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Abstract. A reliable detection of defects in welded joints is one of the most important 

tasks in non-destructive testing by radiography, since the human factor still has a 

decisive influence on the evaluation of defects on the film. An incorrect 

classification may disapprove a piece in good conditions or approve a piece with 

discontinuities exceeding the limit established by the applicable standards. 

The progresses in computer science and the artificial intelligence techniques have 

allowed the welded joint quality interpretation to be carried out by using pattern 

recognition tools, making the system of the weld inspection more reliable, 

reproducible and faster. 

In this work, we develop and implement algorithms based on statistical approaches 

for segmentation and classification of the weld defects. 

Because of the complex nature of the considered images and so that the extracted 

defect area represents the most accurately possible the real defect, and that the 

detected defect corresponds as well as possible to its real class, the choice of the 

algorithms must be very judicious. 

In order to achieve this, a comparative study of the various segmentation and 

classification methods was performed to demonstrate the advantages of the ones in 

comparison with the others giving to the most optimal combinations. 

Key words. Weld defect, segmentation, pattern recognition, statistical methods, 

performance criteria 

1.  Introduction 

A reliable detection of defects in welded joints is one of the most important tasks in non-

destructive testing by radiography, since the human factor still has a decisive influence on 

the evaluation of defects on the film. An incorrect classification may disapprove a piece in 

good conditions or approve a piece with discontinuities exceeding the limit established by 

the applicable standards [1].   

The expert radiograph has as role to inspect each film in order to detect the presence 

of possible defects which he must then identify and measure. This work is made 

particularly delicate because of a low dimension of certain defects, a bad contrast and a 

noised nature of the radiographic film. The expert often works in extreme cases of the 

visual system and, that is why the subjectivity in the mechanisms of detection and 

measurement is not negligible.  

Perfect knowledge of the geometry of
 
these weld defects is an important step which 

is essential to
 
appreciate the quality of the weld [2].   
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The progresses in computer science and the artificial intelligence techniques have 

allowed the defect classification to be carried out by using pattern recognition tools, which 

make the process automatic and more reliable, as it is not a subjective analysis [1]. 

Automatic defect detection is normally carried out by a well known pattern recognition 

technique, the steps of which are illustrated in Fig. 1: Image acquisition, pre-processing, 

segmentation, feature extraction, and classification [3]. After digitizing the radiographic 

image, the pre-processing is devoted to improving the quality of the image in order to better 

recognize defects (e.g., noise removal, integration, contrast enhancement, etc.). The 

segmentation process divides the digital image into disjoint regions with the purpose of 

separating the parts of interest from the rest of the scene. The present investigation uses the 

segmentation process based on global and local thresholding in one part [4] [5], and the 

edge detection by employing a method based on the maximization of the likelihood in the 

other part [6]. Subsequently, the feature extraction is centred principally around the 

measurement of invariant attributes deduced from moment and geometric parameters 

calculation of the regions of interest [7].  

Finally, the classification assigns each segmented region according to the extracted 

features to pre-established category of weld defect. Typically, in defect detection in welded 

joints, four categories of defects can be distinguished, according to their shape. For this 

purpose, neural network paradigms and the Expectation Maximization (EM) algorithm [8] 

will be used and compared in terms of performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1 The weld radiographic film formation  

and the automatic computer-aided system to defect detection and recognition 

2.  Digitization 

Generally, the radiographic films are very dark and their density is rather large, therefore an 

ordinary scanner cannot give a sufficient lighting through a radiogram. Of course, 

specialized scanners adapted to take high quality copies of radiograms exist, but they are 

expensive. Here, we have used a scanner AGFA Arcus II, (800 dpi, 256 gray levels). The 

major part of the radiographic films that we have digitized, were extracted from the 

standard films provided by International Institute of Welding (IIW). After digitization, the 

principal characteristics of our images are:  

• Small contrast between the background and the weld defect regions. These last are 

characterized by unsharpened and blurred edges.   

• Pronounced granularity due to digitization and the type of film used in industrial 

radiographic testing.     

• Presence of background gradient of image characterizing the thickness variation of the 

irradiated component part. 
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3.  Preprocessing 

For the reasons evoked in the preceding paragraph, it becomes difficult, if not uncertain to 
detect, during the radiogram visualization, the presence of the small defects and to 
determine accurately their sizes. That is why, it is often necessary to start with the 
preprocessing stage in order to reduce or eliminate the noise enclosing in the film and 
improve its visibility. This procedure permits to obtain an image which would facilitate 
later the identification of the weld defects being able to be present in the welded joint. 
Nevertheless, the first task in image preprocessing is the selection of the region of interest. 
The first task that carryout the radiograph interpreters, is to frame the parts of the image 
where they suspect the presence of imperfections. For this purpose, the region of interest 
(ROI) is a reduced zone of the image where the processing will apply. The selection of the 
ROI saves the operator to make treatments on the useless parts of the image, permitting 
reduction of the computing time. The second advantage is to save the treatments based on 
the global approaches to use the irrelevant regions of the image, which can negatively 
influence the output results. In addition, the limitation of the image to a region of interest 
(ROI) prevents from the detection of false defects outside the weld. 

After ROI selection, if necessary, we apply the contrast enhancement of which the 
goal is to improve the intensity contrast in the input image, highlighting the defect regions 
whilst leaving the unimportant background regions intact. This enables the defect detection 
stage to better locate and represent each defect in the image.  

4.  Segmentation  

The segmentation constitutes one of the most significant problems in image processing, 

because the result obtained at the end of this stage strongly governs the final quality of 

interpretation [9].  

One of the essential problems in the design of an image analysis system is to reduce 

the huge quantity of information contained in the raw image by preserving only, the most 

important points, in one hand, and to determine the image models and the corresponding 

segmentation algorithms which are suitable for the image of interest in the other hand. 

The radiographic film images, object of our interest, contain weld defects placed in 

background with different intensities. For such images, intensity is a distinguishing feature 

that can be used to extract the defects from the background. Therefore, thresholding or edge 

detection techniques become strong candidates for efficient radiographic image 

segmentation.  

4.1   Thresholding  

Thresholding is the process of partitioning pixels in the images into object and background 

classes based upon the relationship between the gray level value of a pixel and a parameter 

called the threshold. Because of its efficiency in performance and its simplicity in theory, 

thresholding techniques have been studied extensively and a large number of thresholding 

methods have been published [10].  

These methods can be divided, among others, into two categories: global or 

histogram-based methods and adaptive local methods. Global methods compute a single 

threshold value for the entire image, and pixels having a gray level value less than the 

threshold value are marked belonging to one class, otherwise the other class. Local 

methods, on the other hand, compute a threshold value for each pixel on the basis of 

information contained in a local neighborhood of the pixel. 

Based on the properties of the radiographic images, we have implemented three 

different thresholding algorithms. One of the methods is the Otsu global thresholding and 

the two others are the Niblack’s and Sauvola’s local adaptive thresholding. 
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4.1.1 Definitions  

The gray level histogram is considered as probability distribution function  
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where {0,1,2,…,L-1} denote the gray levels. The number of pixels in level i is denoted by hi 

and the total number of pixels is denoted by N.  

Suppose we divide the pixels into two classes C0 and C1 by a threshold value at k. 

C0 denotes pixels with levels [0,1,…,k] and C1 denotes pixels with levels [k+1,…,L-1]. The 

probabilities of class occurrences ω, class mean levels µ and class variance for both classes 

are given by: 
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µT and σT are respectively the total mean and standard deviation.  

4.1.2 Otsu’s variance method 

Otsu [11] suggested minimizing the weighted sum of within-class variances of the object 

and background pixels to establish an optimum threshold. Recall that minimization of 

within-class variances is equivalent to maximization of between-class variance. Thus, a 

criterion measure is introduced by Otsu: 

2

T

2

B
σση /=  (4) 

where 

( ) ( )2

11

2

00

2

TTB µµωµµωσ −+−=  (5) 

is the between-class variance which can be simplified to 
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The optimal threshold kopt is given by maximizing η or equivalently maximizing 2

Bσ , since 
2

Tσ  is independent of k. 
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4.1.3. Kittlers and al’s clustering algorithm 

In the Kittler’s and Illingworth [12] method, the gray level histogram is viewed as an 

estimate of the probability density function of a mixture of two normal distributions. This 

method costs the thresholding problem as a classification problem and seeks the threshold 

for which the error is minimal. The minimum error threshold can be found by solving the 

quadratic equation given by: 
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This amounts to minimizing the criterion:  

( ) ( )11001100 221 ωωωωσωσω lnln lnln)k(J +−++=  (9) 

Then, the optimal threshold is given by  

( ){ }kJk
k

opt min=  (10)

4.1.4 Local thresholding by Niblack and Sauvola methods 

In some radiographic images, the background intensity is variable, and the 

overlapping between the two classes is therefore large, due to the weld thickness variations, 

the weak sizes of the defect and the geometrical considerations related to the used 

radiography technique. In such case, by a global thresholding, we do not obtain the desired 

results. That is why a local adaptive thresholding technique can be employed to overcome 

the problem. The method of Niblack is fast to implement and easy to apply. The main idea 

of Niblack’s thresholding method [13] is to vary the threshold value over the input image, 

based on the local mean µ(x,y) and local standard deviation σ(x,y). The threshold value at 

pixel (x,y) is computed by   

),(),(),( yxkyxyxT σµ +=  (11)

where k is an adjustable parameter which depends on the image content. The size of the 

neighborhood must be sufficiently small to preserve the local details but also, it must be 

enough large to remove the noise. In this method, the problems are the light textures in the 

background, which are considered as object with small contrast.  

To overcome these problems, Sauvola [14] proposed a new improved formula to 

calculate the threshold 

])[,(),( αµ k1yxyxT −=  (12)

where          

Ryx /),(1 σα −=  (13)

k: positive value parameter. R: dynamic range of the variance. 

The contribution of the standard deviation becomes adaptive. In this method, hypothesis on 

the gray levels of the object and the background are used to eliminate the noise produced by 
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light textures of the background because µ reduces the threshold value in the light 

background regions.  

4.1.5 Thresholding performance criteria  

In practical thresholding applications, if the thresholding image is complex and the 

algorithm is fully automatic, the error is inevitable. The disparity between an actually 

thresholded image and a correctly/ideally thresholded image (ground-truth of input image) 

that is the best expected result can be used to assess the performance of algorithms [15]. In 

the case of the radiographic images of the welded joints, the automated image thresholding 

encounters difficulties because the object (weld defect) and background gray levels possess 

substantially overlapping distributions, even resulting in unimodal distribution. 

Consequently, misclassified pixels of the object may adversely affect the results of 

radiographic film interpretation. To put into evidence the differing performance features of 

thresholding methods [10], we have used as performance criteria the misclassification error 

(ME). We have adjusted this performance measure so that, their scores vary from 0, for a 

totally correct segmentation, to 1 for a totally erroneous case. The misclassification error 

[16] reflects the percentage of background pixels wrongly assigned to foreground, and 

conversely, foreground pixels wrongly assigned to background. For the two-class 

segmentation problem, ME can be simply expressed as: 

OO

kOkO

FB

FFBB
  ME

+

+
−=

II
1  (14)

where BO and FO denote the background and foreground of the original (ground-truth) 

image, Bk and Fk denote the background and foreground area pixels in the test image, and    

| . | is the cardinality of the set.  

4.1.6 Experimental results and discussion  

In order to test the effectiveness of the different histogram-based and locally adaptive 

thresholding methods on real data, a set of four radiographic testing images representing 

weld defects such as lack of penetration, solid and slag inclusions and undercut is used in 

these experiments. The weld defect images and their corresponding ground truths are 

shown in Fig. 2.a and Fig.2.b respectively. It is well known in the case of the radiographic 

images of welded joints that the major part of images presents complicated shape 

histograms due to several factors [17] such as uneven background illumination. 

Nevertheless, an appropriate contrast enhancement technique can contribute in the 

improvement of the thresholding quality. If small contrast between the background and the 

weld defect regions still remains, the global thresholding will not provide suitable 

performance, and thus, a thresholding method based on local approach will be 

recommended. The binary images obtained by thresholding are shown in Figs 2.c - 2.f. By 

using the proposed methods, their corresponding performance measures are reported in 

Table 1. By examining the thresholding scores we can deduce that, except in the case of 

Image 1, the Sauvola’s method outperforms all the other methods since its performance 

measure was the least; whereas the better result for the Image 1 was provided by the 

histogram-based methods, particularly by the Kittler’s method. Still according to 

performance criteria, the Niback’s method gives good results for the Image 3. Not far from 

Kittler’s method, Otsu’s algorithm produces comparable results. For the Images 2, 3 and 4, 

global method (Otsu and Kittler) results are not satisfactory. This substandard performance 

can be explained by the fact that these images present non uniform intensity for the 
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background which confounds in some areas with the defect region. For example, the weld 

defect (external undercut) presented in the Image 4 is totally drowned in the background by 

the Otsu’s and Kittler’s methods, which affects dangerously the interpretation results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Thresholding results of weld radiographic images 

(a) Weld defect images.  (b) Ground-truths of a.  (c) Otsu’s thresholding.   

(d) Kittler’s thresholding (e) Niblack’s thresholding.  (f) Sauvola’s thresholding. 

 

 

Table 1 Misclassification error measures 

 

 

 

 

 

 

 

 

 

 

For the Niblack and Sauvola methods, the values of W=13, k (Nib.)=−0.2, k(Sauv.) = 0.5 

and R=128 are selected. This choice was made in an empirical way, taking in account the 

dilemma between robustness (non sensitiveness to noise) and precision (space definition of 

the segmented areas). 

4.1.7 Post-processing and morphological operations 

After the thresholding stage, the binary image can contain: 

• superfluous information that it is suitable to eliminate,  

• or masked information that it is necessary to reveal and this, whatever the employed 

thresholding method.  

The processing based on mathematical morphology makes possible to modify the 

binary image for this purpose. Dilatations and erosions are often used in pairs to obtain 

morphological opening and closing. Opening by a disk structuring element smoothes the 

Otsu Kittler Niblack Sauvola

Image 1 0.0774 0.0425 0.1441 0.1587 

Image 2 0.5453   0.4433 0.2582 0.0452 

Image 3 0.4363 0.4299 0.1675 0.1568 

Image 4 0.6297 0.4777   0.1060 0.0444 

a.

b.

c.

d.

e.

f.

Image 1 Image 2 Image 3 Image 4 
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boundary, breaks narrow parts, and eliminates small objects. Closing by a disk structuring 

element smoothes the boundary, fills narrow bays, and eliminates small holes.   

By referring to morphological operators properties [18], it thus becomes convenient 

to apply these operators like their combination in order to eliminate the noise and the small 

residual spots in the thresholded image. We must consider that at the end of this stage, we 

obtain only one connected region which represents the more accurately possible, the weld 

defect and on which we extract various features necessary to the classification stage. The 

combination of the median filter with the morphological operators of dilation, erosion, 

opening and closing allows us: to remove the noise, to eliminate the small residual spots 

and to connect closed regions likely to represent the same weld defect. 

 

 

 

            

 
a.                                                                              b. 

 

Fig. 3 Examples of the application of morphological  

filtering on radiographic binary images 

 

In Fig. 3.a, one pass of median filter on the Sauvola thresholded image followed by 

an opening/closing using square structuring element (2×2 of ones) is sufficient to obtain the 

expected result. On the other hand, in the case of Fig. 3.b, it was necessary to apply two 

passes of median filtering, followed by double dilation and double erosion using a 

rectangular structuring element (2×3 of ones). This choice is justified by the fact that in this 

last case, the structuring element must play a double role: eliminate the small irrelevant 

areas and connect regions which belong a priori to the same region representing the weld 

defect.      

4.2 Contour estimation based maximum likelihood 

Many works have been proposed about the active contour models in the different fields 

especially in medical imaging [19], [20], [21] and so on. In this section, we describe a new 

method for automatic estimation of weld defect contours in radiographic images. To deal 

with the low quality of radiography images, we describe the contour shapes using low order 

parametric deformable models. This low-order parameterization is sufficient to 

accommodate the expected shape and size variations, yet provides robustness against noise, 

image artifacts and regions of missing data. The problem is formulated in a statistical 

estimation framework, and implementation is carried out by unsupervised deterministic 

iterative algorithms. 

4.2.1 Problem formulation 

A. Probabilistic Image Model: Our approach consists of a maximum likelihood estimation 

approach to parametric deformable models. The basic building block is a probabilistic 

observation model ( )θ/ZP  characterizing the observed data Z given the parameter vector θ  

which describes the contour shape. Under the maximum likelihood (ML) criterion, the best 

estimate of θ  denoted by MLθ̂ , ML is given by 

( )( )θθ
θ

/maxargˆ ZpML =  (15)
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To derive the likelihood function ( )θ/Zp , we adopt a region based approach; this has 

been shown to provide robustness with respect to local artifacts and poor image quality, 

[21]. In our region-based model, Z consists of all the image data, thus being less sensitive to 

noise and image artifacts than methods that use local derived information (such as gradients 

or edges) . In particular, we consider a simple model in which the image is divided into two 

regions, inside and outside, separated by the boundary to be estimated. 

The observed image Z (an array of gray levels), is modelled as a random function of the 

object's boundary curve ( )θv , which is a function of the unknown parametersθ . Moreover, Z 

may also depend on some additional observation parametersφ . 

Accordingly, our likelihood function can be written as ( )φθ ,/Zp . 

The simplest possible region-based model is characterized by the two following 

hypotheses: conditional independence (given the region boundary, all the pixels are 

independent); and region homogeneity (the probability distribution of each pixel only 

depends on whether is belongs to the inside or outside region). Thus, the likelihood 

function can be written as 

( ) ( )
( )( )

( )
( )( )

∏∏
∈∈

×=
θθ

φφφθ
vOji

outji

vIji

inji ZpZpZp

),(

),(

),(

),( //,/  (16)

with ( )jiZ , denoting the value of pixel ( )ji, , while ( )( )θvI  and ( )( )θvO are, respectively, the 

inside and outside regions of the contour ( )θv . Finally, ( )( )injiZp φ/,  and ( )( )outjiZp φ/,  are the 

pixel-wise probability functions of these two regions.  

Given that radiography images are well described by Rayleigh or Gaussian 

distributions, Rayleigh density has the form: 

( ) ⎟
⎟
⎠

⎞
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⎛
−=

φφ
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2
exp/

2xx
xp  (17)

and thus [ ]outin φφφ ,= , where inφ  and outφ  are the variances for the inside and outside 

regions, respectively. 

Gaussian density has the form: 
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2
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/
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µ

πσ
φ

x
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and thus [ ]σµφ ,=  with [ ]outin µµµ ,= ,where inµ  and outµ are the means  for  the inside and 

outside regions, respectively. [ ]outin σσσ ,= ,   where inσ  and outσ are the standard deviations 

for the inside and outside regions, respectively. 

 

B. Complete Estimation Criterion and Algorithm: To obtain an unsupervised scheme, we 

must estimate, from an observed image Z, not only the parameters that define the 

contour,θ , but also the other parameters  . Accordingly, we extend the maximum likelihood 

criterion to include also these parameters: 

( ) ( )( )φθφθ
φθ

,/maxargˆ,ˆ

,

Zp=  (19)

Since solving (19) simultaneously with respect to θ  and φ would be computationally very 

difficult, we settle for a suboptimal solution given by iterative schemes of the type 
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( ) ( )( )( )tt Zp φθθ
θ

ˆ,/maxargˆ 1 =+
 (20)

( ) ( )( )( )φθφ
φ

,ˆ/maxargˆ 11 ++ = tt Zp  (21)

where ( )tθ̂  and ( )tφ̂ are the estimates of θ  and φ  at iteration t, respectively [21]. 

4.2.2 Results and Discussion 

We have implemented two contour estimation algorithms: one with Raleigh distribution, 

and another with Gaussian distribution. In both cases, the underlying criterion and type of 

algorithm are those in (19), (20), and (21). The first two examples simply illustrate the 

results of the algorithm using synthetic images generated according to the Rayleigh and 

Gaussian models. In Fig. 4, we simulate a weld defect by Gaussian model, with the inner 

and outer parameters set to ( )3,80 == inin σµ  and ( )4,150 == outout σµ  respectively. The 

final parameter estimates are ( )91.2ˆ,55.81ˆ == inin σµ  and ( )15.4ˆ,67.148ˆ == outout σµ . In the 

example of Fig. 5, we simulate a weld defect by Raleigh model, with the inner and outer 

variances set to 80 and 150, respectively. The image model parameter estimates obtained 

were 65.80ˆ =inφ  and 26.151ˆ =outφ . 

In the final example shown in Fig. 6, we employ our method to extract the defect 

contour from the radiographic image with Rayleigh model. The left image in Fig. 6 shows 

the selected initial contour. We can see the initial contour is far from the reel one. The 

middle image in Fig. 6 is obtained after some iterations, we remark that the selected contour 

come close to the defect one. Finally, in the right image in Fig. 6, the deformable contour is 

closed-fitting to the defect edge. 

 

            
 

Fig. 4 Synthetic image with Gaussian model: initial contour, intermediate contours and final contour 

  

             
 

Fig. 5 Synthetic image with Raleigh model: initial contour, intermediate contours and final contour 

 

       
 

Fig. 6 Real image of weld defect with Raleigh model: initial contour, intermediate contour and final contour. 
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5. Feature extraction and selection 

5.1 Invariant attributes calculation 

After each weld defect is isolated, its geometric parameters: Area (A), perimeter (P) [22], 

centre of gravity ),( yxG , angle of orientation (α), principal axes of inertia, width (W) and 

length (L) of the minimal surrounding rectangle, maximal diameter (Dmax), radius of 

maximal inscribed circle (Rmax), semi major and semi-minor axes (a,b) of the image 

ellipse (see Fig. 7) are computed. 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 
Fig. 7 Illustration of the geometric parameters 

 

The geometric attributes which we will define below are invariants regardless 

geometric transformations of translation, rotation and scaling.  

 

Compactness  
2PA4Comp /π=  (22)

Elongation WLElong /=  (23)

Rectangularity )./( WLARct =  (24)

Anisometry baAni /=  (25)

Symmetry  SymVSymHSym ×=  (26)

where SymV and SymH are given by the algorithm :   

if   (S4+S3)<(S1+S2)  then  SymV=(S4+S3)/(S1+S2); 

else                                        SymV=(S1+S2)/(S4+S3);  

if   (S2+S3)<(S1+S4)  then  SymH=(S2+S3)/(S1+S4); 

else                                            SymH=(S1+S4)/(S2+S3);  

Lengthening index A4DI 2

a /max×= π  (27)

Center of gravity 

G 

α Surrounding rectangle  

Inscribed maximal circle 

Maximal diameter 

First principal axis 

S3

S2

S4

S1

Image ellipse  
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Deviation index to 

inscribed circle 
ARI r /1 2

maxπ−=  (28)

Invariant moments 
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where    
2qp1

00pqpq

/)( ++= µµη        p+q = 2,3,... 

are the normalized central moments [23] and 
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2

0,2
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 (30)

is the covariance matrix of the object.  

 
Because the different raw geometric attributes have values ranging from the order of 

0 to 200, the features were rescaled to lie between 0 and 1, to avoid the effects of the larger 

features “swamping” those of the smaller features and possible numerical errors caused by 

a large range in values [24].  

 

5.2 Relationship between the proposed attributes and the weld defect types  

 

Compactness (Comp): Its value is included in [0,1]. It has little values for sharp defects 

(crack, lack of fusion) and it has values near to 1 for spherical defects (porosity, tungsten 

inclusion, etc.). 

Elongation (Elong): It describes the occupied area in the bounding box of defect. Big 

values of this attribute characterize longitudinal defects (crack, lack of fusion, lack of 

penetration, elongated porosity, undercut, etc.). 

Rectangularity (Rect): Its value is included in [0,1]. It is equal to 1 for a rectangle. It 

characterizes rectangular defects (lack of penetration).             

Anisometry (Ani): It depends on the direction of principal axis of defect. Its value is 

proportional to defect lengthening.  

Symmetry (Sym): Its value is included in [0,1]. The value 1 describes a perfectly 

symmetrical shape. Asymmetrical aspects of defects (slag inclusion, warm holes, etc.) are 

related by little values of this attribute.  

Lengthening index (Ia): Big values of this indicia put in obviousness fine and rectilinear 

cracks.      

Deviation index to inscribed circle (Ir): The indicia value is maximal (near to 1) for 

lengthened defects and minimal (near to 0) for round defects. 

Invariant moments (Φ1,Φ2): They gives measures in relation with the pixel spreading  in 

comparison with the centre of mass. 

5.3 Principal Component Analysis (PCA) for feature selection 

In order to reduce the computational time required for the classification stage it is necessary 

to select attributes; thus the classifier only works with non-correlated attributes that provide 

defect detection information. There are a variety of methods for evaluating the performance 

of the computed attributes.  

In our study, we investigate the use of PCA relevant features from the feature 

vector. This technique is widely used in many areas of applied statistics. It is natural since 
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interpretation and visualization in a fewer dimensional space is easier than in many 

dimensional space [25]. PCA is a statistical tool, which is useful to extract dominant 

features (principal components) from the set multivariate data. They explain the maximum 

amount of variance possible by linear transforms by projecting the data into orthonormal 

sub-spaces. In our case, PCA will enable us to reduce the dimension of the feature vector 

and the extracted features should contain the most relevant information. 

The initial data can be represented by a matrix with M attribute variables and N 

individuals (defects). We will have an array matrix Γ with the size of N×M. Therefore, we 

have 

[ ]M21 ΓΓΓ=Γ ,,, L  (31)

The mean of the column vector i is defined by:  

∑
=

Γ=Ψ

N

n

ni
N

1

1
 (32)

The subtracted training set is represented as matrix: 

[ ]MΦΦΦ=Φ ,,, 21 L             with      
iii Ψ−Γ=Φ  (33)

The covariance matrix is calculated using 

TC ΦΦ=  (34)

The eigenvector of matrix C as i
v
r

 with corresponding eigenvalues can be computed by  

iii
vvC
rr

λ=    (1 ≤ i ≤ L ≤ M)  (35)

Any weld defect can be identified as a linear combination of the eigenvectors. The principal 

components for any weld defect are defined by: 

[ ]T

L

T

2

T

1 vvvP
r

L
rr

,,,Γ=  (36)

The matrix P with the size of N×L represents the database into the axis corresponding to 

the eigenvector. The values of this matrix are the new features that can be used for 

classification and recognition purposes.  

By examining the initial database eigenvalues in Fig. 8, we remark that the four first 

initial components give more than 97 % of information on entire observations. The data in 

new matrix are projected into four principal axes. It is pointed out that the new components 

are variables without physical meaning and are not directly observable. 

0

0,2

0,4

0,6

1 2 3 4 5 6 7 8 9

Initial components

E
ig

en
v

al
u

es

0

50

100

C
u

m
u

la
ti

v
e 

v
ar

ia
n

ce
 %

 
Fig. 8 Eigenvalues and their cumulative variance 
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6. Weld defect classification 

6.1 EM algorithm for mixture models 

Consider mixture model with M components or classes (M>1) in ℜn
 for n≥1. 

( ) ( )∑
=

=
M

m

m mxpxp

1

/α  (37)

where [ ]1  , 0∈mα  (m = 1,2 … M) are the mixing proportions subject to  

1

1

=∑
=

M

m

mα  (38)

For Gaussian mixtures, each component density )/( mxp is a normal probability distribution: 

⎥⎦
⎤

⎢⎣
⎡

−−−= −
)

1

2/12/
()(

2

1
exp

)det()2(

1
)/( mm

T

m

m

nm xCx
C

xp µµ
π

θ  (39)

where T denotes the transpose operation. Here we encapsulate these parameters into 

parameter vector, writing the parameters of each component as )( , mmm Cµθ =  (μm and Cm 

represent respectively the mean and the covariance matrix of the class m) to get 

mααα ,...,,( 21=Θ ),......,, 21 mθθθ  then (37) can be rewritten as 

( ) ( )∑
=

=Θ
M

m

mm xpxp

1

// θα  (40)

If we knew the component from which x came, then it would be simple to determine the 

parameters Θ . Similarly, if we knew the parameter Θ , we could determine the component 

that would be most likely to have produced x. The difficulty is that we know neither. 

However, the EM algorithm could be introduced to deal with this difficulty through the 

concept of missing [26]. EM algorithm is a widely used class of iterative algorithms for 

maximum likelihood (ML) or maximum posteriori (MAP) estimation in problems with 

missing data. Given a set of samples X=(x1,x2,...,xk), the complete data set Z=(X, Y) consists 

of the sample set X and a set Y of variables indicating from which component of the 

mixtures the sample came. Now, we discuss how to estimate the parameters of the Gaussian 

mixtures with the EM algorithm [27].  

The EM algorithm consists of an E-step and M-step. Suppose that )(tΘ denotes the 

estimation of Θ obtained after the t
th

 iteration of the algorithm. Then at the (t+1)
th

 iteration, 

the E-step computes the expected complete data log-likelihood function 

( ) ( ){ } ( )∑∑
= =

Θ=ΘΘ
K

k

M

m

t
kmkm

t xmPxpQ

1 1

)()( ;//log/ θα  (41)

where ( ))(;/ t
kxmP Θ  is a posterior probability and is computed as 

( )
( )∑

=

=Θ
M

l

t
lk

t
m

t
mk

t
mt

k

xp

xp
xmP

1

)()(

)()(
)(

/

)/(
;/

θα

θα
 

(42)
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And the M-step finds the (t+1)
th

 estimation )1( +Θ t of Θ by maximizing ( ))(/ tQ ΘΘ  

( )∑
=

+ Θ=
K

k

t
k

t
m xmP

K
1

)()1( ;/
1

α  (43)

( )
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Θ
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( ) ( )( )
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xxxmP
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1
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1
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;/

;/ µµ

 (45)

6.2 Choice of the weld defect categories  

By examining number of radiographic films and according to morphological characteristics of 

weld defects, we can deduce four principal shape categories: 

First category: The defects of which the shape is lengthened, sharp and rectilinear (cracks, 

undercut, lateral lack of fusion, etc.).  

Second category: The defects of which the shape is lengthened, smooth and rectangular (lack 

of penetration, elongated porosities, etc.).  

Third category: The defects with spherical shape (porosities, tungsten inclusions, etc.).  

Fourth category: The defects with irregular shape (non lengthened and non spherical) (solid 

inclusions, slag inclusions, worm holes, etc.).  

6.3 Artificial Neural Network (ANN) and its configuration for weld defect classification 

A feed forward neural network trained by the backpropagation algorithm [28] is used for 

the weld defect classification task [29], [30]. This neuronal classification consists in 

assigning the usual types of weld defects met in practice to four categories described above. 

Thus, we introduce as input data of ANN the four principal components obtained in § 5.3.  
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Fig. 9 Configuration of the used neural network 

 

As shown in Fig. 9, four neurons in the output layer correspond, each one to a defect 

category. Initially, the network is trained with the principal component vectors, and their 

corresponding weld defect categories. Each defect category is assigned to a distinct output 

class. A first set of weld defects is used as learning data in training by backpropagation. 

The test set is made up on non learned or unknown defects. 

6.4 Experiments and discussion 

Some defects extracted from the weld defect database are chosen to constitute the training data 

for ANN classifier. For the testing step, we present to the neural network a set of non 

learned (unknown) radiographic images of weld defects shown in Appendix. First, to make 

the ground truth, we have assigned to each category a number of weld defects from the 

testing set by taking into account the opinion of the radiograph interpreter. Therefore, a test 

is conclusive if the result of the classification of the non learned defect corresponds to the 

class predefined by the radiograph expert.  

The test results (see Table 2) show us that almost the entire defects presented to 

ANN correspond to interpretations emitted a priori by the experts, with a precision 

exceeding 95% (except Df_45 with 67%). By examining the shape of Df_12, we can 

remark that its relatively important width with its pronounced asymmetric shape can 

relatively move it away from the category C1 and bring it to the category C4. We can also 

remark that the defect Df_44 is classified with the accuracy of 99.60% in the category C4 

predefined by radiograph, nevertheless the ANN classifies it in the same time to the 

category C2 with a precision of 40%. This can be justifiable in taking in account the defect 

shape which can be characterized by certain rectangularity. This last is a decisive attribute 

for the category C2.  

Only one defect Df_23, defined by the experts as being a lack of penetration i.e. 

belonging to category C2, was classified by the neuronal classifier in the category C1 i.e. in 

the category corresponding to cracks, undercut etc. In fact, the more discriminating attribute 

between these two classes is the rectangularity. The category C1 is characterized by a weak 

rectangularity and inversely for C2. For this defect image, the circular shape in its right side 

and the gradual erosion of its surface influence considerably, among other things, its 

rectangularity. This shape can be caused by the presence of another weld defect (burn 

through) and the geometrical blur aspect due the radiographic exposure process. These 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

Γ

4Comp

3Comp

2Comp

1Comp

ACP

C1 C2 C3 C4 

1 0 0 0 

0 1 0 0 

0 0 1 0 

0 0 0 1 

T r a i n i n g  d a t a  s e t  

T e s t i n g  d a t a  s e t  
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considerations being taken into account, the defect Df_23 changes the category during 

classification.  

For weld defect classification by EM algorithm, we also use principal components 

as classifier inputs: X = ΓACP .We have supposed that the number of clusters (categories) 

M=4, corresponding to the eight defects of C1, the six defects of C2, the five defects of C3 

and the six defects of C4 taken from data base. 

The EM algorithm is used to estimate the means vectors ( 4,..,1,~ =iiµ ), covariance 

matrix ( 4,..,1,
~

=iCi ) and the prior probability ( 4,..,1,~ =iiα ) of the four classes. Each sample 

is classified in one of classes by using Bayes classifier (see Table 2). The EM algorithm is 

very sensitive to the choice of the initial values of parameters. In our case, we have used the 

k-means algorithm for initialization. We remark in this case that except Df_11 which was 

placed by EM algorithm classifier in C2, all the other defects give similar results than those 

obtained by ANN. 

Table 3 summarises the rates of classification database for the two methods. NC1, NC2, 

NC3 and NC4 give the ratio in percentage for the proposed classifiers (ANN and EM) 

between the returned results and the true results given by radiograph experts, for each weld 

defect category. 

 

Table 2 Weld defect classification accuracy by ANN and EM algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Table 3 Classification rate for each database category in percentage 

 NC1 NC2 NC3 NC4 Classification  rate 

ANN 100 83 100 100 97.6 % 

EM 87 83 100 100 92 % 

 ANN EM 

 C1 C2 C3 C4 C1 C2 C3 C4 

Df_11 97.73 2.85 0 0.36 1 99 0 0 

Df_12 95.49 0.09 0 28.13 99.98 0.02 0 0 

Df_13 100 0.12 0 0 99.88 0.12 0 0 

Df_14 97.55 2.49 0 0 100 0 0 0 

Df_15 100 0.04 0 0 100 0 0 0 

Df_16 100 0.01 0 0 100 0 0 0 

Df_17 100 0.12 0 0 100 0 0 0 

Df_18 99.99 0.2 0 0 99.95 0.05 0 0 

Df_21 3.24 96.07 0 0.02 0.70 99.30 0 0 

Df_22 0.02 99.87 0 0.01 0.01 99.99 0 0 

Df_23 100 0.01 0 0 99.6 0.4 0 0 

Df_24 0.06 99.84 0 0.03 0.01 99.99 0 0 

Df1_25 0 98.11 0.01 3.24 0.01 98.30 0 1.69 

Df2_25 0.12 98.13 0 1.22 1.73 98.27 0 0 

Df_31 0 0.03 99.70 0.16 0.01 0 99.98 0.01 

Df_32 0 0.03 97.93 2.17 0.01 0 99.98 0.01 

Df_33 0 0.04 99.75 0.08 0.01 0 99.99 0 

Df1_34 0 0.01 99.75 0.11 0.01 0 99.98 0.01 

Df2_34 0 0.04 99.58 0.27 0.01 0 99.98 0.01 

Df_41 0 0.7 1.07 97.95 0 0 0 100 

Df1_42 0 0.66 0.64 98.11 0.01 0 0 99.99

Df2_42 0 2.61 1.81 96.78 0.01 0 0 99.99

Df_43 0 17.92 0.58 95.31 0.01 0 0 99.99

Df_44 0.01 40.55 0.02 99.60 0.02 0 0 99.98

Df_45 0 2.57 4.22 67.06 0 0 0 100 

17



7. Conclusion 

In the stage of radiographic image segmentation in homogenous regions and according to 

the thresholding results presented in this paper, we note that generally, the global methods 

gives good results for well contrasted weld defect radiographic images. On the other hand, 

if the radiographic images present non uniform background intensity, the methods of 

Niblack and Sauvola are then recommended. Nevertheless, in the Niblack’s method, the 

problem lies in the light textures of the background, which are assimilated to objects with 

low contrast. To overcome this problem, the method of Sauvola can be applied.  

For the extraction of the defect region, we can apply in an interactive way the 

morphological operators which eliminate the small holes and spots and connect the closely 

regions. 

Always in the segmentation field, we have described an approach to contour 

detection in radiographic images, based on a maximum likelihood formulation of 

deformable parametric models. Experiments on synthetic and real images have shown the 

ability of the proposed method to estimate contours in an unsupervised manner, i.e. 

adapting to not completely known shapes and completely unknown observation parameters.  

Concerning the feature extraction and selection for the weld defect images thus 

extracted, the major problem remains how to build a set of attributes which characterize the 

most accurately possible these defect regions, while taking in account the specificities of 

the defects that they represent, the subjectivity and the risks of their interpretation. This is 

why, it may be that only one attribute plays a decisive role in the discrimination of two 

defect classes, really distinct, either by the cause of their occurrence or by the severity of 

the codes and standards in their interpretation. The variable reduction of these attributes by 

the Principal Component Analysis permits to have an irrefutable saving in execution time 

during classification.  

The last contribution in this paper is a comparison between ANN and EM algorithm 

in weld defect classification. The experimental results show that the ANN performance is 

little better than EM, nevertheless this latter remains satisfactory. Other methods in 

statistical pattern recognition can be used for classification and retrieval such as support 

vector machines (SVM) and content-based image retrieval (CBIR). Their application in 

weld defects classification is one of our future research focuses. Also, the increase of the 

weld defect data base and the feature vector size in order to perform classification of usual 

defects met in industry is under investigation. 

8. Appendix 

The radiographic films and their corresponding weld defects used in the 

implementation issues in this paper.  
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