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ABSTRACT: The lattice fluid theory of solutions is used to calculate heats and volumes of mixing, lower 
critical solution temperatures, and the enthalpic and entropic components of the chemical potential. Results 
of these calculations are compared with literature data on several polyisobutylene solutions. In most instances 
the agreement with experiment is favorable and comparable to that obtained with the Flory equation of state 
theory. Several insights into polymer solution behavior are obtained and include: (1) differences in equation 
of state properties of the pure components make an unfavorable entropic contribution to the chemical potential 
that becomes large and dominant as the gas-liquid critical temperature of the solvent is approached; (2) limited 
miscibility of nonpolar polymer solutions at low and high temperatures is a manifestation of a polymer solution's 
small combinatorial entropy; and (3) negative heats of mixing in nonpolar polymer solutions are caused by 
the solvent's tendency t o  contract when polymer is added. Suggestions on how the theory can be improved 
are made 

Freeman and Rowlinson' in 1960 observed that several 
hydrocarbon polymers dissolved in hydrocarbon solvents 
phase separated a t  high temperatures. These nonpolar 
polymer solutions exhibited what are known as lower 
critical solution temperatures (LCST), a critical point 
phenomenon that is relatively rare among low molecular 
weight solutions. Soon after the  discovery of the univ- 
ersality of LCST behavior in polymer solutions, Flory and 
c o - ~ o r k e r s ~ - ~  developed a new theory of solutions which 
incorporated the "equation of state" properties of the pure 
components. This new theory of solutions, hereafter 
referred to as the Flory theory, demonstrated that mixture 
thermodynamic properties depend on the thermodynamic 
properties of the pure components and that LCST be- 
havior is related to the dissimilarity of the equation of state 
of properties of polymer and solvent. P a t t e r ~ o d - ~  has also 
shown that LCST behavior is associated with differences 
in polymer/solvent properties by using the  general cor- 
responding states theory of Prigogine and collaborators.1° 
Classical polymer solution theory, i.e., Flory-Huggins 
theory," which ignores the equation of state properties of 
the pure components, completely fails to describe the 
LCST behavior. 

More recently, a new equation of state theory of pure 
and their solutions14 has been formulated by the 

present authors. This theory has been characterized as 
an Ising or lattice fluid theory (hereafter referred to as the 
lattice fluid (LF) theory). Both the Flory and LF theories 
require three equation of state parameters for each pure 
component. For mixtures, both reduce to the Flory- 
Huggins theory'l at very low temperatures. 

Our general objective in the present paper is to survey 
the applicability of LF theory to polymer solutions. 

Pure Lattice Fluid Properties 

As its name suggests, LF theory is founded on a lattice 
model description of a fluid. An example of such a system 
is shown in Figure 1. For this model the primary sta- 
tistical mechanical problem is to determine the number 
of configurations available to a system of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN molecules each 
of which occupies r sites (an r-mer) and No vacant sites 
(holes). A mean field approximation is used to  solve this 
problem.'? In this approximation random mixing of the 
r-mers with each other and with the vacant sites is as- 
sumed. This allows for the evaluation of pair and higher 
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order probabilities in terms of singlet probabilities; the  
singlet probabilities are known and are equal to the 
fraction of each species in the system. 

T o  within an additive constant, the chemical potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p is given by12 

where T,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, and p are the reduced temperature, pressure, 
volume, and density defined as 

( 2 )  T / T * ;  T* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= e* / k  

p 3 p / p * ;  p* = e* / h  (3) 

E = l / p  5 V/V*;  V* = N ( r u * )  (4) 

and t* is the interaction per mer and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL'* is the close-packed 
mer volume. 

At equilibrium the chemical potential is at a minimum 
and satisfies the following equation of state: 

p 2  + P + T[ln (1 - 2,) + (1 - ~ / r ) / ? ]  = o ( 5 )  

In general there are three solutions to the equation of state. 
The solutions a t  the lowest and highest values of 2, yield 
minimum values in the chemical potential eq 1, while the 
intermediate value of p produces a maximum in the free 
energy. The high-density minimum (few vacant sites) 
corresponds to  a liquid phase while the  low-density 
minimum corresponds to a gas or vapor phase (most sites 
are empty). Typically near the triple point, reduced liquid 
densities are between 0.7 and 0.9 and gas densities between 
0.001 and 0.005. At a given pressure there will be a unique 
temperature a t  which the two minima are equal. This 
temperature and pressure are the s a t u r a t i o n  temperature 
and pressure and the locus of all such T,P points defines 
the saturation or coexistence line where liquid and vapor 
are in equilibrium. 

As the saturation temperature and pressure increase, the 
difference in densities between liquid and vapor phase 
diminishes until a temperature and pressure are reached 
where the densities of the two phases are equal. This 
unique point in the T,P plane is the liquid-vapor critical 
point (TC,PJ.  For the lattice fluid, the critical point in 
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Figure 1. A two-dimensional example of a pure lattice fluid. 
Hexamers are distributed over the lattice, but not all sites are 
occupied. The fraction of sites occupied is denoted by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp .  
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. A comparison of the reduced theoretical (solid lines) 
and experimental critical temperature and pressure for the normal 
alkanes. In calculating the theoretical curves from eq 7 and 8, 
the molecular weight per mer was taken to be that of a CH2 group. 
The characteristic temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT* (520 K) and pressure P* (280 
MN/m2) used to reduce the experimental critical data (API 
Research Project 44) were chosen as described in the text. 

reduced variables is a unique function of the r-mer size. 
It is given byI2 

p ,  = 1/(1 + r1I2) (6 )  

Pc = TJn (1 + r-1/2) + (y2 - r1/z) /r]  (8) 

An examination of th_e above equations shows that 7, 
increases with r while P, and p c  decrease with r. Below 
the critical point and along an isobar, a saturation tem- 
perature also increases with r.  Thus, for a homologous 
series of fluids in which we expect T* and P* to be rel- 
atively constant (see later), the theory predicts that the 
critical temperature should increase, the critical pressure 
should decrease, and the normal boiling point should 
increase with increasing chain length. This type of critical 
point behavior is exemplified by the normal alkanes as 
shown in Figure 2. I t  is the only theory to our knowledge 
which qualitatively correlates critical and boiling points 
with chain length. 

Another interesting aspect of the critical point is that 
P,  - 0 as r - 03, For the infinite chain there is only one 
solution to the equation of state and a phase transition 
from liquid to vapor is not possible. Stated another way, 
the equilibrium vapor pressure of the infinite chain is zero. 

Determination of the Molecular Parameters. A real 
fluid is completely characterized by three molecular pa- 
rameters E*, u*, and r or the three equation of state pa- 
rameters T*, P*, and p * .  The relationships among these 
parameters are 

e *  = kT* (9) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
L)* = kT*/P* (10) 

(11) 

Tc = 2rpc2 ( 7 )  

r = MP*/kT*p* = M/p*u* 

Table I 
Molecular and Equation of State Parameters [See eq 9, 

10, and 11 ( 1  bar = 0.1 MN/m2)] 

p* 9 

T*,  v * ,  MN/ P*,  
K cm3/mol r m2 kn/m3 

me thane 
ethane 
propane 
n-butane 
isobutane 
n -pentane 
isopen tane 
neopentane 
cy clopentane 
n-hexane 
cyclohexane 
n-heptane 
n-octane 
n-nonane 
n-decane 

benzene 
flourobenzene 
chlorobenzene 
bromobenzene 
toluene 
p-xylene 
rn-xylene 
o-xylene 
CCl, 
CHCI, 
CH,Cl, 

224 
3 1  5 
371  
403 
398 
4 4 1  
424 
4 1  5 
491  
47 6 
497 
487 
502 
517 
530 
542 
552  
560 
57 0 
5 96 
523 
527 
585 
608 
543 
561  
560 
571  
535 
512 
48 7 

7.52 
8.00 
9.84 

10.40 
11.49 
11.82 
11.45 
12.97 
10.53 
13.28 
10.79 
13.09 
13.55 
14.00 
14.47 
14.89 
15.28 
15.58 
15.99 
17.26 

9.8 
10.39 
11.14 
11.13 
11.22 
12.24 
12.11 
12.03 
11.69 

9.33 
7.23 

4.26 248 500 
5.87 327 640 
6.50 314 690 
7.59 322 736 
7.03 288 720 
8.09 310 755 
8.24 308 765 
7.47 266 744 
7.68 388 867 
8.37 298 775 
8.65 383 902 
9.57 309 800 

10.34 308 815 
11.06 307 828 
11.75 305 837 
12.40 303 846 
13.06 300 854 
13.79 299 858 
14.36 296 864 
15.83 287 880 

8.02 444 994 
8.05 422 1150  
8.38 437 1210  
8.73 454 1620 
8.50 402 966 
9.14 381  949 
9.21 384 952 
9.14 395 965 
7.36 381  1790 
7.58 456 1690 
7.64 560 1540 

In principle any thermodynamic property can be utilized 
to  determine these parameters, but saturated vapor 
pressure data are particularly useful because they are 
readily found in the literature for a wide variety of fluids. 
Equation of state parameters have been determined for 
60 different fluids by a nonlinear least-squares fitting of 
experimental vapor pressure data.I2 A partial listing is 
shown in Table I. An alternative method for determining 
the parameters is discussed in Appendix A. 

For a polymer liquid r - w and the equation of state 
reduces to a simple corresponding states equation: 

Equation of state parameters can be determined for 
polymers by a nonlinear least-squares fit of eq 12 to ex- 
perimental liquid density data.I3 Figure 3 illustrates the 
corresponding states behavior of several polymer liquids 
over a large temperature and pressure range. The lines 
are theoretical isobars calculated from eq 12 a t  the in- 
dicated reducgd pressures; P = 0 is essentially atmospheric 
pressure and P = 0.25 is of the order of a 100 MN/m2. The 
various symbols are the reduced experimental density data. 
Table I1 lists the equation of state parameters for the 
polymers represented in Figure 3. 

In cases where limited PVT data are available for a given 
polymer, the equation of state parameters can be estimated 
from experimental values of density, thermal expansion 
coefficient, and compressibility determined a t  the same 
temperature and atmospheric p re~su re . ' ~  

Physical In te rpre ta t ion  of the Molecular 
Pa rame te r s  

In our original publication,12 we identified t* with a 
nearest neighbor mer interaction energy. However, i t  is 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 
Equation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof State Parameters for Some Common Polymers 

pressures 
T*, P*, v*, P * ,  temp u p  to, 
K MN/mZ cm'/mol kg/m3 range, K MN/m2 

rJoMdimethylsiloxane) PDMS 476 302 13.1 1104 298-343 100 
poly(viny1 acetate) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA' 

poly (n  - butyl methacrylate ) 
pol yisobutylene 
polyethylene (linear) 
polyethylene (branched) 
poly( methyl methacrylate) 
poly(cyclohexy1 methacrylate) 
polystyrene (atatic) 
poly( 2,6-dimethylphenylene oxide) 
poly(o-methylstyrene) 

PVAC 
PnBMA 
PIB 
HDPE 
LDPE 
PMMA 
PcHMA 
PS 
PPO 
PoMS 

? -  

>* 
0 9 0 -  

+ 
m 
z 
w 0 8 8 -  
n 
n 

- 

w 

L A  I 1 -L-_L - ._ 

050  0 5 5  0 60  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 5  0 70, 0 7 5  
R E 3 U C E D  T E M P E R A T U R E ,  T 

Figure 3. Graphical illustration of the corresponding states 
behavior of several common polymer liquids. The lines are 
theoretical isobars calculated from eq 12. Experimental density 
data were reduced by the equation of state parameters listed in 
Table 11. 

not necessary to do so and below we generalize its meaning: 
the total configurational potential energy, E ,  of the LF can 
be expressed quite generally as 

E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy2(rN)z (13) 

z = 4xpJmc(R)g(R)R2 dR (14) 

where z is the average interaction energy of a mer with all 
other mers in th9 system, 4 R )  is the intermolecular po- 
tential between mer8 separated by a distance R,  g(R) is the 
pair distribution function, and p is the mer density in mer8 
per unit volume. Let us assume a Sutherland type po- 
tential (hard core plus attractive tail) for the interaction 
between mers; i.e., 

c(R)  = m for ( R / v * ' ~  < 1 (15) 

t(R) = -c0(u*1/3/R)n for (R/u*'I3) > 1 

590 509 9.64 1283 
627 431 12.1  1125 
643 354 15.1 974 
649 425 12.7 904 
673 359 15.6 887 
696 503 11.5 1269 
697 426 13.6 1178 
135 357 17.1  1105 
139 1186 
768 378 16.9 1079 

308-373 
307-473 
326-383 
426-473 
408-471 
397-432 
396-472 
388-468 
493-533 
412-471 

80 
200 
100 
100 
100 
200 
200 
200 

0 
160 

For a hard core potential in the mean field approxi- 

(16) 

mation, the pair distribution function is given by 

g ( R )  = O for ( R / U * ' / ~ )  < 1 

g(R) = 1 for (R/u*'i3) > 1 

Substitution of eq 15 and 16 into eq 14 and 13 yields 

E = -riVt*p (17) 

t* = 27rto/(n - 3) (18) 

For the usual value of' n = 6, t *  = 27rto/3. Thus, t* is 
proportional to the depth of the potential energy well. 

The important point of the above calculation is that in 
the mean field approximation, the fluid potential energy 
is of the van der Waals type (proportional to fluid density) 
if the intermolecular potential is sufficiently short range 
( n  > 3). 

LF theory is intended to describe the fluid (disordered) 
and not the crystalline (ordered) state even though a lattice 
is used in the formulation of the theory. In keeping with 
this view, the close-packed state should be disordered, 
more akin to the glassy state than the crystalline state. 
Disordered close packing is not as dense as ordered close 
packing. A well-known example of this effect occurs with 
spheres. The packing fraction Pf, the fraction of space 
occupied, for closest packing of spheres (hexagonal or 
face-centered cubic) is 0.74 while Pf for random close 
packing is 0.637.15 When the close-packed densities ( p * )  
listed in Table I are compared with known crystalline 
densities, it is found that most of the p* densities are 
smaller (usually about 10%). Thus, we can identify ru* 
(see eq 11) with the close-packed molecular volume of the 
disordered fluid. 

I t  is also instructive to examine the variation in rii* and 
re* for the normal alkanes. Between C3 and CI4,  rc* in- 
creases from one member to the next by 15.0 f 0.4 
cm3imol. This suggests that each CH2 group contributes 
a constant amount to the molecular close-packed volume. 
This conclusion is further reinforced by plotting the 
close-packed mass density p* against reciprocal chain 
length. A relatively straight line is obtained which can be 
extrapolated to infinite chain length where p* = 934 kg/m3. 
From this value we also conclude that the close-packed 
volume of a CH2 group is 14.0/0.934 = 15.0 cm3/mol. The 
p* value of linear polyethylene from Table I1 is, however, 
904 kg/m3 which yields a close-packed volume of a CH2 
group of 14.0/0.904 = 15.5 cm3/mol. Considering that the 
molecular parameters for polyethylene were determined 
from density data and those for the normal alkanes from 
vapor pressure data, the agreement between the calculated 
close-packed volumes is quite satisfactory. 

The total molecular interaction energy is rt* which 
equals the energy required to convert 1 mol of the fluid 
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from the close-packed state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( p  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1) to a vapor of vanishing 
density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0). From Table I, e* = k P  is seen to increase 
irregularly with chain length for the normal alkanes, but 
the increase in rt* between C3 and C14 is much more 
systematic. It increases at  4.35 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 0.6 kJ/mol of CH2 which 
suggests that a CH, unit contributes a nearly constant 
amount to the total molecular interaction energy. 

The above values of 15.0 cm3/mol for the close-packed 
volume and 4.35 kJ/mol for the close-packed interaction 
energy of a CH, group yield T* = 520 K and P* = 280 
MN/m2. These parameters were used to prepare Figure 
2. The r value for each alkane was determined by dividing 
its molecular weight by 14. 

The identification of re* with the energy of vaporization 
in the close-packed state allows for a simple interpretation 
of the ratio t*/v*. This ratio is defined as the characteristic 
pressure P* and is equal to the cohesive energy density 
(CED) of the fluid in the close-packed state since CED E 
AE,,,/V = rc*/ru* P*. At finite temperatures CED = 
pzP* if we ignore the interactions in the vapor phase 
(always true at  zero pressure). Thus, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP* is a direct measure 
of the “cohesiveness” of the fluid or the strength of the 
intermolecular interactions. 

Mixed Lattice F lu ids  

Combining Rules. Extension of the LF  theory to 
mixtures is relatively straightforward after the appropriate 
“combining rules” are adopted. Such rules are required 
in all statistical mechanical theories of mixtures and are 
often quite arbitrary. For the mixed LF model, one reason 
that combining rules become necessary is that each pure 
component has its own unique mer volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu*, whereas in 
the mixture all mers are required to have the same average 
close-packed volume u* (hereafter, unsubscripted variables 
refer to the mixture). The combining rules as stated below 
all refer to the properties of a close-packed mixture: (1) 
If an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi molecule occupies r,” sites in the pure state and has 
a close-packed molecular volume of rL0u*,, then it will 
occupy r, sites in the mixture such that 

r,Ou,* = r,u* (19) 

This rule guarantees simple additivity of the close-packed 
volumes: 

V* = rloNlul* + r:N2u2* = ( r lN1  + r2N2)u* (20) 

(2) The total number of pair interactions in the close- 
packed mixture is equal to the sum of the pair interactions 
of the components in their close-packed pure states, i.e., 

(z/2)(r:N1 + rzoN2) = ( z /2 ) ( r1N1  + r2NJ = ( z /2)rN 

(21) 

where z is the coordination number of the lattice and 

r % xlrlo + x,r,O xlrl  + x2r2 (22) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x 1  E N 1 / N  = 1 - x2 (mole fraction) (23) 

N N1 + N 2  (24) 

(3) Characteristic pressures are pairwise additive in the 
close-packed mixtures: 

P* = &PI* + (b,P,* - &42AP* (25) 

(26) 

(27) 

The first two combining rules yield the following re- 

AP* P1* + P 2 * - 2P 12 * 
41 = r l N l / r N  = 1 - & 

lationship for the average close-packed mer volume: 

Macromolecules 

where 

410 = r loNl / rN  = 1 - $20 (29) 

The concentrations 41 and are related by 

u Ul*/U2* (31) 

From the definition of I#J~ given in eq 27 and the first 
combining rule, it can be easily shown that it represents 
the close-packed volume fraction of component i; i.e., 

where ml and m2 are the respective mass fractions. In 
subsequent equations, concentrations will always be ex- 
pressed in terms of &. 

The volume of the mixture is 

V = (No + rN)u* = V*U (33) 

Alternatively, the reduced volume U can be expressed in 
terms of the specific volume of the mixture zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuSp or its mass 
density p :  

(34) i; = u,p/u,p* = p*/p = l/z, 

u,p* = rnl/Pl* + mz/P2* = l /P*  

where 

(35) 

In our original specification of the combining rules,12 
only eq 19 and 21 were imposed. Here we add a third rule, 
eq 25. Adding this rule does not introduce additional 
theoretical parameters; adding this third rule, however, 
yields a more quantitative theory. 

The old combining rules yielded pairwise additivity of 
the mer-mer interaction energies ti, [cf. eq 27 of ref 141. 
We have shown that the characteristic pressure P* is 
closely related to the physical property of cohesive energy 
density and our third rule insures pairwise additivity of 
this property in the close-packed state. Now the mer-mer 
interaction energy of the mixture t* is given by 

e* = p*u* = 

(@~iPi* + M ’ z *  - @~i4z~P*)(4 i~ui*  + 42Ou2*) (36) 

and will only be pairwise additive when ul* = u2*. Thus, 
under the new rules P” is pairwise additive and e* is not, 
whereas under the old rules e* was pairwise additive and 
P* was not. Further justification of eq 36 is given in 
Appendix C. 

It  is convenient to introduce reduced variables. The 
reduced volume and density are defined by eq 34 and the 
reduced temperature T and pressure P of the mixture are 
defined formally as before: 

(37) T = T / T * ;  T* = c * / k  

P = P/P* 

where e* is given by eq 36 and P” is given by eq 25. From 
eq 36 and 30, T* can be expressed as 

T * / T  E 1/T = [+1/Ti + 4s2/p21/(+1 + u 4 z )  - 4 i 4 J  
(38) 

X = AP*v*/kT (39) 

where 
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Free  Energy  a n d  Chemical  Potentials.  The con- 
figurational Gibbs free energy G of a binary mixture is 
given by (cf. eq 1): 

C; rNe*G (40) 

Minimization of the free energy with respect to density 
or volume yields the same equation of state as before, eq 
5, but with T*, P*, and r defined as above ( r  is also given 
by ?r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4l/h + 421/r2),. 

The chemical potential p1 is 

where X, is given by 

X i  E X(41 = 1) = A P * ~ ~ 1 * / k T  (44) 

The expression for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp2 is easily obtained by interchanging 
the indices 1 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 .  

The chemical potentials have the following properties: 
(1) They reduce correctly to their appropriate molar 

(45) 

( 2 )  At low temperatures or high pressures the reduced 
densities approach their maximum value of unity. In this 
limit the Flory-Huggins chemical potentials are recovered 
(as 7, and p 1  - +  1) 

(pl - p l o ) / h T  -+ In (46) 

(3) There is only one parameter, AP* or X1, that  
characterizes a binary mixture. All other parameters are 
known from the pure components. I t  is convenient to 
characterize the interaction in terms of a dimensionless 
parameter {which measures the deviation of Plz* from the 
geometric mean: 

pure state values (cf. eq 1): 

k(4, = 1) /*lo 

+ (1 - r1 / r2 )42  + rloX1422 

{ = P,2*/(P1*P**)1’* (47) 

and eq 26 becomes 

AP* = Pi* + P** - 2{(P1*P2*)112 (48) 

Mixing Funct ions.  The fractional volume change 
AV,/V, that  occurs upon mixing is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(V, is the “ideal 
volume” of the mixture assuming additivity): 

(49) 

The heat (enthalpy) of mixing W, a t  low pressures is 

AV,/V, = F/(4161 + 4*6J - 1 

( P A V ,  term ignored): 

AH,/RT = 
rIPd1d2E: + ~ ~ * [ d ~ P ~ * ( i ? ~  - P )  + 42P2*(P2 - P)l /RTJ (50) 

The entropy of mixing ASm is 
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42 
In  41 + - In  42 + 

r2 

The first two terms in AS, are the Flory-Huggins com- 
binatorial entropy terms. 

Phase Stabi l i ty  and the Spinodal. A negative free 
energy of mixing is a necessary but not sufficient condition 
for miscibility. For a binary mixture a t  a given temper- 
ature and pressure, a necessary and sufficient condition 
for miscibility over the entire composition range is for 
dp,/dxl to be positive over the entire range (dp2 f dx, will 
also be positive through a Gibbs-Duhem relation). Under 
these conditions the free energy of mixing is also negative 
as required. 

This positive property of the chemical potentials is 
related to the curvature properties of the intensive free 
energy g 2 GIN of the binary mixture: 

(52) 

(53) 

Thus, dpl/dxl > 0 implies d2g/dxl > 0 or that the Gibbs 
free energy per mole of mixture (at constant T and P )  is 
a conuex function of composition. 

For a binary LF mixture a t  constant temperature and 
pressure, we have 

- - d ( P l / k T )  

and /3 is the isothermal compressibility of the mixture given 

TP*p = L ? [ l / ( E  - 1) + l / r  - 2/0ni?l-’ > 0 (56) 

Therefore, g is convex and miscibility is possible if the 
following inequality holds: 

by 

where [ ( l / r I 4 J  + (1 / r242) ]  is the combinatorial entropy 
contrikution, /?X is an energetic contribution and 
1/2p+2TP*P is an entropic contribution from equation of 
state. I t  is significant to note that the entropic equation 
o f  state term makes a n  unfavorable contribution to the  
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3.0 

I 

Figure 4. Schematic behavior of the three terms in the spinodal 
inequality zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA57 as a function of temperature. The dashed curve 
is the sum pX + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA'/2+2TP*p. The inequality is satisfied between 
the UCST and LCST. 

spinodal, i.e., its presence does not favor miscibility. 
If the spinodal inequality is not satisfied, a binary fluid 

mixture is thermodynamically unstable and will phase 
separate into two fluid phases. (We do not rule out the 
possibility of phase separation in a dense gas mixture.) 
The boundary separating the one-phase and two-phase 
regions is called the spinodal and is defined by the con- 
dition dpL,/d& = 0. 

In most capes the general character of the equilibrium 
liquid-liquid phase diagram can be deduced by studying 
the spinodal. (The equilibrium phase diagram is defined 
by the condition that the chemical potential of each 
component is the same in both phases.) To illustrate this, 
consider a binary liquid mixture that is closed to the 
atmosphere and in equilibrium with its vapor. In this 
closed system the pressure equals the equilibrium vapor 
pressure of the mixture. Let us further assume that X is 
positive. The temperature dependence of the three terms 
in the spinodal inequality 57 is illustrated in Figure 4. 
Only pX and the equation of state term p$2TP*P are 
temperature dependent. The entropic equation of state 
term diverges as the liquid-vapor critical temperature T,  
of the mixture is approached (P  - P,) because zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP - m a t  
T,. Notice that the inequality is only satisfied over a finite 
temperature interval (suggests an upper and lower critical 
solution temperature); i.e., miscibility is theoretically 
possible only in a finite temperature range. If the com- 
position is changed, the line representative of the com- 
binatorial entropy term in Figure 4 moves up or down and 
miscibility is obtained over a different temperature range. 
For v = 1, the minimum value of the combinatorial entropy 
term occurs a t  

- 

(58) 

Since the other two terms in the spinodal inequality are, 
by comparison, weak functions of composition, the critical 
composition zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&c for both the UCST and LCST will ap- 
proximately equal +lm. 

In a polymer/solvent system r2 >> rl and qblm - 1; the 
temperature-composition (T-4) phase diagram becomes 
very distorted and the critical point occurs when the 
solution is very dilute in polymer (& N 0). Under these 
conditions the stability condition implies that miscibility 
for dilute solutions requires that the second virial coef- 
ficient of the chemical potential be positive: 

(59) 

I ,  -1s 
-, - 1 %  + 2.0 

< 

1 .o 

0 
0 0.5 1 .o 

@l 

Figure 5.  Combinatorial entropy contribution to the spinodal 
vs. close-packed volume fraction q51. Curve a, rl  = r2 =l; curve 
b, r! = 1, r2 >> 1; curve c, rl = r2 = 10; and curve d, rl  = r2 = 50. 

For a polymer solution near a critical point, &/r2  - rzL3'2 
and q ! ~ ~ ~  - r2-l by eq 58, and therefore, the second-order 
term dominates 

(k0 - P l ) / k T  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Yz - x1)'22 (60) 

Now dp,/d$q > 0 implies that  -- xl) > 0 for stability 
in dilute solutions. For the LF, we have (see Appendix B): 

x1 = rloPl[Xl + Y 2 $ 1 2 ~ 1 ~ 1 * P l l  (61) 

where $ ( &  = 1) and $ is defined by eq 55. It  is easy 
to show that r1 times the spinodal inequality equals 'Iz - 

x1 for r2 / r1  >> 1 and = 41m. 
According to LF theory, every closed binary system in 

equilibrium with its own vapor is capable of exhibiting 
LCST behavior prior to reaching its liquid-vapor critical 
temperature T,. In low molecular weight solutions, the 
combinatorial entropy term is relatively large and the 
LCST should appear very close to T,  where it may be 
difficult to observe experimentally. In contrast, for a 
polymer solution the combinatorial entropy term is small 
(see Figure 5 )  and the LCST can occur well below the 
critical temperature of the solvent. For many polyiso- 
butylene/solvent systems 0.7 C LCST/T, C 0.9." 

Comparison of Theory and  Experiment  

Heats  and  Volumes of Mixing. The LF theory is a 
one-parameter theory of a binary mixture. This parameter 
AP* (or the related parameters X1 and f )  can be deter- 
mined from a single solution datum. Here we use heats 
of mixing at  infinite dilution, 

When the solvent (component 1) is in excess AH,,, ap- 
proaches a limiting value AH,(m) given by 
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Table 111 
Interaction Parameters Calculated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfrom Heats of Mixing for Dilute Polyisobutylene Solutions 

n-pentane 0.820 0.676 0.804 
n-hexane 0.852 0.626 0.595 
n-heptane 0.864 0.612 0.522 
n-octane 0.875 0.594 0.462 
n-decane 0.893 0.562 0.379 
cyclohexane 0.868 0.600 0.507 
benzene 0.882 0.570 0.441 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA H , ( - ) ,  A P * ,  

T, Pl*P, J/mol zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX, x l o z  MJ/m3 r zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ 1  

- 
P 1  

- 201 4.980 10.4 0.9864 -0.491 
- 1 5 9  3.238 6.04 0.9944 - 0.497 
-100 2.594 4.91 0.9949 - 0.460 
- 67 2.128 3.89 0.9965 - 0.440 
- 31  1.438 2.46 0.9991 - 0.393 
- 38 2.442 5.61 0.9932 -0.365 

1090 8.180 20.7 0.9803 -0.239 

In units of energy/mole of repeat unit, the LF theory 
yields: 

A H m ( a ) / R T  = r lo(h f , /MJ(pl* /P2*)  x 
[Fix] + iii2$iPi*Pi + 4 3 ,  - Pi)/T21 (63) 

where Mu is the molecular weight of the polymer repeat 
unit and M, is the solvent molecular weight. In deriving 
eq 63 we used the important relation 

dp/d@l = p2$pP*P (64) 

Table I11 contains experimental values of -VI,(..) at 298 
K for seven polyisobutylene (PIB) solutionsis and the 
corresponding values of Xl calculated from eq 63. Also 
shown are AP* and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj- obtained from X1 via eq 44 and 48. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A striking feature of the data is that six of these nonpolar 
polymer solutions are exothermic. Notice, however, that 
all of the calculated X, values are positive. 

Inspection of eq 63 reveals the physical principles that 
determine the sign of 1H,( m). The first term, p X l ,  is the 
exchange interaction energy parameter. A positive X I  
should, according to classical theory, yield a positive zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAH, 
because it is proportional to the net change in energy that 
accompanies the formation of a 1-2 bond from a 1-1 and 
a 2-2 bond. The term proportional to ( p 2  - p l )  is also 
positive since p 2  > p1 for all solutions in Table 111. This 
term is associated with the process of taking a polymer 
molecule out of a high-density medium ( p 2 )  and placing 
it in one of lower density ( p J ;  this is energetically less 
favorable and contributes positively to AH,(..). The 
remaining term, p12$iPl*31, has a similar interpretation 
with respect to the solvent molecules. This term can be 
positive or negative depending on the sign of = 4 (@l  

= 1). The sign of G1 (see eq 5 5 )  is largely determined by 
the  sign of (T,* - T2*) and as can be seen in Table I11 is 
negative in all cases. From eq 64 this implies that dp/d@2 
> 0 a t  @2 = 0 or adding a small amount of polymer to 
solvent causes a dens i t )  contraction. The magnitude of 
the contraction is proportional to the compressibility of 
the solvent (dl) .  I t  is energetically favorable because a t  
a distance R from a given solvent mer, there are now more 
mers/unit volume and the average interaction is stronger 
(T2* > Tl*). I t  is this term that dominates AHm (m)  for 
six of the seven solutions in Table 111. 

Also notice that all solutions with a negative AH, also 
yield negative volume changes5 l9 although a negative 
AV, is not a sufficient condition for a negative -VI,. The 
quoted values of AV, are the maximum observed volume 
changes which all occur near the 50:50 composition (by 
weight). The calculated values of AV, based on the in- 
teraction parameters determined from AHrn( ..) data are 
not in very good agreement. However, the correct signs 
are obtained and the deviations are systematic. 

Although benzene has a large and positive heat of mixing 
with PIB a t  room temperature, it decreases with increasing 
temperature and finally becomes negative near 435 K.22 
Figure 6 compares the experimental (solid circles) and 

I I 1 I I 
250 300 350 400 450 500 

TEMPERATURE, K 

Figure 6. A comparison of experimentalzz (solid circles) and 
theoretical (solid line) heats of mixing for dilute solutions of 
polyisobutylene in benzene. The theoretical curve was calculated 
from eq 63 using temperature-independent pure-component 
parameters from Tables I and 11. 

calculated (solid line) AH, (a) as a function of temper- 
ature. The theoretical curve was calculated using tem- 
perature independent pure component parameters and 
the value of the interaction parameter determined at 298 
K. As can be seen, the agreement is quite good. 

Chemical Potentials. A more stringent test of theory 
is to compare chemical potentials using the interaction 
parameters shown in Table 111. For the purposes of 
comparison it is convenient to define the activity of the 
solvent ( a l )  in terms of a dimensionless x parameter: 

(pl - p l0 ) /RT  E I n  al = I n  $1 + @ 2  + x@22 (65) 

This functional form is that suggested by classical theory 
(we have set r l / r2  = 0; cf. eq 46) in which x is inversely 
proportional to temperature and independent of con- 
centration. I t  is now well known that x does not possess 
a simple 1/T dependence and in general is concentration 
dependent. Empirical values of x as a function of con- 
centration are obtained from measured activities by solving 
eq 65 for x.23 Defined in this way x may be called the 
reduced residual chemical potentials5 

Similarly, we can define a reduced residual en thalpy  
and entropy of dilution by 

XH -T(ax/aT) (66) 

xs = dTx)/aT (67) 

and, of course, 

x = XH + XS (68) 

The quantities xH and xs correspond to K and ' Iz  - + in 
Flory's older notation." 
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV 
Comparison of Experimental and Theoretical Chemical Potentials, Volumes of Mixing, and Lower Critical Solution 

Temperatures for Polyisobutylene Solutions at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA298 K 

x1 XH.1 xs;1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX- Av,/v, X 10' a,, K 

exptl calcd exptl calcd exptl calcd exptl calcd exptl calcd exptl calcd 

n-  pen tane 0.49 0.76 -0.42 -0.33 0.91 
n-hexane 0.56 - 0.27 
n-heptane 0.49 -0.18 
n-octane 0.46 0.43 -0.17 -0.13 0.63 
n-decane 0.32 - 0.09 
cyclohexane 0.47 0.34 * 0.00 -0 .02  0.47 
benzene 0.50 0.63 0.26 0.67 0.24 

PI B/CYCLOHEXANE 
I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

200 300 400 500 

0.2 

TEMPERATURE, K 

Figure 7. The variation of the reduced chemical potential zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx1 as 
a function of temperature for polyisobutylene/cyclohexane so- 
lution at the indicated values of the interaction parameter { (see 
eq 48). Notice how strongly x1 depends on {at low temperatures. 

The concentration dependence of these quantities can 

(69) 

be expressed formally in series form: 

x = x1 + X z 4 2  + x 3 4 2 2  + . * ' 

X H  = XH;1 + X H ; 2 4 2  + . * . 
xs = XS;l + x s ; 2 4 2  + ' . . (70)  

The coefficients xi are the same coefficients in the virial 
expansion of the chemical potential shown in eq 59. The 
limiting values of these parameters are particularly im- 
portant: 

x(41 = 1) X I  = XH;1 -k xS;1 (71) 

(72) 
m 

x(41 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0) X m  = X H m  + x S m  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEx, 
1 

For the LF, x1 is given by eq 61 and xm by 

r 

E ~ p e r i m e n t a l ~ J ~ - ~ ~ % ~ ~  and calculated values of xl, X H ; ~ ,  

xSi1, and xm are shown in Table IV for four PIB solutions. 
Notice the large and positive (unfavorable) value of xSil  

for pentane, octane, and cyclohexane solutions ( x S i l  = 0 
in classical theory). That  the good agreement is not 
fortuitous can better be appreciated by studying Figures 
7 and 8. The calculated values are often sensitive 
functions of temperature and the interaction parameter. 
In Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 ,  x1 is plotted as a function of temperature at 
three different values of the interaction parameter ({) for 
PIB/cyclohexane. Notice how strongly x1 depends on { 
at room temperatures. In Figure 8 xl, XH;1, and xSil are 

1.09 0.93 0.69 -1.27 -1.83 344 
0.83 0.47 -0.857 -1.25 402 
0.67 0.43 -0.615 -0.92 442 303 
0.57 >0.5 0.38 -0 .481 -0.73 477 375 
0.41 0.28 -0 .291 -0.48 535 470 
0.36 0.5 0.36 -0.14 -0.44 516 440 

-0.04 1.15 0.74 0.34 0.20 534 487 

2 .oc  

-0.5 1 

-2.01 \ i  
-2 .5 

200 300 4 00 500 

Figure 8. The variation of x1 and its enthalpic x H i l  and entropic 
xS;. components with temperature are illustrated for dilute 
polyisobutylene/benzene solutions with ( = 0.9803. 

shown as a function of temperature for PIB/benzene for 
{ = 0.9803. As the LCST is approached, XH;1 and xSi l  

individually diverge rapidly in opposite directions, whereas 
their sum, xl, diverges more slowly in the positive direction. 

Critical Temperatures. When compared to  similar 
low molecular weight solutions, polymer solutions are 
anomalous in two respects: First, limited miscibility is 
often observed a t  room temperatures even when polymer 
and solvent are both nonpolar, and second, polymer so- 
lutions show a greater propensity for phase separation at 
high temperatures. Complete miscibility is obtained above 
the upper critical solution temperature (UCST), and below 
the LCST. Both the UCST and LCST depend on mo- 
lecular weight. With increasing molecular weight, the 
UCST approaches a limiting value called the 8 temper- 
ature." Similarly, the LCST approaches an asymptotic 
limit with molecular  eight.'^-^^ We shall refer to the 
LCST 8 as the superus 8 and designate i t  as 8,. 

Stability conditions lead to the following conditions on 
x1 (cf. previous section on phase stability): 

TEMPERATURE, K 

x1 = y2 for T = 8 or 8, 

x1 < y2 for e < T < 8, 

x1 > Y2 for T < 8 or T > 8, 

Therefore, 8 and 8, can easily be located by calculating 
x1 as a function of temperature. In Figure 8 x1 is plotted 
as a function of temperature for PIB/benzene and yields 
8 = 370 K and 8, = 487 K as compared to the experi- 
mental values of 8 = 298 K and 8, = 534 K.17 The  cal- 
culated values are based on = 0.9803. If { is increased 
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to 0.9864, 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 298 K and 8, = 490 K. Although 8 is 
relatively sensitive to the interaction parameter, 8, is not 
as can be seen in Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 for PIB/cyclohexane. Actually 
no value of { can be chosen to yield a theoretical 8, of 534 
K. The entropic equation of state term, which is jointly 
proportional to the compressibility of the solvent (&) and 
I C I I P ,  dominates x1 a t  high temperatures (see eq 61). In all 
of our calculations, the calculated zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0, is less than the ob- 
served value (see Table IV). This seems to indicate that 
xsil is overestimated a t  high temperatures. 

Summary and Conclusions 

A general result of the LF theory is that  differences in 
equation of state properties of the pure components make 
a thermodynamically unfavorable entropic contribution 
to  the chemical potential. This is most apparent in the 
stability condition Jthe spinodal inequality 57) where the 
positive term ijICI2TP*P can be shown to be completely 
entropic. This term is only zero a t  T = 0 or when $ = 0; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
IC/ is a function of pure component parameter differences 
(see eq 55) and is in general nonzero. Thus, differences 
in pure component parameters, especially T* values, tend 
to destabilize a solution and make it more susceptible to 
phase separation. This unfavorable entropic term, which 
is small and relatively unimportant a t  low temperatures, 
becomes large and dominant as the liquid-gas critical 
temperature T ,  is approached (see Figure 4). In both low 
molecular weight and polymer solutions this term is similar 
in magnitude, but the favorable contribution that the 
combinatorial entropy makes toward stability is much 
smaller for polymer solutions. This small combinatorial 
entropy term makes a polymer solution more susceptible 
to phase separation (than a similar low molecular weight 
solution) a t  both low and high temperatures. Therefore, 
we reach the general conclusion that in nonpolar polymer 
solutions limited miscibility a t  low and high temperatures 
is a manifestation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a polymer solution’s small combi- 
natorial entropy. 

Heats of mixing a t  infinite dilution U,(m) have been 
used to determine the interaction energy parameter be- 
tween polyisobutylene and seven hydrocarbon solvents. 
The interaction parameter can be expressed in any of three 
equivalent forms, XI, AP*, and {, and all are tabulated in 
Table 111. The parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP* physically represents the 
net change in cohesive energy density upon mixing a t  the 
absolute zero of temperature. As might be expected for 
these nonpolar solutions, the calculated lP*’s are all 
positive. Thus, at  absolute zero the heats of mixing would 
all be positive (endothermic). However, only PIB/ benzene 
has a positive AHrn( a) at 298 K. In terms of the LF theory, 
negative heats are caused by the tendency of the solvent 
to contract when a small amount of polymer is added. The 
magnitude of the contraction is proportional to the iso- 
thermal compressibility of the solvent. I t  is an energet- 
ically favorable process because it results in more inter- 
molecular interactions of lower potential energy among the 
solvent molecules. 

Although AH,(..) is large and positive a t  room tem- 
perature for PIB/benzene, it decreases with increasing 
temperature and becomes exothermic near 435 K. LF 
theory semiquantitatively accounts for this behavior as 
shown in Figure 6. 

Using the interaction parameters determined from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
AH,(..) data, volumes of mixing AV, were calculated and 
tabulated in Table IV. Theory correctly predicts that  all 
of the PIB solutions, except benzene, have negative AV,’s. 
In all cases, including benzene, the calculated solution 
volume was smaller than observed. The Flory equation 
of state theory of solutions5 correlates these volume 
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changes slightly better than LF  theory. In the Flory 
theory, the pure component parameters were all deter- 
mined at  298 K whereas in the LF theory these parameters 
are obtained over a large temperature range. If the LF  
parameters are chosen so as to perfectly reproduce pure 
liquid densities a t  298 K as in the Flory theory, better 
agreement with experiment is obtained. However, we 
prefer not to use temperature-dependent parameters and 
have not done so in any of the calculations in this paper. 

Chemical potentials have been calculated in both dilute 
and concentrated ranges and compared with available 
experimental data on PIB solutions of n-pentane, n-octane, 
cyclohexane, and benzene as shown in Table IV. The  
essential validity of theory is manifested in the calculated 
values of the reduced residual entropy a t  infinite dilution 
(xs;l). In classical theory xs;l = 0, yet xs;l dominates the 
chemical potential in dilute PIB solutions of n-pentane, 
n-octane, and cyclohexane. As can be seen the calculated 
xSil  values are in good agreement with those observed 
except for benzene. 

Notice that negative (favorable) values of the residual 
enthalpy XH;1 are associated with positive (unfavorable) 
values of xs;l. Qualitatively, this trend can be understood. 
In a dilute polymer solution the solvent molecules, as 
explained above, are in a slightly denser environment than 
in the pure state; this is energetically favorable and 
promotes negative values of XH;1. However, entropy de- 
creases with density (dS/dp < 0) and the denser envi- 
ronment lowers the entropy of the solvent molecules which 
is thermodynamically unfavorable (xsil > 0). 

Lower critical solution temperatures have also, been 
calculated and are tabulated in Table IV. For n-pentane 
and n-hexane the calculated value of x1 is greater than 0.5 
and theory incorrectly predicts limited miscibility of PIB 
in these two solvents at  298 K. (The variation of x1 with 
T for these two systems would be similar to that shown 
for PIB/cyclohexane in Figure 7 for .( = 1.0.) For the 
remaining solvents the calculated LCST’s are all lower 
than observed. 

As polymer concentration increases, the reduced residual 
chemical potential (x) approaches a limiting value xm 
x ( @ ~  = 0). For most polymer solutions that have been 
studied, dx/d@, > 0 and x1 = 1) < xm. An exception 
to this trend can be found in polystyrene/chloroform 

In Table IV notice that n-pentane and benzene 
solutions of PIB have large and positive experimental 
values of dx/d@, whereas theory yields only a small 
positive value for benzene and a negative one for n- 
pentane. For PIB/benzene, the variation in x with @2 is 
largely determined by the large positive value of dXH/d@;’ 
whereas theoretically dxH/d@, < 0 and dxs/d@, > 0. 
(Similar data for PIB/n-pentane are not available.) This 
is the most serious shortcoming of the LF  theory. 

In the Flory theory the sign and magnitude of dx /d& 
is a sensitive function of the s1/s2 ratio4 (s i  is the surface 
to volume ratio of component i). In principle this ratio 
can be estimated from molecular models or by using van 
der Waal values. However, the values obtained by these 
two methods often differ appreciably as in the case of 
polystyrene/methyl ethyl ketone.29 Unlike the Flory 
theory we have not explicitly introduced surface area 
corrections via the combining rules into the LF  theory. 

This brings us finally to an assessment of the future. 
How can theory be improved? Both the Flory and LF 
theories employ approximate equations of state to describe 
the pure component fluids. Better equations of state of 
the pure components should produce a better theory of 
solutions. 
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We can experiment with new combining rules. LF 
theory seems particularly flexible in this respect compared 
to Flory’s theory. In Appendix C the LF theory is gen- 
eralized to facilitate experimentation with different sets 
of combining rules. The quantity that is most affected by 
the combining rules is the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ function (defined by eq zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 5 )  
which is very sensitive to the value of dc*/d$,. Small 
changes in rc/, for example, can dramatically affect cal- 
culated values of xs and xH. 

There is also the need to make suitable corrections to 
the theory for dilute polymer solutions. In the dilute 
regime there is little overlap between polymer molecules 
and a non-uniform distribution of polymer segments exists, 
whereas the mean field character of the theory assumes 
uniformity of the segment distribution. 

Appendix A 

Molecular parameters for low molecular weight fluids 
can be estimated from a known heat of vaporization AH,, 
a vapor pressure P,  and a liquid specific volume zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu1 all a t  
the same temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT: 

M , / R T  - In (ug/ul) 
r =  (A.1) 

1 + (ij- 1) In (1 - p )  

T* = t*/R = (AE,/R)/rp (A.2) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p* = 1/pu1 (A.3) 

v* = M/rp*  (A.4) 

p* = RT*/v* (A.5) 

The  reduced density zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp required above satisfies the fol- 
lowing equation which must be numerically evaluated: 

[SAE,/RT - In ( v , / u J ] [ p  + In (1 - p ) ]  - 
[AE,/RT - 1]p In (1 - p )  = 0 (A.6) 

where AE, is the energy of vaporization and vg is the 
specific volume of the gas phase. 

In deriving the above results we assumed that P was low 
enough so that the vapor phase could be treated as an ideal 
gas and that ug >> ul. Under these conditions the entropy 
of vaporization AS, is given by 

AS,/R = AH,/RT = r [ l  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(ii - 1) In (1 - p ) ]  + 

and 

In ( u g / u J  (A.7) 

(A. 8) 

can be eliminated in the 

AE, = AH, - R T  = rp /T  

Using eq A.7 and A.8, r and 
equation of state eq 1 2  to obtain eq A.6 with P = 0. 

Appendix B 

Listed below is a compendium of useful relations for 
binary mixtures based on the combining rules of this paper, 
eq 19, 21, and 25. 

(B.3) 

(B.5) 
d4l zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(41 + V 4 2 Y  ’ 

d2( l / r )  2 v ( v  - l ) ( l / r10 - l / rzo)  

(B.6) 

(B.12) 
r1P2W*P 

42 
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where 
1 

E / V  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= ‘/ ,CCpipjS€ij(Rkj(R) dR  (C.12) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApi is the number of mers of type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi per unit volume: 

pi = r i N i / V  = f i / u *  = pd i /u*  (C.13) 

Again we assume that the mers have hard cores and in- 

inverse power law; i.e., 
teract attractively with one another at  a distance R via an 

t,,(R) = for R/ulJ  < 1 

1 zl+l=l\ - ;[@I2 + ‘1)/’11 (B*20) 

Appendix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC 
(C.14) 

where ulJ is the closest distance of approach allowed be- 
tween mers i and j .  Of course, for the diagonal terms 

Cr,ON, = E r l N l  = rN (C.2) u,,3 = u,* (C.15) 

In this paper and ref 14 we assumed t,,(R) = - E ~ ~ J ( U , ~ / R ) ~  for R/ulJ  > 1 

rlOul* = r,u* (c‘l) 
and 

i = l  i = l  

Combining eq C.l and C.2 yields 

u* = C$:u;* 

where 

4: = r:Ni/rN 

Our first assumDtion imdied that 

In the mean field approximation, the pair distribution 
function, g,(R), is given by 

((2.3) g,,(R) = 0 for R / u l J  < 1 

g,,(R) = 1 for R/u , ,  > 1 
(C.16) 

Substitution of eq C.13, C.14, and C.16 into eq (2.12 yields 

the number of sites E = -rNpt* (C.17) 

(c.4) 

occupied by a molecule ofspecies i in the mixture differed 
from that in the pure state. This artifice guarantees simple 
additivity of the close-packed (CP) volumes (see eq 20). 

To make the theory more general we replace assumption 

r, = rI0 (C.5) 

where 

((2.18) 
1 

e *  E sCC4i4j~ij*gij* 

t,]* = 2ato”/(n - 3) 

I 1  
C.l with 

((2.19) 

Up to this point we have only invoked one combining rule, 
namely eq c-,5, and have left u* ,  the average cp volume 
of a mer in the mixture, undefined, We now that 
u* is given by 

That  is, a molecule of species i occupies the same number 
of sites in the mixture as it does in the pure state. The 
CP  volume of the mixture, V*, is now, in general, not equal 
to the sum of the pure component CP volumes: 

V* C(r:Ni)u* = rNu* z Cr:Niui* (C.6) 
(C.20) 

The fraction of sites, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,, occupied by species i is now given Two more combining rules must be specified for the cross 
terms u,, and e,,. This is an old txoblem familiar to those by 

r:Ni 
f .  p4; ’ r N +  N o  

who ha;e studi’id the properties bf fluid mixtures. Usually 
they are given by the semiempirical Lorentz-Berthelot 
rules: 

(c.7) 

where, as before, p is the total fraction of occupied sites tIJ = ( ~ i l ~ j J ) l ~ ~  

rN 

rN + N o  
p’ (C.8) 

With eq (3.5 it is unnecessary to define a CP volume 
fraction, di (see eq 27 and 32). In all subsequent equations 
below the superscript 0 is omitted on 4: and r:; it is 
understood that 4i = 4: is a site fraction given by 

4i r i N i / r N  = (mi/pi*ui*)/C(mi/pi*ui*) (C.9) 

Compared to the CP  state the entropy of the LF  is 

(C.10) 

i 

S = - k C N i  In f i  
i=O 

However, there are many other combinations that have 
been considered [see, for example, R. J. Good and C. J. 
Hope, J .  Chem. Phys., 55,  111 (1971)l. 

If eq C.21 were adopted, or some other equivalent ex- 
pressions, the properties of a multicomponent mixture 
would be completely determined by the properties of the 
pure components. This prospect seems unlikely so it will 
be necessary to introduce one or more empirical param- 
eters. For example, we could assume 

or 
/ 

uij = f ( . i i  + u j j p  (C.22) 
\ 

where t and f are dimensionless constants. I t  is in this 
general area of combining rules that the LF  theory is very 

(c.11) flexible. By comparing calculated and experimental 
mixture properties for a large number of binary mixtures, 
it may be possible to determine the optimum set of 
combining rules. 

Finally, it is worth mentioning that simple additivity of 
CP volumes is obtained for 

r i l l  ri 

1 

4i 1 S/rN = -K (3 - 1) In (1 - p )  + - In 7, + C- In & 1 
where the q$ in eq (2.11 are defined by eq C.9. 

Generalization of eq 13 and 14 to multicomponent 
mixtures yields the following for the configurational PO- 
tential energy, E: 
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T. J. Hughel, Ed., Elsevier, Amsterdam, 1965. 
(16) R. N. Howard, “Physics of Glassy Polymers”, R. N. Haward, 

Ed., Wiley, New York, N.Y., 1973, p 39. 
(17) J. M. Bardin and D. Patterson, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPolymer, 10, 247 (1969). 
(18) G. Delmas, D. Patterson, and T. Somcynsky, J.  Polym. Sci., 

57, 79 (1962). 
(19) P. J. Flory, J. L. Ellenson, and B. E. Eichinger, Macromolecules, 

1. 279 (1968). 

u..3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ui;3 + Ujj3)/2 (C.23) 

Using th is  rule for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“ij i t  can  be shown that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe* is given by 
e q  36. 
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Compositional Variation of Glass-Transition Temperatures. 2. 

Application of the Thermodynamic 

Theory to Compatible Polymer Blends 
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ABSTRACT: The characteristic continuity of extensive thermodynamic parameters a t  glass-transition 
temperatures forms the basis for a theory to predict Tg in intimate mixtures of compatible high polymers 
from pure-component properties. A relation derived from the mixed system entropy in terms of pure component 
heat capacity increments and glass-transition temperatures is shown to arise as a consequence of the connectivity 
constraint on the excess mixing entropy in these blends. Four known essentially empirical relations for the 
effect, including a predictive version of the Wood equation, are obtained as special cases of this expression. 
A second mixing relation is derived in terms of pure component properties from the volume continuity condition 
at Tr Quantitative restrictions on excess mixing volumes associated with this relation suggest that the entropic 
expression may be of wider use. The derivation of relations for the effect of pressure on T ,  is touched on. 
Finally, for two related blends, the entropy-based relation is shown to predict glass-transition temperatures 
in very good agreement with experimental values. 

T h e  predict ion of glass-transition tempera tures  i n  
compatible  mixtures  f rom pure-component  properties 
presents a problem of some technological and scientific 
interest. Plasticized polymers and polymer blends find a 
wide var ie ty  of industr ia l  applications; however, the 
compositional variation of glass-transition temperatures  
i n  these  mixtures  is generally discussed i n  te rms  of es- 
sentially empirical expressions.’ T h e  physically plausible 
“free volume” hypothesis has provided a rationalization 
of cer ta in  of these Separately,  a statistical 
mechanical interpretation of composition effects on  Tg has 
b e e n  g i v e n  in t e r m s  of  t h e  D i M a r z i o - G i b b s  
“configurational” entropy hypothesis of glass f ~ r m a t i o n . ~  

0024-9297/78/ 221 1- 1156$01.00/0 

T h e  first of these approaches is known to offer some 
basic difficulties and can  lead to relations which a r e  in- 
consistent with experimental  evidence, while t h e  Di- 
Marzio-Gibbs method does not  appear  t o  provide an 
explicit expression for Tg i n  te rms  of composition. A 
quasi-macroscopic form of t h e  configurational en t ropy  
hypothesis of glass formation has been applied recently 
to the problem in ideal a n d  regular solutions6 but, nec- 
essarily, is couched i n  te rms  of fictive ra ther  than actual  
transition temperatures. Its application t o  mixtures thus 
necessitates knowledge of the fusion entropy for each pure 
component, assumes the compositional variation of fictive 
transition temperatures  to reproduce that of Tg, and re- 
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