1 ="V (72 Jo Rs de, (6)

bears the same relationship to diffusion by turbulent motion that the
mean free path does to molecular diffusion. In this sense it is very
similar to the ** Mischungsweg,” /, but with this important difference
that the question of mixture does not arise in defining it.

As is pointed out above, theories which depend essentially on the idea
bobof mixture by subdivision and ultimate molecular diffusion lead to the
E expectation that the “ Mischungsweg  will depend very greatly on the
-4 molecular diffusive power of the fluid. In the theory of diffusion by
'S continuous movements the length /, bears no relation to any process of
2> mixture, indeed it is equally valid if mixture never takes place. The
effect of molecular diffusion would be to prevent the fluid from becoming
ever increasingly “‘spotty,” i.e., it would tend to prevent a continual
increase in the deviations of the measurable properties of the fluid from
X their mean value in the neighbourhood. Mixture has no effect in this
& theory on the diffusive power of turbulent motion.

rg/ on 04 August 2022
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CORRELATION IN THE TURBULENT FIELD WHEN DESCRIBED IN THE
EULERIAN MANNER

In a loose way it has been thought that the “ Mischungsweg > length
I is related to, and even may be taken as a measure ‘of the average size
of the larger eddies in turbulent flow. It will be noticed that in the
original ** Mischungsweg ™ theories, and also in the theory of diffusion
by continuous movements, everything is defined in a Lagrangian manner,
i.e., by following the paths of particles. When a field of eddying flow is
considered as an entity in itself, apart from its effect as a diffusive agent,
it is more usual to think in terms of the Eulerian conception of fluid flow,
i.e., a field of stream lines conceived to exist in space at one instant of
time. Any ideas we may have about ** the size of an eddy  are likely
to be formulated in the Eulerian system. For this reason it would not
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be possible to connect directly the size of an eddy, even if it could be
accurately defined, with the value of / or of /; as defined by (6) in the
Lagrangian system. At the same time it seems to be a matter of
considerable theoretical interest to investigate the statistical properties
of a field of turbulent flow when described in the Eulerian manner, with
a view to defining a length which may represent in some definite way the
* size of an eddy.”

The correlation theory developed in my paper, ““ Diffusion by Con-
tinuous Movements,” is equally applicable in this case and may be used
to formulate another definition of the scale of turbulence. It is clear
that whatever we may mean by the diameter of an eddy a high degree of
correlation must exist between the velocities at two points which are close
together when compared with this diameter. On the other hand, the
correlation is likely to be small between the velocity at two points
situated many eddy diameters apart. If, therefore, we imagine that the
correlation R, between the values of u at two points distant y apart in
the direction of the y co-ordinate has been determined for various values
of y we may plot a curve of R, against y, and this curve will represent,
from the statistical point of view, the distribution of u along the y axis,
If R, falls to zero at, say, y = Y, then a length /, can be defined such that

-

i Y
I2= JO RU d)’ - lR”Ci)’- (7)

This length /, may be regarded as the analogue in the Eulerian system
of I;, which is defined in the Lagrangian system. It may be taken as a
possible definition of the ** average size of the eddies.”

EXPERIMENTAL METHODS FOR MEASURING /; AND /,

The compensated hot wire is capable of being used to measure several
of the quantities which are necessarily considered in any statistical theory
of turbulence.

(1) #* can be measured by means of a hot wire anemometer. If the
amplified disturbances are passed through a wire the heat produced can
give rise to a current in a thermojunction, which will cause a deflection
in a galvanometer proportional to #*.

(2) If two hot wires are set up at a distance y apart transverse to @
stream of air and the currents produced by variations in u at the two
points are sent through the two coils of an electric dynamometer, the
resulting deflection will be proportional to u.u, where u, and u, are the
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velocities at the two points. In this way R, = uau,/u® can be measured.
By repeating these measurements for a number of different distances of
separation y between the two hot wires, R, can be determined for all
values of y and hence by integration /, can be found. The (R,, y) curve
has already been obtained in certain cases by Messrs. Simmons and
Salter at the National Physical Laboratory by this method (see fig. 1
of Part II).

Another method is to arrange two equal hot wires on two arms of a
QWheatstone bridge thus measuring (4, — u)®. If u,® and u,® are
2 measured independently at the two stations, wu, can be found from the

Srelationship

t 2022

Aug

ll_0§ + ;1—2_— (“0 = lll)g _— 2“0”1- (8)

Yet another method due to Prandtl* is to pass the currents from the
two hot wires through coils which cause deflections of a spot of light
spin two directions at right angles to one another. If the two hot wires
- are identical and so close together that the correlation is nearly 1-0, the
= spot of light moves over a very elongated elliptic arca, the long axis of
2 which is at 45°, to the deflections caused by either of the wires in the
%abscnce of disturbances from the other. By measuring the ratio of the
'g principal axes of the elliptical blackened areas produced on a photo-
< graphic plate by the moving spot of light during a prolonged exposure,
2 it is possible to calculate R,. This method is specially suitable for
= measurements when the correlation is very high, ie., 1 — R, is small.
8.1t is not so suitable for small correlations as the electric dynamometer
<= method. Correlation measurements made in this way are shown in
fig. 1 of Part III of this paper.

(3) By introducing heat at a concentrated source or a line source in an
air stream and measuring the spreading of the heat to leeward of the

org/ on 04

n

source it should be possible to measure the quantity ‘-Id; Y? which occurs

' Downloaded from

in (1) and hence to find j( R; d; for various values of ¢. If this reaches
0

a constant value at some distance down-stream then /; can be found.
This method was suggested in my paper on ** Diffusion by Continuous
Movements.”” Up to the present, however, the theory has only been
applied to cases like that of diffusion in the atmospheref where there is
no a priori reason to suppose that any definite scale of turbulence can be

* Prandtl and Reichardt, ** Einfluss von Wirmeschichtung auf die Eigenschaften
einer Turbulenter Strémung.” Deutsche Forschung, p. 110 (1934).
T Sutton, * Proc. Roy. Soc.,” A, vol. 135, p. 143 (1932).

2F2
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defined. Indeed, Mr. O. G. Sutton has shown that the best representation
of diffusion in the air near the ground is obtained by assuming R, o £-»

so that R, does not vanish however great £ may be. In fact the d;
0

increased continuously with increase in 7 so that /;, defined as in equation
(6), would have no definite value.

The turbulence which occurs in wind tunnels is produced or controlled
by a honeycomb with cells of a definite size. Ina wind tunnel, therefore,
there is an a priori reason why the turbulence might be expected to be of
some definite scale. In fact, it might be expected that both /, and Iy
would be some definite fraction of the mesh of the cells. Under these
circumstances the diffusion equations (1) and (6) reduce to

d N¢ ’
J"Ft Y2 =Ly, 9)

This expression is valid when the distance x of the points at which measure-
ments of Y? are made from the point or line source of diffusion is so
great that R, = 0 where £ = x/U and U is the mean speed of the air
stream.

APPLICATION OF DIFFUSION EQUATION WHEN TURBULENCE IS
DECAYING

In the air stream behind a grid or honeycomb the turbulence is not
constant. It decreases as the distance down-stream increases. The
preceding theory cannot then be applied without further investigation.

If ©¥ is considered as a function of 7 the diffusion equation is

3 : Y = v, J' Ve d5 (10)
o
for ¥ = v, d% and g‘ (Y?) is the rate of increase in Y2 at time ¢ after

JO
the beginning of the diffusion from a concentrated source.
If R, . is the coefficient of correlation between the velocity at time

t and that at time ¢ — &, (10) may be written

d' 7 ' ¢ '
_}'d_t Yr=1v j v'pe (Ryg) d5, (1
0
where v',, v',_; are written for V 2, V&, .
When the average condition of the turbulent motion is constant with
respect to time ,R,_, is the same as R,y or R, and is a function of &

2
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only, so that (11) is identical with (1). When v’ is not constant, it is not
possible to proceed beyond (11), but the existing experimental evidence
seems to show that turbulent diffusion is proportional to the speed, so
that if matter from a concentrated source is diffused over an area down-
stream from the source, anincrease in the speed of the whole system (i.e.,
proportional increases in turbulent and mean speed) leaves the dis-
tribution of matter in space unchanged (though the absolute concentration
is reduced). The condition that this may be so is that ,R,_; is a function

of 7 only where
dn = v'd% = (' |U) dx (12)

and x = Ur is the distance down-stream from the source.
The equation which represents the lateral spread of matter or heat
from a concentrated source is therefore

Ud = (™
SE 3 = ‘0 R, d, (13)
where 0, = ‘:ll_} dx, (14)

and R, is the correlation between the velocities of a particle at times 7,

ts
and 7, when v = ( v'dt. 1f R, falls to zero at a finite value of =, say

"l

. .'7 - .
1 = ., and remains zero for all greater values of 4, | R, d7 is finite.
<0

If [, be written for j . R, dn then (11) becomes
0

Ud —
v Y =h (15)

This is the same expression as that found for turbulence which is not

decaying. *
It is worth noticing that (13) may be expressed in the form

' "y ,
%d_-r,(Yz): - R, d,. (16)

~

When 7, is small so that R, = 1 over the range from 0 to x, (16)

becomes
d
d—”l (Y?)=sm. (17)
The integral of (17) is -
Y= or VYi=1, (18)
* See equations (1) and (6).
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When the turbulence is constant 7 = xv’/U so that (18) reduces to the
previous expression (3) for the spread of matter near a concentrated
source. If the turbulence is not constant and if YZand v '/U are measured

Ud
at a number of values of x, then both % and 4 7 T (Y’) can be found,

Thus [ R, d7 can be plotted against n and R, can be found graphically
“ 0
from this experimental curve.

MICRO-TURBULENCE AND DISSIPATION OF ENERGY

Besides the motions which are chiefly responsible for the diffusive
power of turbulence the whole field may be in a state of micro-turbulence,
e., there may exist very small-scale eddies which, though they play a
very small part in diffusion, yet may be the principal agents in the dissipa-
tion- of energy. They may also be the principal causes of the effects of
turbulence on the boundary layer in wind tunnel work because the
absolute magnitude of the space rates of change in pressure may depend
on them.

DISSIPATION OF ENERGY

The rate of dissipation of energy in a fluid at any instant depends only
on the viscosity, @, and on the instantaneous distribution of velocity.
If, therefore, the representation of the essential statistical properties of
the velocity field can be expressed by the R, curve and similar correlation
curves it must be possible to deduce from them the rate of dissipation of
energy. This would in general involve a complicated analysis, but the
problem can be much simplified if the field of turbulent flow is assumed
to be isotropic.

IsoTroPIC TURBULENCE

In isotropic turbulence the average value of any function of the velocity
components, defined in relation to a given set of axes, is unaltered if the
axes of reference are rotated in any manner. That there is a strong
tendency to isotropy in turbulent motion has long been known. It has
been shown by Fage and Townend,* for instance, that the average values
of the three components of velocity in the central region of a pipe of
square section are nearly equal to one another. In the atmosphere the
same phenomenon has been observed ; though, as might be expected, the

* Townend, * Proc. Roy. Soc.,” A, vol. 145 (1934) (see fig. 15, p. 203).
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vertical components are smaller near the ground than the horizontal
ones, this inequality decreases with height above the ground.*

The assumption of isotropy immediately introduces many simpli-
fications both into the statistical representation of turbulence and into
the expression for the mean rate of dissipation of energy.

The general expression for the rate of dissipation is

= ufa( i‘_’ 2 (9w . (20 Quy
o w_yL.z(‘a ) +2(z ) +2(==) +(E’x k)
8 ~
3 (2B (2T (19)
B2 oy 8z  ox/ |
=’
iMaking the assumption that the turbulence is statistically isotropic, the
Orelations
oud _ [ov? __ [ow\?
and

TR\ 2 2 P ) TR Fo g N 2

(V' = [y _ (0 _ (0F () _ (W) L (20

oy/ 0z X ez cX cy

0
=]
(=%

oxdy ©@yodz ©0zox

are immediately obtained so that

tps://royalsocietypublishing.org/ on

~ WS
W 6(2) +6(Z) +6922m. 21
y‘ (‘ 3 J (‘\‘ c,"‘

= Equation (21) contains three types of term. It will now be shown that
g these are all related to one another so that if the value of one is known
© the other two are known.

— That relationships can be found between the mean values of squares
'U and products of du/ex, ou/dy, fv/éx, .., etc., is obvious. The simplest
S relationship is obtained as follows. The condition of continuity is

ed f

=
= ~
5 ou , o , ow _
SO that
Pw 2 s (Oudv , Ovow , owou "
2t ) =t e nt e @
The conditions of statistical isotropy therefore lead to the relationship
ou? cu v
i %3y (23)

* Taylor, * Q. J. R. Met. Soc.,” vol. 53, p. 210 (1927).
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or
fu 7
ox oy
, : == (24)
vV (%) w/(,yf

In other words there is a definite correlation coefficient between u/ox
and év/cy equal to — 4.

MEAN VALUE oF GENERAL QUADRATIC FUNCTION OF ¢u/ox, @v/ex,
cu/ey, ..., ETC.

Consider the most general possible expression for the mean value of
any quadratic function of the nine quantities

ou v ow ou ¢cv Ow ©Ou oOp ow

In general there are 36 possible combinations of 9 things taken 2 at
a time. Thus the most general quadratic expression contains 45 terms,
namely the 9 squares of the quantities concerned and the 36 combinations
of 2.

When the motion is statistically istotropic the 45 terms fall into 10
groups, each of which contains 3 or 6 means which are equal to one
another; for example, one group containing 3 equal terms consists of

Q)

(

}$ ""«—'9

u® (o w2
x/ * \gy - (\5?) '

o)

Another containing 6 equal terms consists of

an ow W Goow Wi
dx 0z’ oxady’ dyoz’ Opox’ 0zdy’ 0zox~

The 10 possible independent mean values will be denoted by a;, @s

.» @y according to the scheme laid out in Table I where the top row of
the table gives the type term and all other terms of the same type can be
obtained by permuting symmetrically the elements of the type term.

The symbol which represents the mean value of any term of a type is
given in the second row and the number of independent terms in each
group is given in the last row.

In terms of these symbols (21) becomes

W/(J-=601—|-6as+608. (25)
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I now propose to prove that the 10 values, a,, a,, ... a5y, are inter-
connected, so that if the value of any one of them, which is not zero, is
known all the rest are known. For this purpose it is necessary to prove
9 linear relationships. One such relationship has already been proved
(see equation (23)). Expressed in the symbols of Table I (23) may be

written
a, = — 2a,. (26)

Further relationships may be obtained as follows. Take any one of
the 45 possible terms in the most general quadratic expression involving
the 9 partial differentials of (25). Transform u, v, w, x, y, z, by rotation of
the axes to ', v, w, X', ¥/, z’. The transformed expression will still be
quadratic but will contain terms of other types than the original one.
When the mean values of the terms in the transformed expression are
considered it is a necessary consequence of the definition of isotropy that
the value of each is equal to that of the type term in the group in which
they are classed. A simple transformation is obtained by rotating the
axes through 45° about the axis of z so that

V2x = x—{—y’ V2u = u-l—v}
V2y = —x+yp} \/fv’=——u+vl~. (27)
Z'= z | w= w
Hence
ou__,/ou © ou , o ou _ (o o | ow 80')
x w5t wty
o _ L @ ) v o
m et _3;_%(8x+8x oy+3y)
w1 ow ow) w_ 1 (0w ow)
ox 4/2\0x" Oy Wy 2\ T |
ou _ 1 (o a”’)
ez 4/2\0F Oz,
dv 1 [ou , oo’
o \._'2(-8_2'_*”8—2") (28)
ow __ow'
oz o

a") = a,. By squaring the transformed expression

Take, for example, ( =
X/
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for (-gg), taking the mean value and substituting the symbol for the
X )
corresponding type term from Table I it will be found that

LT w0 TR
(S = o = {(35) + (5] + - G5 )

=4(+as—a;—a, + ag+ a;,— ay — a;). (29)

NSimilarly
A2
(%) =ay =% (a, + a; + a5 + as + Gy + a3 + a; + ay), (20}
5 :
(g_l; =8 =*%@+a—a;tay—a;,—a;+a,—a) ()
(g_'i)‘z =az=1%(a +as+ a;,—a; — a;— a; — a + ay). (32)

From these equations it will be found that

ietypublishing.org/ on 04 August 202

as=as, =10 (33)
and
> a,—as—a, — ag = C, (34)
G.)
§No further relations can be derived by transforming the type terms corre-
T;\spondmg with a,, a,, a; or a,. Proceeding to terms involving w or z
)
Soudy Bu (80"} _ og
gé?a—z—aw——% ( a—,‘)‘-%(aa*aa)—oy (35)
=
du ov
§$?= 9=2_\/5((12—0‘,—{—@—a,-{-a. a; + ag— az) =0, (36)
=
=
ooduov 1 = :
Ea_x_z—a’ —-2—\/5(02 a, — a; + a, + a, — ag — ay + ay). (37)
=
2 hence since y
A ag =ay, =0 a;(V2—1D)+a;=0 (38)
ou cu R
?y oz =aQy= m(az — Gyt s — a; — a; + a3 — a, + ay),
and hence Y
ay(VZ—1)4a,=0 (39)

combining (38) with (39)
3= a; =0 (40)

Summing up the results so far obtained 6 of the 10 independent types
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of mean are zero, namely, a,, ay, a; ,a,, Ay, @y and there are two inde- ‘
pendent relationships between the remaining 4 means, namely,

a=—2a, and a —az—a;—a; = 0.

Of these the first depends on incompressibility and isotropy. The
second depends only on isotropy.

One further relationship can be obtained by volume integration of the
general dissipation expression (19). This integration is well known*:
it is

i oxaree =[[[ (2G) +2(5) + 2 + G+ &)
+(iif1+i“1'+t: +3“)2‘dxdydz
oz ox ' oy/)
I mn
=il +q+c~)d\d1d.—||—(q2)ds+2H v w|ds, (41)
E 0 &

where
£ = (ow/dy) — (0v]ez), etc.

and the integrals are taken over the cloud surface S and through its
volume. If the closed surface is large compared with the scale of the
turbulence the surface integrals are small compared with the volume
integrals which may therefore be neglected. Taking the mean value of
all the quantities in (41) and expressing the result for isotropic turbulence
in terms of the symbols of Table 1, (41) becomes

W/ u = 6a, + 6a; + 6a, = 6a, — 6ay, (42)
Hence
ay + 2a, = 0, (43)
solving (26), (34), and (43) it will be seen that
a, = Yas = — 2a, = — 2a,. (44)

Three obvious corollaries to this result may be noticed :

(1) The correlation coefficient between du/ 2x and év/dy is — 3.

(2) The correlation coefficient between cu/2y and @v/ox is — 4.

(3) When the mean value of any one of the four possible types of
quadratic terms which are not zero is known all the rest are known, SO
that the mean value of any quadratic function of the space rates of change

* See, for instance, the chapter on viscosity in Lamb’s ** Hydrodynamics.”
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of velocity is also known. In particular the dissipation may be expressed

E ) 2 . »
it: terms of (—5%) - The correct expression 18

ou 2
W/p.=6al+603+6a3=3a3+6a,,—l-5a3=7'5<a—;). (45)

STATISTICAL REPRESENTATION OF MICROTURBULENCE

The value of (ﬁf is clearly related to the way in which the value of
cy

g;%st 2022

, falls off from its initial value 1-0 as y increases from zero. I have
Zproved,* in fact, that

=< 1 }.’2 f Pui 1‘114 azwa =

E R"=1—L§;_l—2{5>+&72(.a—y§) (46)
o

S~ | = =
%Dl'he curvature of the R, curve at y = 0 is therefore a measure of (%‘ )
'%Dso that ¢
= ) 5 2 — \

E () =z2Le (1=5%). 47)
c \C) g0\ ¥

=

2

The significance of the expression (47) can best be appreciated by

O

‘Sdefining a length  such that

% 1 1—R,,

£ = At =), G
3 y—>0 ®

T

% A is then a measure of the radius of curvature of the R, curve at y = 0.
£ If the curve is drawn on such a scale that its height is H (corresponding
g with R, = 1 at y = 0) the radius of curvature at y = 0 is 2*/2H.
Another interpretation of A may be found by describing the parabola
= which touches the R, curve at the origin. This parabola will cut the
3 axis R, = 0 at the point y = A. A may roughly be regarded as a measure
of the diameters of the smallest eddies which are responsible for the
dissipation of energy.

ded fro

‘Downlo

CONNECTION BETWEEN DISSIPATION OF ENERGY AND CORRELATION
FuncTioN R,

Combining (45) with (47) and (48), the dissipation is related to the
correlation function R, by the equation

W =15 u® Lt } }R (49)

y—

* * Proc. Lond. Math. Soc.,” vol. 20, p. 205, equation (14), (1921).
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or
W = 15wme/2. (M)
Since #* and R, can be measured directly by means of the hot wire
technique referred to earlier, the relationship (49) can be verified if
W can be measured by other means. The way in which this can be
done and the comparison between this statistical theory and the results
of observation will be discussed later. In the meantime it may be noticed
that if the Reynolds’s stresses in geometrically similar fields of flow are
proportional to u* or u'%, W is proportional to «%, so that 2 is proportional
to (1), and since 2 is proportional to the curvature of the R, curve at
y = 0 we are led to the prediction that the curvature of the R, curve at
its summit, y = 0, will be proportional to 1/#’. 1In the limit for very high
values of «' the R, curve may be expected to have a pointed top.

SUGGESTION FOR EXPERIMENTAL TEST IN WIND TUNNEL OF
PREDICTED CORRELATION RELATIONS

It has been shown how measurements of correlation between the
readings of two hot wires at points close together in a transverse section
of a pipe or wind tunnel can give the value of (.8—2;_’2
ments could be made in a line parallel to the main stream, values of
@—z_f could be obtained in the same way. Equation (44) shows that
4= ('3‘27:%“3:%(2__;72

If similar measure-

and referring to equation (47) which is equally true when x is substituted
for y, it will be seen that for the correlation to fall a given amount from
its coincidence value 1-0 the separation of the two hot wires must be /2
times as great when one lies up- or down-stream from the other as it is
when they lie across the stream.

This is a definite new theoretical prediction which could be tested.
If difficulty is found in working with one hot wire down-stream from the
other, measurements might be made with the two wires mountec} at a
fixed distance  apart on a rotating holder, and the variation in the
correlation R as the holder is rotated might be found.

The correlation between the values of u observed at two points situa}ed
at a short distance, r, apart/in a line making an angle 0 to the wind direction
g

R —Li(_aﬂ E (51)

4 ’

* Compare equation (47).
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where x’ = x cos 0 -+ ysin 6. Since

ou _ o 4 ging M
a—'\_—,—cos()ax-{-sm By

(51) becomes, in the notation of Table I,

3
R=1-— 2—- (ay cos? 0 + ag sin® 0 -+ 2a, cos 0 sin 9). (52)
(@
N

8When the turbulence is isotropic this is

e (Ou?
P =R~ <8y) (cos? 0 + 4 sin® 0),

hence from the definitionf of A
1—R= 7\—2 (Cos"" 0 -+ 1 sin® 0). (53)
It appears, therefore, that 1 — R should vary in the ratio 2: 1 as the

Zholder is rotated for the maximum to the position to maximum to
minimum correlation.

DIMENSIONAL RELATIONSHIP BETWEEN A AND SCALE OF TURBULENCE

It has been shown by v. Karman that if the surface stress in a pipe is
expressed in the form 7 = pv.* then

U~—u = f r_") . (54)

Uy a

m https: //royalsocietypubhshing.org/ on 04 August

where U, is the maximum velocity in the middle of the pipe and U is the
-c velocnty at radius r. This relationship is associated with the conception
'O that the Reynolds’s stresses are proportional to the squares of the turbulent
S components of velocity. It seems that the rate of dissipation of energy
in such a system must be proportional, so far as changes in linear dimen-
A sions, velocity, and density are concerned, to pu'®/l, where / is some linear
«dimension defining the scale of the system. For turbulence produced
by geometrically similar boundaries therefore

ownl

W = constant(T )= 15 W“
For such systems therefore
A2 v

T See equation (48).
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where C depends on the position relative to the solid boundaries of
point at which observations are made and on the element used for defining/,

APPLICATION TO AIR STREAM BEHIND REGULAR GRIDS OR
HONEYCOMBS

Formula (55) is specially well adapted for discussing the decay of
turbulence in an air stream behind a grid or honeycomb, because it has
been found that at a certain distance down-stream the stream becomes
statistically uniform, i.e., the * wind shadow ™ of the grid disappears
and the mean velocity becomes uniform. Under these circumstances it
seems that the C of formula (55) must be a constant for any definite
form of grid. The researches of Schlichting* have shown that at a short
distance behind a cylindrical obstacle the wake assumes a definite form.
The width of the wake and the velocity of the air in the middle of the
wake depend on the drag coefficient of the obstacle so that obstacles
of very varied cross-sections produce identical wakes provided their drag
coefficients are identical. For this reason it may be expected that if a
regular grid or honeycomb is constructed the scale of the turbulent motion
produced by it at any distance down-stream beyond the point where the
* wind-shadow " has disappeared will depend only on the form and mesh
size of the grid, and not on the cross-section of the bars or sheets from
which it is constructed. On the other hand, the velocities of the turbulent
components will certainly depend on the drag coefficient of the bars
themselves as well as on the distance down-stream from the grid at which
measurements are made.

These considerations lead to the prediction that if only one form of
mesh is considered, say a square mesh, and if the length / in (55) is taken
as M, the mesh length, i.e., the side of each square of the mesh, then the
constant C in (55) will be an absolute constant independent of the form
of the bars of the grid. We are thus led to a definite expression for

»/M namely,
A A A
a1 =AA L £ (56)

where A is an absolute constant for all grids of a definite type, e.g., for
all square-mesh grids or honeycombs. y

* ¢ Ingen. Arch.,” vol. 1, p. 533 (1930).
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PREDICTION OF LAW OF DECAY OF TURBULENCE BEHIND GRIDS
AND HONEYCOMBS

We are now in a position to predict the way in which turbulence may
be expected to decay when a definite scale has been given to it as the air

stream passes through a regular grid or honeycomb.
The rate of loss of kinetic energy of the turbulence per unit volume is

[l

[}

= .

> —%pUH({\,?-i-vg—%W),

2 g

é’whlch in an isotropic field of turbulence is

*

o —_—

5 — 3 eU %_(u"’).

)

EDThls must be equal to the rate of dissipation W, so that

= —

% ond __‘{. G =. 15 l_‘f 57
g ETPde(”) 1 P.A". ( )
=)

SThis equation is capable of experimental verifications independently

-801' the relationship (56) between » and M because, as has been shown, 2 is
Sconnected with R, through (48) and R, can be measured instrumentally.

t

% On the other hand if the relallonshlp (56) between A and M is assumed
£to hold it is possible to calculate the law of decay of turbulence. Sub-
gstituting for A from (56), (57) becomes
=

_Ud 10 v
g ;J d\ )* MAz’ (58)
=
@and integrating (58) the following very simple law of decay is predicted,
<
5 U= 5%
% = = 2t - constant. (59)
<

This expression should be applicable to all cases where the turbulence
is of a definite scale. The linear law of increase in U /i’ should therefore
apply to all wind tunnels where the scale of turbulence is controlled by a
honeycomb or grid, and the value of the constant A determined experi-
mentally, using (59), should be universal for all square grids. Thus, the
turbulence behind a square-section honeycomb with long cells should
obey the same law of decay as that produced by a square-mesh grid of
flat slats or a square-mesh grid of round bars, and the values of A should
be identical in all these cases.

VOL. CLI.—A. 2G
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For other types of grid or honeycomb, e.g., with hexagonal or tri.
angular cells or a grid of parallel slats or plates, the constant A determined
experimentally by applying (59) to observed values of u' at different
distances down the air stream might be expected to assume other values,

ExPECTED LIMITATIONS TO PREDICTED LINEAR LAW OF DECAY OF
TURBULENCE

This is a very comprehensive prediction, but it is subject to certain
limitations. In the first place it cannot be expected to apply when Mu/ /v
is small, for equations of the type (56) are not true when Mu’/v is small,
In fact if (56) were supposed to hold when Mu /v is small A would be
greater than M, a condition which is clearly impossible at any rate near
the grid.

A second restriction is that the formula cannot be expected to apply
in the region immediately behind the grid where the mean velocity is
variable, 7.e., where the ‘ shadow » of the grid is still distinct. It is
found experimentally that when the diameter of the bars of the grid
is small compared with M the shadow may extend to as much as 20 M
or 30 M behind the grid, but when the bars are as broad as # M the
shadow disappears a few mesh lengths down-stream from the grid.

A third limitation may be expected to operate when the turbulence is
not entirely due to the grid through which the stream passes. If, for
instance, a very turbulent stream passes through a grid consisting of thin
wires arranged in a large-scale mesh the scale of the turbulence in the
stream might hardly be affected by its passage through the grid.

SUMMARY OF RESULTS AND THEGRETICAL PREDICTIONS

(1) When the turbulence of a definite scale is produced or controlled
in a stream of air by a honeycomb or grid of regularly spaced bars the
scale of turbulence can be investigated in two ways. If the Lagrangian
conception of fluid motion is adopted the scale of turbulence can be
defined in reference to the correlation R, between the velocity of a particle
and that of the same particle at time £ later. This conception is suited
for discussing experiments on diffusion of heat from a concentrated
source. ;

(2) If the diffusive spread of heat or matter from a line source 1S
measured near the source it is proportional to the distance from t.he
source and measures the transverse component of turbulent velocity
independently of the scale.
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(3) If the diffusive spread is measured at a number of positions extending
far down-stream from the source a length /; analogous to the mean free
path in kinetic theory of gases can be determined. It is anticipated that
this will be some definite fraction of the mesh size M of the honeycomb
or grid.

(4) Measurements of correlation between simultaneous values of the
velocity at points distributed along a line can determine a length /g
which measures the scale of turbulence from the standpoint of the Eulerian

Qrepresentation of fields of flow.

A Both these lengths may be expected to be some definite fraction of the
amesh length M, at any rate when the turbulence is not very small.

<:t) (5) A third length A can be defined in relation to the dissipation of

genergy by the equation % =15 ;—‘; This length may be taken to repre-
q ,

2 sent roughly the diameters of the smallest eddies into which the eddies
g defined by the scales /, or /, will break up.

& (6) If the rate of dissipation is proportional to the cube of the velocity,
= as it is where the Reynolds’s stresses are proportional to the squares of

1

: ; ; Iy

the turbulent components of velocity, A is proportional to \/ u_\: A
In turbulence due to a square mesh honeycomb of mesh length M,
I\ld = A \/ ﬁ , where A is a constant. This formula is inapplicable

when My’ /v is small.

(7) Using this value for 2 it is shown that the law of decay of turbulence
is such that U/« increases linearly with x in accordance with equation
(59).

(8) A is also directly connected with the correlation between simul-
taneous measurements of velocity at fixed points separated by a small
distance. This correlation can be measured by suitable apparatus so
that the theory can be verified experimentally.

(9) In isotropic turbulence the mean value of any quadratic expression
of the space rates of change in the velocity is known when the mean
value of any one of the terms in it which is not zero is known. This
leads to the prediction, which might be verified experimentally, that if the
correlation between a component of velocity at a fixed point O and that
at a neighbouring variable point P is measured, the surfaces of equal
correlation are prolate spheroids with P as centre, the long axis is V2
times the equatorial axis and is directed in the direction in which the
velocity component is measured. This statement is identical in substance
though not in form with that given on p. 439.

Downloaded from https://royalsocietypubl
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CONCLUDING REMARKS

Of these results and predictions (1), (2) and (3) are substantially identical
with the conclusions put forward in 1921 in my paper, “ Diffusion by
Continuous Movements,” where the suggestion that the diffusive power
of turbulence should be used for the purpose of measuring the scale of
turbulence and the turbulent components was first made. Recently
experiments of this nature have been made by C. B. Schubauer* and (2)
has been verified, as will be shown in Part IV of the present paper. Mr.
Schubauer, however, worked quite independently of my previous work
and indeed gives an empirical explanation of his experimental results,
Conclusions (4) to (9) are, I believe, new. It will be shown in
Part 11 that all these results, except (9), have now been verified experi-
mentally and shown to be true. Experimental work is now in hand to
test the truth of (9).

Statistical Theory of Turbulence—II
By G. 1. TavLor, F.R.S.
(Received July 4, 1935)

MEASUREMENTS OF CORRELATION IN THE EULERIAN REPRESENTATION OF
TURBULENT FLOW

The methods described in Part I have been used by Mr. L. F. G. Simmons,
of the National Physical Laboratory, to find experimentally the correlation
between the turbulent components of velocity #, and u, at two points
distant y apart in a direction transverse to the stream. The measure-
ments were made at mean speed U = 25 feet per second in a wind tunnel
behind a honeycomb with 0-9-inch square mesh. The results are shown
in fig. 1 where the ordinates are R, = %’ and the abscissae are the

u
corresponding values of y. It will be seen that the R, curve is apparently
rounded at the top and that R, falls to 0-08 at y = 0-38 inches. No
measurements were made beyond this point, but extrapolation seems to
show that R, = 0 when y is about 0-5 inches, i.e., when y is slightly
greater than 1M.

* ‘ Rep. Nat. Adv. Ctee. Aero., Wash.,” No. 524 (1935).




