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Abstract—In this paper, we propose a statistical gate sizing ap-
proach to maximize the timing yield of a given circuit, under area
constraints. Our approach involves statistical gate delay modeling,
statistical static timing analysis, and gate sizing. Experiments per-
formed in an industrial framework on combinational International
Symposium on Circuits and Systems (ISCAS’85) and Microelec-
tronics Center of North Carolina (MCNC) benchmarks show ab-
solute timing yield gains of 30% on the average, over determin-
istic timing optimization for at most 10% area penalty. It is fur-
ther shown that circuits optimized using our metric have larger
timing yields than the same optimized using a worst case metric,
for iso-area solutions. Finally, we present an insight into statistical
properties of gate delays for a commercial 0.13- m technology li-
brary which intuitively provides one reason why statistical timing
driven optimization does better than deterministic timing driven
optimization.

Index Terms—Gate sizing, optimization, statistical gate delay
modeling, statistical timing analysis, timing yield, variability,
VLSI.

I. INTRODUCTION

AN increasing significance of variability in modern deep
submicrometer integrated circuits necessitates statistical

approaches to timing analysis and optimization. Researchers
have proposed multiple approaches to statistical static timing
analysis [2]–[6] in the past few years. A majority of these
approaches consider circuit component delays as Gaussian
random variables since it facilitates fast analytical evaluation.
Timing analysis involves add and max operations. A max
operation on Gaussian random variables is nontrivial. Chang et
al. [3] and Visweswariah et al. [5] propose to approximate the
maximum of multiple Gaussians with a Gaussian using Clark’s
approach [7] to obtaining the max of two Gaussians. Pairwise
max operations are, thus, employed in the computation of the
maximum of multiple Gaussians, each of which involve ap-
proximations. However, none of the above approaches describe
the impact of the ordering of pairwise max operations on the
resulting inaccuracy in the final solution.

Multiple approaches to statistical timing optimization have
emerged recently. Agarwal et al. propose a sensitivity-based
gate sizing algorithm, and faster approaches that perform sensi-
tivity calculation based on slack computation [8], to minimize
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the 99-percentile point of a circuit’s delay distribution. Intra-die
variability is considered, and gate delay variations are assumed
to be 10% of their nominals. A robust gate sizing methodology
based on geometric programming is proposed by Singh et al.
[9]. They incorporate an uncertainty ellipsoid to model varia-
tions and attain to optimize circuit area under worst case timing
constraints. Guthaus et al. [10] propose a gate sizing algorithm
to optimize circuit area while satisfying a given timing yield
target. They employ a sensitivity metric to select gates for re-
sizing. Our experiments conclude that node and edge criticali-
ties evaluated in their approach can only be estimated in closed
form to be within 20% of those obtained from Monte Carlo sim-
ulations. This is due to the assumption of independence between
the criticalities of any two paths while evaluating a node or an
edge criticality. As a result, they may be inadequate for guiding
timing optimization.

In this paper, we present an approach to area constrained
statistical timing yield optimization that involves statistical
modeling, statistical timing analysis, and gate sizing. We do
not focus on improving a given percentile point of a circuit’s
delay distribution, but attain to maximize the probability that
given timing constraints are met, under variations. Statistical
gate delay modeling is performed for a commercial 0.13- m
technology library from a foundry. We employ Visweswariah’s
approach [5] for statistical static timing analysis, and present
a formal proof that validates their variance matching method-
ology used in the computation of the maximum of two
Gaussians. We also consider a smart ordering for pairwise max
operations on Gaussians during the computation of the max-
imum of multiple Gaussians. It is observed that the ordering
achieves accuracy improvements in the final solution. Gate
sizing is performed using a statistical global sizing algorithm.
We prove that maximizing the timing yield of a circuit is equiv-
alent to maximizing a simple expression involving the mean
and the standard deviation of the circuit’s slack distribution.
Experiments performed in an industrial framework show abso-
lute timing yield gains of 30% on the average in comparison
to a commercial synthesis tool for an area overhead of at most
10%. We observe that for iso-area solutions, our metric obtains
larger timing yields than optimization for the worst case slack.
Finally, we present insight into statistical properties of gate
delays from a commercial technology library which intuitively
provides one reason why statistical timing driven optimization
does better than deterministic timing driven optimization.

The rest of this chapter is organized as follows. Sections II and
III present our approaches to statistical modeling and statistical
static timing analysis, respectively. In Section IV, we propose
our statistical gate-sizing algorithm for timing yield optimiza-
tion, and present experimental results in Section V. We provide
insight into statistical properties of gate delays in Section VI,
and draw conclusions in Section VII.
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Fig. 1. Statistical inverter delay modeling example.

II. STATISTICAL MODELING

Statistical delay modeling involves expressing circuit compo-
nent delays as functions of the parameters of variation, which
we model as Gaussian random variables. Based on the work in
[3] and [5], we assume that gate delays are approximated by
a linear function of the parameters. We also assume that these
parameters are independent, since a dependent set of Gaussian
parameters can be transformed into an equivalent set of inde-
pendent Gaussian parameters using principal component anal-
ysis [3]. Circuit component delays are, therefore, expressed as

(1)

In the previous expression, denotes the mean or nominal
value of the delay, ’s represent the vari-
ations of global parameters ’s from their
nominal values, and ’s and denote the delay
sensitivities to their corresponding sources of variation.
represents the variation from the nominal of an independent
random variable that is associated with each component, and

denotes the delay sensitivity to .
To compute the delay sensitivities for any gate in the circuit,

we obtain precharacterized gate delay values as functions of
their loading capacitance and input slews (based on determin-
istic timing analysis at nominal corner) at multiple corners in
the parameter space. The parameters are normalized by sub-
tracting their nominal values followed by a division by their
standard deviations. A least-squares fit is finally employed to
obtain the desired delay sensitivities that express the gate delay
as a linear function of normal random variables, as expressed in
(1). This procedure is repeated for each gate in the circuit. Fig. 1
shows precharacterized delay values for some inverter in a cir-
cuit at multiple corners in a 2-D parameter space. A least square
fit of the obtained points results in a plane, the slope of which
in the two coordinate directions give the sensitivities of the in-
verter delay to the parameters, respectively. The inverter delay
is, thus, obtained as a weighted linear sum of Gaussian random
variables.

III. STATISTICAL STATIC TIMING ANALYSIS

Statistical static timing analysis requires propagation of delay
distributions through the circuit. This involves add and max
operations on the delay random variables. Since we express
circuit component delays as a linear combination of Gaussian
random variables, the add operation is performed in a straight
forward manner and yields another Gaussian. In this work, we
employ Visweswariah’s approach [5] to computing the max-
imum of two Gaussian delay random variables and , which
are expressed as a weighted linear sum of normal random vari-
ables as in (1). We denote the (mean, variance) of and as

and , respectively,
where the ’s and ’s represent delay sensitivities. We use

to denote the correlation coefficient
between and , and define the following:

(2)

(3)

(4)

(5)

The mean and variance of are computed
as follows (Clark’s approach [7]):

(6)

(7)

Approximation of with a Gaussian having a
canonical form is performed
as follows (Visweswariah’s approach [5]):

(8)

(9)

(10)
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, in the previous expression, denotes the tightness proba-
bility of over , that is, the probability that dominates .
Our first contribution to this approach is that we formally val-
idate the variance matching approach in (10). We prove in the
appendix that is always nonnegative. This
implies that the variance matching approach never involves the
computation of the square root of a negative quantity. Required
time estimation in statistical timing analysis is performed by a
backward propagation of delay distributions and involves the
subtract and min operations. These operations are similar to the
add and max operations.

When a gate has more than two fan-ins (fan-outs), the max
(min) operation for the arrival (required) time distribution cal-
culation is done one pair at a time, each step of which involves
approximations. We observe that an arbitrary order of these pair-
wise operations may accumulate errors and can significantly af-
fect the accuracy of the final solution. We employ a greedy ap-
proach for smart pairwise max (min) operations based on the
approximation error computations [11]. Slack estimation during
timing analysis involves subtract operations which can be per-
formed on the canonical forms of the timing distributions. A min
operation on the slack distributions at the primary outputs gives
the circuit slack.

IV. STATISTICAL GATE SIZING

We formally define the timing yield of a circuit to be the prob-
ability that the circuit slack is nonnegative. This probability can
be computed by integrating the slack probability density func-
tion (pdf) from 0 to . Given the circuit slack (after statistical
timing analysis) as a Gaussian random variable with mean
and standard deviation , the timing yield of the circuit is
given by

(11)

In this work, we attain to maximize the timing yield of a circuit
using gate sizing, under given area constraints. We next prove
that maximizing the timing yield is equivalent to maximizing the
ratio of the mean to the standard deviation of the circuit slack
distribution.

Theorem 1:

Proof: We define . Under variable
transformation

which is strictly increasing with . This proves our claim.
Our statistical gate sizing approach, thus, attains to maximize

the metric , under area constraints. For sake of compar-
ison, we also consider maximizing the metric , under

identical area constraints; such an objective function attains to
maximize the worst case slack.

We design a statistical global gate sizing (SGGS) algorithm
for timing yield optimization as an extension to the global gate
sizing algorithm [12]. Our choice of the global sizing algorithm
is motivated by results obtained by Coudert et al. [12], which
show that this algorithm is superior to common greedy or ge-
netic approaches to circuit optimization in terms of performance
and power/delay curves. The proposed algorithm considers the
circuit as a network of nodes with a global cost function Cost
that is to be maximized under given area constraints Area .
The global cost function used in our approach is the metric

, where and denote the mean and the standard
deviation, respectively, of the circuit slack distribution . Each
node in the network is implemented using some gate from the
given technology library. Multiple gates, each belonging to the
same gate class as the node, can be mapped to a given node.
We refer to this process as resizing a node. The variation in the
global cost due to resizing a node is denoted its gradient for a
particular resize operation. We define the local cost of a node
as the ratio of the mean to the standard deviation of the slack
distribution at its output. Variations in the local cost of a node
due to various resizing operations are termed as corresponding
local gradients.

We describe the algorithmic flow next. A set update maintains
a list of nodes whose gradients are to be computed. This set is
initialized with all nodes in . Another set moves maintains a
list of nodes that can potentially be resized. This set is initially
kept empty. For any node , the gradient computation for each
possible resize involves a run of statistical timing analysis on
the entire circuit. This makes the gradient evaluation computa-
tionally very expensive. In practice, we observe that the impact
of a node resize on the local gradients decrease quickly (approx-
imately geometrically [12]) with increasing fan-in and fan-out
level. We, therefore, extract a subnetwork for each node in
update, which is made out of two transitive levels of fan-in and
fan-out around . The inputs and outputs of the subnetwork
are annotated with the corresponding arrival and required time
distributions, respectively, from the original network . Statis-
tical timing analysis is now performed on and the local gra-
dient at the output of this subnetwork is used as the metric for
evaluation. Unless no possible resize operation on improves
this metric, the new gate involved in a possible resize that max-
imizes this metric is termed as the best-gate for . The node
and its best-gate are now added as a possible resize operation to
the set moves. However, the resize is not actually performed at
this stage.

Following the above procedure for each node in the set
update, a MultiMove routine picks a subset of possible resize
operations from the set moves that provide maximum cumu-
lative gain in the global cost. These resize operations are then
performed and the resized nodes are returned in a new set
moved. The MultiMove routine determines the subset for the
move based on the descent direction or by a conjugation of
directions of the cost gradients [12]. In our experiments, we
employ a greedy heuristic that chooses the best two nodes for
resize in terms of yield improvement in each MultiMove opera-
tion. A new set of nodes whose gradients need to be recomputed
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Fig. 2. SGGS algorithm.

are now derived from moved in the function PerturbedNodes.
In our approach, we choose a node for gradient recomputation
only if it is sufficiently perturbed, that is, if one of its close
neighbors (within one or two transitive fan-in or fan-out levels)
has been resized. The entire process is repeated till convergence,
wherein future iterations do not improve the global cost (timing
yield of the circuit) further or till the runtime/area constraints
of the design are violated. For comparison, this procedure is
repeated starting with the original design, using as
both the global cost function and the local cost function. The
complexity of this algorithm using the best-fit polynomial is
shown to be , where denotes the number of internal nodes
[13]. The pseudocode of the SGGS algorithm is presented in
Fig. 2.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The proposed statistical modeling, statistical timing analysis,
and gate sizing routines are implemented in an industrial frame-
work, as an addition to a commercial synthesis and optimiza-
tion tool. Experiments are performed on combinational Interna-
tional Symposium on Circuits and Systems (ISCAS’85) and Mi-
croelectronics Center of North Carolina (MCNC) benchmarks
mapped to a 0.13- m commercial technology library from a
foundry.

For our experiments, we choose and temperature as the
parameters of variation. We acknowledge that these parameters
may have a nonlinear impact on delays. However, precharacter-
ized gate delay values were available for a commercial 0.13- m
library that we intended to use in our experiments. It was not im-
mediately possible to recharacterize these gates for other para-
metric variations, and we did not use artificial values for the
same as done in a majority of other mentioned approaches to
statistical optimization. In any case, our approach is not limited
to the use of any particular parameters of variation.

TABLE I
STATISTICAL TIMING ANALYSIS RESULTS

We consider variations in the range of 1.08 to 1.32 V.
The nominal value is set to 1.2 V and the standard deviation
is set as the following:

V V

Similarly, we consider temperature variations from 0 to 125 C,
with nominal temperature as 25 C and standard deviation

set to 8.33 C. For any characterization point , the delay
equation is set up as the following:

represents the typical delay obtained from gate characteriza-
tion at and . This formulation is scalable to any number of
parameters. A least squares fit procedure is employed to obtain
the coefficients s. The accuracy of this approach is dependent
on the number of characterization points that are available in the
library.

Statistical timing analysis is next performed to obtain the
global circuit slack distribution , with mean and variance

. Timing yield of the circuit is obtained from (11). Table I
shows obtained statistical timing analysis results. We present
obtained arrival time mean and standard deviation
values, and those obtained from Monte Carlo simulations for
comparison. Figures reported are for 10 000 random samples of
Monte Carlo simulations. Benchmark sizes ranged from about
100 to 2000 gates. From Table I, we observe that the average
and maximum error in the estimation of the mean and standard
deviation of the circuit delay distribution is under 1% and 4.1%,
respectively. SSTA is found to be faster than Monte Carlo sim-
ulations by 42.2 on the average.

For timing yield improvement estimation, we perform deter-
ministic timing optimization on a given circuit using a commer-
cial synthesis tool, which attains to improve the circuit slack
under area constraints. Statistical timing analysis is then per-
formed to obtain the slack distribution at the primary output of
the circuit, the mean of which we denote as . We next
perform statistical timing optimization using our proposed gate
sizing approach to obtain a new circuit slack distribution. To
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Fig. 3. Timing yield improvement denoted by area in black—area in stripes.

TABLE II
RELATIVE TIMING YIELD IMPROVEMENT RESULTS

estimate the relative gain in timing yield, we compute the rela-
tive timing yield of the circuit after the deterministic and statis-
tical optimization passes as the area under their respective cir-
cuit slack PDFs from to . Fig. 3 shows this relative
timing yield improvement graphically as the area of the black
region minus the area of the striped region. We next repeat this
procedure using the alternate metric as the cost func-
tion during statistical optimization instead of our original metric

.
Table II presents obtained relative timing yield improvements

for both the optimization objective functions. We observe our
proposed metric achieves timing yield improvements
of 0.3 on the average, and up to 0.5 with an area overhead of at
most 10%. Corresponding average and maximum timing yield
improvements using the alternate metric are found
to be 0.27 and 0.49, respectively (for identical area overheads).
It is, thus, shown that the proposed approach guides better op-
timization than that for maximizing the worst case slack, under
iso-area constraints. For the design alu2, the alternate metric
worsens the yield.

We next present a special case of timing yield improvement
observed for the MCNC benchmark APEX6. The three PDFs
in Fig. 4 denote the slack distributions for the unoptimized cir-
cuit (Init), circuit following deterministic static timing optimiza-
tion (Static) and circuit following statistical timing optimization

Fig. 4. Pre and post optimization slack PDFs for benchmark APEX6.

Fig. 5. Arrival means and standard deviations for a class of inverters.

(SSTO). The reduced variance of the SSTO slack PDF improves
the timing yield (from 0.87 to 0.89) even though it has a smaller
mean as compared to Static slack PDF. This example illustrates
how statistical optimization uses the additional information on
variation to achieve larger timing yields, even for iso-area solu-
tions. The proposed algorithm takes less than 480 min for the
largest benchmarks on a 400-MHz Sun Ultra 4 machine with
4-GB RAM. The primary reasons for large run times include
multiple calls to statistical timing analysis that performs smart
pairwise max operations [11]; and an exhaustive search of the
best-gate for any node in the inner loop of the algorithm.
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Fig. 6. Arrival means and standard deviations for two classes of AND gates.

VI. ANALYSIS OF STATISTICAL PROPERTIES OF GATE DELAYS

We perform an analysis of statistical properties of gate de-
lays on different gate classes from our 0.13- m commercial
technology library. We select some nodes arbitrarily from a
test circuit; and observe the mean and the standard deviation
of the arrival time distribution at each of their outputs, while
mapping different gates on them (the different gates belong to
the gate-class of the node, for example, NAND or NOR). Fig. 5
presents a plot of the arrival time standard deviation (Sigma)
against the arrival time mean for a class of inverters. Dots on
the plot represent gates which are sorted on the mean of their
output arrival times when mapped to the given node and not in
any order of their sizes. Fig. 6 presents similar graphs for two
classes of AND gates.

We observe that though most gates of a class make the plots
monotonic, there exist exceptions. In some cases during our ex-
periments, we observe that while the deterministic timing driven
optimizer resizes a node to a gate with a smaller mean arrival
time ignoring the fact that it may have larger variability, the sta-
tistical timing driven optimizer selects a gate with a larger mean
arrival time, but a significantly lesser variance. Such a choice
is found to increase the overall timing yield of the circuit. This
behavior provides one reason why statistical timing driven op-
timization gains an edge over deterministic timing driven opti-
mization.

VII. CONCLUSION

In this paper, we propose a statistical gate sizing approach
to maximize the timing yield of a given circuit under area con-
straints. Experiments performed in an industrial framework on
combinational ISCAS’85 and MCNC benchmarks show timing

Fig. 7. Plot of � against �.

yield gains of 0.3 on the average, over deterministic timing
optimization for at most 10% area penalty. It is further shown
that circuits optimized using our metric have larger timing
yields than the same optimized using a worst case metric, for
iso-area solutions. Finally, we present an insight into statistical
properties of gate delays for a commercial 0.13- m technology
library which intuitively provides one reason why statistical
timing driven optimization does better than deterministic timing
driven optimization.

Though this work considers delays as a weighted linear sum
of Gaussian random variables, the statistical timing yield im-
provement approach can be extended to handle nongaussian
parameters and nonlinear delay functions as proposed in [14].
However, obtaining a simple metric for timing yield optimiza-
tion would be a challenging problem.

APPENDIX

Using notations defined in (6), (7), and (9), we prove that the
variance matching method in (10) never involves the computa-
tion of the root of a negative quantity. Formally, we prove that

.
Proof:
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To show , it is sufficient to show that

If . For positive (since
), it is sufficient to show that

is symmetric and is found to be nonnegative for all real
values of . For values of approaches 0 with both

and tending to 0. Fig. 7 shows the plot of as a
function of .
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