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ABSTRACT

We propose a scalable and efficient parameterized blockdbsta-
tistical static timing analysis algorithm incorporatingth Gaussian
and non-Gaussian parameter distributions, capturingesgatre-
lations using a grid-based model. As a preprocessing stegmy
ploy independent component analysis to transform the sebilf
related non-Gaussian parameters to a basis set of paranteder
are statistically independent, and principal componengdyais to
orthogonalize the Gaussian parameters. The proceduré&resqu
minimal input information: given the moments of the vaoatil
parameters, we use a Padé approximation-based momertt-matc
ing scheme to generate the distributions of the random hlasa
representing the signal arrival times, and preserve @ifoal in-
formation by propagating arrival times in a canonical fofor the
ISCAS89 benchmark circuits, as compared to Monte Carlolsimu
tions, we obtain average errors of 0.99% and 2.05%, respégti
in the mean and standard deviation of the circuit delay. Far-a
cuit with |G| gates and a layout with spatial correlation grids, the
complexity of our approach 9(g|G|).

1. INTRODUCTION

Technology scaling brings about increased process pagamet

variations, causing larger spreads in circuit timing chemastics.

In the face of these variations, traditional corner-bagaticstim-

ing analysis is inadequate, and there has been much recekt wo
on developing statistical static timing analysis (SSTA)213, 4,
5,6, 7, 8,9, 10]. SSTA predicts the probability distribatimnc-
tion (PDF) and the cumulative distribution function (CDF)tbe
delay, given the statistical distribution of the procesgapeeters.
Existing SSTA algorithms may be path-based or block-basey,
assume Gaussian or non-Gaussian distributions, may ioGigp
spatial correlation effects or not, etc.

The assumption of normality of process variations lendslfits
rather well to generating closed-form expressions for #laydand
arrival time PDFs. Although correlation and statisticgbeledence
between random variables tends to increase the compléh&$ DA,
recent work has presented efficient techniques for handlirap
correlations under Gaussian distributions, using prizcgmmpo-
nents analysis (PCA) to perform a simple variable transédion
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[1]. This transformation enables efficient SSTA, repreisentie-
lays and arrival times as functions of a new set of orthogaostat
tistically independent Gaussian random variables.

However, the normality assumption is not always valid [Bhid
it is well known that some process parameters deviate Sigunitfiiy
from a Gaussian distribution. For example, via resistaeséibit
an asymmetric probability distribution [3], and the dopeoihcen-
tration density is also observed to be well modeled by a Boidis-
tribution: a normality assumption may lead to significantrses of
errors in SSTA. Moreover, it is typically difficult to extreprecise
distributions from process data, and it is more realistiofitain the
moments of the parameter variations from a process engineer.

Some recent works [3, 7] propose SSTA methods that do away
with the assumptions of normality, but none of these is &tala
to a large number of non-Gaussian parameters, and none dyas pr
sented a solution in the presence of correlated non-Gaugaram-
eter distributions. The solution in [3] employs expensivenerical
integration, while [7] relies on a highly computational regsion
strategy. These methods can efficiently handle only a few non
Gaussian sources.

In this work, we propose an efficient parameterized blockelda
SSTA algorithm that can handle the case where the undenbying
cess parameters may be spatially correlated non-Gaussiaela
as Gaussian distributions. The correlations are descrised) a
grid structure, similar to that used in [1], which works foa@-
sian distributions only. Our scheme is general enough t&ween
for the cases when the closed-form expression of the PDFeof th
sources of variation is not available, and it only requites to-
ments of the process parameter distributions as an inpeselimo-
ments are relatively easier to calculate from the process filas
than the actual PDFs, and our procedure uses a moment ngatchin
scheme to generate the PDFs of the arrival time and delagblas.

For simplicity, our current implementation ignores theseffof
the input signal transition time on the delay at the output pb
the gate. However, our SSTA procedure can be extended tessxpr
slope at the output pin of the gate as a probability weighted s
of distributions of the slope from all input pins to the outgin
of the gate [12]. In our SSTA framework, we can efficiently com
pute these weights as closed-form probabilities, usingrtbment
matching PDF extraction scheme.

The main steps in our SSTA algorithm are:

1. Preprocessing to obtain an independent set of basis vari-
ables: We employ a technique known as independent com-
ponent analysis (ICA) [13, 14, 15, 16] aspeeprocessing
step, with the goal of transforming the random vector of cor-
related non-Gaussian components to a random vector whose
components are statistically independent. We then compute
moments of the independent components from the moments
of the non-Gaussian parameters. We orthogonalize the Gaus-
sian parameters separately, performing PCA as in [1]. To-
gether, we refer to this set of independent variables as the
basis set.



2.

. Correlation-preserving statistical operations: Our block-

Moment matching-based PDF evaluation:Next, we rep- W1 [Le,] is considered to perfectly correlated withz [Le,]. In
resent the gate delays as a linear canonical function of the each case, itis seen that the circuit delay PDF deviatesdrGiawus-
basis set. From the moments of the basis set, we computesian distribution due to the presence of the non-Gaussians.
the moments of the gate delay variables. Finally, we trans-  Figure 2(b) suggests that the deviation from a normal distion
late the moments into a PDF for the delay variables, using a becomes more significant when the non-Gaussian randonbiesia
Padé approximation-based moment matching scheme [17]. exhibit correlation. The intuition for this can be arrivedby ap-
pealing to the Central Limit Theorem, according to which #ae
lon-| era dition of independent variables makes them “more Gausdian,
based circuit traversal employs statistical sum and max op- this is not necessarily true for correlated random varibfer real
erations at every step to compute the extracted PDFs of the circuits, where many parameters are correlated due to #sepce
arrival time variables. These variables are stored as arline  of the inherent spatial and structural correlations, thes@nce of
canonical form, obtained through a moment-matching pro- non-Gaussian distributions implies that the circuit detey devi-

cedure.

During our exposition, it will become amply clear that we ftoov
some techniques from existing algorithms from the litemtidow-
ever, it is important to note that the overall algorithm istitictly
different from any existing method. For a circuit wily| gates
and a layout withy spatial correlation grids, the complexity of our
approach iD(g|G|), similar to the solution for the Gaussian case
in [1].

2. NON-GAUSSIANITY IN SSTA

We use atoy circuit, shown in Figure 1, to illustrate the @feof
non-Gaussian parameters on the delay distribution. Werseste
width W; and the effective lengtfi., for each invertei to be the
random parameters of variation. Using a first order appration,
the delay of this circuit can be written as:

D n+ a1. W1 +as.Wo + bl.Le] =+ bQ.Lez (1)

whereaq, az, b1, andb, are the sensitivities of the delay with re-
spect to the zero-mean randomly varying paramétérsiVs, L., ,
andL.,, respectively, ang is the nominal delay of the circuit.
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Figure 1: A simple circuit example to illustrate the effect d
non-Gaussian parameters on the PDF of the circuit delay.
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Figure 2: PDF of the delay of the example circuit of Figure 1 fo
(a) uncorrelated and (b) correlated non-Gaussian and Gaussn
process variables.

Next, modelingh, W» as Gaussians, afd., , L., as uniformly
distributed random variables jpr, — /3oL, , ur. +v/30L.], we
perform Monte Carlo simulations to evaluate the circuibgd?DF.
The dashed curve shows the actual delay PDF obtained foirthe ¢
cuit by correctly modeling.. as a uniform distribution, while the
solid curve is the PDF obtained if the non-Gaussianvariables
were modeled as Gaussian variables with the same mean and sta
dard deviation as the uniform distribution. Figure 2(a)wstdhe
PDFs for the case where all of the parameters are considetsa t
statistically independent, while Figure 2(b) shows the Rifen

ate significantly from a normal distribution. )

To incorporate the effects of both Gaussian and non-Gaussia
parameters of distribution in our SSTA framework, we repnés
all delay and arrival times in a linear form as:

m
Z cjyj+tez=p+ BTX+CTY +e.z (2
j=1

n
i=1

where D is the random variable corresponding to a gate delay or
an arrival time at the input port of a gate, [y;] is a non-Gaussian
[Gaussian] random variable corresponding to a physicarmater
variation, b; [c;] is the first order sensitivity of the delay with re-

spect to the'" non-Gaussianjf" Gaussian] parameteris the un-
correlated parameter which could be a Gaussian or a nons@aus
random variableg is the sensitivity with respect the uncorrelated
variable, anch [m] is the number of correlated non-Gaussian [Gaus-
sian] variables. In the vector fornB and C are the sensitivity
vectors forX, the random vector of non-Gaussian parameter vari-
ations, andy, the random vector of Gaussian random variables, re-
spectively. We assume statistical independence betweeGdhs-
sian and non-Gaussian parameters.The me#&adjusted saX
andY are centered, i.e., eaah, y;, andz has zero-mean.

3. INDEPENDENT COMPONENT
ANALYSIS

For reasons of computational and conceptual simplicity,Lise-
ful to work with a set of statistically independent randomiables
in the SSTA framework. If the components of random ve&or
were correlated Gaussian random variables with a covariare:
trix >, a PCA transformatio®R = P,X would yield a random
vector R comprising of Gaussian uncorrelated random variables
[1]. Since for a Gaussian distribution, uncorrelatednegdies sta-
tistical independence the components dR are also statistically
independent.

However, such a property does not hold for general non-Gauss
distributions. In Equation (2), the random vecXirconsists of cor-
related non-Gaussian random variables, and a PCA tranafimm
S = P, X, would not guarantee statistical independence for the
components of the transformed vecg&rSince the PCA technique
focuses only on second order statistics, it can only ensoceru
relatedness, and not the much stronger requirement oststati
independence.

Independent component analysis [13, 14, 15, 16] is a matfiema
cal technique that precisely accomplishes the desiredafdains-
forming a set of non-Gaussian correlated random variablasset
of random variables that are statistically as independepbasible,
via a linear transformation. ICA has been an active areasefaxeh
in the area of signal processing, feature extraction andaheet-
works due to its ability to capture the essential structdrdada in
many applications. The ICA set up consists of having a vestor

Two random variablesy andY are uncorrelated i£[XY] =
E[X]E[Y], while they are independent if2[f(X)g(Y)]
E[f(X)]E[g(Y)] for any functionsf andg. For instance, ifX and
Y are independent, theli[ X‘Y’] = E[X'|E[Y?]. For Gaussian
distributions, uncorrelatedness is identical to indeped. For a

Peneral non-Gaussian distribution, independence impliesrre-
atedness, but not vice versa.



consisting ofn statistically independent components, - - - , sx,
and observations of linear mixturesz1, - - - , xn, of then inde-
pendent components. The observed components here araitie co
lated non-Gaussian random variab®sn Equation (2), produced
by a linear mixing of the elements of a vectdrof independent
random variables, as follows:

X

= AS 3)
whereA is then x n mixing matrix. Like principal components, the
independent components of vec®are mathematical abstractions
that cannot be directly observed. Similar to the PCA prooedu
which requires normalization of IN( o) variables to N(0,1) vari-
ables, the ICA methods also require centering and whitewiitige
components of vectdX, i.e., prescaling the variables to have zero
mean and unit variance [15]. The problem of ICA is to estimate
the elements of the unknown mixing matri and the samples
of statistically independent components - - - , s,, given only the
samples of the observed veclr Equation (3) can be alternatively
written as:

S = WX wheres;, = W' X = Y7 wiaz; Vi=1,---,n

(4)
Here, W is the inverse of the unknown mixing matrik. Algo-
rithms for ICA estimate the vector$V; that maximize the non-
Gaussianity of W X by solving a nonlinear optimization prob-
lem. Typical measures of non-Gaussianity are kurtosismegpy,
and mutual information; for a comprehensive reference @ Eee
[13, 14, 15, 16].

In the context of our SSTA algorithm, we use ICA as a prepro-
cessing step to transform our correlated set of non-Gausara
dom variables:;, - - - , z,, t0 a set of statistically independent vari-
abless;, - - - , sn, by the relatiorS = WX of Equation (4). As in
[1], the chip area is first tiled into a grid, and the covarmntatrix
associated witiX is determined. Using the covariance matrix, and
the underlying probability distributions of the variabiasx, sam-
ples of the correlated non-Gaussian variables are gedeaatbare
given as input to the ICA module, which produces as outpa, th
estimates of the matrice4 andW. For a specific grid, the inde-
pendent components of the non-Gaussian random variables mu
be computed just once, and this can be carried out as a paeehar
terization step. In other words, ICA need not be recomputed f
different circuits or different placements of a circuitws, the ICA
preprocessing step does not impact the runtime of the SSTA proce-
dure.

ICA is applied to the non-Gaussian paramet®rand PCA to
the Gaussian variabl€g, to obtain a set of statistically indepen-
dent non-Gaussian variabl&€sand a set of independent Gaussian
variablesR.. We then substitute the respective transformation ma-
tricesA and P, in Equation (2) to arrive at the followinganonical
delay model:

D

p+BTS+CTR+e.z
w+ z b,'L-.si + z C;'.Tj +ez
i=1 j=1

whereB'" = BTA[C'T = CT P, ']is the new sensitivity vector
with respect to the statistically independent non-Gauss@anpo-
nents,s1, - - - , s, [Gaussian principal components, - - - , ry,].

4. PREPROCESSING TO EVALUATE THE
MOMENTS OF THE INDEPENDENT
COMPONENTS

The inputs required for our SSTA technique correspond to the
moments of parameters of variation. Consider a processnedea
represented by a random variablg let us denote it&*" moment
by my(z;) = E[zF]. We consider two possible cases:

Case [ If the closed form of the distribution af; is available, and
itis in a standard form (e.g., Poisson or uniform), thep(z;) Vv k

(©)

can be derived from standard mathematical tables and tlaengar
ters of the distribution. For a nonstandard distribution,(z;) V &k
may be derived from the moment generating function (MGF) if a
continuous closed-form PDF of the parameter is known. The mo
ment generating functio®/ (¢) of a PDFf., (x;) is given by

M) = Efe] = / ¢ f (21)ds ©)
Thek'™ moment of; can then be calculated, (z;) = <228 |,_,.

Case II: If a continuous closed-form PDF cannot be determined for
a parameter, the moments can be evaluated from the process fil
as:

mi(z:) = > x"Probabilityz; = z) )

Given the underlying process variables and their momemséxt
step after performing ICA is to determine the moments of the i
dependent components, - - - , s, from the moments of the corre-
lated non-Gaussian parameters: - - , x,,. These momentsp (z;)
E[z¥], are inputs to the SSTA algorithm.

Referring back to the ICA transformation of Equation (X),=
AS, we take the expectation of both sides to obtain:

Elz}] = E[(a11s1 + ai2s2 + - ainsn)”]
Elz5] = E[(a2181 + as2s2 + - aznsn)"]
E[zF] = E[(anis1 + an2s2 + - annsn)"] (8)

wherea;; is an element of the mixing matriA obtained via ICA.

In the above equation, the LHS, which is th€ moment of each
component ofX, is known. The RHS can be simplified by per-
forming an efficient multinomial expansion using binomiab-m
ment evaluation technique [17]. The moments are computed su
cessively, starting from the first to the second to the thard] so
on. For example, after all of the first moments have been ctenpu
the second moment of eashcan be computing by rewriting Equa-
tion (8) usingk = 2 as

Elzf] = iy ai Blstl + 2300 Z;L:i«rl a1ia15 E[si] Els;]
Ela3] = a3, Elsf]+ 2300 Z?:Hl aziaz; E[si] Els;]

: : 9)
Blz?] = Sy a2,B[s?]+250, S0, ) anian; Elsi| Els;]
The only unknowns in the above equation are the second mement
E[s?], of eachs;, and these can be calculated easily.

In general, while solving for th&*® moment ofs; using Equa-
tion (8), all of the(k — 1) moments are known from previous com-
putations. Moreover, since the componentsSdre independent,
we can perform the operatioB|[s{s?] = E[s{]E[s}], and effi-
ciently apply the binomial moment evaluation sclzleme. As-ind
cated by Equation (9), the computation of thi& moment of the
independent components;, - - - , s, requires the solution of an
n X n system of linear equations. Thus, to comp2ild moments
of the independent components, we must sal¥e systems of lin-
ear equations corresponding to (8) foe= 1, --- ,2M. However,
since this is a part of the preprocessing phase, it may biedamt
off-line for a specific technology, and it does not contrétd the
complexity of SSTA.

5. MOMENT MATCHING-BASED PDF
EVALUATION

To compute the PDF/CDF of the delay or arrival time random
variable we adapt the probability extraction sche®BEX, pro-
posed in [17]. GivereM moments of a random variable as input



to the APEX algorithm, the scheme employs an asymptotic wave-
form evaluate (AWE) technique to match th& moments in order

to generate ai/*" order linear time invariant (LTI) system. The

moment computation. We compute the flipped PDIEeﬁ), and
reconstruct the final PDF from the flipped and the original R®F
avoid numerical errors due to the final value theorem, ash [1

scheme then approximates the PDF [CDF] of a random variable The PDF ofD is retrieved from the PDF ab by using the rela-

by an impulse respongg(t) [step response(t)] of the M*" order
LTI system. We refer the reader to [17] for details aboutAREX
algorithm.

We return to the example of Figure 1 to explain moment magghin

tionship:

d— up
oD

@) = gy (4542

example, we must first calculaB/ moments ofD from Equa-
tion (1). Assuming /1, W) to be perfectly correlated identical
Gaussian random variables, arid ( L-) to be perfectly correlated,
and uniformly distributed identical random variables, vesét

D (10)

aW +0b.L,

whereD = D — ji, a = a1 + az andb = by + by. Assuming’

andL. as statistically independent variables, & moment ofD
can be computed by using the binomial expansion formula as:

mi[D] =Y (’j) B m (W)mi—i(Le)

=0

(11

where all of thek moments ofi¥ and L are known from the un-
derlying normal and uniform distributions. Having complg&\/

moments ofD from Equation (11), we can now employ the AWE-

based PDF evaluation scheme to approximate the POF Iof an
impulse response as:

fo(d) (12)

M perid d>0
0 d<o0

wherer [p] are the residues [poles] of the LTI approximation.
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Figure 3: Extracted PDF and CDF for the delay of the example
circuit.

Figure 3 shows the evaluated delay POB (d) = f5(d + p))
and CDF ¢p(d) = Fp(d + p)) of the circuit of Figure 1 using
M = 10 moments. The evaluated PDF matches closely with the
Monte Carlo simulation; the match for the CDF is even better.

We can generalize the PDF evaluation idea, illustrated @ th

precharacterized as in Section 4, we can compute the moroents
the delay and arrival time random variables from Equationk6r
each gate, given the moments of all random variables- - | s,,
r1,- -+ ,Tm, andz, which are all statistically independent with re-
spect to each other, we may use the binomial evaluation métho
compute the2M moments of the gate delay; a similar procedure
will be used to compute the arrival times in the canonicafrfdn
Section 6.

6. SSTA PROCEDURE

From the theory explained in the previous sections, we nax ha
the ability to evaluate the PDF and the CDF of the delay andithe
rival time random variables, expressed in the linear caafiorm,
as a function of Gaussian and non-Gaussian parametersiaf var
tion. In this section, we describe our SSTA framework. It ilw
known that a block-based arrival time propagation procedoy
volves the atomic operations of “sum” and “max.” We will show
how these atomic operations can be performed to produceuti res
that can be represented in the canonical form of Equatian (5)

6.1 The “sum” Operation

The sum operation to add two random variables expresseé in th
linear canonical form of Equation (5) is largely straightfard.
Consider two random variableB; and D, expressed as:

D1 M1 —+ Z?:l b;l .S + Zy;l C;l Ty +e1.21

D> M2 + Z?:l b;2.87; —+ 27:1 692 .1+ e2.z2 (13)
The sumD3 = D; 4+ D, can be expressed in canonical form as:

Ds us + Z?:l b;%SZ + Z;":l C;S .rj +es.z3 (14)
whereus = p11 + po, b, = b;, + bi,, andcj, = ¢;, + b;z.

The one difference here, as compared to the Gaussian cgse (e.

in [1]), relates to the computation of the uncorrelated @aussian
parameteres.z3. The random variables.zs = e1.z21 + e2.22,
serves as a place holder to store the momente0f: + e2.22).

In other words, rather than propagating an uncorrelatecoooent
z in the canonical form, we propagate #3/ moments.

6.2 The “max” Operation

The PDF of the maximum of the twiodependent random vari-
ablesU andV/, given byT' = max (U, V'), can be simply computed
as:

Jr(t) = Fu@)fv(t) + Fv(t) fu(t) (15)

wheref represents the PDF of each random variableZgaitd CDF.
If U, V are not only independent, but can also be expressed in the
canonical form of Equation (5), then the PDF and CDFofan

above example, to compute the PDF (CDF) of any random delay pe easily computed using the PDF evaluation technique ibescr

variable expressed in the canonical form of Equation (5).stch
a delay variable witli = m + n + 2 terms, the binomial moment
evaluation procedure can be employed to calculate2fi®e mo-
ments, as long as dllvariables in the delay expression are statisti-
cally independent. The canonical form expression of Equah)
satisfies this independence requirement by construction.

We have enhanced the PDF evaluation algorithm in [17] for bet
ter numerical accuracy and stability. Instead of evalggtive PDF
of a random variableD directly, we first prescale it by defining a

new random variabld) = D;%, and evaluate the PDF db.

Without the prescaling step, the higher order moment®afan
become extremely large and affect the numerical accuradieof

in Section 6, in a closed form using Equation (15).

However, in general, two arrival time random variahles and
As, expressed in the canonical form of Equation @),not sat-
isfy the independence requirement above, as they may beth ha
nonzero coefficients associated with anand/or anr;. Fortu-
nately, it is possible to work around this by using a simplghte
nigue that permits the application of Equation (15) to cotaphe
PDF of random variablél ;.. = max(A1, A2). Letus begin with
the canonical expressions fdn and A;:

Ax po D00 by s+ 0T €y ez
Aoy M2 + Z?:l b;z .S + Z;nzl C;z .rj+ez2.z2 (16)



The operatiord ... = max(A1, A2) can be now simplified as:

Amaz = W +max(U,V) a7
where
W= blys1+ci,r+ 30, b s+ 3070, ¢, (18)
U = m+(by, —b,).s1+(c1, —ci,)m+ern
Vo= pe 3, (bi, = b)) s+ 20T o (c, — )i+ ezze

The above representation of the max operation ensuresthedn-
dom variableg€/ andV involved in the max operatiomax (U, V'),
are statistically independent as they do not share anyblasia

Therefore, from Equations (15) and (17), we can wWrtg,, =
W + T. We begin by calculating the mean and standard deviation
of Apmaz; NEXt we will expressi ... in the canonical form.

We use Equation (15) to obtain the distributionA4f,..: note
that this is applicable sindg andV are independent by construc-
tion. Using this closed-form PDFr(t), we can computg from
the first principles agir = E[max(U, V)] = [%_tfr(t)dt, and
the variance as7 = [~ t* fr(t)dt — (E[max(U, V)])*.

However, Equation (15) does not provi#ien the desired canon-
ical form and it must be written in this manner for further paga-
tion. Given that4,,.. = W + T, we use Equation (18) to observe
that W is in canonical form. If we could express in canoni-
cal form as well,A,.... could be easily written in the canonical
form. We employ the idea of tightness probability [2], to g5
T = max(U,V) as:

T MT+211

Our discussions in the previous sections provide us withfalie
machinery required to efficiently compute the tightnes$phility,

= ProbabilitfU > V). We define a random variablg =

pSi T 20 Ciprg +erzr (19)

canonical representation of Equation (19). Thus, all oftdrens
required to represerft = max(U, V') back to the canonical form
have been determined. As a final step, referring back to Equa-
tion (17), we perform the sum operation betwdéhand T =

max (U, V') to complete the computation @, = max(A1, As2).

7. COMPUTATIONAL COMPLEXITY

ANALYSIS

Considering the steps to generate the ICA mixing matrjxhe
PCA transform, and the moments of the independent comp®nent
si, *+ ,Sn @S a one time precharacterization cost, the computa-
tional cost of the main steps in the SSTA procedure consists o
performing the sum and max operations during the circuiplgra
traversal. The sum operation has a time complexit96f + m),
wheren is the number of non-Gaussian independent components
andm is the number of Gaussian principal components. The cost
of performing the max operation 8(M (n + m)), where2M is
the number of moments evaluated for each random variable. In
practice, M is upper-bounded by a small constant, and excellent
solutions are obtained fa¥/ < 10. Thus, the complexity of the
max operation i€)((m + n)). For a circuit with|G| gates, each
with bounded fanin, the overall time complexity of the SST&p
cedure isO((m + n)|G|). Sincem andn are bothO(g), where
g is the number of grids, the time complexity for our SSTA proce
dure, incorporating both Gaussian and non-Gaussian pégesnis
O(g|GY), which is the same as that of SSTA techniques considering
only Gaussian variables [1, 2].

8. EXPERIMENTAL RESULTS

The proposed SSTA algorithm was implemented in C++, us-
ing theMinSSTA code [1], and tested on edge-triggered ISCAS89
benchmark circuits. All experiments were performed on Hrdik
machines with a clock speed of 3.2GHz and 2GB memory. The

V U, and use the sum operation defined in Section 6.1 to expressFastiCA package [18] and thkcasso software [19], were used to

the Q in the canonical form. Next, employing the technique in

Section 5, we compute th&\/ moments ofQ, and evaluate the
CDF, F5(g), as a step response of the approximated LTI system
as:

Zfi1 g(emﬁ -1) ¢>0 20
' Gg<0 (20)

wheref andp are the residues and poles of the approximatgtt
order LTI system. The tightness probabilityis given by 5 (0),

since Probability”/ > V') = Probabilit( Q < 0) = F5(0).
Therefore, we see that unlike [3], we do not need to employ
computationally expensive numerical integration methiodsigh

dimensions for non-Gaussian parameters. The ability topcien
the tightness probability analytically, from the evaluated CDF of

(Q = V —U), makes our SSTA procedure very efficient and allows
us to process a much larger number of non-Gaussian variables
Havmg computed the tightness probabilipy, the sensitivities

b; andzr of T = max (U, V') in Equation (19) can be writ-

té?lylnthe'rms of the sensitivities &f andV'. Specifically:
b;T = p.biU —|—(1—p).biU Vi=1,---,n
¢ = pcy, +(1—p)c;, Vi=1,,m (21)

Recall that the:r.zp term in Equation (19) is a placeholder for the
moments of the uncorrelated parameter: the moments-afan
also be computed using the tightness probability:assigned the
moments of the random variablg.ev .z + (1 — p).ev.zv).

The use of tightness probabilities is only a heuristic arftessi
from problems of accuracy. Therefore, to reduce the errahén
heuristic, we use the values of the meam, and varianceg%,
computed exactly earlier frorfir (¢). The coefficiener of the un-
correlated random variabler is determined so that we match the
variance of the closed-form PDF df, cr%, with the variance of

obtain the ICA transform of Equation (3). To generate saspfe
correlated non-Gaussian parameters, required as inptlis fas-
tICA code, we use the method nérmal copula [20]. For all the
experiments, we generate 5000 samples of each non-Gapssian
rameter to feed to the ICA module. We use the Elmore delay mode
and the first order Taylor series terms to represent the dealate-

lay model of Equation (2). However, clearly this is not arieson,

as our canonical form is similar in form to that in [1, 2].

We consider the effective channel lengih, the transistor width
W, and the dopant concentratioN, as the sources of variation.
The parameterd.. and W are modeled as correlated sources of
variations, and the dopant concentratidf, is modeled as an in-
dependent source of variation. The same framework can lig eas
extended to include other parameters of variations. Foplgiity,
our current implementation ignores the effect of the inpghal
transition time on the delay at the output port of the gatevéie@r,
according to the technique described in [12], our SSTA ptace
can also be extended to incorporate and propagate thebdistrs
of the signal transition times. As described in [12], one espress
slope at the output pin of the gate as a probability weighted s
of distributions of the slope from all input pins to the outgin
of the gate. In our SSTA framework, we can efficiently compute
these weights as closed-form probabilities, using the AvéEed
PDF extraction scheme.

We use the grid-based model of [1] to generate the spatial cor
relations for thelW and L. parameters. Due to the lack of ac-
cess to any real wafer data and process data files, we do net hav
the required information to realistically model the parsnelis-
tributions. We modelL. of gates in each grid as non-Gaussian
parameters, antV/ of gates in each grid as Gaussian parameters.
For the correlated non-Gaussién parameters, we randomly as-
sign to L. in each grid either a uniform distribution iz, —
V3.0r., urL, + V/3.01.], or a symmetric triangular distribution
in[pr, —3.01., 1L, + 3.0L.]. The independent paramet¥y, is
assumed to follow a Poisson distribution. Theando values of



Benchmark Error (35TAZMC o7 Error (LCGauss —1C o7y CPU Time (sec)

Name | #Cells | # Grids N o 95% Pt | 5% Pt 7 o PPt 5% Pt SSTAgauss|1] SSTA MC
s27 13 ! -0.09% | -0.34% | -0.75% | 0.79% | 0.56% | 3.23% 8.56% 2.04% 0.0 11 6.0
s1196 547 16 -0.23% | -0.67% | -0.87% | -0.53% | 0.84% | 8.82% | 11.27% | 2.21% 1.2 8.3 634.2
s5378 2958 64 0.31% 1.12% 1.21% 1.28% | 0.98% | 10.23% | 10.91% | 1.21% 17.1 41.6 3214.4
s9234 5825 64 0.82% 1.78% 1.32% | -1.48% | 1.88% | 15.32% | 15.28% | -1.83% 20.3 137.9 4756.6
s13207| 8260 256 1.58% 2.34% | -2.54% | 2.89% | 2.96% | 28.13% | 18.34% | -2.13% 108.6 303.6 8532.1
s15850| 10369 256 1.85% | -2.12% | 3.36% 3.61% | 2.63% | 22.12% | 17.62% | 3.16% 110.8 410.8 9587.8
s35932( 17793 256 -1.07% | 2.78% | 4.01% | 3.57% | 2.34% | 26.71% | 19.17% | 3.31% 315.2 761.4 | 10156.5
s38584 ( 20705 256 1.65% | -3.56% | 3.89% | 3.91% | 2.21% | 25.67% | 18.28% | 2.95% 322.4 910.6 | 18903.3
s38417 | 23815 256 1.34% | 3.78% | 3.37% | 3.22% | 2.81% | 34.62% | 21.63% | 2.51% 377.3 1235.6 | 22398.5

Table 1: Comparison results of the proposed SSTA with Monte @rlo simulation

the parameters are based on the predictions from [21]9om
technology, we usgw = 150nm, pur, = 60nm, ow = 7.5nm
andor, = 4nm. For the independent paramef€; modeled as a
Poisson random variable, we ugg, = 10 x 10'"em ™ for both
nmos and pmos.

by

0.03

assuming normality for parameters. The distributioncfioms

evaluated by SSTA approach are able to match, within reégpna
small errors, the real distribution functions.

PDF Curves CDF Curves

Table 1 shows a comparison of the results of the Monte Car
(MC) simulations with our SSTA procedure for each benchmar
using 10,000 MC samples, based on the same grid model. The sés
ples of correlated non-Gaussian parameters for MC sinauigitire
also generated using the method of normal copula. We contipare
mean ), the standard deviatiow}, the 95% and the 5% quantile
points of the delay distribution obtained from our SSTA sobe
with those generated from the MC simulations as the metriics
accuracy. As seen in Table 1, the results of the proposed SS
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scheme are quite close to that of MC simulations. The avevshge
the absolute errors, across the nine benchmark circuits 9820
for p, 2.05 % foro, 2.33% for the 95% point, and 2.36% for the
1% quantile point. These errors are reasonably small as axadp
to the accuracy penalty paid by assuming the incorrect nadiea
tribution modeling of parameters. Columns eight to eleviefeble
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Figure 4: A comparison of SSTA and MC distribution for cir-

1 show the error incurred when modeling the non-Gauskiapa- cuit s38417.

rameters as normally distributed random variables andpaifig

MC simulations, termed ak/ Ccq.ss, for each benchmark circuit. 9, REFERENCES
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