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Summary 

This paper discusses the thought processes involved in statistical problem solving in the broad sense 

from problem formulation to conclusions. It draws on the literature and in-depth interviews with statistics 

students and practising statisticians aimed at uncovering their statistical reasoning processes. From these 

interviews, a four-dimensional framework has been identified for statistical thinking in empirical enquiry. 

It includes an investigative cycle, an interrogative cycle, types of thinking and dispositions. We have begun 

to characterise these processes through models that can be used as a basis for thinking tools or frameworks 

for the enhancement of problem-solving. Tools of this form would complement the mathematical models 

used in analysis and address areas of the process of statistical investigation that the mathematical models 

do not, particularly areas requiring the synthesis of problem-contextual and statistical understanding. 

The central element of published definitions of statistical thinking is "variation". We further discuss the 

role of variation in the statistical conception of real-world problems, including the search for causes. 

Key words: Causation; Empirical investigation; Statistical thinking framework; Statisticians' experiences; Stu- 
dents' experiences; Thinking tools; Variation. 

1 Introduction 

"We all depend on models to interpret our everyday experiences. We interpret what we 

see in terms of mental models constructed on past experience and education. They are 

constructs that we use to understand the pattern of our experiences." David Bartholomew 

( 1  995). 

"All models are wrong, but some are useful" George Box 

This paper abounds with models. We hope that some are useful! 

This paper had its genesis in a clash of cultures. Chris Wild is a statistician. Like many other 

statisticians, he has made impassioned pleas for a wider view of statistics i'n which students learn 

"to think statistically" (Wild, 1994). Maxine Pfannkuch is a mathematics educator whose primary 

research interests are now in statistics education. Conception occurred when Maxine asked "What i s  

statistical thinking?" It is not a question a statistician would ask. Statistical thinking is the touchstone 

at the core of the statistician's art. But, after a few vague generalities, Chris was reduced to stuttering. 

The desire to imbue students with "statistical thinking" has led to the recent upsurge of interest 

in incorporating real investigations into statistics education. However, rather than being a precisely 

understood idea or set of ideas, the term "statistical thinking" is more like a mantra that evokes 

things understood at a vague, intuitive level, but largely unexamined. Statistical thinking is the 

statistical incarnation of "common sense". "We know it when we see it", or perhaps more truthfully, 

its absence is often glaringly obvious. And, for most of us, it has been much more a product of 

experience, war stories and intuition than it is of any formal instruction that we have been through. 
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There is a paucity of literature on statistical thinking. Moore (1997) presented the following list of 

the elements of statistical thinking, as approved by the Board of the American Statistical Association 

(ASA) in response to recommendations from the Joint Curriculum Committee of the ASA and the 

Mathematical Association of America: the need for data; the importance of data production; the 

omnipresence of variability; the measuring and modelling of variability. However, this is only a 

subset of what the statisticians we have talked to understand by "statistical thinking" or "thinking 

statistically". In the quality (or more properly, process and organisational improvement) area, much 

has been written, but addressing a specific audience. Snee (1990, p. 118) defined statistical thinking 

as "thought processes, which recognise that variation is all around us and present in everything we 

do, all work is a series of interconnected processes, and identifying, characterising, quantibing, 

controlling, and reducing variation provide opportunities for improvement". (See also Britz et al., 

1997; Mallows, 1998; and Dransfield et al. 1999). 

The usual panacea for "teaching" students to think statistically is, with apologies to Marie- 

Antoinette, "let them do projects". Although this enables students to experience more of the breadth 

of statistical activity, experience is not enough. The cornerstone of teaching in any area is the 

development of a theoretical structure with which to make sense of experience, to learn from it and 

transfer insights to others. An extensive framework of statistical models has been developed to deal 

with technical aspects of the design and analysis that are applicable once the problem and variables 

have been defined and the basic study design has been decided. An enormous amount of statistical 

thinking must be done, however, before we ever reach this stage and in mapping between information 

in data and context knowledge throughout the whole statistical process. We have little in the way 

of scaffolding to support such thinking (see Mallows, 1998). Experience in the quality arena and 

research in education have shown that the thinking and problem solving performance of most people 

can be improved by suitable structured frameworks (Pea, 1987, p. 91; Resnick, 1989, p. 57). 

The authors have begun trying to identify important elements from the rich complexity of statistical 

thinking. In addition to the literature and our own experience, our discussion draws upon intensive 

interviews with students of statistics and practising professional statisticians. One set of eleven 

students, referred to as "students" were individually given a variety of statistically based tasks 

ranging from textbook-type tasks to critiquing newspaper articles in two one hour sessions. They 

were interviewed while they solved the problems or reacted to the information. Another set of five 

students, referred to as "project students" were leaders of groups of students doing real projects 

in organisations which involved taking a vaguely indicated problem through the statistical enquiry 

cycle (see Fig. l(a)) to a solution that could be used by the client. Each was interviewed for one 

hour about their project. The six professional statisticians were interviewed for ninety minutes about 

"statistical thinking" and projects they had been involved in. The "project students" and statisticians 

interviews were structured around the statistical enquiry cycle and were in the form of a conversation 

which reflected on their approach and thinking during the process of an investigation. This paper is 

not a report on this particular research (that is being done elsewhere, e.g. Pfannkuch, 1996, 1997), 

but an attempt to synthesise a more comprehensive picture from these interviews and the literature. 

We are not concerned with finding some neat encapsulation of "statistical thinking". Our concerns 

are deeper than this. We are investigating the complex thought processes involved in solving real- 

world problems using statistics with a view to improving such problem solving. We are thus interested 

in developing a framework for thinking patterns involved in problem solving, strategies for problem 

solving, and the integration of statistical elements within the problem solving. We do not address 

the thinking involved in developing new statistical methodology and theory. We recognise that much 

statistical thinking can beneficially take place in day-to-day activities, particularly in the interpretation 

of information in media and other reports. In interpreting reports, we recognise the applicability of 

parts of our statistical knowledge about the production, behaviour and analysis of data to the type of 

information we are receiving and are thus able to critically appraise aspects of that information. The 
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type of thinking required is very similar, if not identical, to fragments of the thinking performed by 

someone involved in an enquiry. We see the enquiry cycle as providing a coherent structure that links 

the fragments and, thus, as an ideal place to start. In subsequent work, we have been specialising and 

further developing the ideas given here for interpreting statisticial information in reports. 

This discussion is organised into a statistical thinking framework for empirical enquiry in Section 

2. Section 3 explores "variation". It looks at statistical approaches to real-world problems from the 

starting point of omnipresent variation. Section 4 takes lessons learned in Section 2 and gives a 

fragment of a thinking tool for improving investigative skills. Section 5 contains a discussion. 

2 A Framework for Statistical Thinking in Empirical Enquiry 

Applied statistics is part of the information gathering and learning process which, in an ideal world, 

is undertaken to inform decisions and actions. With industry, medicine and many other sectors of 

society increasingly relying on data for decision making, statistics should be an integral part of the 

emerging information era. Statistical investigation is used to expand the body of "context" knowledge. 

Thus, the ultimate goal of statistical investigation is learning in the context sphere. Learning is much 

more than collecting information, it involves synthesising the new ideas and information with existing 

ideas and information into an improved understanding. 

From the interviews we have built up the four dimensional framework shown in Fig. 1 which seeks 

to organise some of the elements of statistical thinking during data-based enquiry. The thinker operates 

in all four dimensions at once. For example the thinker could be categorised as currently being in the 

planning stage of the Investigative Cycle (Dimension I), dealing with some aspect of variation in 

Dimension 2 (Types of Thinking) by criticising a tentative plan in Dimension 3 (Interrogative Cycle) 

driven by scepticism in Dimension 4 (Dispositions). Who is doing this thinking? Anyone involved 

in enquiry, either individually or as a member of a team. It is not peculiar to statisticians, although 

the quality of the thinking can be improved by gaining more statistical knowledge. 

2.1 Dimension One: The Investigative Cycle 

The first dimension in Fig. l(a) concerns the way one acts and what one thinks about during 

the course of a statistical investigation. We have adapted the PPDAC model (Problem, Plan, Data, 

Analysis, Conclusions) of MacKay & Oldford (1994). The elements of this model should be self- 

explanatory to statisticians. The statisticians we interviewed were particularly interested in giving 

prominence to the early stages of PPDAC, namely, to grasping the dynamics of a system, problem 

formulation, and planning and measurement issues (see Pfannkuch & Wild, 1998). 

A PPDAC cycle is concerned with abstracting and solving a statistical problem grounded in a 

larger "real" problem. Most problems are embedded in a desire to change a "system" to improve 

something. Even ostensibly curiosity-driven research is usually justified by the idea that the accrued 

understanding will have long term practical benefits. A knowledge-based solution to the real problem 

requires better understanding of how a system works and perhaps also how it will react to changes 

to input streams, settings or environment. Certain learning goals must be met to arrive at the 

desired level of understaliding. A PPDAC investigative cycle is set off to achieve each learning goal. 

Knowledge gained and needs identified within these cycles may initiate further investigative cycles. 

The conclusions from the investigations feed into an expanded context-knowledge base which can 

then inform any actions. 
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2.2 Dimension Two: Types of Thinking 

A number of types of thinking emerged from the statisticians' interviews and were subsequently 

refined and modified when we applied them to the student and project-student interviews. The 

resulting categories are shown in Fig. l(b). Some types of thinking were common to all problem 

solving. We will relate these general types of thinking to the statistical context in Section 2.2.2. First, 

however, we concentrate on types of thinking that are inherently statistical. 

2.2.1 Types fundamental to statistical thinking 

The types of thinking categorised under this heading in Fig. l(b) are, we believe the foundations 

on which statistical thinking rests. 

Recognition of the need for data: The recognition of the inadequacies of personal experiences 

and anecdotal evidence leading to a desire to base decisions on deliberately collected data is a statis- 

tical impulse. 

Transnumeration: The most fundamental idea in a statistical approach to learning is that of forming 

and changing data representations of aspects of a system to arrive at a better understanding of that 

system. We have coined the word transnumeration to refer to this idea. We define it as "numeracy 

transformations made to facilitate understanding". Transnumeration occurs when we find ways of 

obtaining data (through measurement or classification) that capture meaningful elements of the real 

system. It pervades all statistical data analysis, occurring every time we change our way of looking 

at the data in the hope that this will convey new meaning to us. We may look through many graphical 

representations to find several really informative ones. We may re-express the data via transforma- 

tions and reclassifications looking for new insights. We might try a variety of statistical models. And 

at the end of the process, transnumeration happens yet again when we discover data representations 

that help convey our new understandings about the real system to others. Transnumeration is a 

dynamic process of changing representations to engender understanding. Mallows (1998, Section 2) 

would appear to be advancing a similar idea. 

Variation: Thinking which is statistical, in the modern sense anyway, is concerned with learning 

and decision making under uncertainty. Much of that uncertainty stems from omnipresent variation. 

The ASA resolution, and Moore and Snee's discussions of statistical thinking all emphasise the 

importance of variation. The last element of the list following "variation", namely 'tfor the purposes 

of explanation, prediction, or control" is in the original statement of Snee (1990), albeit with a 

process-improvement spin, but has been dropped from the ASA statement. It is a critical omission. 

We do not measure and model variation in a vacuum. The purpose influences the way in which it is 

done. Our concerns with variation also extend beyond "measuring and modelling" to investigative 

strategies such as randomisation and blocking. In Section 3, we consider the variation theme in much 

greater detail. 

A distinctive set of models: All thinking uses models. The main contribution of the discipline 

of statistics to thinking has been its own distinctive set of models, or frameworks, for thinking about 

certain aspects of investigation in a generic way. In particular, methods for study design and analysis 

have been developed that flow from mathematical models which include random components (see 

Mallows, 1998). Recently, however, there is a growing desire (enlisting a phrase from David Moore) 

to nudge "statistics a little further back towards its roots in scientific inference". Large parts of the 

investigative process, such as problem analysis and measurement, have been largely abandoned by 

statisticians and statistics educators to the realm of the particular, perhaps to be developed separately 
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within other disciplines. However, there are more valuable generic lessons that can be uncovered 
about these parts of the investigative process using other modelling tools. There is a need to expand 
the reach of our statistical models. 

Context knowledge, stutistical knowledge and synthesis: The raw materials on which statistical 
thinking works are statistical knowledge, context knowledge and the information in data. The think- 
ing itself is the synthesis of these elements to produce implications, insights and conjectures. One 
cannot indulge in statistical thinking without some context knowledge. The arid, context-free land- 
scape on which so many examples used in statistics teaching are built ensures that large numbers of 
students never even see, let alone engage in, statistical thinking. One has to bring to bear all relevant 

knowledge, regardless of source, on the task in hand, and then to make connections between existing 
context-knowledge and the results of analyses to arrive at meaning. Ideally, all of this knowledge 
would be resident in the same brain, but this is often not possible. Major investigations are team 
efforts which bring together people of differing expertise. Fig. 2 emphasises the synthesis of ideas 
and information from the context area and from statistics. 

I (a) From inklinn to PI- 1 

QUESTIONS 

[(b) Shuttling between ~ h e r e s  1 

mading out 

What does this mead1 

Ngurc 2. Interpluy between context rrnd stutistics 

Fig. 2(a) traces the (usual) evolution of an idea from earliest inkling through to the formulation 

of a statistical question precise enough to be answered by the collection of data, and then on to 
a plan of action. The earliest stages are driven almost entirely by context knowledge. Statistical 
knowledge contributes more as the thinking crystallises. Fig. 2(b) illustrates the continual shuttling 
backwards and forwards between thinking in the context sphere and the statistical sphere. This goes 
on' all the time throughout PPDAC. For example, at the analysis stage questions are suggested by 
context knowledge that require consulting the data-which temporarily pushes us into the statistical 
sphere--whereupon features seen in the data propel us back to the context sphere to answer the 
questions, "Why is this happening?" and "What does this mean?" 
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2.2.2 General types of thinking applied in a statistical context 

Strategic thinking 

By strategic thinking, we mean thinking aimed at deciding upon what we will do (next or further 

into the future) and how we will do it. This includes such things as: planning how to attack a task; 

breaking tasks down into subtasks; setting deadlines for subtasks; division of labour; and anticipating 

problems and planning to avoid them. An important part of strategic thinking is having an awareness 

of the constraints one is working under and taking them into account in planning. 

Real statistics is less about the pursuit of the "correct" answer in some idealistic sense than about 

doing the best one can within constraints. Many factors limit the quality and effectiveness of the 

thinking. Some of these factors are internal to the thinker. Lack of knowledge obviously constrains 

thinking. Unfortunately, what we "know" is not only our greatest asset but also our biggest curse 

because the foundations of what we "know" are often not soundly based. Our preconceptions can 

lead us astray in many ways, for example, by blinding us to possibilities because what we "know" 

determines where we look, and by desensitising us to important information. The challenging of 

something we "know" and take for granted can remove an obstacle and lead to new insight. This often 

occurs when people with different backgrounds discuss the same problem. Consulting statisticians 

see it at work in their clients when a quite innocent question surprises the client, loosens a previously 

held preconception, and leads to the client seeing the problem in a new way. We tend to solve problems 

by following "precedents". In applied research, this happens all the time and often the statistical 

methods of the precedents are inadequate. As far as dispositions (Dimension 3) are concerned, 

someone who is not curious, imaginative, sceptical and engaged will be less effective than someone 

who is. There is also an ability factor operating. Faced with the same set of information, some people 

will be better at making useful connections and grasping the essential features than others. And 

inadequate communication skills limit the ability to extract vital information and ideas from clients 

and others. 

Other constraints are due to the environment the thinker is operating in. These include the general 

time, money and materials constraints, the imperfection of all human communication which results 

in misunderstandings and gaps in transmission of essential knowledge, and limitations of the data 

available. Very often, the problem we would like to solve is simply not soluble on the basis of the 

information we can get. For example, it may be impossible to capture with feasible measurement 

processes the characteristics we would like to capture. It may be impossible to sample the desired 

population or even a good approximation to that population, and so on. 

This paragraph relates to particular constraints faced by statistical consultants, but students and 

other researchers are subject to some closely related constraints. The consultant works on problems 

owned by someone else. In other words, the statistician is in the position of having to satisfy 

"clients". This brings additional constraints which run deeper than time-and-materials constraints. 

Major decisions are made by, or must be cleared with, the client. The problem temtory tends to 

be mapped out and even ring-fenced by the client. The client is often the chief source of context 

information so the statistician is not only constrained by the quality of communication and the 

extent of the client's knowledge, but will also tend to take on board the client's preconceptions. As 

the client is the final arbiter, the statistician is constrained by what the client can understand and 

accept. This can be strongly influenced by a number of what might be described as psychological 
factors. Statisticians have to gradually build up the client's trust in their judgement and abilities. An 

important consideration in "building trust" is not taking clients too far from territory in which they 

feel secure. An important element in client security is, in the words of colleague Chris Triggs, "what 

has been done in the field before". We call this thefirst-in-the-field effect. Early work in a field tends 

to take on an authority of its own whether or not it is warranted. It can influence every decision in 

the investigative process, right through to presentation. A related psychology of measurement effect 



concerns the sanctity of the measured variable. To many clients, the way in which a variable has been 
measured takes on a meaningfulness and inviolability that a statistician might disregard, given the 
arbitrary elements in the initial choice of the variable. (This is not universal. Some client groups such 

as engineers are very sophisticated in this area.) The use of transformations in analysis is an area in 
which these issues come into sharp focus. Pfannkuch & Wild (1998) give a much more detailed and 
wide-ranging discussion, derived from the statisticians' interviews, of the realities of working with 

clients. 

Modelling 

Constructing models and using them to understand and predict the behaviour of aspects of the world 
that concern us seems to be a completely general way of thinking. All models are oversimplifications 
of reality in which information is necessarily discarded. We hope that we have caught the essential 
features of a situation and the loss of information does not invalidate our conclusions. Fig. 3 
illustrates the way in which we learn about the context reality as a statistical investigation proceeds. 
As our initial quotation from David Bartholomew makes clear, "understanding" builds up in mental 
models of the context reality. These models are informed by information from the context reality, 
e.g. incorporating "expert knowledge". In an ideal world, we would be continually checking the 
adequacy of the mapping between model and reality by "interrogating" the context reality. Some 
of the information we seek and get from the context reality is statistical data. We build statistical 
models to gain insights from this information ("interpret") which feed back into the mental model. 
"Statistical models" here is more general than something like logistic regression. It refers to all of 
our statistical conceptions of the problem that influence how we collect data about the system and 

analyse it. Fig. 3 also incorporates the role of statistical knowledge and experience. Most obviously, 
it is a major determinant of the statistical conceptions we form in order to obtain and analyse data. 
Additionally, depending on the problem and the education and experience of the thinker, statistical 
elements can also be part of the way we think about the world and thus be integral parts of our mental 
models of the context reality. 

INFORM --.-- A 
- - .P 

U X I I - a c t  

Elements 
Statistical 

ENTAL 

( MODELS ) 
rogater ' of the data 1 

Interrogate - M 
External Sources 

-?4' m*wet ,nmo,a,C! ,,,, 
, - 

-'"'Omf KNOWLEDGE) 
and Experience 

u 

Figure 3. Lecirning vici  tati is tic^ 



Statistical Thinking in Empirical Enquiry 23 1 

Applying techniques 

A basic problem solving technique in the mathematical sciences is to find a way of mapping a 

new problem onto a problem that has already been solved so that the previously devised solution 

can be applied or adapted. The whole discipline of statistics is itself a manifestation of this strategy. 

Statistical theory makes the mapping process efficient by creating problem archetypes and linking 

them to methods of solution. To use statistics, we first recognise elements of our context that can 

be usefully mapped onto a model (a process of abstraction from the particular to the generic), 

operate within that model, and then we map the results back to context (from the generic to the 

particular). (Additionally, applied statisticians are always borrowing problem-solving ideas from 

previous experience with other problems and other data sets.) 

Implementation of the problem-archetype strategy, and indeed the practical application of any 

technique, algorithm or concept, involves the three steps shown in Fig. 4. Instruction tends to focus 

on step 2, mechanical application. However, steps 1 (recognition) and 3 (interpretation in context) 

are: first, vital to step 2 having any utility, and second, inordinately more difficult. This is particularly 

true for the recognition step. (The project students needed to make constant external checks with 

their supervisor about whether they were on the right track.) One can deal with the mechanics of 

procedures by simply talking about them, establishing them with a few exercises and then moving 

on. Synthesis, insight, critical thinking and interpretation happen in the realm of the particular and 

require exposure to large numbers of disparate situations (cf. Wild, 1994). 

= 
Interpret Recognise 

result applicability 

method 

Figure 4. Lising (my technique 

It is characteristic of statistics that we apply relatively sophisticated statistical models to the 

analysis of data and experimental design. Of all our statisticians, however, only the one operating 

in quality improvement seemed to use tools (e.g. cause-and-effect diagrams and process-mapping 

techniques) to analyse the nature of the problem itself. For the others, it seemed to be a process of 

imaginative construction of a mental model of the system, without discernible organisation. (The type 

of thinking "seeking explanations" has not been discussed in this section, but will be an important 

theme in Section 3.) 

2.3 Dimension Three: The Interrogative Cycle 

The Interrogative Cycle illustrated in Fig. l(c) is a generic thinking process in constant use in 

statistical problem solving. From a detailed analysis of the project-students' and students' transcripts, 

it appears that the thinker is always in one of the interrogative states while problem solving. The 

cycle applies at macro levels, but also at very detailed levels of thinking because the interrogative 

cycle is recursive. Subcycles are initiated within major cycles, e.g. the "checking" step of any cycle 

can initiate a full interrogative subcycle. The ordered depiction on a wheel is an idealisation of 
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what perhaps should happen. In reality steps are often missed. We discuss the Interrogative Cycle as 

we observed it, being applied to statistical enquiry and statistical critique. The "thinker" is anyone 

involved in these activities. We now explore the components in more detail. 

Generate: By this we mean imagining and brainstorming to generate possibilities, as an individual or 

in a group. We might be applying this to a search for possible causes, explanations and mechanisms, 

to the ways parts of a system might interrelate and to other building blocks of mental and statistical 

models. We might be applying it to the types of information we need to seek out to fill an information 

gap or to check out an idea, or to plan an approach to a problem or subproblem. The generation 

of possibilities may be from the context, the data or statistical knowledge and apply to the present 

problem, or may be registered for future investigation (hypothesis generation). 

Seek: Generation tends to be followed by a seeking or recalling of information. This may be 

internal or external. For internal seeking, we observe people thinking "I know something about this" 

and digging in their memories for the relevant knowledge. External seeking consists of obtaining 

information and ideas from sources outside the individual or team. Working statisticians talk to other 

people about their problems--clients, colleagues, context-matter experts, people "working in the 

system". Seelung includes reading relevant literature. At the macro level it includes the collecting of 

statistical data, while at a more detailed level it includes querying the data in hand. 

Interpret: By this we mean taking and processing the results of our seeking. 

Read/see/hear + Translate + Internally summarise + Compare + Connect 

This process applies to all forms of information including graphs, summaries and other products of 

statistical analysis. "Connect", the endpoint of "interpret" refers the interconnecting of the new ideas 

and information with our existing mental models and enlarging our mental models to encompass 

these interrelationships. Some of the problems observed in student thinking involved making one 

connection and then rushing to "judge" rather than trying to make multiple connections or going 

through the criticism phase. 

Criticise: The criticism phase applied to incoming information and ideas involves checking for 

internal consistency and against reference points. We ask, "Is this right?"'Does this make sense?" 

"Does this accord with what else I or others know?" We check against internal reference points- 

arguing with ourselves, weighing up against our context knowledge, against our statistical knowledge, 

against the constraints we are working under, and we anticipate problems that are consequences of 

particular choices. We may also check against external reference points such as: other people (i.e. talk 

to clients, colleagues, experts, "workers in the system"); available literature and other data sources 

(e.g. historical data). 

We can similarly try to take a mental step back and monitor our own thinking. Educational 

theorists talk about metacognition, of recognising and regulating one's normal modes of thought 

(see Shaughnessy, 1992). Reference points to check against here include the following: (1) The 

purpose of the thinking: for example, "Does this address the question the client wants answered?", 

or some sort of agreed objectives. (2) Belief systems: "Am I being unduly guided by unwarranted 

preconceptions-my own, my client's, or my community's?" Pfannkuch & Wild (1998) have some 

good cautionary tales from the experiences of our statisticians. (3) Emotional responses: One of our 

project students was worried about how the company's treatment of her seemed to be influencing the 

way she was approaching the problem and viewing the data. 

Judge: This is the decision endpoint of criticism. What we keep, what we discard or ignore, what 
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we continue to tentatively entertain, what we now believe. We apply judgement to such things as: 
the reliability of information; the usefulness of ideas; the practicality of plans; the "rightness" of 
encapsulation; conformance with both context-matter and statistical understanding; the relative plau- 

sibility of competing explanations; the most likely of a set of possible scenarios; the need for more 
research; and the many other decisions involved in building and reasoning from models. 

The result of engaging in the interrogative process is a distilbg and encapsulating of both 
ideas and information. Internal interrogative cycles help us extract essence from inputs, discarding 
distractions and detail along the way (Fig. 5). 

IDEAS INFORMATION 

- - - _  fS _ - -  
DISTIL 

,& D8mD, 

Figure 5. Distillation and encapsulation 

2.4 Dimension Four: Dispositions 

In this subsection, we discuss personal qualities categorised in Fig. l(d) which affect, or even 
initiate, entry into a thinking mode. The nature of these dispositions emerged from the statisticians' 
interviews and we could subsequently recognise them at work in the students. We think these el- 
ements are generic, but again we discuss them as we observed them-in the context of statistical 
problem solving. 

Curiosity and Awareness: Decoveries are triggered by someone noticing something and reacting to 
internal questions like "Why?', or "How did that happen?", or "Is this something that happens more 

generally?', or "How can I exploit this?" Being observant (aware) and curious are the well-springs 
of the question generation process that all innovative learning results from. Wild (1994) formed 
the slogan "Questions are more important than answers" to emphasise this point. Statistician Peter 
Mullins stressed the importance of "noticing variation and wondering why" for generating ideas 
for improving processes and service provision. We hazard that this very basic element of statistical 
thinking is actually at the root of most scientific research. "Noticing and asking why" is also critical 
for successful data exploration and analysis. 

This brings us to engagement. When the authors become intensely interested in a problem or 
area, a heightened sensitivity and awareness develops towards information on the peripheries of our 

experience that might be related to the problem. We suggest that this experience is fairly general. 
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People are most observant in those areas that they find most interesting. Engagement intensifies 

each of the "dispositional" elements curiosity, awareness, imagination and perseverance. How do 

we become engaged? Spontaneous interest is innate. Background knowledge helps-it is hard to be 

interested in something one knows nothing about. Being paid to do a job helps, as does the problem 

being important to people we care about. This may be our main difficulty in getting statistics students 

to think. They simply do not find the problems they are asked to think about interesting enough to 

be really engaged by them. We observed the effects on performance of engagement with some tasks 

and not others in the statistics students. 

Imagination: It is hard to overemphasise the importance of imagination to statistical thinlung. 

This is somewhat ironic given popular stereotypes of statisticians. The formation of mental models 

that grasp the essential dynamics of a problem is a deeply imaginative process, as is viewing a situa- 

tion from different perspectives, and generating possible explanations or confounding explanations 

for phenomena and features of data. 

Scepticism: By scepticism, we mean a tendency to be constantly on the lookout for logical and 

factual flaws when receiving new ideas and information. It is a quality all our statisticians both 

possess and value. Some writers refer to this as "adopting a critical attitude". Gal et al. (1995) 

and Pfannkuch (1996) discussed critical thinking in the interpretation of statistically based reports 

and media articles. Scepticism here was basically targeted towards, "Are the conclusions reached 

justified?" There may be worries about the motivation, predispositions and objectiveness of the 

writer which would effect the level of trust in anything that had been done. Experienced statisticians 

are likely to evoke automatically technical "worry questions" concerning the appropriateness of the 

measurements taken, the appropriateness of the study design, the quality of the data, the suitability 

of the method of analysis, and whether the conclusions are really supported by the data. Postulated 

explanations create worries about whether this really is the only plausible explanation. 

Another aspect involves a sense of number and scepticism. A precursor step towards "Is this 

information/conclusion justified?" is "Is this information/conclusion even credible?" One of our 

statisticians told the simple story of reported attendance rates at a free outdoor concert in Auckland. 

If the figures were correct, that would mean that one in every three Aucklanders, one in nine New 

Zealanders, would have needed to have attended and that was, frankly, incredible. The information is 

discounted at this first hurdle. However it should be noted that one is much less inclined to be scepti- 

cal when conclusions fit one's own preconceptions. A conscious effort may be required to counter this. 

Being logical: The ability to detect when one idea follows from another and when it does not, 

and to construct a logical argument is clearly important to all thinking. Synthesis of new information 

with existing knowledge is largely a matter of seeing implications. Logical reasoning is the only sure 

way to arrive at valid conclusions. To be useful, scepticism must be supported by an ability to reason 

from assumptions or information to implications that can be checked against data. 

A propensity to seek deeper meaning means not simply taking things at face value and being 

prepared to dig a little deeper. Of the other "dispositions", openness helps us to register and consider 

new ideas and information that conflict with our own assumptions andperseverance is self evident. 

Can "dispositions" be taught? 

Schoenfeld (1983) analysed the mathematical problem solving experience within individuals in 

terms of a "manager" and an "implementer" working in tandem. The manager continually asks 

questions of a strategic and tactical nature deciding at branch points such things as which perspective 

to adopt and which direction to take or abandon. We have described the characteristics above as 

"dispositions". They tend to initiate manager functions. We first thought of the dispositions as innate 
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characteristics of the thinker but had to modify this with the idea of "engagement". A person's 

"dispositions" are problem dependent-they change according to the degree to which the person is 

engaged by the problem. One of our statisticians was adamant that some people are sceptical, others 

are credulous, and there is little one can do about it. The authors are less pessimistic. It seems to us 

that credulousness in a particular area is a result of ignorance. As you gain experience and see ways 

in which certain types of information can be unsoundly based and turn out to be false, you become 

more sceptical. Moreover, all we want in operational terms from scepticism is a prompting to raise 

certain types of "worry" question [cf. Gal et al.'s (1995)l concerning the reliability of information, 

which can be taught (see Section 4). 

3 Variation, Randomness and Statistical Models 

3.1 Variation as the Starting Point 

The centrepiece of the quality and ASA definitions of statistical thinking is "variation" or "vari- 

ability". Any serious discussion of statistical thinking must examine the role of "variation". The 

"variation" terminology and message seem to have arisen in one small area of statistical application, 

namely that of quality, and their penetration into other areas would appear to be slight. If "variation" 

(as a major source of uncerainty) is indeed to be the standard about which the statistical troops are 

to rally, we need to arrive at a common conception of statistics in terms of "variation". This section 

attempts such a conception. Moreover, we are striving for a view of statistics "from the outside". 

The first three "variation" messages are: variation is omnipresent; variation can have serious 

practical consequences; and statistics give us a means of understanding a variation-beset world. 

Subsequent messages concern how statistics goes about doing that. 

Omnipresence: Variation is an observable reality. It is present everywhere and in everything. 

Variability affects all aspects of life and everything we observe. No two manufactured items are 

identical, no two organisms are identical or react in identical ways. In fact, individual organisms are 

actually systems in constant flux. The aforementioned refers only to real variation inherent in the 

system. Fig. 6 depicts how, when we collect data from a system, this real variation is supplemented 

by variation added in various ways by the data collection process. 

Figure 6. Sourcr.~ c~f vclrrurion l i t  durcl 

Practical impact: Having established that variation is everywhere, we have then to demonstrate 

the important practical impacts of this variation on peoples' lives and the way they do business. It 

is variation that makes the results of actions unpredictable, that makes questions of cause and effect 

difficult to resolve, that makes it hard to uncover mechanisms. Variation is the reason why people 
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have had to develop sophisticated statistical methods to filter out any messages in data from the 

surrounding noise. 

3.2 Predict, Explain and Control 

Fig. 7 categorises rational responses to variation in a system in the world of action. This is idealistic. 

The way people actually do react to variation can be quite another story! (See Joiner, 1994, Chapter 

10). 

[practical Responses to Variation 

Anticipate Change system/ 
Design systems1 process to increase 

processes/products "desirable" outcomes 
to be insensitive to 

Figure 7. 

First, we can pretend that the variation does not exist, e.g. behave as though every object or 

organism is the same or differs in some detcrministically known way. In some circumstances this 

works admirably. If it did not we would have to write off all of applied mathematics and every field 

it fertilises. Second, we can investigate the existing pattern of variation and come up with ways of 

working around it as in our system of clothing and shoe sizes. Variation is allowed for at the design 

stage in quality management approaches to manufacturing where one wishes to design a product that 

is "rugged" or "robust" to the variability of uses to which it will be put and conditions to which it 

will be subjected. Third, we can try to change the pattern of variation to something inore desirable, 

e.g. to increase average crop yield or reduce a death rate. We do this by isolating manipulable causes, 

or by applying external treatments. The former approach is often used in quality improvement or in 

public health, the latter is frequently used in agriculture or in medical research aimed at the treatment 

of individual patients. 

Statisticians model variation for the purposes of prediction, explanation, or control. Control is 

changing the pattern of variation to something more desirable. Prediction is the crucial informational 

input to "Allow for" in Fig. 7. Explanation, gaining some level of understanding of why different 

units respond differently, improves our ability to make good predictions ,and it is necessary for 

control. Causal and mechanistic explanation is the goal of basic (as opposed to applied) science. As 

soon as we ask "Why?", we are looking for causes. While on the one hand variation may obscure, it 

is the uncontrolled variation in a system that typically enables us to uncover causes. We do this by 

looking for patterns in the variation. Fig. 8 picks up this idea in a way that relates back to the goals 

in Fig. 7. 

Statisticians look for sources of variability by looking for patterns and relationships between 

variables ("regularities"). If none are found, the best one can do is estimate the extent of variability 
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and work around it. Regularities may or may not correspond to causes. In terms of solving practical 

problems, causes that cannot be manipulated are operationally equivalent to any other observed 

regularity, although they will give us more confidence in our predictions. The presence of regularities 

enables us to come up with predictions and measures of variability that are more locally relevant, 

e.g. more relevant to an individual patient. Manipulable causes open the option of control. 

I Look for regularities I - 
Cause? 
m 

No 

Change system React to existing variability React to existing variability 
Improve pattern Local estimates Global estimates 

of response Improved prediction Bad prediction 
for individuals for individuals 

Figure 8. 

3.3 The Quest for Causes 

In our research, two groups of first-year students were given media clippings and similar items 

containing statistical information, and then interviewed individually about their responses. Initially, 

our approach to the student transcripts was that of teachers marking term papers, of looking for 

mistakes and gaps, for what the students had "done wrong". One item was based on Tversky & 

Gilovich (1989). The streaks that sports fans see in sports data, and then proffer all sorts of causal 

explanations for (e.g. falters under pressure), can often be explained entirely in terms of a random, 

e.g. binomial, model (see also Moore; 1990; Falk & Konold, 1992; Biehler, 1994 presents other 

perspectives). The item run concerned a basketball player with a 70% success rate of free throws 

succeeding with only 2 o ~ j  of 5 throws. Under a binomial model, this is not a particularly unusual 

event. We think of this as "the statistics teachers' point". Our students proffered all sorts of causal 

explanations. As statistics teachers, we thought they had missed the point. Mark that one wrong! 

For the next group, we loaded the item entirely in favour of the statistics teacher's point: "The team 

manager attributed her performance to normal variation, that she scored 70% in the long run and 

that 70% was only an average so that you had to expect some low scores now and again." Even 

then we saw the tip of the deterministic-causal-thinking iceberg. One student said, "the manager's 

comments are OK if that is the way he wants to look at the score and not on 'we want to win' " and 

then he gave possible causes. 

This comment eventually overturned our attitude. The student was right. There is a real problem 

underlying this item. Coaches and managers of sports teams are seeking to learn from their observa- 

tions so that they can work on improving player skills and strategy, and better deploy their pool of 

available players. A random model is of no help at all in this regard. The statistics teacher's concerns 
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do not replace the need to search for causes and predictors of good and bad performance. It is that 

search that is of primary importance. 

The real problem underlying the statistical problem very often involves searching for and isolating 

causes of some response. We have run a variety of stories including medical stories and prison 

suicides. Whenever students have contextual knowledge about a situation, and their experience has 

given them some notion of the nature of the real problem, they will come up with a range of possible 

causal explanations with little or no prompting. This appears to be a well developed impulse that has 

not been explicitly taught. It is a first and direct step towards solving the primary problem. The real 

purpose of many of the new statistical ideas we teach is simply to moderate the search for causes by 

preventing a premature jumping to conclusions-"Hey, not so fast . . . ." This role is secondary and 

subtle. It is probably not surprising then, that even after some statistical instruction, the randomness 

ideas are much weaker in students than the impulse to postulate causes. Probabilistic thinking is not 

so much an alternative to deterministic thinking, as some statistics educators (Shaughnessy, 1992) 

and statisticians (Hoerl et al., 1997) have suggested, but something to be grafted on top of the natural 

thinking modes that directly address the primary problem. As an interesting aside, if an explanation 

or cause has already been suggested to students for a particular set of data or if the data has been 

presented stratified in some particular way, it can take a great deal of prompting for the student to 

go beyond the explanation given, to think that there may be other explanations and start coming up 

with ideas. This latter is a quite different incarnation of "Hey, not so fast, . . . ." 
What does statistics education have to say about causation? By far the loudest message is, "corre- 

lation is not causation". This is the statistician as Cassandra, the harbinger of doom saying "this way 

lies disaster". True, we usually go on to make the important point that the randomised experiment 

is the most convincing way of establishing that a mooted relationship is causal. But, as stressed by 

Holland (1986), Cox (1992) and few others outside of quality and epidemiology, this greatly under- 

sells the true importance of the search for causes. Solving most practical problems involves finding 

and calibrating change agents. Statistics education should really be telling students something every 

scientist knows, "The quest for causes is the most important game in town". It should be saying, 

"Here is how statistics helps you in that quest. Here are some general strategies and some pitfalls 

to beware of along the way . . . . . . ". It should not just be preventing people from jumping to false 

conclusions but also be guiding them towards valid, useable conclusions-replacing Cassandra by a 

favourite literary detective. 

Thinking about causes 

It is ironic that the uncontrolled variability in a system provides us with the best opportunities to do 

the detective work that uncovers causes. By checking for relationships between upstream variables 

and downstream responses, we can identify possible causal factors. Observation precedes experi- 

mentation. All ideas for possible causal relationships originate in observation, whether anecdotal 

or from formal studies. And as we continually stress, randomised experiments provide the most 

convincing way of confirming or refuting the causal nature of an observed relationship. 

Conducting any sort of study to detect causes and estimate their effects proceeds from ideas about 

profitable places to look, ideas which draw almost exclusively on context-matter knowledge and 

intuition. Ideas about possible causes and other factors that might be important predictors of the 

behaviour of the response are translated into a set of variables to measure (transnumeration) and data 

is collected to facilitate investigation of relationships between measured variables and the responses 

of interest. The primary tools of analysis in the search for causes are models of the regression type, i.e. 
models for exploring how Y-behaviour changes with changes in X-behaviour. (The humble scatter 

plot falls into this class.) 

Cox (1992) distinguishes between: response variables (those whose behaviour we want to find 
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causal explanations for); intermediate response variables (which measure intermediate effects that 

happen along the way from initial state to response state) and explanatory variables (those we want to 

use to explain or predict the behaviour of the response). Explanatory variables are further categorised 

into possibly causal variables, intrinsic properties of entities under study, and non-specific (e.g., 

different countries). Intrinsic variables are those whose values cannot be manipulated. Intrinsic 

variables are often included to improve our ability to detect relationships, improve the precision of 

estimation of effects and to explore how a cause may act differently for different types of entity 

(interactions). Detection of strong relationships between non-specific variables and a response lead 

to a search for new explanatory variables, variables associated with the non-specific variable which 

could conceivably explain the response. For example, when disease rates differ greatly between 

countries, we start looking among factors that differ between the countries as possible causes. We 

note that the above distinctions between variables are much more than distinctions for analysis. As a 

set they constitute a general thinking tool which adds clarity to the way in which the context-matter 

problem is conceived. They are an example of the way in which statistical knowledge or training 

can feed into a core mental model of the context reality that is understandable by statisticians and 

non-statisticians alike, the "inform" arrow linking statistical knowledge and mental model in Fig. 3. 

Some consequences of complexity 

Most real systems are enormously complex with variation in innumerable components, each of 

which could contribute to the response of interest. We are incapable of handling such complexity and 

need strategies to "sift" the large numbers of possibilities for a much smaller number of promising 

leads. The quality control distinction between special cause and common cause variation can be 

seen in this light. It gives a means of distinguishing situations (special-cause variation) in which 

the seemingly instinctive human reaction of looking around for something unusual occurring in the 

system just prior to the problem event is likely to be a profitable strategy for locating the cause, from 

situations (common-cause variation) in which this strategy is unlikely to be profitable and may even 

be harmful. 

The main statistical "siftingv-strategy is to restrict attention to variables which have strong asso- 

ciations with the response of interest. We have no hope of identifying a cause and characterising its 

effects if it acts in complexly different ways for different individuals or at different times. The only 

causes that we can hope to find are those that act in a reasonably uniform or regular way. Moreover, 

we will only detect the existence of a cause if we think of some way of looking at the situation 

that will reveal that regularity (transnumeration). There must be sufficient "natural variability" in 

a cause-variable in the system for the effect of this variability on the response to be seen. Causal 

variables that we miss using the above strategy are unlikely to be good agents for making substantial 

changes unless settings are used that lie far beyond the range of variability seen in that variable in 

the data. 

From association to causation 

It is at this point that Cassandra makes her entrance. And the world really does need her warnings. 

It is clear that people do jump far too quickly to causal conclusions. But "correlation is not causation" 

is simply a "Hey, not so fast" warning and we need to supply ways of moving on from there. The 

search process has not given us a set of causes. It has only given us a set of promising contenders 

for causal status. Our main worry at this point stems from the fact that we have not considered the 

universe of relevant variables, but just that subset that happened to come to mind. We are worried 

that other unconsidered factors, those sinister lurking variables of textbook fame, may be producing 

the relationship; we are seeing. Thus, we challenge the causal assumption, whether our own or 
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somebody else's. We rack our brains for other possible explanations and for strategies for testing 

these explanations. This behaviour has to be learned. It comes naturally to very few students. The 

goal of the scientist is to reach a position at which there are no other plausible explanations at the 

current level of understanding. To do this, we need strategies which use observation, experimentation 

and analysis to discount all other plausible alternatives. 

Where experimentation is not possible and one must make decisions based upon using observa- 

tional studies, there is a range of ideas about what strengthens the impression that a causal contender 

is in fact a cause. The criteria of A.B. Hill (1965, see also Gail, 1996) are a good starting point. In 

epidemiology and quality, the finding of causes with a view to improving systems is not a philosoph- 

ical problem but a pressing practical imperative. Substantial literatures have grown up in these fields. 

Cox (1992, 1993) and Holland (1986) also view questions of causation with practical applications 

clearly in mind. In view of the fundamental importance of the search for causes, there is a real need 

to synthesise this material into accounts which are more accessible for practising investigators and 

for teachers. 

Levels of "causal proof" 

Decisions to take action tend to be made on the basis of a "best guess" in the light of the 

available information. They seldom wait for incontrovertible evidence of causality. The results can 

be spectacularly good. Take cot death in New Zealand. Research showed strong relationships between 

cot-death rates and certain behaviours, e.g. the way the baby was put down to sleep. There was no 

incontrovertible proof that the behaviours caused cot death but the idea was sufficiently plausible to 

mount publicity campaigns and the advice given to new mothers by doctors. Cot death rates halved. 

There is a level of assurance at which decision makers are prepared to take what they consider to be 

a small chance and take action. There are many factors affecting this level of assurance. The degree 

of causal proof it takes will probably depend on many factors including the difficulty of making 

(and reversing) changes to the system, the consequences of making a wrong call, and the number of 

people who must be convinced before action is taken. We are all brought up on the smoking-cancer 

debate as the primary example of the difficulties in establishing causality. In that debate, there were 

(and are) entrenched and powerful vested interests with a high political profile. Not surprisingly, the 

level of proof required in such circumstances is extremely high. An industrial production manager 

would have made the call long before, with the greater attendant risk of getting it wrong. 

3.4 Modelling Variation 

A number of statisticians have told us that the biggest contribution of statistics is the isolation 

and modelling of "signal" in the presence of "noise". The base problem with statistical data, is how 

to make some sort of sense of information that is, if one considers the details, of mind-boggling 

complexity. The main statistical approach to solving this problem begins by trying to find patterns 

in that data. Context knowledge may give us some ideas about where to look and what to expect. 

Statistical methodology gives us tools to use in the search. Common experience tells us that studies 

conducted under very similar conditions always give results which are different in detail, if not in 

broad thrust-patterns seen in data from one study are never repeated identically in another. The 

base problem, then, is to come up with strategies for separating phenomena which are "likely" 

to persist more generally from those that are purely local, to sift the enduring from the ephemeral. 

Patterns which persist provide the basis for forecasting, control and insight. Statisticians have evolved 

particular sets of strategies for "solving" this problem-strategies based, in the main, on probabilistic 

modelling. We often say that an important function of probability models and statistical inference is 

to counteract a human tendency to "see" patterns where none exist. As statistician (and also zoologist) 
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Brian McArdle put it so vividly in a personal interview, "The human being is hard-wired to see a 

pattern even ifit isn't there. It's a survivor trait. It lets us see the tiger in the reeds. And the downside 

of that is that our children see tigers in the shadows on the wall." It is not entirely true that no patterns 

appear in purely random phenomena. These patterns are real to the brain in the sense that we can 

recognise features that would help us reproduce them. However, such patterns are (i) ephemeral, 

and (ii) tell us nothing useful about the problem under study. In other words, they are meaningless. 

Part of our reasoning from random models is to say that we will not classify any data-behaviour 

as "enduring" if it closely resembles something that would happen reasonably frequently under a 

purely random model. 

The distinction between "explained" and "unexplained" variation is important here. We generally 

try to find meaning in explained variation, the patterns which we have not discounted as ephemeral, 

the "signal". Unexplained variation, or "noise", is what is left over once we have "removed all the 

patterns. It is thus, by definition, variation in which we can find no patterns. We model unexplained 

variation as being generated by a (structureless) random process. We have no idea whether this vari- 

ation really is random; this is not something that bothers us. If random sampling really has occurred, 

there is an element of randomness in the noise. However, measurement error and components of 

the variation in the original process typically contribute to the unexplained variation and there is no 

way of knowing whether these behave randomly or not. In fact, randomness is just a set of ideas, an 

abstract model, a human invention which we use to model variation in which we can see no pattern. 

The very physical models we use to illustrate randomness are, with sufficient knowledge, actually 

deterministic (see Stewart, 1989, Chapter 14). It is all part of an attempt to deal with complexity that 

is otherwise overwhelming, and it tends to be a model-element of last resort. The level at which we 

impose randomness in a model is the level at which we give up on the ability to ask certain types of 

question, questions related to meaning and causation. 

Language such as "real or random" or referring to the possibility that "the observed difference 

is due to chance" actively obscure the distinction between the underlying problem and a statistical 

approach to its solution. In talking about a project he did on mangroves one student said "My 

teacher explained it [t-test] to me that the results I got were due to chance. I still don't think that 

statement makes any sense. I can understand what chance is when you are rolling a dice. I don't 

really understand what chance is when you relate it to biological data. Everything you couldpossibly 

measure is going to be due to some environmental impact." 

Some writers in quality have taken to saying, "all variation is caused"; e.g. Joiner & Gaudard 

(1990), Pyzdek (1990). The latter repudiates the "outdated belief that chance causes should be left to 

chance". These claims seem to be predominantly motivated by concerns about human psychology. 

Tomorrow, with new information, insight or technology, we may be able to find patterns in what today 

looks random, to trace causes from those patterns, and to improve the system (Pyzdek gives examples 

where this has occurred). The propensity to do so may well be lost if the idea is internalised that this 

variation is "just random". In commenting on the difficulties people have with coming to grips with 

statistics, Shaughnessy (1992) wrote "the real world for many people is a world of deterministic 

causes . . . there is no such thing as variability for them because they do not believe in random events 

or chance." We do not need to ask them to. Variability is a demonstrable reality. Randomness need 

not relate to any belief system about the true underlying nature of reality. It is simply a response to 

complexity that otherwise overwhelms us. The unexplained variation may well be the result of "a 

multiplicity of causes", to use the phrase of Falk & Konold (1992). Few would dispute that m&h 

unexplained variability is of this type. But, the statistical response is that if we can see no structure 

there, we will model it as having been generated randomly. 

From these models, we make inferences. We assume that the data has been randomly generated 

according to the model and use probability as the link between population/process and data. This is 

the very heart of the statistics we teach. Our models, including their random components, stand or 
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fall on the practical usefulness of the answers they produce. There are some clear success stories, 

e.g. the insurance industry. To use models with random components, we have to be able to: first, 

recognise that such models provide a useful framework for considering the problem; second, build 

and fit an appropriate model; and third, deduce implications from that model. The third step involves 

some understanding of how random models behave. There is an emerging literature on the difficulties 

in gaining that understanding; see, for example, Pfannkuch & Brown (1996), Garfield & Ahlgren 

(1988), Konold (1994). Our inferential paradigms are also subtle and difficult to grasp, but we will 

not discuss that here (see Mallows 1998, Section 7; and Cox, 1997, Section 5). 

One of the stories we have been showing students, and our reaction to it, niggled at us for a long 

time. It was a news story about an apparent jump in prison suicides, the sort that leads to accusatory 

finger pointing and the pushing of different causal explanations by different sectional interests. We 

automatically did a quick check against Poisson variation. The figure was within reasonable limits. 

We sensed a tendency, as a consequence of this calculation, not just to disregard the hype, but to 

disregard the problem. However, prison suicides are an important problem and people should be 

looking for causes. It took a long time to realise that what the lack of significance really tells us is 

to adopt the common-cause-variation strategy of in-depth study rather than the (popular) special- 

cause-variation strategy of looking among recent changes for a cause. 

Relating the "variation " words 

We conclude this section by putting some summarising organisation into the "variation" termi- 

nology. Special-cause versus common-cause variation is a distinction which is useful when looking 

for causes, whereas explained versus unexplained variation is a distinction which is useful when 

exploring data and building a model for them. An understanding of variation in data could be built 

on these suppositions: (1) variation is an observable reality; (2) some variation can be explained; (3) 

other variation cannot be explained on current knowledge; (4) random variation is the way in which 

statisticians model unexplained variation; (5) this unexplained variation may in part or in whole be 

produced by the process of observation through random sampling; (6) randomness is a convenient 

human construct which is used to deal with variation in which patterns cannot be detected. 

4 Thinking Tools 

Gal etal. (1995) used the term "worry questions" when discussing the critical appraisal of reports- 

questions to invoke worries about the way information had been obtained and how inferences had 

been drawn from it. Trigger questions (e.g. "Why?" and "How?") are their creative cousins. They 

tend to initiate new thinking in certain directions. We will use the term "trigger question" for both 

roles. Such questions can be very effective. Many times in our interviews when no thinking was 

taking place, some small prompt opened flood gates of thought. 

Experienced statisticians working in a collaborative or consulting environment learn to generate 

trigger questions which elicit pertinent context information, ideas and explanatory inferences from 

clients. The success of the dialogue between statistician and client may depend upon the quality 

of the trigger questions. No one taught our statistical consultants to ask the questions they do. Our 

consultants' statistics education had relied on the process: stimulus + experience + disposition - pertinent trigger questions - gaining critical ideas and knowledge about the context. This 

completely unstructured approach puts an enormous premium on experience. If statistical thinking 

is something that we teach rather than something simply to be absorbed by osmosis, then we have to 

give it structure. Structure can stimulate thinking, prevent crucial areas from being overlooked, and 

provide something to fall back on when you hit a brick wall. 

The idea from the quality armory that we have found most powerful is the simple idea of intercon- 
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nected processes, with associated process diagrams, as a framework for analysing problems. It gives 

a structured way of breaking down activities, or mental processes, into components. It emphasises 

principal steps and their interrelationships and hides detail which can be uncovered subsequently 

when analysed as (sub)processes. Joiner's 7-Step Process (see Joiner 1994) is a thinking tool for 

working through for a quality improvement project. It leads the thinker through the steps of a project 

in time order and, within each step, gives lists of questions to prompt the crucial types of thinking that 

should occur there. The above approach is not new. Polya (1945) used it in How to Solve It, the most 

famous of all works on mathematical problem solving. In the quality arena, we see many serious 

attempts to capture essential elements of expert experience through creating thinking models/tools 

which can be used to approach specific types of problem. Underlying all of the above are two simple 

principles, which we have combined to form systemise what you can, stimulate what you cannot. 

Schoenfeld (1987) distinguishes between a description which characterises a procedure and a 

prescription which characterises a procedure in sufficient detail to serve as a guide for implementing 

the strategy. PPDAC is a high-level description of a systematic approach to investigation. It identifies 

major elements. It can be used as the foundation for something that is much more of a prescription. 

This is a huge undertaking so what is presented here is merely indicative. The principles involved in 

our model fragments (Figs. 9 and 10) are: 

Systemise what you can, stimulate what you cannot. 

Use trigger questions to do the stimulation. 

Work from overviews and zoom in for the next level of detail. 

Keep the number of steps in any view of the process small to emphasise the most important 

relationships. 

At any level, one drills down for more detail by clicking on a node in the process diagram (e.g. 

in an internet-type application). The area we have applied this to (in Figs. 9 and lo), is drilling 

down into the "Plan" node of PPDAC and then further down again into the "Measurement" node 

of the model of "Plan". We stopped at this level of detail and used sets of trigger questions about 

measurement (derived from the interviews) which are very general. Context-matter disciplines have 

built up enormous amounts of expertise about how to measure the things that are of great importance 

for research in their discipline. We have simply pointed to that with our questions. Models targeted at 

a particular application area could build in much more of that local expertise. Still, a general model 

such as ours could be useful for someone doing applied research in a less developed area, and for 

building in statistics students a more holistic feel for statistical investigation and the broad issues 

that need to be addressed. It prepackages some of the "strategic thinking" of breaking major tasks 

down into subtasks. 

An attractive model element that we have not incorporated here, though it might be useful to 

do so, are lists of the tools that are helpful at particular nodes of a process. For examples, see 

Hoerl & Snee (1995). Process analysis tools provide us with a means of building up new bodies 

of "statistical theory" addressing critically important areas of the statistical process that statistics 

teachers are currently rather silent about. The results will be oversimplifications and sometimes gross 

oversimplifications, but then so are all our mathematical models. The theories should give students 

two opportunities to learn about and make sense of the statistical endeavour. First, the theory provides 

a scaffolding to use in forming a picture of some very complex processes. Second, once such a picture 

has been established, a more sophisticated understanding can be gained by considering ways in which 

the models are inadequate. 

We conclude this subsection with a story related to us by some project students in a quality 

improvement course that sheds light on the complementary roles of theory and experience. The 

students first learnt some theory about quality improvement (including the role of statistical tools) 

via lectures and readings and found it all rather abstract and meaningless. On their first practical 
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project they floundered. The theory did not seem to help. But from those experiences the theory 

started to make sense. And by the second project it had started to work for them-its value had 

become obvious. 

how to measure ir 

Plan analysis 
Data Management 

Figure 9. Drrlllng down into the "Plon" node of PPDAC 

5 Discussion 

The ultimate aim of statistical investigation is learning in the context domain of a real problem. 

Learning consists of the construction of mental models of the system under study. Statistics is itself 

a collection of abstract models ("models" is used in a very broad sense) which permit an efficient 

implementation of the use of archetypes as a method of problem solution. One abstracts pertinent 

elements of the problem context that map onto a relevant archetypical problem type, uses what has 

been worked out about solving such problems, and maps the answers back to context domain. There 

is a continual shuttling between the two domains and it is in this shuttling or interplay, that statistical 

thinking takes place-where the statistical rubber meets the real-world road. When it works, we gain 

real traction. Our abstraction processes bring clarity to thinking and efficiency to problem solving. 

However, when we use archetypes to solve problems, an enormous amount rides on the ability to do 

the mappings. And this is where the wheels so often fall off. Statistics education spends little time 

on developing the mappings. We must take more cognisance of the fact that the getting from the 

first stirrings of a practical problem to something like y = p T x  + E ,  the point at which the theory 

of analysis typically kicks in, does not involve driving blithely across some small crack in the road, 

but rather it involves the perilous crossing of a yawning chasm down which countless investigations 

and analyses plummet to be lost without trace. 

For successful problem solving, statistical thinking is not a separable entity. There is only holistic 

thinking that can and should be informed by statistical elements. 'The more relevant knowledge one 
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1 MEASUREMENT I 
(Including Classification) 

Identify Key Characteristics 

What features of the system are you interested in? 
For each feature: 

What ideas about this feature are you trying to capture? 
Can you substitute something more specific? 
How well does this capture the idea? 
Is the idea you wish to capture by measurement inherently multidimensional 
in important ways or should a single measurement do? 

Do these "key characteristics" adequately capture the essence of the real system? 

Decide how to measure them 

Experience 
in the field 

Is there a generally accepted way of measuring this charactersitic in the field? 
Is this currently accepted in the field as the best way to measure this entity? 
If there is an accepted method and you want to use something else: 

What is your justification? 
Have others tried to measure this? How did they do it? 

Are there known problems with their measure? 

A fall-back Can I draw on the experience of others in measuring similar charactersitics? 

Anticipate problems 

Validity & To what extent does this measurement really capture the characteristic I want 
reliability to measure? 

What are the practical implications of the extent to which it fails? 
Will repeat measurements on the same units give very similar results? 
Will different people making such measurements obtain very similar results? 
Will different measuring instruments give very similar results? 
If not, what impact will this have on the usefulness of any conclusions? 

Analysis Will I be able to analyse data containing measurements like this? 
Will this measure make the analysis unnecessarily difficult? 
Will another choice confer greater statistical efficiency? 

"Audience" Will others be able to understand this measure? 
reaction Will the audience for the results accept that this is a sensible way to measure this? 

Will I be able to understand the results of an analysis based on these measures? 
Will I be able to communicate the results of an analysis based on these measures? 

Practical Can I implement these measures in practice on the scale needed for the study? 
implement- Is the equipment/personnel required for this measure available? affordable? 

ation Is the measure unacceptably or unnecessarily difficult? expensive? invasive? 
Are there cheaper/easier/less invasive alternatives that will serve almost as well? 

People: Do these measures take account of the psychological, cultural and perceptual 
differences of the people to be measured? 

Can I do better? 

Figure 10. Drilling rkown,further into the "Mecisurement" node of  "Plun" 
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has and the better one can connect it, the better one can do. In many research environments, statistical 

thinking is like breathing---everyone does it all the time, seldom being aware that it is happening. 

Statistics, the discipline, should be teaching people to "breathe" more effectively. However, we are 

dealing with complex and sophisticated thinking processes. We cannot expect, and indeed should be 

highly suspicious of, what W. Edwards Deming called "instant pudding solutions". 

In Section 2, we identified several dimensions of the statistical thinking used in empirical enquiry: 

(1) the investigative cycle; (2) types of thinking; (3) the interrogative cycle; and (4) dispositions (see 

Fig. 1). We further discussed factors constraining the effectiveness of the thinking. Much of what 

we have identified relates to general problem solving skills being applied in a statistical context. 

One might think that for such skills a general thinking skills course such as those developed by de 

Bono is all that is needed. According to Resnick (1987), however, there is no empirical evidence that 

even these general skills are transferred to specific subject areas. She believes (p. 35) that thinking 

processes should be embedded into the discipline itself because, "it provides a natural knowledge 

base and environment in which to practice and develop higher order (thinking) skills as . . . one must 

reason about something . . . (and) . . . each discipline has characteristic ways of reasoning . . . ." To 

carry out this embedding, we need more research into how these broad thinking skills are specifically 

used in statistics. 

Omnipresent variation was presented as providing an important raison d'gtre for statistical thinlung. 

In Section 3, we took the observable reality of variation in the concrete world as a starting point and 

endeavoured to cut through many of the confusions surrounding such abstract notions as "random 

variation" and their application to practical problem solving. 

In Section 4, we discussed some techniques people have used to improve thinking. It seems to 

us that the rest of statistics can only benefit by following the lead of our colleagues in process and 

organisational improvement and develop tools that help us to think about, and to think through, parts 

of the statistical process that we are presently rather silent about. We can develop other forms of 

statistical model, other forms of statistical theory to deal with these areas. We stress that thinking 

tools are not a substitute for experience with investigation and data. Probably their most important 

purpose is to help us understand our experience and extend the range of situations to which we can 

apply it. But they may also re-initiate thinking that has become stalled. 

As for the usefulness of the models presented, we have subsequently used this framework to 

develop judgement criteria to help students interpret statistically based information such as in media 

reports. We can see multiple uses even for a very simple model like the interrogative cycle (Fig. 

l(c)). It could be used: to monitor thinking during problem solving; to help students become aware 

of their own thinking; as a tool for evaluating student thinking; and as a reference point against 

which to check learning opportunities provided to students. Do they, at least collectively, provide 

good opportunities for the students to experience all of these modes?-It turns out that many of the 

tasks we gave students did not! Nor did they measure up in terms of types of thinking. 

Can thinking tools work? The people in process and organisational improvement and Polya and his 

successors in mathematics believe so. Are they panaceas? There is nothing certain or cut-and-dried in 

applied statistics. The real world is a messy, complicated place. We are reminded of David Moore's 

distinction between mathematics and statistics, "Mathematical Theorems are true; statistical methods 

are sometimes useful when used with skill." We cannot expect more from our new tools than from 

our traditional ones. Statistics is not some hiking tent that can be erected in an afternoon. It is an 

enormous edifice. Most of the work in our writing and teaching, however, has gone into constructing 

its upper levels. But, with advancing technology inexorably shifting the balance of human statistical 

effort from processing and computation to thinking, we need to do some emergency work on the 

foundations to ensure that the whole structure stands steadily on the ground. 
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Le present article concerne les processus mentaux impliquts dans la pens& statistique prise dans un sens large, depuis 
la formulation de problemes jusqu'a leur solution. I1 tire ses sources de la litterature sur le sujet ainsi que d'entrevues 
aupres d'ttudiants et de praticiens en statistique, conGues pour identifier leurs processus de raisonnement statistique. De ces 
entrevues, nous avons identifik un cadre conceptuel quadridimensionel applicable B la pens& statistique dans le domaine 
de la recherche empirique. Ce cadre est compost d'un cycle d'investigation, d'un cycle d'interrogation, de types de pens& 
et de dispositions. Nous avons amorct la caracttrisation de ces processus par des modtles pouvant servir de base B la 
crtation d'outils ou cadres intellectuels aidant la rtsolution de problemes. Des outils de ce types pourraient complCmenter les 
modeles mathtmatiques dejB utilises en analyse en plus de couvrir certains aspects de la recherche statistique que les modtles 
mathtmatiques ne peuvent pas satisfaire, particulierement les aspects associts i la synthtse des types contextuel et statistique 
de comprthension. L'tltment central apparaissant dans les dtfinitions de la penste statistique ayant fait l'objet de publication 
est celui de la "variation". Nous discutons aussi le r61e de la variation dans l'approche statistique de probltmes pratiques, 
incluant la recherche de causes. 

Discussion 

T.M.E Smith 

University of Southampton, UK 

The topic of this thoughtful paper is the modes of thinking that underlie efficient empirical 

enquiries. The authors, henceforth WP, title the paper statistical thinking but, in fact, the topic is 

much wider and embraces the thinking and learning processes that form the basis of all scientific 

investigations. If throughout the paper you replace the word statistical by scientific, or more generally 

systematic, then very little would have to be changed. The models represented by Fig. 1-10 remain 

valid and provide an excellent framework for discussing scientific thinking. The only term that is 

missing is creativity, the mode of thinking that leads to the greatest advances in science. But creativity 

is impossible to teach and WP are concerned with processes that can, and should, be taught, and that 

form the basis of all scientific enquiry from the most humdrum to the most creative. 

A key word that is repeated throughout the paper is context. All thinking, including statistical 

thinking, takes place within a context which needs to be understood by all who are conducting 

the enquiry. WP make a strong case for multi-disciplinary teams who challenge assumptions, bring 

different backgrounds to enquiries, and generate the synthesis of ideas that lead to understanding 

and future progress. WP argue that statisticians should frequently be members of these teams, but 

they include examples where conventional statistical methods, as currently taught, do not add much 

value to the enquiry. Td justify team membership, statisticians must be seen to add value that cannot 

be added by scientists from other disciplines. In the examples from both students and consultants 

this is not always the case. In discussing context we learn that "Of all our statisticians, however, only 

the one operating in quality improvement seemed to use tools (e.g. cause and effect diagrams and 

process mapping techniques) to analyse the nature of the problem itself." How many statisticians 

have been taught to use these tools? Later on, in the discussion of causation, we find the statistician as 

Cassandra, the harbinger of doom, warning {hat correlation does not imply causation and that results 

may be meaningless if they could have arisen by chance. Statistical thinking can be very negative at 

times and can stifle imaginative enquiry. Is that really our main contribution? Sometimes yes, since 

there is a danger in jumping too quickly to conclusions in areas such as medicine. But this danger 

may not exist in other areas and statisticians must be aware of the context in which they are operating 



Discussion on the paper by C. J. Wild & M. Pfannkuch 

and modify their approach accordingly. Trying to apply statistical methods uniformly without regard 

to context gives statistics a bad name. But how do you teach context? 

Where does statistical thinking add value? To me the greatest contributions of statistics to scientific 

enquiry have been at the planning stage. Our systematic methods for designing experiments and 

surveys, based on randomisation to avoid biases, have been of major importance. The second great 

contribution is mathematical, it is the application of probability theory to intrinsically random 

processes, such as quantum theory, genetics and natural selection. Applied probability modelling, 

and the related thinlung, have transformed large areas of science and the very way that all of us 

perceive the world. The deterministic models of much of physics are no longer the only alternative 

to religious mysticism. Although statisticians have helped in the development of applied probability 

models the main work has been by mathematicians working either within a science or with scientists. 

Many of the methods of current interest in statistics bear the names of scientists and engineers, 

Gibbs sampling, Kalman filters etc., not of statisticians. The exception again is medicine, where Cox 

models have transformed population epidemiology. 

WP quote many statisticians who claim that variation or variability is the centrepiece of statistics, 

and that thinking about variability is the main message of statistics. This is a grandiose claim 

since the whole of science is concerned with variation. Where there is no variation there is no 

scientific problem. The problem is the nature of that variation. The physical sciences have made 

dramatic advances by modelling deterministic variation, and if statistics is to "give us a means of 

understanding a variation-beset world", as WP would like, then the nature of statistical variation 

needs more careful specification. 

Statistical variation is random variation and it is the nature of the randomness in different situations, 

and the uncertainty that this generates, that needs exploring. Where there is intrinsic randomness 

and a given applied probability models is generally accepted, then likelihoods have real meaning 

and Fisherian or Bayesian methods can be justified. The randomness of measurement processes 

superimposes itself on all investigations, statistical or deterministic. Statisticians have a contribu- 

tion to make in designing and analysing measurement experiments, but most scientists ignore this 

contribution and concentrate either on designing new instruments that give more precise measure- 

ments or on increasing sample sizes. Randomisation in the design of a study induces a probability 

distribution which may be used in the interpretation of results. The alternative, which is to employ 

models that capture the properties of the data and the design, is harder to justify. In what sense is 

there a random process generating the data beyond that of the randomisation? The greatest problems 

arise in observational studies of non-random samples where there is no intrinsic random process 

that generates the data. As WP say "most real systems are enormously complex with variation in 

innumerable components". The scientific strategy is to search for regularities, but these regularities 

may be specific to the context in which the data were generated. For example, in economics the effect 

in the growth period of a cycle may be different from the effect in a downturn. In opinion polling, one 

of the few areas in statistics where the results can be validated, the accuracy of the polls appears to be 

context specific. There are many possible sources of error, of which the non-sampling errors are the 

most important, not the choice of quota or random sampling. In some elections the combined effects 

may be small while in others they all move in the same direction giving wildly inaccurate results, 

as in the UK in 1992. What is required is studies that measure the interactions between the study 

variables and the context variables, followed by methods for forecasting the values of the context 

variables. If the interactions are small then regularities in the study variables are likely to persist, if 

they are not small then the regularities are local and of more limited use. Studies of this type are 

rarely performed due to their cost and complexity and statisticians frequently hide the difficulties by 

fitting a context specific model and then adding an error term which purports to measure unexplained 

heterogeneity. Since this error term varies over individuals they then assert that it can be treated 

as if it were random. This added randomness, which features in so much of statistical modelling, 
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is hard to justify. A common argument is to say that if the individual were drawn at random then 

the error would be random, but this is random sampling error not random process error. It was this 

type of argument that caused problems for WP's students and they were right to be troubled. If as 

statisticians we claim to have "correct" methods of model specification then in many areas we will 

be ignored and our valuable contributions to design and measurement will be lost. In Smith (1997) 

I argue that we must recognise the limitations of statistical thinking and not make grandiose claims 

for the universality of our discipline based on the fact that variation is universal. 

The real challenge of this paper is to teachers. How can the ideas of scientific thinking be 

incorporated into the teaching of statistics? If problems are context specific then would it be better 

to teach statistical thinking to applied scientists, who should be familiar with at least one context, 

than to mathematicians who work in a context free zone? Certainly I find teaching engineers a 

more rewarding experience than teaching mathematicians because they are problem driven. Perhaps 

mathematicians should be forced to study an applied science before they embark on a statistics 

course. 

Additional reference 

Smith, T.M.F. (1997). Social surveys and social science. The Cunudiun Journul of Sfufisfics, 25,1, 2 3 4 .  

Discussion: What Shall We Teach Beginners? 

David S. Moore 

Department of Statistics, Purdue University, West Lafayette, IN, USA 

Wild & Pfannkuch provide much food for thought in their extensive and valuable discussion of 

statistical thinking (Section 2) and of variation and randomness (Section 3). To keep my discussion 

within bounds, I shall raise questions related to just one issue: What in the way of statistical thinking 

ought we to attempt to teach beginners in afirst statistics course? 

Statistical Thinking for Beginners 

I fully agree that "development of a theoretical structure with which to make sense of reality" 

is an important goal of instruction, and that "the thinking and problem solving performance of 

most people can be improved by suitable structured frameworks". I most emphatically agree that 

mathematical structure is inadequate (even when it exists and can be grasped by students) as a basis 

for understanding and doing statistics in practice. Thus the working teacher should ask what kinds 

of structures she can offer students as frameworks for statistical thinking. Wild & Pfannkuch offer 

help. 

Not, however, help specifically intended for teachers. Their discussion of "the thought processes 

involved in statistical problem solving" is quite complex. This surely reflects the actual complexity 

of these processes, but the resulting sets of cycles and epicycles bear a daunting resemblance to 

Ptolemaic astronomy. Hence my most important overall comment: Beginning students need a more 

selective introduction to statistical thinking. Beginners often lack intellectual maturity; they often 

lack the context knowledge needed for full statistical problem-solving; we know that beginners do 

not find elementary statistics an easy subject, so that we must be hesitant to add to their cognitive 
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load. I find that industrial statisticians, whose teaching deals with mature and motivated company 

employees, often have quite unrealistic notions of the extent and sophistication of content that typical 

undergraduates can assimilate. 

A fair response to Wild & Pfannkuch's mild criticism of the ASAMAA committee's brief dis- 

cussion of statistical thinking is therefore that the committee's statement appears in the explicit 

context of a first course in statistics and so is quite appropriately "only a subset" of what statisticians 

understand about statistical thinking. I believe that, in fact, the ASANAA committee has a good 

grasp of the elements that are most important in teaching beginners. Their longer discussion (Cobb, 

1992) is very much worth reading. 

Let me offer some personal opinions on the kinds of statistical thinking that any first course ought 

to provoke in students. First, important as they are, issues of measurement and of problem formulation 

require substantial grounding in the details of a specific context. Beginners can be expected to deal 

with only elementary levels of these aspects of statistical thinking. That is, I think current practice 

shows good judgment in generally assuming that variables are satisfactorily measured and that the 

problem posed is indeed one that clinicians or ecologists or civil engineers find worth investigating. 

Second, we can start by mapping more detailed structures for the "Data, Analysis, Conclusions" 

portion of the investigative cycle, that is, for conceptual content currently central to elementary 

instruction. Here is an example of such a structure: 

When you first examine a set of data, (1) begin by graphing the data and interpreting what 

you see; (2) look for overall patterns and for striking deviations from those patterns, 

and seek explanations in the problem context; (3) based on examination of the data, 

choose appropriate numerical descriptions of specific aspects; (4) if the overall pattern 

is sufficiently regular, seek a compact mathematical model for that pattern. 

This "suitable structured framework" for thinking supports yet more detailed frameworks in more 

specific settings. Wild & Pfannkuch rightly emphasize that "subcycles are initiated within major 

cycles". Students learn in each setting what standard graphs may be helpful, what typical overall 

patterns to look for, what numerical measures and mathematical models may be appropriate. For 

example, faced with data on a single quantitative variable, we can expect students to choose wisely 

among at least histograms and stemplots, to look for the shape, center, and spread of the displayed 

distribution, to weigh the five-number summary against T and s as a description of center and spread, 

and to consider standard density curves as possible compact models. Structures such as these are 

specific enough to guide beginners, yet general enough to be genuinely helpful. They are not, of 

course, simply recipes on the order of the algebraic recipes that filled our first courses before the 

blossoming of technology. In particular, data always have a context, and students must learn by 

(rather simple) examples and experience to, as Wild and Pfannkuch nicely put it, pursue a synthesis 

of context knowledge and statistical knowledge. 

I hope it is clear that this discussion does not indicate disagreement with Wild & Pfannkuch's 

principles. I simply want to illustrate the work that teachers must do to make explicit the aspects of 

statistical thinking that we will emphasize in helping beginners learn. I also want to emphasize the 

need to be selective by reminding readers how much explicit content lies behind the structures. 

Finally, though, I agree with Wild & Pfannkuch's implicit judgment that our current instruction 

is too narrow. We have done well to place much more emphasis than in the past on the design of 

data production and on exploratory analysis of data, and to situate formal inference more solidly in 

a setting shaped by design and exploration. Yet, as technology continues to automate the details, we 

must continue to ask what broader intellectual skills our students should carry away from a modern 

introduction to the science of data. I make some preliminary comments in Moore (1998), whose title 
"Statistics among the liberal arts" suggests the status I think statistical thinking deserves. 
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Randomness and Variation for Beginners 

Wild & Pfannkuch offer an excellent and thoughtful discussion of variation, randomness, and 

causation. These are all issues that we must address in teaching beginners, and the discussion here 

should be helpful to any teacher. I want in particular to endorse their discussion of "Modelling 

Variation" with its emphasis that the "random" portion of statistical models is our way of describing 

unexplained individual variation and that "We have no idea whether this variation really is random." 

We would be wise, I think, to continue to reduce the place of formal probability in teaching statistical 

practice to beginners. I find that "unexplained individual variation" is clearer to students (because 

more concrete) than "random variation". Elementary inference procedures often assume that this 

variation is roughly described by a normal distribution. Normal distributions are not primarily 

"probability distributions" in this setting, but simply compact descriptions of the overall pattern of 

some sets of data. 

What, no Bayes? 

No doubt others will make the point that, for all the thought and empirical investigation behind 

it, the framework offered by Wild and Pfannkuch is itself "only a subset" of statistical thinking. 

Omission of the Bayesian paradigm for organizing statistical problems is striking, for example. That 

omission will bring no complaints from me, as I think (Moore, 1997) that there are compelling 

reasons to avoid Bayesian inference when we teach beginners. Given the broader aims of this article 

and the prominence of Bayes methods in current research literature, however, it would be helpful if 

Wild & Pfannkuch commented on where these ideas fit. Did the statisticians they interviewed show 

no traces of formal Bayesian thinking? 

Conclusion 

I am sure that readers will agree that Wild & Pfannkuch have made a stimulating contribution to 

our continuing reexamination of the nature of statistical thinking. I hope that we will continue to 

reexamine our teaching in the light of this and other discussions. 

Additional references 

Cobb, G. (1992). Teaching statistics. In Heeding the Cul1,for Change: Suggestions.fi)r Curriculur Action, Ed. L.A. Steen, pp. 
3-43. Washington, D.C.: Mathematical Association of America. 

Moore, D.S. (1997). Bayes for beginners? Some reasons to hesitate. Americun Stutisticiun, 51,254-261. 
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Discussion: Statistical Thinking in Practice 

N.E. Breslow 

Department of Biostatistics, Box 357232, University of Washington, Seclttle, WA, 98195-7732, USA 

When queried by students seeking a general recipe on how to apply statistical methods to any 

particular area of application, I usually punt. This, I explain, is part of the "art" of statistics whose 

practice is perfected through immersion in the subject matter area, through careful study of statistical 

applications in that area and, if one is lucky, through apprenticeship under a master practitioner. Wild 
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& Pfannkuch's (hereafter W&P) stimulating contribution mandates a re-evaluation of this position. 

Their arguments suggest that the apprenticeship period may be shortened through a structured 

approach to statistical reasoning that is applicable across subject matter disciplines. While it is not 

clear that their proposals will fully satisfy student desires for a formal set of rules, broader discussion 

of these issues among statisticians, their students and their clients is certainly long overdue. The 

comments that follow focus on three issues: (i) consideration of variation; (ii) a plea for more rigorous 

statistical thinking in clinical and epidemiological research ; and (iii) the need to couple the structured 

reasoning approach with concrete examples of its application. 

I agree completely with the prevailing view that consideration of variation is central to statistical 

thinking. Once the study goals are defined and response variables are identified, the next step is 

to consider sources of variation in those variables. This goes well beyond the identification of 

potential explanatory variables for inclusion in a regression equation. It is important to recognize 

that there may be multiple sources and multiple levels of unexplained (random) variation that could 

or should be taken into account. Some of this is alluded to under the subsection titled "Validity & 

reliability" in W&P's Fig. 10. At its most basic, consideration of variation entails the realization 

that the number of primary sampling units, rather than the total number of observations, is often the 

critical determinant of statistical precision. The fundamental statistical concepts taught in courses 

in experimental design and components of variance analysis are essential to developing student 

awareness of the multiplicity of sources of (random) variation, an awareness that leads to good 

statistical thinking. It is important that these concepts and courses continue to receive appropriate 

emphasis in the modern, computationally oriented statistics curriculum. 

As a medical statistician, I am appalled by the large number of irreproducible results published in 

the medical literature. There is a general, and likely correct, perception that this problem is associated 

more with statistical, as opposed to laboratory, research. This undoubtedly contributes to the low 

esteem in which the statistical profession is held by some and a general lack of confidence in statistical 

investigations. Laboratory scientists often take pains to ensure that their results are reproducible, at 

least in their own laboratories, before submitting them for publication. Epidemiologists and clinical 

investigators are less likely and less able to impose such constraints. This is partly because they work 

with human subjects and partly due to the observational nature of much of their data. I am convinced, 

however, that results of clinical and epidemiological investigations could become more reproducible 

if only the investigators would apply more rigorous statistical thinking and adhere more closely to 

well established principles of the scientific method. While I agree with W&P that the investigative 

cycle is an iterative process, I believe that it works best when it is hypothesis driven. Thus I would put 

"hypothesis generation" or perhaps "hypothesis specification" at the beginning of the cycle, before 

collection of the data, rather than afterwards. Protocols for randomized clinical trials generally do 

state hypotheses explicitly. The fact that many of these still yield irreproducible results has more to 

do with their multiplicity, with small sample sizes, with subgroup analyses and with consideration 

of endpoints that were noi'explicitly defined at the outset. The epidemiology literature is replete 

with irreproducible results stemming from the failure to clearly distinguish between analyses that 

were specified in the protocol and that test the a priori hypotheses whose specification was needed 

to sechre funding, and those that were performed post-hoc as part of a serendipitous process of data 

exploration. 

Statisticians have an important role to play as referees, both of their colleagues' work before 

publication and as anonymous reviewers afterwards. Their greater involvement in editorial decisions 

should help to reduce the level of "noise" in the medical literature. In an effort to improve scientific 

rigor, many clinical journals now make a formal statistical review part of the editorial process. 

This involves more than the application of standard criteria for statistical reporting (e.g., Bailar 

& Mosteller, 1988), important as these may be. A healthy skepticism and the imagination needed 

for alternative explanations, dispositions mentioned by W&P in Fig. 7, are desirable qualities in 
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a referee. I look forward to W&P's promised future work on the interpretation of information in 

statistical reports, which is an excellent arena in which to hone one's skill at statistical thinking. 

W&P's Fig. 1-10 outline a rather abstract, albeit progressively less so, framework for the planning 

of statistical investigations and the conduct of statistical reasoning. While they provide a useful 

and stimulating basis for discussion among professional statisticians, I am less sure regarding their 

potential 'to "reach" the apparent intended audience: students of statistical science with no prior 

experience with applications. I am sure W&P would agree that for teaching purposes it is essential to 

supplement the abstract presentation of guidelines and concepts with examples of statistical thinking 

in practice. This need not necessarily imply student participation in projects or case studies that 

require data analysis. There is a place also for study and discussion of examples from the literature, 

which allows a wider array of issues to be covered in the limited time available. In this spirit, I 

conclude my comments with two examples of statistical thinking that represent my earliest and 

latest forays into the medical literature. The first example was used for several years by my faculty 

colleagues to illustrate concepts of statistical variation in introductory classes for health sciences 

students. Both examples are statistical critiques and re-evaluations of articles published in the medical 

literature. 

One of the first facts I learned upon becoming statistician for the Children's Cancer Group was 

that the presence of a large fraction of lymphocytes in the bone marrow cell population often 

presaged relapse in patients with acute lymphocytic leukemia. Thus it was with some surprise that 

my colleagues and I read an article that called into question the then standard criteria for evaluation 

of response to therapy (Skeel et al., 1968). This placed children with an elevated bone marrow 

lymphocyte count (BMLC) in the good response category. The authors reported that patients whose 

BMLC remained below 20% throughout remission tended to have shorter remissions, as determined 

by the fraction of immature blast cells in the marrow, compared with patients whose BMLC exceeded 

this threshold at least once. Turning to similar data from an ongoing clinical trial, in which bone 

marrow exams were performed at six week intervals during remission, I sought to demonstrate that 

this result most likely was a statistical "artifact" resulting from measurement error and the tendency 

of the maximum of a random sequence to increase with its length (Breslow & Zandstra, 1970). Sure 

enough, when we separated our patients into three groups depending on the maximum BMLC during 

remission, those with the highest maxima had the longest remissions and those with the lowest 

maxima the shortest. When patients were divided into three groups based on the average BMLC 

during remission, the results were reversed. Nowadays sophisticated methods of longitudinal data 

analysis could be used to predict future relapses from the level or change in BMLC during remission. 

More recently, I was intrigued when a "nuclear morphometric score" was reported to predict 

relapses in children with the childhood kidney cancer known as Wilms tumor (Partin et al., 1994). 

Nuclear morphometry is an image processing technique designed in part to overcome the subjectivity 

of the pathologist in the grading of cancer cells. In this particular example, slides of tumor tissue from 

a case-control sample of 42 patients who had relapsed (cases) and 40 who remained disease-free 

after treatment (controls) were processed by the imaging device. It identified 150 nuclei on each slide 

and calculated 16 numerical shape descriptors, including the diameter, roundness factor, degree of 

ellipticity, etc., for each nucleus. Then the commercial software summarized each of the 16 frequency 

distributions using 17 statistical measures including mean, variance, skewness, kurtosis, range, etc., 

for a total of 16x 17=272 measurements per child. The software next selected the two measurements 

that showed the greatest difference between cases and controls, which turned out to be the skewness of 

the nuclear roundness factor and the minimum value of ellipticity as measured by the "feret diameter" 

method. After calculating the linear discriminant using these two measurements plus age, a known 

prognostic variable, the resulting "morphometric score" was demonstrated (on the same data) to be 

associated with outcome at a high level of statistical significance. Needless to say, when I re-evaluated 
this morphometric score using a prospectively acquired sample of 2 18 patients of whom 2 1 relapsed, 
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the coefficient for age remained about the same (and significant) whereas the coefficients for the two 

morphometric variables were close to zero (Breslow et al., 1999). The discussion emphasized the 

importance of using appropriate statistical methods, such as bootstrapping, for obtaining unbiased 

estimates of sensitivity and specificity based on linear discriminant analyses. More on the positive 

side, I suggested that Bayesian variable selection techniques might have a role to play'in the next 

generation of software for nuclear morphometry, whose future as a diagnostic tool at this point is 

somewhat uncertain. 
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Discussion: Development and Use of Statistical 

Thinking: A New Era 

Ronald D. Snee 

Sigma Breakthrough Technologies, Inc., 10 Creek Crossing, Newark, Delaware 19711, USA 

E-mail: RDSnee@AoL.Com 

Statistical research, practice, and education are entering a new era, one that focuses on the devel- 

opment and use of statistical thinking. The advancement of computer technology and globalization 

of the market place are greatly affecting the role of statistics and statisticians. The ubiquitous na- 

ture of personal computers and statistical software have thrust statisticians into strategic "thinking" 

roles as well as operational roles of solving problems with statistical tools. Market globalization has 

forced companies to improve to stay competitive. Many of those who implement the teachings of 

W. Edwards Deming (1986) and use the Six Sigma approach (Hoerl, 1998) are working in strategic 

roles of developing and implementing statistical approaches to process and organizational improve- 

ment. In order for an endeavor to be effective it needs activity at three different levels: strategic, 

managerial, and operational (Snee, 1990). Statistical thinking provides the discipline of statistics 

with this strategic component, which has been largely ignored until recently. It is also important to 

note that strategy is the principal work of top managers of organizations. 

Joel Barker (1985) points out that the need for a new approach, a new paradigm, is apparent when 

the paradigm in use cannot solve the existing problems. I believe that we are in such a situation 

today. The rapid advancement of computer technology and global competition has created the need 

for a new way of using statistics. This new paradigm will define a new era. Also, few are satisfied 

with the way statistics is taught, particularly at the introductory level and to nonstatisticians. Wild & 

Pfannkuch have recognized this new era and need for a new view of statistics and have developed 

models for "statistical thinking in empirical inquiry". Their approach is a welcome contribution. I 
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applaud their use of models. My comments focus on needed model refinements, the elements of 

statistical thinlung and some implications of the authors' research. 

Developing Useful Models 

George Box and other leaders of the statistical profession have admonished us that models must 

be simple and parsimonious if they are to stimulate insight and be useful. With this thought in mind, 

I believe that the authors' model shown in Fig. 1 must be considerably simplified if it is to have broad 

effectiveness. The current model has 4 main components and 27 sub-components. Four to seven key 

elements would be a good target. The authors and others who work in this area would do well to 

also identify a small set of tools to integrate with the elements, or steps, in the model. Roger Hoerl 

and I (see Hoerl & Snee, 1995) and others have learned that teaching tools and models separately 

only creates confusion. A good example of this integration is the Six Sigma process improvement 

methodology (Hoerl, 1998). Here, a 4-step approach (measure, analyze, improve, control) and 8-9 

tools are integrated to produce a methodology that is both effective and easy to understand and use. I 
believe that such an effort would be a good direction for further development of the authors' model 

for the use of statistical thinlung in empirical inquiry. 

It is important to recognize that George Box's "Iterative Nature of Experimentation" and "Inductive 

-Deductive Learning" models are also useful for describing the interplay between context and 

statistics as shown in the authors' Fig. 2 (Box, Hunter & Hunter, 1978). Unfortunately, focusing on 

the identification of theories to be checked by experimentation, and data collection to drive process 

improvement is greatly underutilized in the teaching and practice of statistics. 

Elements of Statistical Thinking 

The authors' build statistical thinking into their model in "Dimension 2: Types of Thinking". 

They note the importance of "process" and "need for data". Some discussion of these elements of 

statistical thinking is needed. The key elements of statistical thinking are process, variation, and data 

(Figure 1). These elements are connected in the following way. First, all activity, work or otherwise, 

is a process. A process is defined as any activity that converts inputs into outputs. The problems 

of empirical inquiry are associated with one or more processes. Hence, the process or processes 

involved provide the "context" for the statistical work. 

Variation + Data Statistical Tools 

Statistical Thinking Statistical Methods 

Figure 1. Relationship between statistical thinking and statistical methods 
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Process improvement and problem solving get complicated quickly because all processes vary. 

Our need to deal with the variation leads us to make measurements as a way of characterizing the 

process being studied; and creating a basis (numerical) for comparison. The result of the measurement 

process is data. Hence, it is the need for measurement (a basis for comparison) that produces data. 

Now the data vary for two reasons as shown in the authors' Fig. 6; the process varies and there 

is variation produced by the measurement and data collection system. We use statistical tools to 

analyze the process data, which vary because of the process and measurement system. The elements 

of statistical methods are thus variation, data and statistical tools (Fig. 1). It is important to note 

that the Six Sigma approach utilizes both statistical thinking and statistical methods (i.e. process, 

variation, data and statistical tools). 

The broad utility of the "process concept" is clear when we think of the following examples of 

process: The U.S. Budget process, the peace process, the educational process, etc. Other examples of 

processes are the political, learning, cell growth, data collection, surgery, and mail delivery processes. 

The list goes on and on. The process concept extends beyond manufacturing and business processes 

to almost all, if not all, areas of science and engineering. The broad utility and provision of context 

for empirical inquiry provides a useful fundamental for statistical thinking. Statistical thinking as 

defined by the American Society for Quality (1996) has three fundamentals: All work occurs in a 

system of interconnected processes, variation exists in all processes, and understanding and reducing 

variation are key to success. Understanding variation enables us to change the average level of the 

process as well as reduce process variation. 

The importance of variation to statistical thinking becomes clearer when we recognize that variation 

is present in processes whether or not we have data on the process. This observation leads us to the 

conclusion that we can use statistical thinking without data. For example, we know that, in general, 

decreasing the variation of process inputs decreases the variation of process outputs, that students 

have different backgrounds and different learning methods, that many products are used differently 

by different customers creating different customer segments, etc. Deming (1986) emphasized that 

reducing the number of suppliers for a process decreases the variation in process output. Hence, 

many companies have instituted efforts to significantly reduce the number of suppliers. 

One can more deeply understand variation when one thinks about working as a statistician and 

not being able to collect data. Can statisticians make a contribution in this situation? I believe that 

the answer is yes! Helping managers understand the importance of variation in their processes and 

organization is of major importance as emphasized by Deming and others. While data are critical to 

the effective use of statistical thinking, and should be used whenever possible, data are not absolutely 

essential to the use of statistical thinking. 

So Where Do We Go From Here? 

What are the next steps in the development of "statistical thinking for empirical inquiry?" I noted 

earlier directions for further model development: model simplification and the integration of tools 

with the model. There are others. First we must recognize that understanding variation is a core 

competency of statisticians (Snee, 1999). This defines the uniqueness and competitive advantage 

of statisticians and others who focus on the use of statistical thinking and methods. What data are 
relevant and how to collect good data are important considerations and might also be considered 

core competencies of statisticians. Understanding variation is, however, a much more important core 

competency whose successful application is enhanced by understanding what data are relevant and 

how to construct proper data collection methods. If there was no variation, there would be no need 

for statistics and statisticians. This leads us to the conclusion that we must focus statistical research, 

education, and practice on understanding variation and using the resulting knowledge to improve the 

performance of processes. 
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A focus on statistical thinking in statistical education will require changes in both the "content" 

and "delivery" of courses. The use of projects noted by the authors is a delivery issue. Projects are 

effective because they enable students to "learn by doing" and to see and experience the utility of 

statistical thinking and methods in their field of interest. Projects also help us teach students with 

widely varying backgrounds and interests in the same class with the project providing the context 

and connection of the statistical methods to their field. Projects have been used most widely in 

introductory courses but are equally applicable in applications and methods courses at all levels 

and provide useful context for courses on statistical theory. The research work of many leading 

statisticians started with the need to solve real problems e.g. R.A. Fisher, G.E.P. Box, J.W. Tukey, 

W.G. Cochran, et al. 

The focus on utilizing statistical thinking in statistical education and practice will identify new 

areas for research. This is already happening with the rapidly growing use of the Six Sigma process 

improvement approach which properly focuses on improving the processes that the organization 

uses to do its work. Process measurement and methods for deciding on whether to focus on methods 

for process control, process improvement or process reengineering have already been identified as 

important research opportunities. 

I see the development of statistical thinking as the next step in the evolution of the field of statistics. 

In the 1950's and 60's and earlier, the focus was on tools and methods to solve problems. In the 

1960's and 70's the focus turned to the mathematical aspects of statistics. In the 1980's and 90's the 

emphasis moved to data analysis. In Fig. 1 we see that we are now moving further upstream from 

a focus on statistical tools and data to focusing on variation and the process that produced the data 

and its associated variation. When you focus simultaneously on all four elements: process, variation, 

data and statistical tools, you have a richer, more robust and effective statistical approach. 
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It is a widely shared concern that students should learn to think statistically. However, it is 

still unclear what we mean exactly by "statistical thinlung" and, secondly, it is unclear how we 

can organize adequate learning processes supporting its development. Wild & Pfannkuch rightly 

criticize that the advice "let the students do projects" is not enough. Learning statistical thinking just 

by "osmosis" cannot be the answer. The authors are convinced that the ". . . cornerstone of teaching 

in any area is the development of a theoretical structure with which to make sense of experience, to 

learn from it and transfer insights to others." (p. 224). 

This is the background motivation for the authors' fresh look at the question "What is statistical 

thinking?" They develop a general model of statistical thinking, based on existing literature, but also 

on in-depth interviews they did with students and statisticians as well as on experience from working 

as consultants in statistics. 

My comments will be related to three aspects: the framework the authors propose, its relevance 

for organizing teaching and learning processes, and the importance of the notion of variation for 

rethinking statistics education. 

The Framework for Statistical Thinking 

The paper differs from others that narratively characterize essential elements of statistical thinking 

by developing a more formal four-dimensional framework for statistical thinking which is diagram- 

matically represented (Fig. I), and further elaborated into a hypertext-like structure (Fig. 8-10). This 

form of representation is a valuable result of their intention to develop thinking tools that can be used 

in education and consultancy, and a merely narrative text would not be sufficient for this purpose. 

The PPDAC cycle (dimension 1, problem + plan -+ data -+ analysis + conclusion) is 

similarly used by other authors for structuring the process of statistical inquiry into stages on a macro 

level. Wild & Pfannkuch add to this the process dimension 3 (interrogative cycle), which is more 

a psychological micro level description of problem solving stages that occur within every stage of 

the macro level process, and whose characteristics are not specific for statistics. The dispositional 

dimension 4 that more or less controls the quality of the interrogative cycle is related to dimension 3. 

Adding these dimensions permits the authors to distinguish different quality levels of thinking. 

Different metacognitive qualities can now be distinguished, such as the ability to critically questions 

one's own inferences instead of "jumping to conclusions", different information-gathering strategies 

(searching in one's own memory or seeking in external resources) and different abilities for imagi- 

nation and generation of ideas. The dispositional dimension 4 identifies general scientific attitudes 

and belief systems that are very important for higher quality statistical thinking, such as skepticism, 

openness, engagement, or a propensity to seek deeper meaning. These aspects can be well used 

for diagnosing and observing the quality of students' thinking and widen the statistics' educators 

awareness beyond the specificities of statistics. 



A very interesting idea is to consider the PPDAC diagram as a kind of hypertext or underlying 

tree structure, where we can zoom into all nodes to see more detail. The authors demonstrate this 

zooming process convincingly by zooming into the PPDACpladplan collection of data/measurement 

node. Measurement is now on depth level 3. Fig. 10 represents 3 further levels. One path could be 

measurernent/anticipate problems/validity & reliability. At the bottom of this path, we find 6 worry 

questions, which everybody should habitually ask while working on statistical problems. 

This seems to indicate a further research program of the authors, namely to elaborate the PPDAC 

cycle in all respects up to the deeper levels. In Fig. 6 we find about 30 questions. If we assume a 

similar structure behind all the other nodes, we have to multiply this by 5 (levell) and 4 (level 2) and 

4 (level 3), that would result in 2400 (!) questions. The resulting complexity could certainly only be 

managed by implementing these levels in a real computer-based hypertext. 

This, obviously, constitutes a problem. From a theoretical point of view, one can ask whether 

it would be helpful to describe statistical thinking and statistical expertise more and more detailed 

along these lines, or whether there are alternatives. For further elaboration, I think it would be good 

advice to look into what Artificial Intelligence and Cognitive Science might offer about analyzing 

the thinking of experts. Expert thinking is sometimes characterized by reducing complexity, by 

pattern recognition strategies, by relying on prototypical situations to which actual situations are 

compared. That is of course different from working through checklists of many questions, although 

such checklists could still be considered a valuable starting point for novices in the field. 

Since the beginning of the eighties we have seen an intensive discussion on "statistical expert 

systems". Even if the conclusion of this debate may be that people cannot be replaced by expert 

systems, the discussions contains a lot of thoughts about "what is statistical thinking and statistical 

knowledge" and how can we represent it. The authors have not yet exploited this debate for their 

purposes. Moreover, the debate on developing computer-based support systems for users of statistics 

instead of replacing people by machines are also relevant for further elaborating Wild & Pfannkuch's 

model and objectives. It may well be a result of further thinking and experience that effective 

statistical thinking in practice can, at least in some domains, be only performed with more advanced 

computer support than just data analysis systems. Mere mental thinking tools may not be sufficient. 

The Model of Statistical Thinking and Learning to Think Statistically 

Wild & Pfannkuch refer to various developments in mathematics education (Polya, 1945; Schoen- 

feld, 1987) who suggest the use of thinking tools such as lists of worry and trigger questions in 

order to improve thinking processes. Polya's book is a prototypical example, where he suggests that 

starting to ask these questions would be a first step in developing a new problem solving "men- 

tal habit". Garfield & Gal (1999) refer to similar approaches with regard to developing students' 

critical appraisal of statistical reports. Wild & Pfannkuch refer to similar developments in quality 

improvement. 

The advantage of these systems of questions is their relative simplicity. Wild & Pfannkuch's system 

has a much higher degree of complexity and it is difficult to imagine that this could be implemented 

as a "mental" tool without any substantial reductions. Nevertheless, their comprehensive model may 

provide a sounder basis for pedagogically motivated reductions or transformations, and we may think 

of developing learning and teaching programs including computer-supported aids that implicitly rely 

on Wild & Pfannkuch's model without aiming at conveying the complexity in a more direct way to 

students. In this sense, the range of applications of their model may be much wider than the authors 

sketch themselves in their paper, namely mainly referring to the use as thinking tools. 

Another aspect has to be added. Recent learning theories in mathematics education regard learning 

as a process of enculturation, as learning to participate in a certain cognitive and cultural practice, 

where the teacher has the role of a mentor and mediator. This is especially true with regard to 
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statistical thinking, which maybe better thought of as a "statistical culture"-including value and 

belief systems, habits of asking and writing, general scientific dispositions, and specificities of 

statistics such as the appreciation of data etc. The kind of collaborative and communicative processes 

that are stimulated in the classroom would be very important for statistical enculturation. The extent 

to which the teachers' behavior and knowledge represents an authentic model of this culture would 

be important. Wild & Pfannkuch's analysis could be re-interpreted as a valuable analysis of a culture. 

To a certain extent, disseminating this culture by "osmosis" cannot be completely replaced by 

communicating thinking tools. This does not mean that we just hope that something will develop 

spontaneously in the right way. On the contrary, planning statistical education as enculturation would 

be ambitious. My point is that focussing on "thinking tools" as tools for the individual thinker may 

be too limited. Moreover, we have to re-introduce differences between different cultures we intend 

to develop at a certain point. We have to take into account the differences between consumers and 

producers of statistics, between expert statisticians and those who should be educated so that they 

know when to consult an expert. Furthermore, the domain specificity of applications of statistics 

such as quality control or epidemology cannot be completely ignored. 

Variation, Causation and Probability 

I have not yet commented on dimension 2 (types of thinking). Wild & Pfannkuch concentrate on 

elaborating the notion of "variation" from this perspective and devote their whole chapter 3 to this 

topic. This chapter can be well read and used independently of the other chapters and has a value of 

its own. The central topic is the relation between probability, statistical thinking and the search for 

causes with regard to the practice of statistics and with regard to learning probability and statistics. 

I am really glad that Wild & Pfannkuch have contributed further facets to a problem that has 

haunted me for a long time (Biehler, 1994 and Biehler, 1982) and that has not yet got the attention in 

statistics education it deserves. Wild & Pfannkuch make a plea to share with Pyzdek (1990) the basic 

belief that "all variation is caused". We use probability models to model "unexplained" variation. We 

do this as "a response to complexity that otherwise overwhelms us. The unexplained variation may 

well be the result of 'a multiplicity of causes' . . ." (p. 20). This approach is important in order to 

avoid an attitude of stopping the questioning if something can be described by a probability model. 

In essence, this is Laplace's view of probability in an essentially deterministic world. Although the 

authors may not share Laplace's ontological claim, they plead for pragmatically using this view as a 

preferable strategy for dealing with real world problems. This perspective is also closer to students' 

habits in everyday thinking of looking for causes, and probability should build on top of this practice 

not as something completely distinct from deterministic thinking as some stochastics educators seem 

to suggest. 

Although I agree with this basic line of argument, I think that one important aspect is missing that 

I tried to put forward in Biehler (1994). From the above perspective, probability is merely regarded 

as a last resort, something that we have to use because we cannot deal with complexity in any better 

way. But don't we get anything from adopting a probabilistic perspective? Well, first of all we get 

something from the transition from focussing on an individual event to looking at a system of events, 

which can be characterized by a (probability) distribution. This transition is intimately connected to 

a probabilistic perspective. We can analyze causes of why an individual accident occurred, but, in 

addition, we may wish to collect data on many accidents under various conditions. This transition 

has to be interpreted as a transition that can reveal new types of knowledge, new causes, explanations 

and types of factors that cannot be detected at the individual level. These new factors may explain 

features of a group as a whole that reflect boundary conditions. Nevertheless, the perspective of 

the individual case should not be eliminated but maintained as a genuine complementary view of a 

situation. 



In the history of statistics and probability, the notion of constant and variable causes was coined. 

The metaphor of constant and variable causes is well materialized in Galton's Board (quincunx): The 

whole physical device represents the "constant causes", and the "variable causes" are responsible 

for the variation of the individual paths of the balls. One can become aware of constant causes 

when changing them; for example by changing the angle (to the leftlright; forwards/backwards) of 

the Galton board with regard to the ground. Usually, the effect of the change cannot be observed 

in individual trials, but manifests itself in different long run distributions. The complementarity of 

individual and system level is often suppressed when probability educators draw students' attention 

only to the systems level of the Galton board, saying that individual paths cannot be further analyzed. 

The authors would rightly criticize this attitude, but we have to emphasize the positive gain of the 

system level as well. The item Wild & Pfannkuch used with their students, namely modeling the 

variation of success of basketball players by a binomial distribution, is another interesting case at the 

other extreme. As long as students cannot be convinced that the system perspective is of any value 

from any important perspective they will tend to reject this perspective as a possible but not as a 

convincing one in this concrete case, as one of Wild & Pfannkuch's students did. We may have to 

look for other prototypical examples that better show the complementarity of analysis levels. How 

does a reduction of the maximum speed limit on a road affect the distribution of car velocity on that 

road? This problem may be better suited for our purpose. 

Wild & Pfannkuch seem to think in this direction by introducing the difference between common 

cause and special cause variation, a distinction taken from quality control, whose general importance 

would have deserved more space. My belief is that a further elaboration of this conception together 

with a more positive or constructive view of probability would result in further progress. I am looking 

forward to future papers of the authors on this topic. 
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Response to the discussions 

Response 

C.J. Wild and M. Pfannkuch 

We thank the discussants for their interesting and insightful comments. There is much food for 

thought and many valuable suggestions for further work. We agree with almost everything they say. 

Any disagreements we do have are with very subtle levels of emphasis rather than with the broad 

thrust of any of their arguments. We will limit our comments to just a few of the issues raised. 

Snee and Moore gently (and colourfully in Moore's case) take us to task for the complexity 

of some of our models, particularly Fig. 1. Our models were developed in an attempt to analyse 

what happens in successful statistical problem solving for an audience of statisticians and statistics 

educators. They were not developed to be transmitted unfiltered to statistical novices (although there 

are elements that can be). We have always recognised that prioritization and simplification will be 

required for beginners. What we wanted to arrive at first was, in Biehler's words, "a sounder basis 

for pedagogically motivated reductions". 

For beginners, the only part of Fig. 1 that we explicitly teach is PPDAC. A simple model for the 

analysis phase such as Moore's may suffice. Although beginning statisticians cannot become experts 

in measurement (or anything else), they can and should be given experiences that show them just 

how hard it can be to capture an important idea in measurement and experiences of situations where 

a measurement quite patently fails to do so. An important part of preparing our students to interpret 

and critically appraise media reports is the idea that if the investigators are measuring "the wrong 

thing" then the argument falls at the first hurdle. Over time, we would make students aware of some 

other elements of Fig. 1, but not all at once. A better use for Fig. 1 in teaching is as a yardstick 

against which teachers can measure the set of experiences they provide to students. 

As Breslow surmises, we advocate abstract guidelines being used to complement examples of 

statistical thinking in practice rather than in place of them. We hope our framework can help teachers 

in their selection of case-studies, and help them to identify the types of thinking that are being used 

in the case studies so they can better draw students' attention to these aspects. To use case studies or 

project work effectively, we have to be able to abstract and convey to students the broader lessons 

to be learned from them. We think this is part of what Biehler is getting at in his discussion of 

"enculturation". 

While we agree that the basic tenets of Snee's process-improvement paradigm apply very generally, 

some of the language and emphasis does not seem to us to speak to the every-day concerns of those 

working in the natural, experimental and social sciences. The need for "statistical thinking" there 

is every bit as pressing as in the organisational areas. The most powerful and easily transferable 

concept from the quality area is the concept of process as a means of analysing situations and 

problems. We take Snee's point about the desirability of simplicity and the incorporation of relevant 

tools in models actually used in teaching. Regarding Moore's "What, no Bayes?", we saw the 

Bayesian/frequentist/Fisherian debates as relating to a more detailed level of the Analysis phase 

of PPDAC than the levels explored in this paper. With respect to "creative thinking" (Smith), we 

emphasised the roles of imagination and flashes of insight which we see as the wellsprings of 

creativity. We would like to draw the reader's attention to the discussion in Smith (1997) about the 

differing, but complementary, roles of case studies and surveys in the development of social theories. 

Smith is quite right in saying that the whole of science is concerned with variation. We hazard 

that an essential difference is that whereas the main focus of the sciences is on answering particular 



questions arising from variation, the main focus of statistics is on the process by which this is done, 

or at least on specialised parts of that process. In reality, there are no clear boundaries between "the 

science" and "the statistics" and it all works best as a seamless whole. Should scientists be educated 

to be better statisticians? Very much so. But this in no way obviates the need for statisticians to be 

educated to be better scientists. 

Smith worries about the tenuousness of employing random-variation models in situations beyond 

those in which randomness is induced by the study design. Unfortunately, all analyses of observational 

data aimed at trying to infer something about the nature and behaviour of underlying processes lie 

beyond these secure borders. We statisticians cannot claim our models are "correct" for such uses 

and for many reasons including those listed by Smith, investigators often come unstuck using 

observational data. But such analyses do address some of the most important problems humanity 

faces, randomnes models do allow us to conceptualise unexplained variation, and they have proven 

to be "sometimes useful" (harking back to Box). The issues here are closely related to W.E. Deming's 

distinction between "enumerative" and "analytic" studies elaborated on by Hahn & Meeker (1993). 

A qualitative conclusion reached is that for analytic studies, the measures of uncertainty produced by 

statistical methods are best thought of as lower bounds, but that even these lower bounds tend to be 

surprisingly large. In Section 3, we have ventured into very deep waters, partly stimulated by Biehler 

(1994). The issues at stake relating causal and probabilistic thinking are much more fundamental 

to applying statistics than our traditional debates on the "foundations of statistical inference". We 

certainly do not have all the answers and are pleased with the discussion generated. 

Like Smith, we have often cringed at claims by some statisticians for the universality of statistics 

and some sort of seer-like status for statisticians. Statistics as it has so often been conceived of and 

taught in the past has been narrowly specialised and we are only too aware of the limited nature 

of our own capabilities. But disciplines are not static. Many forces act to change the interests of 

their researchers and the content of their teaching. For statistics the biggest of those forces has been 

computer technology. If statistics is not to become some dusty, forgotten annex of computer science, 

statistics education must endeavour to evolve in the direction of universality. We recall that phrase 

from earlier writings of Moore about nudging statistics a little further back towards its roots in 

scientific inference. This involves, in Snee's words, "moving further upstream". But most of us have 

a lot to learn along the way! 

The fundamental issue that we must continually confront as technology advances is the distinction 

between that which can profitably be automated and that which is essentially or necessarily human. 

It is on the latter, "the 'art' of statistics" (to quote Breslow) that we should concentrate when teaching 

all but very small numbers of specialists. As far as applications are concerned, knowing the technical 

details of what is happening inside a procedure is of benefit only insofar as it helps us to use that 

procedure more effectively. It is just like driving a car. Forming creative connections between ideas 

and pieces of information would seem to be fundamentally human contributions. Skills in enquiry 

and skills in arriving at insights from data (and these skills are intimately related) are fundamental, 

universal, human needs. The more successfully statistics can address these needs, the greater its 

value and the more secure its future. 

In modern academia, the continued health of a discipline depends on student demand. Many of us 

have been cushioned by the demand for service teaching which will remain only so long as the skills 

it teaches are perceived to be valuable by those who direct students to us. A professional statistician 

requires graduate-level education. In the environment we are operating in-beset by competition 

from disciplines with stronger student appeal-a prospering graduate programme must be supported 

by and fed by a strong undergraduate programme. To attract students, such a programme must 

confer valuable and marketable skills. The skills that society needs that are closest to what we have 

traditionally done are skills in investigation and gaining insights from data. This is one case in which 

both altruism and the survival instinct point to the same conclusions. 
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Earlier, we tried to enunciate a distinction between the focus of statistics and that of the sciences. 

Philosophers of science are also interested in idealisations of scientific processes but they do not have 

our pragmatic tradition. So not only is the direction we are urging consistent with our history, there 

is an opening for us. This is statistics as a "liberal art" (Moore, 1998)-a liberal art which transmits 

~cientific'thinkin~ and statistical analysis far beyond the boundaries of the traditional sciences and 

even into daily life. We agree with Moore there has been pleasing progress in this direction over the 

last 20 or 30 years, and we can think of no one who has had a greater impact on beginning statistics in 

this regard than Moore himself. We hope that our paper has generated sufficient light to guide a few 

more tentative steps. And while we have no doubt that an art is best learned "through apprenticeship 

under a master practitioner" (Breslow), financial pressures dictate most of us are unavoidably in the 

business of inexpensive mass education for our undergraduate teaching. To teach the art of statistics 

at all effectively in such an environment, we must begin to learn how to demystify that art to the 

greatest extent possible. 
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