Statistical-Thermodynamics Formalism of Self-Similarity

Hirokazu Fujisaka and Masayoshi Inoue
Department of Physics, Kagoshima University, Kagoshima 890

(Received January 23, 1987)

Abstract

The self-similarity in dynamical and stochastic systems is formulated from a statisticalthermodynamical standpoint. The global structures of the self-similarity are found to be determined by one generating function which plays a role similar to the Helmholtz free energy in the equilibrium statistical mechanics. The interrelations among fractal measure theories developed for, e.g., generalized fractal dimensions of strange sets and velocity structure functions in turbulence are clarified from a unified point of view.

§ 1. Introduction

The Mandelbrot fractal dimension ${ }^{1)}$ turns out to be a fundamental quantity to characterize strange sets. However, it does not describe non-uniformity structures of the strange set in the state space. Some of such aspects are explained by a set of dimensions $\left\{D_{q}\right\}$ introduced by Hentschel and Procaccia, ${ }^{2)}$ and by Grassberger. ${ }^{3)}$

Recently a new set of quantities characterizing fluctuations of scaling indices for strange sets has been proposed by Halsey et al. ${ }^{4)}$ by employing a set of dimensions $\left\{D_{q}\right\}$. A similar fractal measure theory has been constructed in the context of velocity structure functions in developed turbulence. ${ }^{5)}$ After these works many studies are reported for, e.g., strange attractors, ${ }^{6) \sim 9}$ diffusion-limited aggregations ${ }^{10), 11)}$ and turbulence. ${ }^{12)}$ The fractal measure theory transforms the set of dimensions into the spectrum of scaling indices of the fractal measure. The key point of the spectrum of scaling indices in the above cases seems to be based on the fractal concept. However, as a more fundamental concept than fractals so as to construct the spectrum theory of scaling indices, we propose the importance of the self-similarity concept. The main aim of the present paper is to construct the spectrum theory of fluctuations obeying a self-similar statistics. This will turn out to lead to the statisticalthermodynamics formalism of the self-similarity.

The present paper is constructed as follows. In § 2, we give the characteristic function theory of the self-similarity in connection with the theory of similarity exponents. ${ }^{13,14}$, The statistical-thermodynamics formalism of the self-similarity is developed in $\S 3$. In $\S 4$, we will discuss the interrelations among the present formalism and others for a set of dimensions, similarity exponents and in developed turbulence. A summary and remarks are given in § 5 .

§ 2. Self-similarity and characteristic function

Let $\left\{u_{n} ; n=0,1,2,3, \cdots\right\}$ be a one-dimensional sequence generated by x_{n}, underlying degrees of freedom, through $u_{n}=u\left(x_{n}\right)$, where x_{n} obeys a dynamical or a stochastic law. The u_{n} is statistically independent of n, i.e., steady in n, for a large n.

Without loss of generality, we hereafter assume that u_{n} is bounded, $u^{\min }<u_{n}<u^{\max }$ for any n. When a set $\left\{A_{n}\right\}$ is generated according to

$$
\frac{A_{n+1}}{A_{n}}=e^{u_{n}}, \quad(n=0,1,2,3, \cdots)
$$

the set is called self-similar. ${ }^{13), 14)}$ This is the explicit expression of the self-similarity. Equation (2•1) is solved as

$$
A_{n}=A_{0} \exp \left(n z_{n}\right), \quad z_{n} \equiv \frac{1}{n} \sum_{j=0}^{n-1} u_{j} .
$$

Let $\rho_{n}\left(\alpha^{\prime}\right)$ be the probability density that z_{n} takes the value between α^{\prime} and $\alpha^{\prime}+d \alpha^{\prime}$. If z_{n} has no fluctuation, $\rho_{n}\left(\alpha^{\prime}\right)$ has a sharp peak. The fluctuation of z_{n}, on the other hand, produces a spectral structure of $\rho_{n}\left(\alpha^{\prime}\right)$. By noting that the fluctuation of z_{n} becomes small for $n \rightarrow \infty$, to study the global structures of the self-similarity is equivalent to studying how the fluctuation of z_{n} reduces as the averaging scale n increases. This will be carried out by considering the statistics of A_{n} instead of z_{n} itself. It is closely related to the magnification of the fluctuation of z_{n} for large $n^{13}{ }^{13}$

The order- q moment $M_{n}(q)$ of A_{n} is calculated by

$$
M_{n}(q) \equiv\left\langle\dot{A_{n}^{q}}\right\rangle \sim \int \rho_{n}\left(\alpha^{\prime}\right) e^{q \alpha^{\prime} n} d \alpha^{\prime}
$$

where q is real and $\langle\cdots\rangle$ is the ensemble average. Noting that $\ln A_{n}$ is the extensive variable in the sense that it is, roughly speaking, proportional to n, we assume that $M_{n}(q)$ asymptotically takes the form

$$
M_{n}(q) \sim \exp \left(q \lambda_{q} n\right)
$$

for a large n. Here the characteristic function λ_{q} has been introduced by ${ }^{13), 14)}$

$$
\lambda_{q}=\frac{1}{q} \lim _{n \rightarrow \infty} \frac{1}{n} \ln M_{n}(q),
$$

where we get

$$
\begin{equation*}
\frac{d \lambda_{q}}{d q} \geqq 0 \tag{*}
\end{equation*}
$$

First we assume that λ_{q} is expanded as the cumulant expansion ${ }^{13)}$

$$
\lambda_{q}=\sum_{m=1}^{\infty} c_{m} q^{m-1},
$$

where c_{m} is determined by the m-th order cumulant of $\ln A_{n}$. This expansion is meaningful only when $|q|$ is smaller than x, the radius of the convergence. Especially, for $|q| \ll \kappa,(2 \cdot 7)$ is approximated as

$$
\lambda_{q}=\lambda_{0}+D q .
$$

Here $\lambda_{0}=\left\langle u_{n}\right\rangle\left(\equiv c_{1}\right)$, and $D\left(\equiv c_{2}>0\right)$ is defined through $\left\langle\left(z_{n}-\left\langle z_{n}\right\rangle\right)^{2}\right\rangle \simeq 2 D / n$ for a large n. λ_{0} and D have the meanings of the drift velocity and the diffusion coefficient,

[^0]respectively, provided that n is regarded as the time. On the other hand, for $|q| \gg x$, the above expansion does not converge. Instead of the cumulant expansion, λ_{q} is generally expanded as the following form:
\[

$$
\begin{equation*}
\lambda_{q}=\lambda_{\varepsilon \infty}-\frac{1}{q}\left[\frac{1}{\tau_{\varepsilon}}+\text { const } \cdot \exp \left(-\gamma_{\varepsilon}|q|\right)\right] \tag{*}
\end{equation*}
$$

\]

for $\varepsilon q \gg x$, $(\varepsilon= \pm)$, where $\tau_{\varepsilon}>0$ and $\gamma_{\varepsilon}>0$. The statistical characteristics for $|q| \ll x$ is picturized as the diffusion process. ${ }^{14)}$. On the other hand, for $|q| \gg x$, the global statistics of $\left\{u_{j}\right\}$ is described as the intermittency ${ }^{14)}$ as follows. The most dominant contribution to $M_{n}(q)$ for, e.g., $q \gg \chi$ comes from a series S_{l} which gives the largest value λ_{∞} of z_{n}. In this sense the series $S_{l}\left(u_{0}, u_{1}, u_{2}, \cdots, u_{n-1}\right)$ is coherent and is called laminar. The laminar regions are interrupted by the insertion of non-laminar states (bursts). λ_{∞} is nothing but the average of u_{j} over laminar regions, and τ_{+}estimates the duration of one laminar region. ${ }^{14}$ A similar argument holds for $\varepsilon=-$. The large difference between the diffusion and the intermittency is namely the physical reason of the existence of the radius of the convergence in (2.7), i.e., the difference of asymptotic forms of (2.8) and (2.9).

§ 3. Statistical-thermodynamics formalism of self-similarity

Now we assume that $\rho_{n}\left(\alpha^{\prime}\right)$ is asymptotically given by

$$
\rho_{n}\left(\alpha^{\prime}\right) \sim e^{-n \sigma\left(\alpha^{\prime}\right)} \quad\left(\sigma\left(\alpha^{\prime}\right) \geqq 0\right)
$$

for a large $n . \quad \sigma\left(\alpha^{\prime}\right)$ estimates the rate of the decrease of the probability density that z_{n} takes the value α^{\prime} as the step number proceeds. Inserting (3•1) into (2•3) and applying the saddle point method, one obtains

$$
\lambda_{q}=-\frac{1}{q} \min _{\alpha^{\prime}}\left[-q \alpha^{\prime}+\sigma\left(\alpha^{\prime}\right)\right] .
$$

Table I. Thermodynamic relations among variables obtained from the generating function λ_{q}. C was introduced in connection with the heat capacity in the equilibrium statistical mechanics.

$$
\begin{aligned}
& \alpha=\frac{d}{d q}\left(q \lambda_{q}\right) \\
& \sigma(\alpha)=-\frac{d \lambda_{q}}{d q^{-1}}(\geqq 0) \\
& \frac{d \sigma(\alpha)}{d \alpha}=q \\
& \lambda_{q}=\alpha-\frac{\sigma(\alpha)}{q} \\
& C \equiv \frac{d \alpha}{d q^{-1}}(<0) \\
& \sigma^{\prime \prime}(\alpha)>0
\end{aligned}
$$

[^1]sees that by regarding $q, \lambda_{q}, \alpha, \sigma(\alpha)$ and C the inverse temperature ($=1 / k_{\mathrm{B}} T$ with the Boltzmann constant k_{B} and the temperature T of the system), the Helmholtz free energy, the internal energy, the entropy and the heat capacity, respectively, relations in Table I are equivalent to the thermodynamic relations in the equilibrium statistical mechanics. ${ }^{15}$ Furthermore the quantity $\zeta_{q} \equiv-q \lambda_{q}$ corresponds to the Massieu function.

Depending on asymptotic laws of λ_{q} for $|q| \ll x$ and $|q| \gg x$, the q vs α and α vs $\sigma(\alpha)$ curves have different asymptotic forms. Namely, for $|q| \ll x$, one obtains

$$
\begin{align*}
& \alpha=\lambda_{0}+2 D q \\
& \sigma(\alpha)=\frac{\left(\alpha-\lambda_{0}\right)^{2}}{4 D}
\end{align*}
$$

The parabolicity of $\sigma(\alpha)$ near $\alpha=\lambda_{0}$ is known as the central limit theorem result. ${ }^{13), 14)}$ On the other hand, for $\varepsilon q \gg \kappa,(2 \cdot 9)$ leads to

$$
\alpha-\lambda_{\varepsilon \infty} \propto \exp \left(-\gamma_{\epsilon}|q|\right),
$$

Fig. 1. Statistical-thermodynamic quantities drawn as functions of q and α for the two level process ($u_{n}=a_{1}$ and a_{2} with the probabilities p_{1} and $p_{2}\left(=1-p_{1}\right)$, respectively $)$, i.e., $\lambda_{q}=q^{-1} \ln$ $\left(p_{1} e^{q a_{1}}+p_{2} e^{q a_{2}}\right),\left(a_{1}=4.5, a_{2}=1\right.$ and $\left.p_{1}=2.5 / 7\right)$. Although λ_{q} and α have similar q-dependence, the slope of α at $q=0$ is twice as steep as that for λ_{q}, and approaches $\lambda_{\infty}\left(\lambda_{-\infty}\right)$ more rapidly than λ_{q} as $q \rightarrow \infty(-\infty)$.

$$
\sigma(\alpha)-\frac{1}{\tau_{\varepsilon}} \propto\left|\alpha-\lambda_{\varepsilon \infty}\right| \ln \left|\alpha-\lambda_{\varepsilon \infty}\right|^{-1}
$$

These behaviors are extremely different from (3.4), and are not perturbationally connected with (3•4). As α gradually deviates from $\alpha=\lambda_{0}, \sigma(\alpha)$ changes its asymptotic form from $(3 \cdot 4 \mathrm{~b})$ to $(3 \cdot 5 \mathrm{~b})$, roughly speaking, at $\alpha(q=\varepsilon \chi)$. Note that $\alpha(\varepsilon \infty)=\lambda_{\varepsilon \infty}$, and $\sigma(\alpha(\varepsilon \infty))=1 / \tau_{\varepsilon}$ which agrees with the previous result, ${ }^{14), *)}$ and that the derivative $d \sigma(\alpha)$ / $d \alpha$ logarithmically diverges as α approaches $\lambda_{c \infty}$. Furthermore the boundedness of $\alpha,\left(\lambda_{-\infty} \leqq \alpha \leqq \lambda_{\infty}\right)$, implies $\rho_{n}(\alpha)$ $=0$ for $\alpha>\lambda_{\infty}$ and $\alpha<\lambda_{-\infty}$, i.e., $\sigma(\alpha)=\infty$ for $\alpha>\lambda_{\infty}$ and $\alpha<\lambda_{-\infty}$. Schematic forms of thermodynamic variables as functions of q and α are drawn in Fig. 1.

Here we note that for the pure intermittency process ${ }^{14)}$ which has $\lambda_{q}=-\varepsilon \infty$ ($\varepsilon q \leqq 0$), $\lambda_{\varepsilon \infty}-\tau_{\varepsilon}^{-1} q^{-1}(\varepsilon q>0$), where $\varepsilon=+$ or - , the Legendre transformation gives just one line in the $\alpha-\sigma$ plane, ($\alpha \leqq \lambda_{\varepsilon \infty}$, $\left.\sigma(\alpha)=\tau_{\varepsilon}^{-1}\right)$. The pure intermittency

[^2]process is therefore characterized by the absence of spectral structure in $\sigma(\alpha)$.
The probability distribution $\rho_{n}\left(\alpha^{\prime}\right)$ for a large n has a peak at $\alpha=\lambda_{0}$, whose width Γ_{n} is estimated as
$$
\Gamma_{n} \sim\left(\frac{D}{n}\right)^{1 / 2}
$$

Accordingly, the peak height is evaluated as

$$
\rho_{n}\left(\lambda_{0}\right) \sim \Gamma_{n}^{-1} \sim\left(\frac{n}{D}\right)^{1 / 2} .
$$

One should remark that the central parts of $\rho_{n}\left(\alpha^{\prime}\right)$ are determined by the quantities near $q=0$ (Eqs. (3•4)). On the contrary, large $|q|$ characteristics are contained in tail regions of $\rho_{n}\left(\alpha^{\prime}\right) . \quad \rho_{n}\left(\alpha^{\prime}\right)$ approaches the delta function $\delta\left(\alpha^{\prime}-\lambda_{0}\right)$ as n proceeds. So if we first take the limit $n \rightarrow \infty, \alpha^{\prime}$ takes only the value λ_{0}. To single out the global fluctuation statistics, one should first evaluate deviations from λ_{0} for a finite n, and then take the limit $n \rightarrow \infty$.

As is shown in Table I, a set K of quantities q, λ_{q}, α and $\sigma(\alpha)$ constitutes a set of thermodynamic variables. Noting that λ_{q} and α are single-valued function of q, we can define another set \widehat{K} of thermodynamic variables $\widehat{q}, \hat{\lambda}_{\bar{q}}, \widehat{\alpha}$ and $\widehat{\sigma}(\widehat{\alpha})$, employing a one-to-one transformation $K \rightarrow \widehat{K}$. The transformation is defined so that $\widehat{\alpha} \equiv$ $d\left[\bar{q} \hat{\lambda}_{\bar{q}}\right] / d \widehat{q}$ and $\widehat{\sigma}(\widehat{\alpha}) \equiv-d \hat{\lambda}_{\bar{q}} / d \hat{q}^{-1}$, and so we have $\widehat{\lambda}_{\hat{q}}=\widehat{\alpha}-\widehat{\sigma}(\widehat{\alpha}) / \widehat{q}$. This transformation is complete provided that two interrelations between variables in K and \widehat{K} are given. As an illustrative example, we introduce the transformation $T(a, b)$ by

$$
\begin{align*}
& \widehat{q}=a q+b, \\
& \hat{\lambda}_{\hat{q}}=-(q / \widehat{q}) \lambda_{q}, \tag{3•8b}
\end{align*}
$$

where a and b are constants. Under $T(a, b)$, thermodynamic variables are transformed as

$$
\widehat{\alpha}=-\alpha / a, \quad \widehat{o}(\widehat{\alpha})=-b \alpha / a-\sigma(\alpha) .
$$

As will be seen later, $T(a, b)$ is the important transformation connecting the present formalism with others proposed in different situations.

§ 4. Comparisons with other theories

In the present section we discuss the interrelations among the present formalism and others introduced independently in different contexts of nonlinear dynamical systems.

(A) Strange sets

The first example is the spectrum of scaling indices of the fractal measure. ${ }^{4}$. Let N be the number of state points of the strange set, experimentally observed. The state space is divided into boxes each of which has the volume $\sim l^{d}$, where

$$
l=l_{0} e^{-n}, \quad(n=0,1,2,3, \cdots)
$$

l_{0} being the largest scale of a series of divisions, and d is the topological dimension of the state space where the strange set is embedded. By putting $p_{i}=\lim _{N \rightarrow \infty}\left(N_{i} / N\right)$, N_{i} being the number of state points being in the i-th box, the order- q dimension of the strange set is defined by ${ }^{2), 3)}$

$$
D_{q}=\lim _{l \rightarrow 0} \frac{1}{1-q} \frac{\ln \chi(q)}{\ln (1 / l)}
$$

with

$$
\chi(q)=\sum_{i} p_{i}{ }^{q},
$$

where the summation is over boxes with non-vanishing p_{i}. Let \tilde{p}_{j} be the probability for the j-th box for the division $l_{0} e^{-(n+1)}=l / e$. We write p_{i}^{-1} and \tilde{p}_{j}^{-1} symbolically as

Table II. Correspondence of thermodynamic relations among the statistical-mechanics formalism and others in different systems. The minor differences are the sign of the heat capacity correspondence and the convexity of the entropy correspondence. $\Omega_{N}(E)$ is the state density function. The quantity e^{-E} should be read as the use of the total energy E appropriately made dimensionless.

equilibrium statistical mechanics	strange sets	time series	velocity structure functions in turbulence
$\begin{gathered} N \\ \text { particle number } \end{gathered}$	$\ln (1 / l)$	n	$\ln (1 / r)$
$E: \begin{gathered}e^{-E} \\ \text { total energy }\end{gathered}$	$p_{i}{ }^{-1}$	$\begin{gathered} e^{X_{n}} \\ \left(X_{n} \equiv \sum_{j=0}^{n-1} u_{j}\right) \end{gathered}$	$\Delta V(r)$
$\beta\left(=1 / k_{\mathrm{B}} T\right)$ inverse temperature	$1-q$	q	p
$\begin{gathered} \int \Omega_{N}(E) e^{-\beta E} d E \\ \text { partition function } \end{gathered}$	$\begin{gathered} \sum_{i} p_{i}^{q} \\ \left(\cong\left\langle\left(p_{i}^{-1}\right)^{1-q}\right\rangle\right) \end{gathered}$	$\left\langle\left[e^{X_{n}}\right]^{9}\right\rangle$	- $\left\langle[\Delta V(r)]^{p}\right\rangle$
f Helmholtz free energy	D_{q}	λ_{q}	$\frac{-\zeta_{p}}{p}$
$\frac{d}{d \beta}(\beta f) \equiv u$ internal energy	$\begin{gathered} \frac{d}{d(1-q)}\left[(1-q) D_{q}\right] \\ (\equiv \alpha) \end{gathered}$	$\begin{gathered} \frac{d}{d q}\left(q \lambda_{q}\right) \\ (\equiv \alpha) \end{gathered}$	$\begin{gathered} \frac{d}{d p}\left(p \cdot \frac{-\zeta_{p}}{p}\right) \\ (\equiv-h) \end{gathered}$
$\begin{gathered} -\frac{d f}{d \beta^{-1}} \equiv s(u) \geqq 0 \\ \text { entropy } / k_{\mathrm{B}} \end{gathered}$	$\begin{gathered} -\frac{d D_{q}}{d(1-q)^{-1}} \\ (\equiv \alpha-f(\alpha) \geqq 0) \end{gathered}$	$\begin{gathered} -\frac{d \lambda_{q}}{d q^{-1}} \\ (\equiv \sigma(\alpha) \geqq 0) \end{gathered}$	$\begin{gathered} -\frac{d}{d p^{-1}}\left(\frac{-\zeta_{p}}{p}\right) \\ (\equiv 3-d(h) \geqq 0) \end{gathered}$
$\frac{d s(u)}{d u}=\beta$	$\frac{d(\alpha-f(\alpha))}{d a}=1-q$	$\frac{d \sigma(\alpha)}{d \alpha}=q$	$\frac{d(3-d(h))}{d(-h)}=p$
$f=u-\frac{s(u)}{\beta}$	$D_{q}=\alpha-\frac{\alpha-f(\alpha)}{1-q}$	$\lambda_{q}=\alpha-\frac{\sigma(\alpha)}{q}$	$\frac{-\zeta_{p}}{p}=-h-\frac{3-d(h)}{p}$
$\frac{d u}{d \beta^{-1}}>0$	$\frac{d \alpha}{d(1-q)^{-1}}<0$	$\frac{d \alpha}{d q^{-1}}<0$	$\frac{d(-h)}{d p^{-1}}<0$
$\frac{d^{2} s(u)}{d u^{2}}<0$	$\frac{d^{2}(\alpha-f(\alpha))}{d \alpha^{2}}>0$	$\frac{d^{2} \sigma(\alpha)}{d a^{2}}>0$	$\frac{d^{2}(3-d(h))}{d(-h)^{2}}>0$

A_{n} and A_{n+1}, respectively, which are fluctuating quantities because they depend on boxes. If the ratio A_{n+1} / A_{n} is assumed to be statistically independent of n, we can apply the formalism developed in the former half of this paper. In fact $\chi(q)$ can be identified with the moment as

$$
x(q)=\sum_{i} p_{i} \cdot\left(p_{i}^{-1}\right)^{1-q} \equiv\left\langle A_{n}^{1-q}\right\rangle=M_{n}(1-q) .
$$

The definition (4•2) gives $\chi(q) \sim l^{-(1-q) D q} \sim \exp \left[(1-q) D_{q} n\right] . \quad D_{q}$ is therefore nothing but λ_{1-q} (see Eq. $\left.(2 \cdot 5)\right) .{ }^{15)}$ The correspondence are summarized in Table II in connection with the thermodynamic relations in the equilibrium statistical mechanics.

The essentially same formalism for strange sets has already been proposed in Ref. 4). The scaling index $f(\alpha)$ in Ref. 4) (see also Table II) is different from $\sigma(\alpha)$, the entropy correspondence. However, after the transformation $T(-1,1)$, i.e., from (q, $\left.\lambda_{q} \equiv D_{1-q}\right)$ to $\left(\hat{q}, \bar{\lambda}_{\hat{q}}=(1-1 / \widehat{q}) D_{\bar{q}}\right)$, we obtain $\hat{\alpha}=\alpha(\hat{q})$ and $\widehat{\sigma}(\widehat{\alpha})=f(\alpha)$. So $f(\alpha)$ plays the same role as the entropy in the ($\bar{q}, \bar{\lambda}_{\bar{q}}$) representation.

(B) Time series

The second example is similarity exponents ${ }^{13,14)}$ introduced so as to single out global characteristics of steady time series. Let $x_{n}\left(\equiv x\left(t_{n}\right)\right)$, underlying degrees of freedom, be chaotic, where $x(t)$ obeys a nonlinear dynamical law and t_{n} is the n-th discrete time appropriately chosen. In this case, the step number n is directly related to the time, and the characteristic function λ_{q} is called the order- q similarity exponent. ${ }^{14)}$ The corresponding thermodynamic variables and relations are summarized in Table II.

An illustration of similarity exponents is the one for the fluctuation dynamics of local expansion rates of adjacent trajectories ${ }^{16), 17)}$ in a chaotic one-dimensional map $x_{n+1}=g\left(x_{n}\right)$, where u_{n} is given by ${ }^{13)}$

$$
u_{n} \equiv \ln \left|g^{\prime}\left(x_{n}\right)\right| .
$$

In this case, λ_{0} is just the usual Lyapunov exponent $\langle\ln | g^{\prime}\left(x_{n}\right)| \rangle$, and λ_{q} for $q \neq 0$ measures the fluctuation of u_{n} from its average λ_{0}. One should remark that since λ_{q} is invariant under a one-to-one transformation $x_{n} \rightarrow \widetilde{x}_{n}\left(\equiv h\left(x_{n}\right)\right){ }^{13), 16)} \alpha$ and $\sigma(\alpha)$ are also invariant under the transformation.

Another approach to the fluctuation dynamics of local expansion rates has been proposed by Takahashi and Oono. ${ }^{18)}$ Especially they have introduced the free energy $F(\beta)$ and obtained the thermodynamic relation $F(\beta)=U(\beta)-\beta^{-1} S(\beta)$, where $U(\beta)(\equiv$ $d[\beta F(\beta)] / d \beta)$ and $S(\beta)\left(\equiv \beta^{2} d F(\beta) / d \beta\right)$ were called the internal energy and the entropy, respectively. ${ }^{18)}$ Recently Benzi et al. ${ }^{17)}$ postulated the interrelation between λ_{q} and $F(\beta)$ as

$$
F(\beta)=-\frac{q}{\beta} \lambda_{q} . \quad(\beta=1-q)
$$

This relation is supported by the Ledrappier condition $F(1)=0 .{ }^{19)}$ Equation (4•6) holds in fact for a simple model. ${ }^{15)}$ One should note that $(4 \cdot 6)$ is equivalent to the transformation $T(-1,1)$ given in (3•8), and that resultant relations (3.9) yield $U(\beta)$
$\equiv \widehat{\alpha}=\alpha$ and $S(\beta) \equiv \widehat{\sigma}(\widehat{\alpha})=\alpha-\sigma(\alpha)$. We note that a similar formalism for the similar ity exponent associated with fluctuations of local expansion rates ${ }^{13), 16), 17)}$ was recently given by Sano, Sato and Sawada. ${ }^{20)}$

The replacement $(4 \cdot 5)$ is just one choice in a time series. One can easily apply the present formalism to an arbitrary steady time series generated by chaotic ${ }^{21)}$ and stochastic ${ }^{22)}$ dynamics. Recently we have found scaling laws of λ_{q} near chaotic transition points, especially associated with the breakdown of the chaos symmetry, for time series appropriately obtained. The scaling laws are written $\mathrm{as}^{21)}$

$$
\lambda_{q}=\widehat{\varepsilon}^{\mu} \Lambda\left(q / \widetilde{\varepsilon}^{\nu}\right),
$$

where $\bar{\varepsilon}$ denotes the difference of the control parameter from the transition point value, and μ and ν are constants. For explicit forms of the scaling function $\Lambda(x)$, see Ref. 21). The α vs $\sigma(\alpha)$ relation also satisfies the scaling form

$$
\sigma(\alpha)=\widehat{\varepsilon}^{\mu+\nu} \Sigma\left(\alpha / \widehat{\varepsilon}^{\mu}\right)
$$

with $\Sigma(y)=x^{2} d \Lambda(x) / d x$, where x is the inverse function of $y=d[x \Lambda(x)] / d x$.

(C) Velocity structure function in turbulence

The last example is the intermittency effect to the K41 theory ${ }^{23)}$ of velocity structure functions in fully developed turbulence, where the Kolmogorov micro-scale tends to zero. The intermittency effect is observed in the exponent ζ_{p} defined through

$$
\left\langle[\Delta V(r)]^{p}\right\rangle \sim r^{\zeta p}
$$

where $\Delta V(r)(>0)$ is the longitudinal velocity difference between two points separated by the distance r. One important contribution to this problem is known as the lognormal theory. ${ }^{24)}$ An alternative approach to this problem was discussed by Mandelbrot, ${ }^{25)}$ and Frisch, Sulem and Nelkin ${ }^{26)}$ by adopting the so-called black and white model.

Recently Frisch and Parisi ${ }^{5)}$ developed the multifractal theory of the intermittency effect to ζ_{p} on the basis of Refs. 25) and 26). Let r_{0} be the energy-injection scale. Nonlinear interactions in the Navier-Stokes equation produce successively the excitation of smaller scale active eddies. The origin of the self-similarity is due to such eddy excitation mechanism. Introducing the scales

$$
r_{n}=r_{0} e^{-n}, \quad(n=0,1,2,3, \cdots)
$$

we postulate that the ratio

$$
\frac{\Delta V\left(r_{n+1}\right)}{\Delta V\left(r_{n}\right)}=e^{u_{n}}
$$

is statistically independent of n. Solving (4-11) yields

$$
\Delta V\left(r_{n}\right) \sim \exp \left(-n h^{\prime}\right) \sim r_{n}^{h^{\prime}}
$$

where $h^{\prime} \equiv-n^{-1} \sum_{j=0}^{n-1} u_{j}$ is a stochastic variable. The expression (4•12) is essentially equal to Eq. (A•1) in Ref. 5). After Frisch and Parisi let $d\left(h^{\prime}\right)$ be the Hausdorff dimension of the set of points satisfying (4•12). The exponent ζ_{p} is thus obtained as ${ }^{5)}$

$$
\zeta_{p}=\min _{h^{\prime}}\left[p h^{\prime}+3-d\left(h^{\prime}\right)\right] .
$$

This corresponds to (3.2) and has the same structure as in other systems discussed in the present paper (Table II): The function ζ_{p} corresponds to the Massieu function in the equilibrium statistical mechanics, and the Helmholtz free energy as the generating function corresponds to $-\zeta_{p} / p$.

§ 5. Summary and remarks

In the present paper, we have developed a statistical-thermodynamical approach to the self-similarity. We have found that its global aspects are characterized by the function λ_{q} and variables α and $\sigma(\alpha)$ derived from λ_{q}. Furthermore we discussed the fractal measure theories and thermodynamic theories of chaos so far proposed, in a unified way from the self-similarity viewpoint.

Once the generation law of u_{n} is known, one can calculate $\left\{\lambda_{q}\right\}$, at least in principle, from the law. Carrying out its Legendre transformation, one can study the spectral nature of $\sigma(\alpha)$. The other advantage of the present formalism is that when the underlying mechanism for the generation of $\left\{u_{n}\right\}$ is unknown, one can calculate $\left\{\lambda_{q}\right\}$ directly from the output $A_{0}, A_{1}, A_{2}, A_{3}, \cdots$ or equivalently from $u_{0}, u_{1}, u_{2}, u_{3}, \cdots$ through experiments. In this sense, the present formalism gives a new, practical and powerful tool for the analysis of the global aspects of any steady series $\left\{u_{j}\right\}$. Finally we add the following remark. When D, the diffusion coefficient, of $\left\{u_{j}\right\}$ is finite, $\sigma(\alpha)$ has the parabola (3•4b) around its minimum $\alpha=\lambda_{0}$ (the central limit theorem). This is a simple consequence of the statistical characteristics near $q=0$. As $|q|$ differs from $q=0$, the corresponding $\sigma(\alpha)$ tends to differ from (3•4b). Namely, the deviation of $\sigma(\alpha)$ from the parabola ($3 \cdot 4 \mathrm{~b}$) is remarkably observed in the α region $\left|\alpha-\lambda_{0}\right| \gtrsim 2 D \kappa$.

Acknowledgements

We thank Professor H. Mori for continuous encouragement and suggesting the importance of the thermodynamics formalism in non-linear dynamical systems. We are also grateful to Professor T. Yamada for valuable discussions. This study was partially supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

References

1) B. B. Mandelbrot, Fractals: Form, Chance, and Dimension (Freeman, San Francisco, 1977).
2) H. G. E. Hentschel and I. Procaccia, Physica 8D (1983), 435.
3) P. Grassberger, Phys. Lett. 97A (1983), 227.
4) T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia and B. I. Schraiman, Phys. Rev. A33 (1986), 1141.
5) U. Frisch and G. Parisi, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, International School of Physics, "Enrico Fermi", Course LXXXVIII, ed. M. Ghil, R. Benzi and G. Parisi (North-Holland, New York, 1985), p. 84.
6) M. H. Jensen, L. P. Kadanoff, A. Libchaber, I. Procaccia and J. Stavans, Phys. Rev. Lett. 55 (1985), 2798.
7) D. Bensimon, M. H. Jensen and L. P. Kadanoff, Phys. Rev. A33 (1986), 3622.
8) J. P. Eckmann and I. Procaccia, Phys. Rev. A34 (1986), 659.
9) M. Feigenbaum, M. H. Jensen and I. Procaccia, Phys. Rev. Lett. 57 (1986), 1503.
10) T. C. Halsey, P. Meakin and I. Procaccia, Phys. Rev. Lett. 56 (1986), 854.
11) C. Amitrano, A. Coniglio and F. di Liberto, Phys. Rev. Lett. 57 (1986), 1016.
12) R. Benzi, G. Paladin, G. Parisi and A. Vulpiani, J. of Phys. A17 (1984), 3521.
13) H. Fujisaka, Prog. Theor. Phys. 71 (1984), 513.
14) H. Fujisaka and M. Inoue, Prog. Theor. Phys. 74 (1985), 20.
15) M. Inoue and H. Fujisaka, Prog. Theor. Phys. 77 (1987), 1077.
16) H. Fujisaka, Prog. Theor. Phys. 70 (1983), 1264.
17) R. Benzi, G. Paladin, G. Parisi and A. Vulpiani, J. of Phys. A18 (1985), 2157.
18) Y. Takahashi and Y. Oono, Prog. Theor. Phys. 71 (1984), 851.
19) F. Ledrappier, Commun. Math. Phys. 81 (1981), 229.
20) M. Sano, S. Sato and Y. Sawada, Prog. Theor. Phys. 76 (1986), 945.
21) H. Fujisaka, M. Inoue and H. Uchimura, Prog. Theor. Phys. 72 (1984), 23.
M. Inoue and H. Fujisaka, Phys. Rev. B32 (1985), 277.
M. Inoue, T. Kawaguchi and H. Fujisaka, Phys. Lett. 115A (1986), 139.
H. Ishii, H. Fujisaka and M. Inoue, Phys. Lett. 116A (1986), 257.
H. Uchimura, H. Fujisaka and M. Inoue, Prog. Theor. Phys. 77 (1987), 1344.
22) H. Fujisaka and T. Yamada, Prog. Theor. Phys. 77 (1987), 1045.
23) A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30 (1941), 301.
24). A. M. Obukhov, J. Fluid Mech. 13 (1962), 77.
A. N. Kolmogorov, J. Fluid Mech. 13 (1962), 82.
A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics (MIT Press, Cambridge, Mass., 1975), vol. 2.
24) B. Mandelbrot, J. Fluid Mech. 62 (1974), 331.
25) U. Frisch, P. L. Sulem and M. Nelkin, J. Fluid Mech. 87 (1978), 719.

[^0]: *) This is easily shown with the inequality $x \ln x \geqq x-1$

[^1]: ${ }^{*}$) One should note that (2.9) is derived from Eqs. (3.3) and (3.4) in Ref. 14) by including the next order term smaller than $O\left(q^{-1}\right)$. Results (2.8) and (2.9) correspond to the diffusion-branch and the intermittencybranch results in Ref. 14), respectively.
 **) This can be proved with the inequality $\left\langle x(\ln x)^{2}\right\rangle \geqq\langle x \ln x\rangle^{2}$ provided that $\langle x\rangle=1$.

[^2]: *) The dominant contribution to $M_{n}(q)$ for $q \gg x$ comes from laminar regions giving the largest value λ_{∞} of z_{n} for a large n. Since $e^{-1 / \tau_{+}}$is the probability that the laminar region continues further by one step, we asymptotically get $M_{n}(q) \sim\left(e^{-1 / \tau_{+}}\right)^{n} \cdot\left(e^{\lambda_{\infty} n}\right)^{q}$, which gives $\lambda_{q}=\lambda_{\infty}-\tau_{+}^{-1} q^{-1}$.

