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Abstract— State of the art statistical timing analysis (STA) tools
often yield less accurate results when timing variables become
correlated. Spatial correlation and correlation caused by path
reconvergence are among those which are most difficult to deal
with. Existing methods treating these correlations will either
suffer from high computational complexity or significant errors.

In this paper, we present a new sensitivity pruning method
which will significantly reduce the computational cost to consider
path reconvergence correlation. We also develop an accurate and
efficient model to deal with the spatial correlation.

I. INTRODUCTION

when technology scales down to nanometer regime, envi-
ronmental and process parameter variation will significantly
affect circuit performance. Traditional corner-based timing
analysis will generally be too pessimistic. Statistical timing
analysis(STA) that characterizes timing delays as statistical
random variables as a function of these parameter variations
offers a better approach for more accurate and realistic timing
prediction.

In literatures, there are two distinct approach for STA: path-
based STA and block-based STA. The fundamental challenge
of the path-based STA [2], [7], [9], [10] is its requirement
to select a proper subset of paths whose time constraints are
statistically critical. This task has a computation complexity
that grows exponentially with respect to the circuit size, and
hence can not be easily scaled to handle realistic circuits.

This potential difficulty has motivated the development
of block-base STA [1], [3]-[6], [11], [13] that champions
the notion of progressive computation. Specifically, statistical
timing analysis is performed block by block in the forward
direction in the circuit timing graph without looking back to
the path history. As such, the computation complexity of block
based STA will grow linearly with respect to the circuit size.

Howeyver, to realize the full benefit of block based STA,
one must solve a difficult problem that timing variables in a
circuit could be correlated due to inter-parameter dependency,
chip-to-chip variation, within-chip spatial dependency, path
reconvergence of the circuit. In [13], a framework called
extended pseudo-canonical timing model has been proposed
to take all these correlations into account for accurate timing:
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for a circuit with N gates and M global variation sources:

N M
X = px+Y oxiRi+) Bx;G;
i=1 j=1
= px +axr+pBxg (1)
where r = [Ry, - - , Ry]* represents gate’s localized indepen-
dent variations and g = [G1, - -+ , G ]*s are global variations

which may be correlated F{gg*} = X.

By including the local variation terms R; in the timing
model, all path recovergence correlations can be automatically
addressed but the increasing number of local variation terms
can potentially cause significant penalty in CPU time when
big circuit is analyzed. By allowing the global variations
to be correlated, the timing model in equation (1) provides
the capability to adapt arbitrary global parameter dependency,
including spatial correlation, into consideration. But it is not
clear how to use this timing model to treat the important spatial
correlation since the only existing spatial correlation model in
literature, quad-tree model, has significant errors.

A. Path Reconvergence

As mentioned above, the penalty to consider the path re-
convergence correlation using the extended pseudo-canonical
timing model is the worst-case timing complexity will be
O[N?] instead of O[N] since we have to traverse all local
variation terms in equation (1) for every timing step. Authors
in [13] propose to reduce the computation complexity by
lumping small terms in the local variation sensitivity ax =
[a X1, ,OéX,N]* into an independent term. However, the
worst-case timing complexity under such simple lumping
approach, is still quadratic with respecting to the circuit size.
For example, for the circuit shown in figure 1, the lumping
mechanism discussed in [13] will not work effectively since
no local sensitivities can be lumped and the overall timing
complexity will still be O[N?].
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Fig. 1: Circuit with linear structure has timing complexity
O[N?] since no small local sensitivity terms can be lumped



B. Spatial Correlation

The only known spatial correlation model in literature is the
so-called quad-tree model proposed in [1]. It covers the chip
with grids and a structure of quad-tree is built to connect the
grids cells together and the correlations between the parame-
ters in the grid cells are represented by number of parent nodes
they shared. However, this model might cause significant error
since there are always nodes which are spatially very close to
each other but belong to different subtrees in the quad-tree.
So the correlation between these nodes might be significantly
underestimated by this model.
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Fig. 2: Quad-tree model underestimates the spatial correlation
between wire segments 4 and 5

For example, if the quad-tree method is used to model
the spatial correlation in an eight-segment straight wire, as
illustrated in figure 2, the quad-tree will becomes a binary tree
if the quad-partitioning is along the wire. It is obvious that the
correlation between wire segments 2 and 3, 4 and 5 will be
similar to that between wire segments 1 and 2 since they are
similarly spatially separated. But according to the quad-tree
method, the spatial correlation between 1 and 2 will be the
largest, that between 3 and 4 will be second and that between
4 and 5 will be the smallest. So the guad-tree model fails to
give similar spatial correlation when distance is similar.

C. Our Contribution

In this paper, we present solutions for both problems above.
Specifically,

o By considering the fan-out number of gates, a fanout-
based sensitivity pruning method, in addition to the
original simple lumping method in [13], is developed to
treat the correlation caused by path reconvergence and
significant reduction in the number of local sensitivity
terms is observed for benchmark circuits.

o We develop an analytical spatial correlation model with-
out artificial errors as in quad-tree model. We propose to
associate the grid size with the spatial correlation distance
so as to efficiently integrate such an analytical model into
statistical timing with the framework of [13].

The rest of the paper is organized as following: Section II
discusses the fanout-based sensitivity pruning method; Section
IIT describes our analytical spatial correlation model and the
method to integrate such model into the statistical timing
analysis; Section IV discusses the linear complexity of our
timing algorithm with respecting to the circuit size and the
total number of global variations; Section V presents a real
implementation of our method in C/C++ and the testing
result with ISCAS85 benchmark suites; Section VI gives the
conclusions.

II. FANOUT-BASED SENSITIVITY PRUNING

In previous section, we mentioned that the extended pseudo-
canonical timing model will suffer from the quadratic compu-
tation complexity to consider the correlations caused by path
recovergence even with the simple lumping method introduced
in [13]. This problem, however, can be greatly alleviated by
considering the fanout number of gates.

For example, for the partial circuit shown in figure 3, if all
local sensitivities involved in arrival times A,B,C and D are
significant, then the simple lumping introduced in [13] will
not reduce the number of the local sensitivity terms in the
extended pseudo-canonical model. But if the fanout number
of each gate is considered, some local sensitivity terms can
still be pruned as illustrated in figure 3.
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(a) Before fanout-based sensitivity pruning
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(b) After fanout-based sensitivity pruning

Before fanout-based pruning

A= - +aaRo+ -
B=--+apyRo+apiRi+---
C=-+acoRo+ac2Ro+ -
D=---4+apoRo+apiRi +apsRy +apsRs + -

Average number of terms = 2.25

After fanout-based pruning

A= FasnR+ -
C=-+acoRo+ac2Ra+ -+
D= -+aD0R0+\/042,31—1—04%24-042,33}334—-“

Average number of terms = 1.75

Fig. 3: Fanout-based sensitivity pruning for arrival times
A,B,C and D in an example circuit

Specifically, when the arrival time D is computed, we
can lump the local sensitivities ap1, ape and aps together
because any path reconvergence related with gates 1 and 2 will
always involve gate 3 due to the fact that gates 1 and 2 only has
ONE fanout to gate 3. In another word, the path information
included in the local variation term R3 will automatically



imply the path information included in local variation terms
Ry and R,. With such, lumping the local sensitivity of R; and
Ry into R3 will reduce the path information redundancy and
so that improve the computation efficiency. So such fanout-
based sensitivity pruning will help gaining timing performance
but will NOT hurt the timing accuracy since it is redundancy
reduction instead of approximation.

The interesting thing we notice from the example circuit is
that in the arrival time D, the local variation Ry can also be
lumped since gate 0’s two fanouts have converged at gate 3.
But it is difficult to decide such situation dynamically in timing
analysis since it needs path trace which is computationally
expensive. So the practical rule for fanout-based sensitivity
pruning is:

If gate m has only one fanout to gate n, then perform
sensitivity pruning when computing the arrival time
at gate n’s output as:

— [A2 2
An,new = A + arL,old

It is also interesting to look back to section I. For circuit
shown in figure 1, our fanout-based sensitivity pruning will
work most efficiently since every gate in the circuit will
have only one fanout and so that they are all right pruning
candidates. So such worst case for the original simple lumping
method actually becomes the best case for the proposed
fanout-based sensitivity pruning method.

III. ANALYTICAL SPATIAL CORRELATION MODEL

It has been widely known that the global parameters affect-
ing the gate delays, such as gate length L, voltage supply
V, temperature T' etc., are not independent to each other.
They might, on the other hand, correlate spatially, [8] i.e.,
devices nearby will have similar value of global parameters. So
the fundamental property of the spatial correlation is that the
correlation between the global parameters for gate at different
positions will be a function of the distance between positions:
the longer the distance, the smaller the correlation.

A. Exponential Spatial Correlation

Our approach for spatial correlation is to assume the cor-
relation follows an analytical function of the distance. Such
function can fundamentally be any analytical function that
fits real calibration on silicon. As an illustrative example,
here it is assumed to be an exponentially decay on the
distances although the methodology here is not restricted to
such exponential form. For a global parameter G, as illustrated
in figure 4(a), the covariance between the global variations at
positions ¢ and j will be:

cov(Gy,Gj) = aéexp(—:i) ()
c
where o2 is the variance of the considered global parameter,
r;; is the distance between positions ¢ and j; constant 7 is
the characteristic spatial correlation distance of the considered
global parameter. The longer the 7, is, the stronger the spatial
correlation.

B. Spatial Correlation Resolution

To incorporate such analytical spatial correlation model into
statistical timing analysis, the chip of the circuit is covered
by grids and each grid cell is assigned an individual random
global variation for the considered global parameter as shown
in figure 4(a). All gates in the grid cell share the same global
variation as assigned if the considered global parameter affects
the gate delay. Different global parameter may be associated
with different grids since they may have significant different
spatial correlation distance.

Intuitively, it is desired for high modeling accuracy to have
very fine grid. But fine grid will result in large covariance
matrix so that it is not beneficial for it will significantly
degrade the performance of the timing analysis. The key
strategy we proposed to make a good trade-off between such
accuracy and performance is to decide the grid size based
on the spatial correlation distance of the considered global
parameter through a user-defined parameter of resolution:

correlation_distance = resolution x grid_cell_size

So fine grid is only applied when the correlation distance is
short or a high resolution is demanded. Although it seems
that fine grid is inevitable since there is no guarantee that
correlation distance is always large, performance will still be
reasonable because the sparsity of the covariance matrix will
be controlled by the resolution parameter.
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Fig. 4: Spatial correlation matrix for a global parameter with
spatial correlation distance r. = 100um

As shown in figure 4, the covariance matrix will always have
a “band” structure where the number of bands in the matrix is
decided by the user-defined parameter resolution. The higher
the resolution, the more bands and the less sparsity of the
matrix. With the same resolution, the number of significant



elements in the covariance matrix is proportional to the number
of global variations, i.e. the size of the covariance matrix.

IV. STATISTICAL TIMING COMPLEXITY

If time variables are with the extended pseudo-canonical
timing model as in equation (1), the variation and covariance
between such time variables will be [13]:

ox = axax +BxEBx 3)
cov(X,Y) = akay + 85xE8y 4)

Consider the “band” structure of the covariance matrix X as
show in figure 4, the complexity to compute the variance and
covariance will be O[I'+ M| where I is the average number of
sensitivity terms in o and M is the size of the 3 or the total
number of global variations. Since such variance/covariance
evaluation has to be done at each timing step, the overall
complexity of statistical timing will be O[(T' + M)N]| which
is still linear the circuit size N since I' << N usually.

Since the number of bands in ¥ is controlled by the
user-defined parameter of resolution, the higher the reso-
lution, the more bands in the matrix and the longer the
variance/covariance computation time. On the other hand,
the higher the resolution, the finer the grid, the more accu-
rate of the correlation model. So the user-defined parameter
resolution provides a good way to trade off accuracy and
complexity in considering spatial correlation for statistical
timing.

V. SIMULATION RESULTS AND DISCUSSIONS

The above described algorithm has already been im-
plemented in C/C++ and tested by ISCAS85 benchmark
circuits. All tested circuits are synthesized using Design
Compiler® from Synopsys®. Library cells used are charac-
terized by Spice monte carlo simulation with Cadence'<tools
of Spectra®® in 0.18um technology and a 10%(c /1) variation
is assumed in those process parameters. To model the spatial
correlations, all tested circuits are placed by Dragon [12].

For illustration purpose, only three parameter variation are
considered global: channel length(L), supply voltage(Vdd) and
temperature(T). Although it is not necessary, their correlation
distances are all assumed to be the same as 100um. All other
variation sources specified in the 0.18um technology file are
assumed to be localized in the considered gate only.

Circuit Name c432 c499 c880 cl1335 ¢1908
Gate Counts 186 399 330 454 383
T’ without FBSP 22.7 2.6 3.7 4.1 4.1
I" with FBSP 11.8 2.0 2.7 34 2.9
I" reduction rate 48% 23% 27% 17% 29%
Circuit Name 2670 c3540 c5315 c6288 c7552
Gate Counts 501 820 1237 2363 1777
T without FBSP 7.2 8.4 4.1 29.6 5.6
T with FBSP 44 5.0 2.7 20.9 3.8
T reduction rate 39% 40% 34% 29% 32%

TABLE I. Average number of local sensitivity terms(I') w/o
fanout-based sensitivity pruning(FBSP). The average I' reduc-
tion rate = 32%

To test the effect of the proposed fanout-based sensitivity
pruning method, all benchmark circuits are analyzed by out
statistical timing engine with without the sensitivity pruning
method and the average number of local sensitivity terms
are summarized in table I. In average, 32% of sensitivity
reduction is achieved with the fanout-based pruning method.
As discussed in section II and verified in table II, such
sensitivity reduction will not affect the accuracy of the timing
analysis although we can expect significant performance for
large circuits.

Before FBSP After FBSP

Circuit | plps] [ olps] | plps] | olps]
c432 1285 221 1287 219
c499 625 127 625 127
c880 802 158 802 158
c1355 790 189 790 189
c1908 931 207 931 207
¢2670 973 138 974 139
¢3540 1214 171 1214 172
c5315 920 125 919 125
c6288 4137 444 4137 444
c7552 1316 188 1317 187

TABLE II: Fanout-based sensitivity pruning(FBSP) will not
affect timing accuracy

It has been mentioned in Section IV that the timing com-
plexity will be linear with respecting to the number of global
variations if the spatial correlation is considered using our
analytical model. This conclusion is clearly shown in figure 5
where different resolution is applied for circuit c6288 to get
different number of spatially correlated global variations.
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Fig. 5: Timing Complexity with respecting to the number of
global variations

VI. CONCLUSIONS

To consider the correlation caused by path reconvergence,
this paper presents a novel method to additionally reduce the
timing complexity with no accuracy penalty by introducing
a fanout-based local sensitivity pruning method,. In average,
32% of sensitivity term reduction is observed in ISCAS85
benchmark circuits.

An analytical spatial correlation model is also proposed
to avoid the artificial error in the existing quad-tree model.



By constructing the grid covering the circuit according to
the spatial correlation distance, the overall complexity of the
timing analysis becomes linear with respecting to the total
number of grid cells. A convenient parameter named resolution
is used to make trade-off between the timing performance and
spatial correlation accuracy.
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