

Statistical timing for parametric yield prediction of digital
integrated circuits
Citation for published version (APA):
Jess, J. A. G., Kalafala, K., Naidu, S. R., Otten, R. H. J. M., & Visweswariah, C. (2006). Statistical timing for
parametric yield prediction of digital integrated circuits. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 25(11), 2376-2392. https://doi.org/10.1109/TCAD.2006.881332

DOI:
10.1109/TCAD.2006.881332

Document status and date:
Published: 01/01/2006

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 25. Aug. 2022

https://doi.org/10.1109/TCAD.2006.881332
https://doi.org/10.1109/TCAD.2006.881332
https://research.tue.nl/en/publications/1f26be96-7d64-4ad4-b701-d3a8212d1886

2376 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Statistical Timing for Parametric Yield Prediction of
Digital Integrated Circuits

Jochen A. G. Jess, Associate Member, IEEE, Kerim Kalafala, Srinath R. Naidu, Ralph H. J. M. Otten,
and Chandu Visweswariah, Fellow, IEEE

Abstract—Uncertainty in circuit performance due to manufac-
turing and environmental variations is increasing with each new
generation of technology. It is therefore important to predict the
performance of a chip as a probabilistic quantity. This paper
proposes three novel path-based algorithms for statistical timing
analysis and parametric yield prediction of digital integrated
circuits. The methods have been implemented in the context of
the EinsTimer static timing analyzer. The three methods are com-
plementary in that they are designed to target different process
variation conditions that occur in practice. Numerical results
are presented to study the strengths and weaknesses of these
complementary approaches. Timing analysis results in the face of
statistical temperature and Vdd variations are presented on an
industrial ASIC part on which a bounded timing methodology
leads to surprisingly wrong results.

Index Terms—Digital integrated circuits, timing.

I. INTRODUCTION

Y IELD LOSS is broadly categorized into catastrophic
yield loss (due to contamination and dust particles, for

example) and parametric or circuit-limited yield loss, which
impacts the spread of performance of functional parts. This
paper presents three algorithms for statistical timing analysis
and parametric yield prediction of digital integrated circuits due
to both manufacturing and environmental variations.

With each new generation of technology, variability in chip
performance is increasing. The increased variability renders
existing timing analysis methodology unnecessarily pessimistic
and unrealistic. The traditional “bounded” or “corner-based”
static timing approach further breaks down in the case of mul-
tiple voltage islands. The International Technology Roadmap
for Semiconductors [1] has identified a clear need for statistical
timing analysis.

The algorithms in this paper pay special attention to corre-
lations. Capturing and taking into account inherent correlations
are absolutely the key in obtaining a correct result. Correlations

Manuscript received December 2, 2004; revised July 12, 2005. This paper
was recommended by Associate Editor F. N. Najm.

J. A. G. Jess and R. H. J. M. Otten are with the Department of Electrical
Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The
Netherlands (e-mail: j.a.g.jess@ele.tue.nl; otten@ics.ele.tue.nl).

K. Kalafala is with the IBM Microelectronics Division, East Fishkill,
Hopewell Junction, NY 12533 USA (e-mail: kalafala@us.ibm.com).

S. R. Naidu was with the Department of Electrical Engineering, Eindhoven
University of Technology, 5600 MB Eindhoven, The Netherlands. He is now
with Magma Design Automation Pvt., Ltd., Bangalore 560017, India (e-mail:
srinath@magma-da.com).

C. Visweswariah is with the IBM T. J. Watson Research Center, Yorktown
Heights, NY 10598 USA (e-mail: chandu@us.ibm.com).

Digital Object Identifier 10.1109/TCAD.2006.881332

occur because different paths may share one or more gates, and
because all gate delays depend on some global parameters such
as junction depth or ambient temperature. All methods in this
paper fully take into account both classes of correlations and
are equipped to handle deterministic across-the-chip variations.
This paper does not directly address spatial correlation across
a chip, but our methods can be extended to handle it as well,
using the same principle as suggested in [2].

II. PREVIOUS WORK

There is a wealth of literature on parametric statistical timing
analysis and yield prediction. The problem was first proposed
in the context of statistical program evaluation and review
technique (PERT) where the objective was to calculate the
probability distribution curve of the project completion time,
given that the subtasks in a task graph were random variables
drawn from some distribution. The problem was quickly recog-
nized as falling in a difficult complexity class known as the
#P-complete class. This meant that it was impossible to produce
in polynomial time a constant-factor approximation of the true
probability distribution curve of project completion time. The
statistical PERT problem is covered in the paper of Nadas [3],
and the theoretical complexity of the problem was established
by Hagstrom [4]. Bounds on the project completion time were
proposed by Kleindorfer [5] and Dodin [6].

In the context of integrated circuits, statistical timing meth-
ods may broadly be classified into performance-space methods
that manipulate timing variables such as arrival times and slacks
as statistical quantities, and parameter-space methods that per-
form manipulations in the space of the sources of variation.
In the performance space, we are conceptually interested in
integrating the joint probability density function (JPDF) of the
delays of all paths over a cube of side equal to the required delay
and of dimensionality equal to the number of paths. In other
words, it amounts to the integration of a complicated JPDF
over a simple integration region in high-dimensional space.
In parameter space, on the other hand, we are interested in
integrating the JPDF of the sources of parametric variation over
a complex feasible region in relatively low-dimensional space.

Another broad classification of the statistical timing methods
is to divide them into two categories: block-based methods and
path-based methods. Block-based methods have linear com-
plexity and are amenable to incremental processing, as noted
by [2] and [7], while path-based methods are more accurate
in that they better take into account the correlations due to
reconvergent fan-out and spatial correlation.

0278-0070/$20.00 © 2006 IEEE

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

JESS et al.: STATISTICAL TIMING FOR PARAMETRIC YIELD PREDICTION OF DIGITAL INTEGRATED CIRCUITS 2377

Monte Carlo and modified Monte Carlo methods have often
been used as in [8] where the yield is estimated by means
of a surface integral of the feasible region. In the context of
digital circuits, Gattiker et al. [9] consider the probability of
each path meeting its timing requirement, but ignore correla-
tions between paths. An extremely efficient discrete probability
approach in the performance space was proposed in [10] and
[11], but the path reconvergence is handled with difficulty and
global correlations are ignored. A good source of information
about the statistical design is in [12]. A recent performance-
space probabilistic framework was proposed in [13] but has a
restricted domain of application.

III. MOTIVATION

Unfortunately, most existing methods take into account one
or other type of correlation mentioned in the previous section,
but not both. An example of a work that takes both types of
correlations into account is in [2]. Their modeling approach is
similar to ours, but our algorithms are different. They also often
neglect the dependence of slew (rise/fall time) and downstream
load capacitance on the sources of variation. This paper pro-
poses a unified framework to handle correlations due to path
sharing as well as correlations due to the fact that the gates on
the chip are affected by the same set of global parameters. It
is crucial to take both types of correlations into account if we
are to accurately predict yield. This paper builds on the ideas
contained in [14].

Any methodology for statistical timing analysis must be
able to handle different process conditions. It is possible that
no single method will be able to accurately predict yield for
all performances in all types of conditions. It is therefore
desirable to develop a suite of methods, which can target
different situations (low yield/high yield, few sources of global
variation/many sources of global variation). This paper is an
attempt to construct such a suite of methods. We propose two
methods that operate in the space of manufacturing variations
(parameter space) and one method that operates in the space of
path delays. The three methods have complementary strengths
and weaknesses as outlined below.

1) The first method proposed in this paper, the paral-
lelepiped method, is best suited for a situation with a
small number of sources of global variation. It provides
a guaranteed lower bound on the true probability distrib-
ution curve of circuit delay and a “useful” upper bound
on the true probability distribution curve. A “best-guess”
estimate of the true curve can also be produced which in
practice approximates the real curve fairly well.

2) The second of the methods proposed in this paper, the
ellipsoid method, is less sensitive than the first method to
the number of sources of variation and is highly effective
at low yields. It also provides information that can be used
to tune the circuit to improve yield. However, it cannot be
directly used when there are many critical paths in the
circuit. We propose a novel preprocessing step to reduce
the number of paths that need to be considered.

3) The last method proposed in this paper is a performance-
space method (which operates in the space of path arrival

times) whose chief advantage is its extremely low time
complexity. It is intended for use in situations where a
quick estimate of yield is desired.

IV. MODELING

All three methods presented in this paper assume that the
delay and slew (or rise/fall time) of each arc of the timing graph
are linear functions of the sources of variation, similar to the
assumptions in [9], [15], and [16], for example. However, the
nominal delays and slews and the sensitivity coefficients can
be location dependent to accommodate deterministic intrachip
variability. The actual statistical timing analysis consists of
two phases. In the first phase, a representative set of paths
is gathered by the timing analysis program after a nominal
timing analysis. The sensitivity coefficients of each “complete”
path (including the launching and capturing clock paths if any)
are computed and accumulated by path-tracing procedures. In
the second phase, the statistical timing engine predicts the
distribution of the minimum of all the path slacks. Path slack is
defined as the difference between the required time and arrival
time of the signal along the path. All methods work off of a
common timing graph and path-tracing procedure.

The slack of each of P paths is modeled as

si = snom
i +

n∑
j=1

Aij∆zj (1)

where si is the slack of the ith path (a statistical quantity),
snom

i is the nominal slack, n is the number of global sources
of variation, Aij is a P × n matrix of path sensitivities, and δzj

is the variation of the jth global parameter from its nominal
value. Delay, slew, and loading effects are taken into account in
the coefficients of A in our implementation using the concept of
chain ruling. The slew u can be expressed as u = k1 + k2∆z.
Delay can be expressed as d = k3 + k4u+ k5∆z. Substituting
in this expression for the slew, we obtain k4k2 + k5 as the
sensitivity coefficient of delay to the process variations ∆z.

For a required slack ρ, we can write the following:

F =

∆z|snom

i +
n∑

j=1

Aij∆zj ≥ ρ, i = 1, 2, · · · , P

F =

∆z|dnom

i +
n∑

j=1

−Aij∆zj ≤ ηi, i = 1, 2, · · · , P

 .

(2)

Here, dnom
i is the nominal delay of the ith path and ηi =

νnom
i − ρ where νnom

i is the nominal required time of the ith
path. Each of the above P constraints represents a hyperplane in
n-dimensional parameter space, on one side of which the path
has sufficient slack and on the other side of which it is a failing
path. The intersection of all the “good” half-spaces forms a
convex polytope and is defined as the feasible region. The goal
of the parameter-space methods is to integrate the JPDF of the

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

2378 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Fig. 1. Feasible region defined by hyperplanes.

sources of variation in the feasible region. Mathematically, this
integral can be expressed as

Y =
∫∫

· · ·
∫
F

f(∆z1,∆z2, . . .∆zn)d∆z. (3)

This procedure is repeated for a range of η values to produce
the entire slack versus the yield curve.

In Fig. 1, we show a feasible region in two dimensions. The
dotted concentric circles represent a JPDF, which we wish to
integrate over the feasible region. The value of the integral is
the yield value for a particular slack value. When the slack value
changes, the hyperplanes are shifted along their normal vectors
to get a new feasible region.

The methods we propose in this paper do not directly handle
spatial correlation. However, they can easily be extended to
handle it. The method used in [2] is to divide the chip into
subregions using a grid. Then, for any given process parameter,
they assume different random variables for the individual grid
buckets. A covariance matrix is imposed upon the random
variables to describe the correlations between them. The same
technique can be used in our case with an increase in the
dimensionality of the problem due to the variables from the
grid buckets. There would be no change in the linear model.
However, for very fine grids, the number of variables can
become very large. The parallelepiped and ellipsoid methods
that we present below are both sensitive to the number of para-
meters, although the ellipsoid method is less so. In case of large
dimensionality, we might first want to use principal component
analysis to reduce the dimensionality. An alternative would be
to use on-chip variation to handle the spatial correlation. In

this method, sensitivity coefficients would be made location
dependent. The method would be less accurate than the grid-
based approach but would be much faster. In this paper, we treat
the number of parameters to be a variable.

We shall begin by describing the most intuitive method
among the three proposed in this paper, which is called the
parallelepiped method. This method performs a “brute-force”
integration of the JPDF of global sources of variation in the
feasible region. The next method we present, the ellipsoid
method, first approximates the feasible region by the maximum
volume ellipsoid that can be inscribed in it, and then performs
the integration over the ellipsoid. Both the parallelepiped and
ellipsoid methods work in parameter space, i.e., the space of
the sources of variation. The last method we present, the fastest
among the three, is called the binding probability method,
which is a performance-space method in that it works in the
space of slacks of the paths.

V. PARALLELEPIPED METHOD

The basic idea of the parallelepiped method is to recursively
divide the feasible region into the largest possible fully feasi-
ble parallelepipeds and integrate the JPDF of the underlying
sources of variation over these parallelepipeds instead of the
original feasible region. The approach does not require delays
to have linear models, and allows for arbitrary distributions of
the sources of variation. However, if the model is nonlinear,
it must still be convex. Since slack is the difference between
the required time and arrival time, it is difficult for slack to be
convex even if both required time and arrival time are convex.

A. Algorithm

The basic reference on the parallelepiped approach is the
second algorithm of Cohen and Hickey [17]. The method rests
on the fact that if all vertices of an n-parallelepiped lie in
any convex feasible region, then all points in the interior of
the parallelepiped are feasible. With the above observation,
the region of integration in the parameter space is recursively
subdivided into progressively smaller parallelepipeds until we
find parallelepipeds all of whose vertices are feasible. Then,
we simply sum up the weighted volume of the feasible par-
allelepipeds to obtain a lower bound on the desired yield as
shown in the pseudocode below for a single given performance
requirement

procedure Vol (ll, recursionDepth){
if (recursionDepth < maxDepth){

if (all vertices of parallelepiped are feasible)
add integral of region to yield;

else{
subdivide region into smaller parallelepipeds;
for (each new parallelepiped p)

Vol (lowerLeft (p), recursionDepth+1);
}

}
}
Vol (lowerLeft (boundingBox), 0).

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

JESS et al.: STATISTICAL TIMING FOR PARAMETRIC YIELD PREDICTION OF DIGITAL INTEGRATED CIRCUITS 2379

Fig. 2. Illustration of the parallelepiped method in two dimensions to a
recursion depth of four. Light-gray regions contribute to lower bound of yield.
For the best estimate, a portion of the weight of each parallelepiped on the
boundary is also included.

The algorithm begins by choosing a boundingBox that is
known to contain the feasible region. For statistical timing,
the obvious choice is the ±4σ or ±3σ box in n-dimensions.
In the algorithm, lowerLeft represents a function that returns
the vertex of the parallelepiped that has the lowest coordinate
in each dimension. Fig. 2 graphically illustrates the method
in two dimensions. Gray regions contribute to the final yield
computation and obviously provide a lower bound on the
required probability integral. Note that descent to the lowest
level of recursion is confined to the boundaries of the feasible
region.

Since at worst, we visit every leaf node of a q-ary tree, where
q = 2n, and at each vertex, we check the feasibility of each
path constraint, we end up with a worst case complexity of
O(Pn2(n×maxDepth)). Pn is the complexity of checking the
feasibility of one vertex. In fact, if a static timer is employed,
the feasibility of a vertex can be established more efficiently.
In any case, the method is exponential in the product of the
recursion depth and the dimensionality of the manufacturing
space. However, several tricks can be applied to speed up this
algorithm in practice.

1) If a particular path is infeasible at all vertices, the recur-
sion can stop at once. No matter how deep the recursion,
that particular path will not become feasible, so there is
no good yield to be had.

2) If a particular path is feasible at all vertices, that path
can be skipped as the recursion proceeds. This trick is
implemented by simply maintaining a list of “skippable”
paths that grows as the depth of the recursion increases.

3) The number of recursion levels can be drastically reduced
by modifying the basic algorithm to additionally produce
an upper bound and a best estimate answer. The (strict)
lower bound is still the weighted volume of the gray
region of Fig. 2. At the lowest level of recursion, if at
least one vertex is feasible and at least one is infeasible,
the upper bound gets the entire weighted volume of the

parallelepiped (represented by the black region in the
figure). Although not a strict upper bound, in practice,
this estimate always exceeds the exact yield. The “best
estimate” result gets the yield credit proportional to the
fraction of vertices that is feasible. With this mechanism,
we have found that three to four levels of recursion are
always sufficient for accurate results. The law of large
numbers helps, since each parallelepiped at the lowest
level of recursion contributes a signed error.

4) The parallelepiped method can handle any statistical dis-
tribution of the underlying sources of variation, provided
that the JPDF can be integrated over the volume of a
parallelepiped. If one or more sources of variation form
a multivariate normal distribution, that part of the integral
can be expressed as the product of differences of error
functions in that subspace. The manufacturing space is
first rotated and scaled so as to obtain circular symmetry.
Then, the required error functions are precomputed and
stored in a single array of size 2n + 1 to avoid repeated
calls to the system erf function.

The following tricks will further improve the efficiency but have
not yet been implemented.

1) Once a decision is made to recurse, only the internal
vertices of the subparallelepipeds need to be visited, since
the feasibility at the vertices of the parent parallelepiped
has already been ascertained.

2) Since the bulk of the weighted volume is near the center
of the JPDF, an adaptive grid scheme could be considered
which uses a finer grid near the origin of the ∆z space
and a progressively coarser grid toward the boundary of
the bounding box.

3) Recursion can be carried out by subdividing the paral-
lelepiped in one dimension at a time, and if a path is
infeasible at all vertices, for example, subdivision in the
other dimensions is obviated.

B. Modified Algorithm

The above algorithm has been adapted to compute the entire
yield-versus-slack curve at once instead of one performance
point at a time. As each parallelepiped is processed, the con-
tributions of the parallelepiped toward the yield for all slack
values are simultaneously recorded before proceeding to the
next parallelepiped or next level of recursion. All CPU time
results in this paper use this modified method.

The basic idea is briefly explained here. Let sparent
min be the

smallest slack at any of the vertices of the parent parallelepiped.
Then, for all slack below sparent

min , the entire parent paral-
lelepiped is in the feasible region, and appropriate yield credit
is given. As we recurse, we are only interested in slacks greater
than sparent

min within this volume. For each subparallelepiped at
the present level of recursion, the yield credit corresponding to
the smaller parallelepiped is granted for all slack from sparent

min to
smin (lowest slack among the vertices of the subparallelepiped).
The upper bound and best guess yields are similarly kept
updated as the recursion proceeds.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

2380 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Thus, the entire yield curve is produced by a single recur-
sive loop. The modified algorithm computes identical results
compared to the repeated invocation of the basic algorithm
presented earlier. Modified versions of all of the tricks men-
tioned in conjunction with the basic algorithm continue to be
applicable, and have been implemented in our prototype.

VI. MAXIMUM VOLUME ELLIPSOID METHOD

The basic idea is to compute the maximum volume
n-dimensional ellipsoid that is entirely within the feasible
region (a similar idea was explored in [18]), and integrate the
JPDF of the sources of variation in the simpler ellipsoidal
approximation rather than the original feasible region. The
integral provides a lower bound on the yield. This method relies
on a linear delay model but allows arbitrary distributions of the
underlying sources of variation.

A. Ellipsoid Computation

There has been tremendous recent progress in solving the
maximum volume ellipsoid problem. It is shown in [19] that
ellipsoidal volume maximization subject to linear constraints
is a special case of the MAXDET problem in which the deter-
minant of a matrix is maximized and subject to linear matrix
inequalities (LMIs). We start with a set of linear inequality
constraints that defines a feasible region (2), and which can be
expressed in matrix form as

F =
{
∆z|RT

i ∆z ≤ ti, i = 1, 2, . . . P
}

(4)

where RT
i is the ith row of −A and ti = snom

i − η. An arbitrary
ellipsoid is expressed as a collection of points

E = {By + d | ‖y‖ ≤ 1} (5)

where B is a symmetric positive-definite matrix that linearly
transforms all points in the unit sphere and d is the center of the
ellipsoid. To find the largest ellipsoid in the feasible region, it
is sufficient to maximize the determinant of the transformation
matrix B since the volume of the ellipsoid is the volume of the
unit sphere times the determinant of B. The requirement that
E ⊂ F means that

RT
i (By + d) ≤ ti for all ‖y‖ ≤ 1, i = 1, 2, . . . , P.

(6)

This in turn means that

sup‖y‖≤1

(
RT

i By +RT
i d
)
≤ ti, i = 1, 2, . . . , P (7)

or

‖BRi‖+RT
i d ≤ ti, i = 1, 2, . . . , P. (8)

Fig. 3. Largest ellipse in two dimensions bounded by hyperplane constraints
and the 4σ box.

To find the ellipsoid of largest volume inside the feasible
region F , we solve the convex optimization problem

maximize log detB

subject to B = BT > 0

subject to ‖BRi‖+RT
i d ≤ ti, i = 1, 2, . . . , P. (9)

Zhang and Gao [20] recently proposed an efficient structure-
exploiting primal-dual optimization algorithm to solve (9),
and have made available public-domain MATLAB code. By
manipulating the optimality conditions and taking advantage
of the properties of transformation matrices of ellipsoids, this
method solves for fewer variables, can handle problems of
larger dimensionality, and is vastly more efficient than the
original implementation in [19]. In addition to the linear slack
constraints, bounding box constraints (e.g., the ±4σ box) are
applied. An example of the ellipsoid computed by the program
in two dimensions is shown in Fig. 3. The lines in this figure
represent the paths in the system, and the ellipsoid is the largest
ellipsoid that can be inscribed in the feasible region defined by
the lines (hyperplanes) and the 4σ bounding box.

B. Path Filtering

We must address the path explosion problem that will
doubtlessly occur in large circuits. There are many millions
of paths leading from latch to latch in even moderately sized
circuits, and even if we were to look at only “critical” paths—or
those with a delay, large enough to impact the delay of the
whole circuit—we may arrive at several thousand paths. The
algorithm to find the maximum volume ellipsoid is at least
cubic in the number of paths [20]. Therefore, we will benefit
by reducing the number of paths as much as possible.

For real circuits, there are many paths that have very similar
characteristics, owing to a large amount of path sharing, as

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

JESS et al.: STATISTICAL TIMING FOR PARAMETRIC YIELD PREDICTION OF DIGITAL INTEGRATED CIRCUITS 2381

Fig. 4. Paths A and B with path vectors a and b share almost all their gates. Therefore, the angle between them is almost zero.

illustrated in Fig. 4. Paths marked A and B in Fig. 4 depend
on the same set of parameters, and must also have nearly the
same coefficients since they share so many gates. This suggests
that we can club these two paths together, and thus reduce
the number of paths. Thus, we can augment the path selection
process so that, paths are selected not only according to high
nominal delay (delay criterion) or low nominal slack (slack
criterion). The other measure we suggest is checking to see if a
candidate path vector is oriented at an angle not represented by
any other paths already in the list (angle criterion). The idea
behind both of these criteria is to select paths that, in some
extreme circumstances, become limiting to circuit performance.
In order to take care of the angle criterion, we can devise
a path selection procedure that, at each step, selects a path
whose sensitivity vector makes the largest possible angle with
all the paths in the selected setup to that point. This path would
represent a behavior not represented by any of the other paths
in the set of paths selected up to that point. The cosine of the
angle that a path with path vector a makes with a path b can be
expressed as

cos γ =
aTb

‖a‖‖b‖ . (10)

Having taken care of the angle criterion, we can then turn our
attention to selecting paths according to the slack criterion. For
all paths whose path vectors point in nearly the same direction,
we can pick a path which has the highest delay and is therefore
most likely to be critical. The cosine of the angle between two
path vectors is the same as the correlation coefficient between
the paths. This allows us to provide a statistical interpretation
to the “angle” and “delay” criteria: the angle criterion tries
to pick the least correlated set of directions, and the delay
criterion attempts to pick a path along a given direction that
is most critical. Thus, the path-filtering procedure can be seen
to approximate the polyhedron in a manner so as to retain most
of the information contained in the original polyhedron.

Let us express the preceding ideas in terms of an algorithm
which can be viewed as a preprocessing step that takes a large
number of paths and produces a user-defined smaller number
of “representative” paths. The basic algorithm can be expressed

as follows, where NumDirections is the user-defined number of
“representative” directions

SelectRepresentativeDirections{
for (i = 0; i < TotalNumberOfPathsInList; i++){

CurrentMaximumCosineArray[i] = -1.0;
}
DirectionSet[0] = SensitivityMatrix[0];
j = 0;
while (j < NumDirections){

GlobalMinimumCosine = 1.0;
for (i = 0; i < TotalNumberOfPathsInList; i++){

CurrentCosine = CosineValue(SensitivityMatrix[i],
DirectionSet[j]);

if (CurrentCosine > CurrentMaximum-
CosineArray[i]){

CurrentMaximumCosineArray[i] =
CurrentCosine;

}
if (CurrentMaximumCosineArray[i]<=

GlobalMinimumCosine){
GlobalMinimumCosine = CurrentMaximum-

CosineArray[i];
PathIndex = i;

}
}
j++;
DirectionSet [j] = SensitivityMatrix[PathIndex];

}
}.

Next, we will describe how to select the most critical of
all paths whose sensitivity vectors point in nearly the same
direction.

When the last direction is selected in the pseudocode
above, the direction makes an angle of at least cos−1(Global-
MinimumCosine) with all the other selected directions. Further,
none of the paths outside the selected set makes an angle greater
than cos−1(GlobalMinimumCosine) with the paths in the

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

2382 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Fig. 5. Cumulative distribution curves obtained by considering the top 100 nominally critical paths, 100 critical paths obtained by using path filtering, and
considering all paths in the circuit. In this case, the curve obtained by considering 100 paths obtained through path filtering nearly coincides with the real curve
considering all 4096 paths.

selected set. Therefore, any given path outside the selected set
lies within a “cone” of cos−1(GlobalMinimumCosine) of some
selected path. It remains to define the feasible region boundary
in each cone, i.e., select the path among all those lying in the
cone that actually forms the boundary (this will also be the
critical path in the cone). This can be done by computing
the distances of the paths from the origin. When the origin is on
the feasible side of a hyperplane, the distance is positive, and
when it is on the infeasible side of a hyperplane, the distance is
negative. Let us consider two paths with normal vectors ai and
aj , such that

aT
i x ≤ bi

aT
j x ≤ bj (11)

are the hyperplane equations corresponding to the two paths.
Then, the hyperplane selected in a cone is the one that has the
minimum distance with respect to the origin. The algorithm
below computes an array FinalPathFilteredSet of size equal to
the number of paths in the original system, where the ith entry
is one if that path is selected by the algorithm:

FindFeasibleRegionBoundary{
Eta = RequiredPerformance;
for (i = 0; i < SizeOfDirectionSet; i++){

MinimumDistanceSoFar = Infinity;
for (j = 0; j < TotalNumberOfPathsInList; j++){

Direction = CosineValue(DirectionSet[i],
SensitivityMatrix[j]);

if (Direction >= GlobalMinimumCosine){
Distance = (Eta - NominalDelay[j])/

Length(SensitivityMatrix[j]);
if (Distance <= MinimumDistanceSoFar){

MinimumDistanceSoFar = Distance;
CurrentMinIndex = j;

}
}

}
FinalPathFilteredSet [CurrentMinIndex] = 1;

}
}.

The above discussion is intended for the case of computing
the yield for a single performance. As the performance values
change, the angles between the hyperplanes do not change since
the hyperplanes continue to have the same normal vectors.
However, the distances of the hyperplanes from the origin
will change, and in any given cone, a different hyperplane
may form the boundary of the feasible region as the required
performance value changes. Therefore, it is necessary to run
FindFeasibleRegionBoundary once for each performance, but
it is sufficient to run SelectRepresentativeDirections only once.
The results of applying the angle criterion to filter paths are
shown in Fig. 5. Three curves are shown in this figure. The
cumulative distribution curve, assuming the polyhedron is ap-
proximated by the first 100 paths in order of decreasing nominal
delay, is shown as “filtering-OFF-paths-100.” The cumulative
distribution curve obtained by selecting 100 paths according
to the path-filtering procedures outlined above is shown as
“filtering-ON-paths-100.” This curve corresponds fairly closely
to the real cumulative distribution curve obtained by taking
all 4096 paths in the system showing that path filtering is
effective in approximating the feasible region. Our main pur-
pose, however, is to approximate the feasible region, such that
the maximum volume ellipsoid inscribed in the approximated
feasible region is not much different from the maximum volume
ellipsoid inscribed in the feasible region described by all paths.
This purpose is served by the way in which we perform path
filtering: all important directions are accounted for ensuring
that the ellipsoid is “boxed” in all sides, and is therefore fairly
representative of the real ellipsoid.

C. Numerical Integration

There remains the problem of integrating the JPDF of the
sources of variation over the resulting ellipsoidal approximation
of the feasible region. The yield is represented as

∫∫
· · ·
∫

R∗

JPDF(z1, z2, . . . , zn)dzndzn−1 . . . dz1 (12)

where R∗ is the ellipsoidal region. Instead of integrating over
the ellipsoid, we perform a change of variables and integrate

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

JESS et al.: STATISTICAL TIMING FOR PARAMETRIC YIELD PREDICTION OF DIGITAL INTEGRATED CIRCUITS 2383

over the unit sphere. This is because of the existence of numer-
ical integration algorithms to perform integration over the unit
sphere. Also

δz1δz2 . . . δzn =

∣∣∣∣∣∣∣∣∣∣∣

∂z1
∂y1

∂z1
∂y2

· · · ∂z1
∂yn

∂z2
∂y1

∂z2
∂y2

· · · ∂z2
∂yn

...
...

. . .
...

∂zn

∂y1

∂zn

∂y2
· · · ∂zn

∂yn

∣∣∣∣∣∣∣∣∣∣∣
δy1δy2 . . . δyn

= |B|δy1δy2 . . . δyn (13)

where we make use of the fact that the Jacobian matrix is simply
the transformation matrix B which is computed by the convex
optimization problem discussed previously. Therefore, the yield
Y can be written as

Y =
∫∫

· · ·
∫

R∗

JPDF(z)dz

=
∫∫

· · ·
∫
R

JPDF(By + d)|B|dy (14)

where R is the unit sphere.
The basic numerical integration rules for a sphere are those

of [21]. An integration rule for a domain of integration consists
of a weighted sum of functional values evaluated at specific
points. The points and weights are the characteristics of the
rule. Integration rules are designed so that they exactly integrate
certain easy classes of functions, for example, polynomials of
low degree. An integration rule can be expressed as follows:∫∫

· · ·
∫

f(y1, y2, . . . yn)dyn . . . dy1

=
i=N∑
i=1

wif(vi1, vi2, . . . vin). (15)

Here, the wis represent the weights of the integration rule and
(vi1, vi2, . . . vin) represents the ith point of the integration rule.
N is the number of points in the integration rule. Numerically
stable integration formulas are those whose points are within
the region of integration and whose weights are positive. A
degree-3 formula for integration over the unit sphere is the
following:

Y =
i=n∑
i=1

V

2n
(f(ei) + f(−ei)) (16)

where ei is the ith unit vector and V is the volume of the
unit sphere in n-dimensions. After extensive experimentation,
we found that a degree-3 or degree-5 rule was insufficient to
model the variation of a Gaussian integrand over the feasible
region. At low yields, when the (small) feasible region is
located far away from the mean of the JPDF, a degree-3 or
degree-5 formula is sufficient to model the variation of the
Gaussian integrand over the feasible region. At higher yields
(larger feasible regions located closer to the mean of the JPDF),
a degree-3 or degree-5 formula is incapable of modeling the

entire variation as both high yield regions and low yield regions
are included in the feasible region.

Higher degree formulas for integration over the unit sphere
exist but they suffer from either one or both of two drawbacks:
1) they require an exponential number of points or 2) some of
their coefficients are negative. The drawbacks impact the stabil-
ity of the formulas and/or runtime. We address this situation by
reformulating the integral over the unit sphere as a spherical-
radial integral. The radial integral is a one-dimensional integral
and is computed by a Gaussian integration formula. The spheri-
cal integral is an integral of the JPDF integrand over the surface
of the unit sphere. This transformation has the effect of reducing
the variation of the original integrand, since the variation over
the surface of the unit sphere is considerably less than over the
entire sphere, especially for integrals obeying some form of
radial symmetry. Below, we provide the mathematical details
of the following formulation [21].

Let Rn be a bounded n-dimensional sphere which contains
the origin φ and, let Yn be the surface of Rn. Let us assume that
we have an integration formula for a surface integral [21]

∫∫
· · ·
∫
Yn

f(y1, y2 . . . yn)dσ =
j=N∑
j=1

Bjf(vj,1, vj,2 . . . vj,n).

(17)

The Bjs are the weights of the integration formula, and
(vj,1, vj,2 . . . vj,n) is the jth point of the integration formula.
Note that in the above equation, dσ is a differential element on
the surface of the unit sphere. We would like the points of this
formula to lie on the surface Yn. For a real number r > 0, let

rYn = {rν : ν ∈ Yn}. (18)

Let us consider the integration of a monomial term over the
surface of a sphere of radius r. Let dσ′ represent a differential
element of area on the surface of the sphere of radius r. By
expressing both dσ and dσ′ in polar coordinates, we can see
that the following holds true:

dσ′

dσ
= rn−1. (19)

Then, we can write the integral of a monomial term over the
surface of a sphere of radius r as follows:

∫∫
· · ·
∫

rYn

yα1
1 yα2

2 . . . yαn
n dσ′

=
∫∫

· · ·
∫
Yn

rn−1(ry1)α1(ry2)α2 . . . (ryn)αndσ

= rn−1+α

∫∫
· · ·
∫
Yn

yα1
1 yα2

2 . . . yαn
n dσ (20)

where α = Σn
i=1αi.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

2384 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

The integral of a monomial over the entire unit sphere Rn

can then be written as∫∫
· · ·
∫

Rn

yα1
1 yα2

2 . . . yαn
n dy1dy2 . . . dyn

=

1∫
0

∫∫ · · ·

∫
rYn

yα1
1 yα2

2 . . . yαn
n dσ′

 dr

=

1∫
0

rn−1+αdr

∫∫
· · ·
∫
Yn

yα1
1 yα2

2 . . . yαn
n dσ. (21)

Suppose we have the following one-dimensional integration
formula of degree d for the radial integral:

1∫
0

rn−1f(r)dr ≈ ΣM
i=1Aif(ri). (22)

Then, the points riνj and the coefficients Ai, Bji =
1, 2 . . .M, j = 1, 2 . . . N0 are an integration formula of degree
d for Rn.

It is possible to use one additional trick to deal with the (still)
substantial variation of the spherical integrand over the surface
of the unit sphere. The general high accuracy of numerical
methods and the dimensionality-independence of Monte Carlo
methods can be combined to good effect in the form of ran-
domized quadrature rules. The fundamental basis of these rules
is the observation that if we were to rotate the points of a given
integration rule, then we get another integration rule of the same
degree. In other words, let the following be an integration rule
of degree k for the surface of the unit sphere:

I(f) =
i=N∑
i=1

wjf(vj). (23)

Then, the following is also an integration rule of the same
degree:

I(f) =
i=N∑
i=1

wjf(Qvj). (24)

In (23) and (24), we have denoted the points in vector form.
Q is an orthogonal transformation.

The reformulation of the yield integral requires us to cal-
culate a spherical integral over the surface of the unit sphere
(in n− 1 dimensions) and a radial integral in one dimension.
Now, we investigate the techniques to calculate the spherical
surface integral. Let us denote the spherical surface integral by
I(f). A degree-3 formula to compute the surface integral is the
following:

I(f) ≈
(
V

2n

) i=n∑
i=1

(f(ei) + f(−ei)) (25)

where ei is the unit vector along the ith coordinate direction
and V is the surface area of the unit sphere in n dimensions.

Another degree-3 formula that is slightly more expensive than
the previous one is the following [22], [23]:

I(f) ≈
(
V

2n

) i=n+1∑
i=1

(f(ui) + f(−ui)) . (26)

The n+ 1 points ui are the vertices of a regular n-simplex
with the vertices located on the surface of the unit sphere. This
rule can be extended to a degree-5 rule in a natural way

I(f) ≈ V

((
(7− n)n

2(m+ 1)2(m+ 2)

) i=n+1∑
i=1

(f(ui) + f(−ui))

+
(

2(m− 1)2

m(m+ 1)2(m+ 2)

)

m(m+1)/2∑
i=1

(f(vi) + f(−vi))

 . (27)

The vis are obtained by taking the midpoints of the edges
of the n-simplex whose vertices are on the unit sphere (and
given by the uis) and projecting them onto the surface of
the unit sphere. The total number of points in the formula is
(n+ 1)(n+ 2).

In our implementation, the integral in (14) is computed
by a modification of the stochastic integration method of
Genz and Monahan [24]. The integration is split up into the
product of a radial and spherical part as shown above. The
spherical part is accomplished by applying Mysovskikh’s rules
[22], [23] to a series of spherical surfaces (or infinitesimal
annulus shells), and the radial part is computed by Gaussian
quadrature. Spherical integration is performed by randomizing
deterministic integration rules to obtain a higher degree of ac-
curacy than conventional Monte Carlo integration. Integration
is performed by applying a degree-5 rule with (n+ 1)(n+ 2)
points, giving the method a polynomial complexity. The basic
set of points is randomly rotated to get a new set of points. The
quality of the radial integration can be improved by increasing
the number of spherical surfaces, whereas the quality of the
spherical integration can be improved by increasing the number
of points sampled on each spherical surface. Randomizing the
spherical-radial integration formula (randomized quadrature)
allows us to make use of the Monte Carlo error theory to study
the variance of the integral estimate.

D. Efficiency of Randomized Quadrature

Integrating over the ellipsoid provides us with a lower bound
on the true yield since the ellipsoid does not cover the corners of
the feasible region. Therefore, it might seem that approximating
the feasible region by an ellipsoid and integrating over it offer
no particular advantage. However, the randomized quadrature
process outlined in the previous section has considerably lower
variance than ordinary Monte Carlo routines such as Gaussian
sampling or uniform sampling over the ellipsoid. In Fig. 6, we
show the cumulative distribution curves obtained by using the
randomized quadrature over the ellipsoid (“ran-quad” in the

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

JESS et al.: STATISTICAL TIMING FOR PARAMETRIC YIELD PREDICTION OF DIGITAL INTEGRATED CIRCUITS 2385

Fig. 6. Cumulative distribution curves obtained by using the Gaussian sampling, randomized quadrature over the sphere, and uniform sampling over the ellipsoid.

Fig. 7. Standard deviation of the Gaussian sampling, randomized quadrature, and uniform sampling over the ellipsoid. The randomized-quadrature procedure
has the lowest standard deviation at low values of yield.

Fig. 8. Efficiency of the Gaussian sampling and randomized quadrature. The randomized-quadrature procedure is the orders of magnitude more efficient than
Gaussian sampling at low values of yield.

figure), using uniform sampling over the ellipsoid (“uniform-
ellipsoid”) and the curve obtained by performing Gaussian
sampling over the whole polytope (“gaussPoly”), which rep-
resents the real yield. As can clearly be seen, the integrals
over the ellipsoid are lower bounds to the real yield curve. In
Fig. 7, we show the standard deviation σ of the three integration
procedures. As can clearly be seen, using the randomized
quadrature provides the lowest standard deviation of the three
methods.

Following the study in [25], let us define the efficiency

ε =
σ2

1τ1
σ2

2τ2
. (28)

Here, τ1 and τ2 represent the computation times for N trials
of Gaussian sampling over the yield polytope and performing
randomized quadrature, and σ1 and σ2 represent the standard
deviations of these two sampling procedures, respectively. The
logic behind the above equation is simple: if a low standard
deviation procedure has a high average time per trial value,
then it may become equivalent to a high standard deviation
procedure having a low average time/trial. In other words, one
can afford to run a high standard deviation procedure for the
extra trials needed to make up for the gap in accuracy without
incurring any increase in computation time, because of the low
time per trial value. The efficiency of using the randomized
quadrature over the ellipsoid as compared to Gaussian sampling
over the whole polytope is shown in Fig. 8. This figure clearly

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

2386 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

brings out the quality of the randomized-quadrature procedure.
For low yields, it is the order of magnitudes that is more
efficient than Gaussian sampling (uniform sampling over the
ellipsoid is simply not competitive). However, the yield value
returned by exact integration over the ellipsoid is a lower bound
on the true yield value. For the fastest performances, when yield
is very low, it pays to use the ellipsoid method to get a quick
lower bound on the true yield.

VII. BINDING PROBABILITY METHOD

This section describes the last of the three novel statistical
timing algorithms called the binding probability method, which
is a performance-space method. The basic idea of this method is
to compute the probability distribution of the minimum slack of
the first two nominally most critical paths. Then, a recursion is
set up to find the distribution of the minimum of this distribution
and the third most critical path, and so on. The difficult part,
of course, is to keep the correlations alive as the recursion
proceeds. This method rests on both the linear delay model as
well as requires the underlying parameter distributions to be
Gaussian.

A. Computing pdf and Binding Probability

The slack of every path is a linear combination of the
Gaussian sources of variation, and hence is Gaussian. The
algorithm begins by taking the two nominally most critical
paths and computing their 2 × 2 covariance matrix

Φ =

[(
∂s1
∂z

)T
(

∂s2
∂z

)T
]
[V]
[
∂s1

∂z

∂s2

∂z

]
=
[
AT

1

AT
2

]
[V][A1A2] (29)

where s1 is the slack of the first path, s2 is the slack of the
second path, AT

i is the ith row of A, zs are the sources of
variation, and V is the n× n covariance matrix of the sources
of variation. Comparing to

Φ =
[

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2

]
(30)

the variances σ1, σ2 and the correlation coefficient ρ can easily
be computed. Next, the distribution of min(s1, s2) is com-
puted analytically using formulas from [26] after first rewrit-
ing min(s1, s2) as −max(−s1,−s2). These formulas express
the mean and variance of the random variable corresponding
to the minimum of two random variables A and B in terms of
the so-called tightness probabilities. The tightness probability
TA of A with respect to B is the probability that A is larger
than B. The term tightness probability has also been called
binding probability in previous literature. Let A and B be
the Gaussian random variables with means a0 and b0, respec-
tively. Define θ = (σ2

A + σ2
B − 2ρσAσB)1/2. Then, the tight-

ness probability of A with respect to B can be written as

TA = Φ
(
a0 − b0

θ

)
(31)

where φ(t) = (1/
√
2π)e−0.5t2 and Φ(y) =

∫ y

−∞ φ(t)dt. Hav-
ing thus computed the tightness probabilities, we can then write

E [max(A,B)]=a0TA+b0(1−TA)+θφ

[
a0−b0

θ

]
(32)

and

Var (max(A,B)) =
(
σ2

A + a2
0

)
TA +

(
σ2

B + b20
)
(1− TA)

+(a0 + b0)θφ
(
a0 − b0

θ

)
− E [max(A,B)]2 . (33)

B. Recursion

The next step is to create a fictitious path that captures the
correlations of all the paths processed so far, with all the paths to
be considered in the future. Let b1 denote the tightness probabil-
ity of path 1 with respect to path 2 and b2 = 1− b1 the tightness
probability of path 2 with respect to path 1. The fictitious
path consists of a linear combination of all the timing graph
edges along path 1 with probability b1 and all the gates along
path 2 with probability b2; in other words, a vector consisting
of a linear combination of the slack sensitivities of the two
paths is created, to be plugged back into (29) for the covariance
computation at the next step of recursion. If one or the other
path is always dominating (binding probability of unity), its
sensitivities are preserved as is. The distribution obtained above
is then approximated to be Gaussian. The algorithm proceeds
by finding the probability distribution of the minimum of this
fictitious path slack and the third most critical path, and so on,
until the probability distribution changes by a sufficiently small
tolerance.

At the end of this procedure, the binding probabilities ac-
cumulated along the way give us the probability that any given
path is critical, and in fact, the probability that any given branch
of the timing graph is critical. Such diagnostics can be used to
guide a yield-aware optimization.

VIII. IMPLEMENTATION

All three methods presented in this paper have been imple-
mented in C++ as a prototype component called EinsStat in
the EinsTimer static timing analysis environment. In the case of
the ellipsoid method, the maximum volume ellipsoid MATLAB
code of Zhang and Gao [20] was converted via the MATLAB
compiler to C++.

The “front-end” collects the worst paths and computes their
nominal slacks and sensitivities directly off the EinsTimer
timing graph. Currently, a user-specified number of worst paths
are collected throughout the entire design (which could easily
be extended to collect all paths within a user-specified slack
window). For each path, a corresponding downstream (setup)
test slack is computed—this implicitly takes into account the
most critical clock path leading to the test. “Full paths” are
traced from the clock source, through the launching latch,
through the data path, to the capturing latch, and back to the
clock source. This way, common clock path correlations are
fully captured.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

JESS et al.: STATISTICAL TIMING FOR PARAMETRIC YIELD PREDICTION OF DIGITAL INTEGRATED CIRCUITS 2387

Fig. 9. Statistical timing results on 200K gate ASIC.

Sensitivities with respect to global environmental conditions
are determined by finite differences as our analytical delay
models [27] are characterized as functions of voltage and
temperature. In addition, the underlying delay calculations fully
account for input slew and downstream pin capacitance depen-
dencies on the sources of variation.

IX. NUMERICAL RESULTS

Two flavors of numerical results will be presented in this
section. The first is a set of results obtained from statistical
analysis of a real-world 200K gate ASIC design with envi-
ronmental variations, while leaving manufacturing parameters
at their “slow chip” setting. The second set of results is from
running artificially generated problems with a large number of
nominally equally critical paths and random sensitivities.

A 200K gate ASIC circuit was first analyzed with individual
temperature and voltage variations, leading to a surprising
result. The EinsTimer best-case result was the worst slack of all,
and the nominal result was the best slack! Further investigation
revealed that this chip has a short primary-input-to-latch path,
whose slack deteriorates rapidly with lower temperature and
higher Vdd, because the clock is disproportionately sped up. At
higher temperatures and lower Vdd values, latch-to-latch paths
with more traditional slack sensitivities dominate. This type of
surprising result is easily unearthed with statistical analysis.

Fig. 9 shows statistical timing results on the 200K gate ASIC
circuit with simultaneous temperature and voltage variations.
Even though temperature and voltage variations are mostly
deterministic, we use these two parameters to illustrate our
methodology in an industrial setting. Our methodology could
easily be applied to real statistical variations such as those
in channel length and thickness of the oxide. The Y -axis
represents yield and the X-axis represents slack. Superposed
on the same plot are the results obtained by running EinsTimer
1200 times at a regular grid of sample temperature/Vdd pairs
and converting the sample points to probabilities. All methods
are pretty accurate, except the binding probability method that
is unable to accurately capture the highly skewed slack distri-
bution in this case. CPU times on an IBM Risc/System 6000
model 43P-S85 are shown in Table I. The ellipsoid method
takes too much memory and too much time because of its
highly nonlinear dependence on the number of paths. This
shows that we must use the path filtering as a preprocessing step

TABLE I
CPU TIMES ON 200 K GATE ASIC

before we use the ellipsoid method. Although the results are
shown here with only two sources of environmental variation,
the anticipated applications of these methods are to solve the
problem of timing circuits with multiple voltage islands and to
take manufacturing variations into account.

The second set of results is from randomly generated prob-
lems with a large number of nominally equally critical paths.
Fig. 10(a) shows the growth in CPU time as a function of
the number of paths analyzed, with the number of sources
of variation fixed at 4 and 100 points requested on the slack
curve. The ellipsoid method has polynomial complexity in the
number of paths, while the others are linear. Fig. 10(b) shows
the growth in CPU time as a function of the number of points
requested on the yield curve (number of variations fixed at 4,
number of paths at 1000). With the exception of the ellipsoid
method, all the methods are insensitive to the first order to the
number of data points requested. Finally, Fig. 10(c) shows the
growth of the CPU time with the number of sources of variation
(paths fixed at 1000 and data points at 100). To first order, the
Monte Carlo and binding probability methods are unaffected
by the number of parameters, whereas the ellipsoid method
has polynomial dependence and the parallelepiped method has
exponential dependence which dominates the run time above
six dimensions. The use of the path filtering as discussed in the
section on path filtering can reduce the computational burden of
finding the ellipsoid. Notice that once we have found a nearly
optimal ellipsoid (using path filtering to reduce the number
of constraints) that does not completely fit inside the original
polytope, we can always shrink the ellipsoid to make it fit inside
the true polytope. Then, our numerical integration method
on the ellipsoid will continue to give a low-variance lower
bound on true yield, which would be invaluable especially at
low yields.

X. CRITICALITY INFORMATION FROM THE METHODS

There are two notions of criticality that we discuss in this
section. The first relates to asking the following question for
each path: what percentage of the time does the path in question
contribute to the worst (minimum) slack? From the point of
view of the yield optimization across all slacks, it is important
to identify the paths which are critical most of the time, as
these are the paths which are most yield limiting. This kind
of information is easy to obtain using Monte Carlo simulation.
Given N sample points in the process parameter space, we
can count the number of times a given path contributed to
worst slack and take its criticality as this number divided by
N . The second flavor of the parallelepiped method essentially

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

2388 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Fig. 10. (a) CPU time versus of paths. (b) CPU time versus the number of
data points requested. (c) CPU time versus the number of sources of variation.

TABLE II
GLOBAL CRITICALITY OF TOP FIVE PATHS

searches through the process parameter space exhaustively,
and vertices of the parallelepipeds discovered along the way
can be used to determine the path criticality. Whenever we
encounter a parallelepiped at the lowest level of recursion, we
keep count count(i) for each path of the number of vertices
of the parallelepiped where the given path is the worst path
in terms of slack. Then, for each path, we augment its global
criticality measure by a fraction of the yield integral for that
parallelepiped, where the fraction is given by count(i)/2n.
The justification for this step is that for a small enough paral-
lelepiped, the fraction count(i)/2n approximates the fraction of
the time the given path is the worst slack path when points are
sampled within the parallelepiped. In Table II below, we show
how this method compares with the traditional Monte Carlo
simulation. The experiment was performed for five parameters
(n = 5). The table below shows that the method compares well
with Monte Carlo simulation.

It is possible to define another notion of criticality that
provides an information relevant to optimizing yield for a given
slack. In order to determine the criticality of a given path at a
given slack, we essentially determine the change in the volume
of the yield polytope as we move the given path slightly. In
principle, Monte Carlo simulation can be used to determine this
measure of criticality for each path, but it is not likely to be very
accurate, as the sample points must be generated close to the
boundary of the polytope.

We shall show below how both the first flavor of the par-
allelepiped method as well as the ellipsoid method can be
used to obtain the criticality of any given path at a particular
slack value. In the parallelepiped method, at the lowest level of
recursion, we can determine for each parallelepiped for which
paths the parallelepiped is infeasible. For each parallelepiped
that is on the boundary, we determine the list of paths that
violates some vertex of the parallelepiped. If for some paral-
lelepiped there is exactly one path which is infeasible for that
parallelepiped, we attribute the yield mass of that parallelepiped
to the path in question. The logic behind this step is that
if we were to slightly perturb a path that is infeasible for
a parallelepiped, then it would become feasible. Note that if
there are two or more paths which are infeasible for a given
parallelepiped, we would not be justified in attributing the yield
mass of the parallelepiped to any of the violating paths, because
shifting only one of them will not make the parallelepiped
feasible. The accuracy of this method depends upon the size
of the smallest parallelepiped used in the recursion. When the
recursion is completed, not only does the yield value for the
given slack value become known, but also the incremental
weighted volume for each path as it is slightly perturbed. We

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

JESS et al.: STATISTICAL TIMING FOR PARAMETRIC YIELD PREDICTION OF DIGITAL INTEGRATED CIRCUITS 2389

TABLE III
CRITICALITY OF TOP FIVE PATHS AT NOMINAL PERFORMANCE

have shown in Table III the criticality results computed for
the top five paths using the first version of the parallelepiped
method and the Monte Carlo method.

Since the parallelepiped method becomes infeasible at higher
dimensions, we cannot use the method above to determine
the criticality for each path at a given performance. We show
how the maximum volume ellipsoid can be used to obtain
information regarding the criticality of each path at a given
performance.

The main idea here is to note that the center of the maximum
volume ellipsoid approximates the center of the polytope and
the ellipsoid shape approximates the shape of the polytope. In
order to increase the weighted volume of the polytope, we may
try a variety of schemes such as moving the ellipsoid center
closer to the center of the JPDF or expanding the ellipsoid
along one or more axes to increase the weighted volume of the
ellipsoid. Having expanded the ellipsoid and/or shifted it re-
mains to shift the hyperplanes of the polytope to accommodate
the new ellipsoid. By this, we mean shifting each hyperplane
along the direction of its normal so as to make it a tangent to
the new ellipsoid. Not all hyperplanes will need to move; only
those which intersect the expanded/shifted ellipsoid. Also, the
hyperplanes that block yield-rich regions of the feasible space
will have to move more than hyperplanes which border yield-
poor regions. The amount of movement for each hyperplane
can easily be translated into a change in the nominal delay
of the path corresponding to that hyperplane. We illustrate the
procedure to obtain a delay information for each hyperplane.

The feasible region of circuit operation could be ex-
pressed as

F =
{
∆z|RT

i ∆z ≤ ti, i = 1, 2, . . . P
}

(34)

where the ith hyperplane is given by

RT
i ∆z ≤ ti. (35)

Replacing ∆z with By + d, where B is the ellipsoid trans-
formation matrix, we get the inequality

RT
i By ≤ ti −RT

i d. (36)

In the y-space, the above equation represents a hyperplane
whose distance from the origin is given by

D =
ti −RT

i d∥∥RT
i B
∥∥ . (37)

TABLE IV
ELLIPSOIDAL METHOD FOR PATH SPEEDUP VERSUS OTHER METHODS

When the ellipsoid expands and/or moves, the distance D
gets affected. Suppose the ellipsoid transformation matrix B
changes by an amount ∆B and the center of the ellipsoid moves
by an amount ∆d. Then, the new distance becomes

Dnew =
ti −RT

i (d+∆d)
‖RT

i (B +∆B)‖ . (38)

If Dnew < 1, then we can calculate an amount ∆ti to be
subtracted from the nominal delay dnom

i of path i, so that the
path becomes a tangent to the changed ellipsoid. We have

∆ti = ‖RT
i (B +∆B)‖(1−Dnew). (39)

After trying out various approaches of shifting the ellipsoid
center in conjunction with expanding the axes of the ellipsoid,
we found that the simple scheme of expanding the smallest
axis of the ellipsoid while retaining the same center works
quite well in increasing the volume of the polytope. Increasing
the length of the smallest axis of the ellipsoid provides the
largest increase in the volume of the ellipsoid as compared
to increasing the length of any other axis. We performed our
experiments at several different values of required slack. In each
case, we obtained tuning factors for each path describing how
much each path had to move in order to become tangential to the
expanded ellipsoid. It turned out that among paths that were of
the same nominal slack, some were more critical to improving
yield at a given performance. Let S = Σ∆ti denote the sum of
all the speedups of the paths calculated by the above procedure
for a given required slack. One other scheme to increase the
volume of the polytope is to dedicate the total speedup S to
the nominally most critical path. Still another scheme is to share
the speedup among the top K paths by speeding up each path by
an amount S/K. We show in Table IV the yield increases ob-
tained when the tuning factors are applied as calculated by the
procedure above, and we compare them with the yield increases
obtained by applying the other two schemes. For the three
performances of interest (nominal performance and 5% above
and below, where nominal performance is the performance that
the circuit was designed for), the ellipsoid method of expanding
the smallest axis of the ellipsoid and then speeding up paths
as necessary to accommodate the expanded ellipsoid is found
to provide a larger increase in yield as compared to the other
methods of distributing the total speedup. This suggests that
the nominal criticality of a path alone does not determine how
important the path is in increasing the weighted volume of the
feasible region. Instead, the path’s orientation with respect to
the feasible region determines its importance.

It is important to emphasize that the tuning factors in them-
selves do not provide a means of increasing yield, as changing
the nominal delay of a particular path may affect other paths,
and it may not be possible to speed up all the paths as required

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

2390 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

TABLE V
TUNING FACTORS VERSUS MONTE CARLO PERFORMANCE CRITICALITY

by their tuning factors. Nevertheless, the tuning factors may
provide a valuable guidance to a statistical yield optimization
tool as with regard to the relative importance of the paths to the
increasing yield. Table V shows the tuning factors for the top
five paths in the design used for this section.

One interesting and useful feature of the ellipsoid algorithm
is that it provides nonzero tuning factors even for paths which
do not bound the feasible region, but are completely dominated
by another path, so that when this other path is speeded-up
slightly, the overshadowed path becomes critical. This phenom-
enon is reflected in the results shown above. Paths 4 and 5
are noncritical at the nominal performance (Table III). In fact,
path 4 (Table II) is noncritical at all performances. However,
this is because, these paths are overshadowed by other critical
paths. The tuning factors for these paths are shown to be fairly
high in Table V, suggesting that they are important from the
point of view of increasing the volume of the polytope. To see
if paths 4 and 5 are truly important, we first applied all the
tuning factors to obtain path speedups and calculated the yield
increase at the nominal performance. The yield increase was
found to be 0.01. Next, we speeded-up all the paths according
to their tuning factors except for path 4. The resulting change
in the volume of the polytope was found to be only 0.006.
A similar phenomenon could be observed with respect to path 5.
This shows that although these paths are not actually critical at
the performance of interest or perhaps even at any performance,
they could still have an impact on polytope volume. Methods
such as the parallelepiped method or even the Monte Carlo
method would not be able to identify such paths. However, the
ellipsoid method would be able to identify such paths. When
the tuning factor for a path is 0.0, we cannot in general conclude
that the path is not important for yield optimization; speeding-
up the path may still increase the volume of the yield polytope
but not by very much.

XI. COMPARISONS

The parallelepiped method is very fast and accurate at low
dimensionality, but it has an exponential growth of CPU time
with the number of sources of variation. The CPU time is
independent to the first order of the number of points requested
on the yield curve and linear with the number of paths selected.
Hence, it is best suited to be accurate but at low-dimensionality
analysis.

The ellipsoid method, on the other hand, handles high-
dimensionality extremely well and successfully handled prob-
lems with over 20 sources of variation. However, it has a
linear growth with the number of points requested on the

slack curve and polynomial growth with the number of paths.
Thus, it is most effective when the dimensionality is high and
the number of paths can be filtered down to a manageable
number.

The binding probability method is extremely fast and con-
sistently outperforms all the other methods. It is also the least
accurate of the methods proposed, both because of the Gaussian
approximation and because of the loss of accuracy in propagat-
ing correlations. The complexity is linear in the product of the
number of paths and the number of data points requested on the
yield curve, but is relatively insensitive to the number of sources
of variation.

The three methods therefore provide a complementary arse-
nal of techniques depending on the situation at hand.

XII. CONCLUSION AND FUTURE WORK

This paper presented three algorithms for statistical timing
analysis that pay a great deal of attention to the inherent
correlation between the delays of gates and paths on a chip.
Each method has strengths and weaknesses, and by implement-
ing all three in a common infrastructure and with a common
interface, the best features of each method can be exploited as
the situation demands. Results of the statistical timing analysis
on a 200K gate ASIC were presented.

There are several avenues of future work. Several measures
to improve efficiency were suggested in the body of this
manuscript. Various diagnostics can be inferred from these
methods too. For example, in the ellipsoid method, the major
and minor axes of the ellipsoid tell us the least and most
important directions in which to nudge the circuit for improved
parametric yield and the most important manufacturing para-
meters on which to improve the control if possible. The binding
probability method gives us a rank-ordered set of gates, the
improvement of whose delays will have the most impact on
improving the yield. The extreme efficiency of the binding
probability method is motivating some new researches into
handling skewed distributions in this method. Extending the
method to compute yield gradients will enable automated yield-
aware optimization. The center of the ellipsoid can be taken to
be the point at which the process parameters should be centered
ideally.

One avenue of future work is to apply the path-filtering
algorithm as a preprocessing step for both the parallelepiped
as well as the binding probability method. Using the path
filtering might help in speeding up the determination of point
infeasibility. Applying the binding probability method to paths
that are in the same “direction cone” might give better results
than applying it to paths that point in very different directions.

One avenue of future work is to incorporate the spatial corre-
lation along the lines of [2] and [28]. Two other extensions are
intriguing. The first is to compute the so-called Löwner–John
ellipsoid, which is the smallest ellipsoid that circumscribes
the feasible region, so as to obtain an upper bound on the
yield. The second is to obtain a simplicial decomposition of
the feasible region (see [29] for an excellent survey) and then to
integrate the JPDF of the sources of variation over the resulting
simplices.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

JESS et al.: STATISTICAL TIMING FOR PARAMETRIC YIELD PREDICTION OF DIGITAL INTEGRATED CIRCUITS 2391

Finally, the statistical intrachip variation can be accommo-
dated in a number of ways. One technique is to have a position-
dependent random variable, upon which the delays of all gates
depend. Another is to divide the chip into regions, with each
region having a common set of random variables. The variables
of nearby regions are tightly correlated, while those that are far
apart are only loosely correlated.

REFERENCES

[1] “International technology roadmap for semiconductors 2001 edi-
tion,” Semiconductor Industry Association, 2001. Tech. Rep. [Online].
Available: http://public.itrs.net/Files/2001ITRS/Home.htm

[2] H. Chang and S. Sapatnekar, “Statistical timing analysis considering spa-
tial correlation in a pert-like traversal,” in Proc. IEEE Int. Conf. Comput.-
Aided Design Integr. Circuits and Syst., Nov. 2003, pp. 621–625.

[3] A. Nadas, “Probabilistic PERT,” IBM J. Res. Develop., vol. 23, no. 3,
pp. 339–347, May 1979.

[4] J. Hagstrom, “Computational complexity of pert problems,” Networks,
vol. 18, pp. 139–147, 1988.

[5] G. Kleindorfer, “Bounding distributions for stochastic acyclic networks,”
Oper. Res., vol. 19, no. 5, pp. 1586–1601, 1971.

[6] B. Dodin, “Bounding the project completion time in pert networks,” Oper.
Res., vol. 33, no. 4, pp. 862–881, 1985.

[7] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan,
“First order incremental block-based statistical timing analysis,” in Proc.
Des. Autom. Conf., Jun. 2004, pp. 331–336.

[8] P. Feldmann and S. W. Director, “Integrated circuit quality optimiza-
tion using surface integrals,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 12, no. 12, pp. 1868–1879, Dec. 1993.

[9] A. Gattiker, S. Nassif, R. Dinakar, and C. Long, “Timing yield estimation
from static timing analysis,” in Proc. IEEE Int. Symp. Quality Electron.
Des., 2001, pp. 437–442.

[10] J.-J. Liou, K.-T. Cheng, S. Kundu, and A. Krstic, “Fast statistical timing
analysis by probabilistic event propagation,” in Proc. Des. Autom. Conf.,
Jun. 2001, pp. 661–666.

[11] S. Naidu, “Timing yield calculation using an impulse-train approach,” in
Proc. VLSI Design, Jan. 2002, pp. 219–224.

[12] S. W. Director and W. Maly, Eds. Statistical Approach to VLSI, vol. 8.
North-Holland, The Netherlands: Elsevier, 1994

[13] M. Orshansky and K. Keutzer, “A general probabilistic framework for
worst case timing analysis,” in Proc. Des. Autom. Conf., Jun. 2002,
pp. 556–561.

[14] J. A. G. Jess, K. Kalafala, S. R. Naidu, C. Visweswariah, and
R. H. J. M. Otten, “Statistical timing for parametric yield prediction of
digital integrated circuits,” in Proc. Des. Autom. Conf., Anaheim, CA,
Jun. 2003, pp. 932–937.

[15] D. E. Hocevar, P. F. Cox, and P. Yang, “Parametric yield optimization for
MOS circuit blocks,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 7, no. 6, pp. 645–658, Jun. 1988.

[16] K. Krishna and S. W. Director, “The linearized performance penalty
(LPP) method for optimization of parametric yield and its reliability,”
IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 14, no. 12,
pp. 1557–1568, Dec. 1995.

[17] J. Cohen and T. Hickey, “Two algorithms for determining volumes of
convex polyhedra,” J. ACM, vol. 26, no. 3, pp. 401–414, Jul. 1979.

[18] J. M. Wojciechowski and J. Vlach, “Ellipsoidal method for design cen-
tering and yield estimation,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 12, no. 10, pp. 1570–1579, Oct. 1993.

[19] L. Vandenberghe, S. Boyd, and S.-P. Wuin “Determinant maximization
with linear matrix inequality constraints,” Inf. Syst. Lab. Electr. Eng.
Dept., Stanford Univ., Stanford, CA, Apr. 1996. Tech. Rep. [Online].
Available: http://www.stanford.edu/~boyd/maxdet.html

[20] Y. Zhang and L. Gao, “On numerical solution of the maximum volume
ellipsoid problem,” Dept. Comput. Appl. Math., Rice Univ., Houston, TX,
Tech. Rep. CAAM Tech. Rep. TR01-15, Aug. 2001.

[21] A. H. Stroud, Approximate Calculation of Multiple Integrals. Engle-
wood Cliffs, NJ: Prentice-Hall, 1971.

[22] I. P. Mysovskikh, “The approximation of multiple integrals by using inter-
polatory cubature formulae,” in Qualitative Approximation, R. A. DeVore
and K. Scherer, Eds. New York: Academic, 1980, pp. 217–243.

[23] ——, Interpolatory Cubature Formulas. Moscow-Leningrad: Nauka,
1981. Izd, Russian text.

[24] A. Genz and J. Monahan, “A stochastic algorithm for high-dimensional
multiple integrals over unbounded regions with gaussian weight,” J. Com-
put. Appl. Math., vol. 112, no. 1, pp. 71–81, Nov. 1999.

[25] J. Hammersley and D. Handscomb, Monte Carlo Methods. London,
U.K.: Metheun and Co. Limited, 1964.

[26] C. E. Clark, “The greatest of a finite set of random variables,” in Oper.
Res., vol. 9, Mar.–Apr. 1961, pp. 145–162.

[27] IEEE Standard for Integrated Circuit (IC) Delay and Power Calculation
System, pp. 1–390, 1999. IEEE Standard 1481-1999. [Online].
Available: http://fp.ieeexplore.ieee.org/iel5/6837/18380/00846710.pdf?
isNumber=18380&prod=standards&arnumber=00846710

[28] A. Agarwal, D. Blaauw, and V. Zolotov, “Statistical timing analy-
sis for intra-die process variations considering spatial correlations,” in
Proc. IEEE Int. Conf. Compu.-Aided Design Integr. Circuits and Syst.,
Nov. 2003, pp. 900–907.

[29] B. Büeler, A. Enge, and K. Fukuda, “Exact volume computation for
polytopes: A practical study,” in Polytopes—Combinatorics and Com-
putation, vol. 29, G. Kalai and G. M. Ziegler, Eds. Basel, Ger-
many: Birkhäuser Verlag, 2000. [Online]. Available: http://www.lix.
polytechnique.fr/Labo/Andreas.Enge/Volumen_en.html

Jochen A. G. Jess (A’97) received the Masters and
Ph.D. degrees in electrical engineering from Aachen
University of Technology, Germany, in 1961 and
1963, respectively.

In 1971, he was a Full Professor with tenure to
establish and run the Design Automation Section of
Eindhoven University of Technology, The Nether-
lands. In almost 30 years with Eindhoven, he and his
group contributed to almost any relevant subject in
the area of VLSI chip design. Until his retirement
from the university in the year 2000, the group

published almost 380 papers. Under his supervision, 45 students graduated
with their Ph.D. degrees. He is one of the founders of the “Design Automation
and Test in Europe” (DATE) Conference. After his retirement, he started as a
Consultant with IBM Thomas J. Watson Research Center and the Embedded
Systems Institute of Eindhoven University. Currently, he is a Consultant with
Philips Research at Eindhoven, The Netherlands. In addition, he teaches
courses for professionals in chip architecture for the Center of Technical
Training (CTT) of Philips and for the Embedded Systems Institute (ESI) of
Eindhoven University.

Dr. Jess received the EDAA “Lifetime Achievement Award” in 2005.

Kerim Kalafala received the M.Sc. degree in computer and systems engineer-
ing from Rensselaer Polytechnic Institute, Troy, NY.

Since 1998, he has been with the IBM Electronic Design Automation Group,
IBM Microelectronics Division, East Fishkill, Hopewell Junction, NY, where
he is currently a Senior Software Engineer. He has developed various timing
analysis algorithms that are in use at IBM.

Mr. Kalafala, along with several very talented colleagues and coauthors, has
received two IBM Best Paper Awards, a Best Paper Award at DAC 2004, as
well as Electronic Design News Innovator and Innovation of the Year honors.

Srinath R. Naidu received the B.Tech. degree (with
Honors) in computer science and engineering from
the Institute of Technology, Banaras Hindu Univer-
sity, Varanasi, India, in May 1996, the M.Sc.Eng.
degree in computer science from the Indian Institute
of Science, Bangalore, India, in 1998, and the Ph.D.
degree in the area of statistical timing analysis for
digital integrated circuits from Eindhoven Univer-
sity of Technology, Eindhoven, The Netherlands,
in 2004.

Since January 2004, he has been with Magma
Design Automation, Bangalore, India. His main research interests are in the
broad areas of statistical timing, power optimization, and logic synthesis.

Dr. Naidu was a corecipient of the IBM Pat Goldberg Memorial Best
Paper Award in the fields of electrical engineering, computer science, and
mathematics, in 2003.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

2392 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 25, NO. 11, NOVEMBER 2006

Ralph H. J. M. Otten received the M.S. and Ph.D.
degrees from Eindhoven University of Technology,
Eindhoven, The Netherlands, in 1971 and 1976, re-
spectively. His M.S. and Ph.D. theses were on the
decomposition of automata and the automatic layout
for analog integrated circuits, respectively.

Until 1981, he was an Associate Professor at Eind-
hoven University of Technology, where he taught
courses on computer-aided design of electronic cir-
cuits and algorithms. His research during those years
was concentrated on automatic layout design, partic-

ularly on floorplanning. From 1981 to 1987, he was a research staff member
with the Mathematical Sciences Department, Thomas J. Watson Research
Center, IBM Corporation. In 1985, he became the Manager of the Yorktown
Silicon Compiler Project. From 1987 to 2000, he was a Professor with the Elec-
trical Engineering Department, Delft University of Technology. In 1997–1998,
he held the McKay Chair with the University of California, Berkeley. At
present, he is a Full Professor in electronic systems and the Curriculum
Director for the Faculty of Electrical Engineering, Eindhoven University of
Technology. His main interests are in the implementation of large electronic
circuits, particularly in the automation of that task. The goal is to provide a
scientific basis for modern design trajectories that unify pre- and postsilicon
designs.

Chandu Visweswariah (S’84–M’84–SM’95–F’05)
received the B.Tech. degree in electrical engineering
from the Indian Institute of Technology, Chennai,
India, in 1985, and the M.S. and Ph.D. degrees in
computer engineering from Carnegie Mellon Univer-
sity in Pittsburgh, PA, in 1986 and 1989, respectively.

In 2002, he was a Visiting Assistant Professor
with the Department of Electrical Engineering, Eind-
hoven University of Technology, Eindhoven, The
Netherlands. He has been a research staff member
with IBM’s Thomas J. Watson Research Center in

Yorktown Heights, NY, ever since, and currently manages a Circuit and
Interconnect Analysis Group. He has developed various circuit simulations,
circuit optimization, and timing software tools that are in production use with
IBM. His research interests include modeling, analysis, timing, optimization,
and manufacturability of integrated circuits. He has authored and coauthored
one book and over 50 technical papers. He holds five U.S. patents with 12 more
in the pipeline.

Dr. Visweswariah has won one IBM Corporate Award, two IBM Outstanding
Technical Achievement Awards, and two IBM Best Paper Awards. He has
served on the technical program committee of DAC, ICCAD, ICCD, and CICC.
Two of his papers were selected for the “Best of ICCAD” volume of 40 of the
best papers published in 20 years of ICCAD. He won a Best Paper Award at
DAC 2004. In December 2005, he was selected as an Innovator profiled by EE
Times in its “Great Minds, Great Ideas” project and special issue.

Authorized licensed use limited to: Eindhoven University of Technology. Downloaded on September 1, 2009 at 06:14 from IEEE Xplore. Restrictions apply.

