
ARTICLE OPEN

Statistical variances of diffusional properties from ab initio

molecular dynamics simulations
Xingfeng He1, Yizhou Zhu1, Alexander Epstein1 and Yifei Mo 1,2

Ab initio molecular dynamics (AIMD) simulation is widely employed in studying diffusion mechanisms and in quantifying diffusional
properties of materials. However, AIMD simulations are often limited to a few hundred atoms and a short, sub-nanosecond physical
timescale, which leads to models that include only a limited number of diffusion events. As a result, the diffusional properties
obtained from AIMD simulations are often plagued by poor statistics. In this paper, we re-examine the process to estimate
diffusivity and ionic conductivity from the AIMD simulations and establish the procedure to minimize the fitting errors. In addition,
we propose methods for quantifying the statistical variance of the diffusivity and ionic conductivity from the number of diffusion
events observed during the AIMD simulation. Since an adequate number of diffusion events must be sampled, AIMD simulations
should be sufficiently long and can only be performed on materials with reasonably fast diffusion. We chart the ranges of materials
and physical conditions that can be accessible by AIMD simulations in studying diffusional properties. Our work provides the
foundation for quantifying the statistical confidence levels of diffusion results from AIMD simulations and for correctly employing
this powerful technique.
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INTRODUCTION

As a powerful modeling technique, ab initio molecular dynamics
(AIMD) simulation has been recently applied to a wide range of
research topics in chemistry and materials science.1–4 AIMD
simulations are carried out using the potential energy surface
and atomistic forces calculated from ab initio methods, such as
density functional theory (DFT), and model the dynamics of
atomistic systems with ab initio level of accuracy and chemical
versatility. This accuracy is lacking in classical molecular dynamics
(MD) simulations, which are based on interatomic potentials (a.k.a.
force fields). In addition, the limited availability of reliable
interatomic potentials for studying new materials greatly limits
the applicability and chemical versatility of classical MD simula-
tions. Therefore, AIMD simulation is the method of choice for
studying the dynamics of atoms with complex chemistry changes
and simulating materials that cannot be described by available
interatomic potentials. The wide applicability of AIMD simulations
has been successfully demonstrated in studies of diffusional
properties,5–9 reaction processes,10,11 vibrational frequency,12–14

amorphous materials,15–17 phase transition,18 etc.
Mo et al.5 pioneered the application of AIMD simulations to the

study of ionic diffusion in lithium ionic conductor materials, such
as Li10GeP2S12 (LGPS). Since then, AIMD simulation has been
widely adopted as a standard technique for studying fast ionic
conductor materials with a wide range of mobile species (e.g., Li+,
Na+, Mg2+, O2−).6,7,19–23 Both ab initio and classical MD
simulations model the real-time dynamics of atoms with a
femtosecond-scale time resolution, which is difficult to directly
obtain from experimental characterizations or from other non-MD
computational methods. Due to their ab initio level of accuracy
and chemical versatility, AIMD simulations provide more accurate

quantification of diffusion properties than classical MD and have a
unique ability to predict new diffusion mechanisms. AIMD
simulation technique has achieved great successes in identifying
diffusion mechanism at the atomistic scale and in quantifying the
diffusional properties.
Major advantages of AIMD simulations (as well as classical MD

simulations) are that the diffusion events, i.e., atom/ion hops, in
the materials are directly observed from the dynamics and
trajectory of atoms and that specific diffusion mechanism is not
presumed as calculation input. In contrast, the widely used
nudged-elastic-band (NEB) calculations only obtain the energy
barrier of a specific static migration pathway and require the
pathway as input. That NEB input pathway is often derived from
the guess of the researchers. The prior guess of diffusion
mechanism may be difficult for complex materials such as
super-ionic conductors, where the mobile-ion sublattice is highly
disordered. For example, recent AIMD simulations identified that
the diffusion mechanism in lithium super-ionic conductors, such
as thio-LISICON9,24 and lithium garnet,9,25,26 is a concerted
migration of multiple ions rather than isolated ion hopping. AIMD
simulations played unique roles in uncovering and identifying
these concerted migration mechanisms, whereas isolated ion
hopping was often assumed for previous NEB calculations. In
addition, AIMD simulations sample the statistical contributions of
all diffusional events and obtain diffusional properties such as
diffusivity and ionic conductivity from the collective contributions
of all different diffusion modes. In addition, performing AIMD
simulations at different temperatures obtains the Arrhenius
relation of diffusivity and ionic conductivity, including the pre-
factor and overall activation energy, which is similar to experi-
mental measurements.
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However, the high computational expenses of ab initio
calculations limit the accessible length scale and timescale of
AIMD simulations. The small system size and short physical time
scale are major shortcomings of AIMD simulations when
compared to classical MD simulations.27,28 Even on state-of-the-
art supercomputing facilities, typical AIMD simulations are limited
to a system size of a few hundred atoms and a total physical time
duration of tens to thousands of picoseconds. As a result, a limited
number of diffusion events, i.e., ion hops, are observed during an
AIMD simulation. The limited sampling of diffusion events may
lead to significant statistical variances in calculated diffusional
properties or even, if only a few ion hops are sampled, to
erroneous values.
As AIMD simulation has become a widely used technique in

studying diffusion mechanisms and in quantifying diffusional
properties of materials, the procedures for applying AIMD
simulations to extract diffusional properties need to be system-
atically established. First, the fitting procedure of AIMD simulation
results requires a number of steps and parameters. Currently,
every study chooses their own tested parameters, but the choice
of these parameters has not been discussed. As we show in this
study, the choice may significantly impact obtained diffusional
properties. Second, most previous studies correlated the error bar
and statistical uncertainty of diffusivity to the goodness of linear
fitting to the Einstein relation. However, as we show in this study,
the goodness of linear fitting to the Einstein relation does not
necessarily capture the true statistical variance of fitted diffusivity.
Instead, the statistical variance and uncertainty of fitted diffusivity
should be a direct consequence of the limited observation of
diffusion events (i.e., ion hops) during the MD simulation. In the
literature, several studies estimated the errors in the fitted
diffusivity from single-particle tracking,29–32 classical MD simula-
tions33 and kinetic Monte Carlo simulations.34 However, these
studies, which are developed and tested for systems and
measurements with a significantly larger number of diffusion
events than typical AIMD simulations, are not ideal for analyzing
errors from AIMD simulations, where the total number of diffusion
events are small. Third, a significant number of diffusion events
should be captured to quantify the diffusion with statistical
validity. However, in many studies, the AIMD simulations only
capture and sample ion diffusion from a few ion hops with a total
mean-squared displacement (MSD) of a few Angstrom.2 The
diffusion properties from such poor sampling of ion hops may
have low statistical significance. The limitation of AIMD simula-
tions should be quantified and charted out. In summary, the
following three problems of using AIMD simulations to study
diffusional properties need to be addressed:
(1) How shall one properly extract diffusional properties from

the dynamics of atoms with minimal error?
(2) How shall one quantify the statistical variances of diffusional

properties extracted from AIMD simulations?
(3) What are the accessible ranges of materials properties and

physical conditions for typical AIMD simulations in studying
diffusion?
The aim of this paper is to resolve the aforementioned

problems and to establish a systematic procedure for quantifying
diffusional properties and their statistical variances from AIMD
simulations. In the following sections, we examine and establish
the proper procedure to extract diffusivity D from the atomic
trajectory of AIMD simulations. We illustrate the origin and the
functional dependence of the statistical variance of the diffusivity
D. We estimate the proper temperature range for AIMD
simulations to obtain D with reasonable accuracy. We estimate
the errors of activation energy and ionic conductivity from the
Arrhenius relation for typical super-ionic conductor materials.

RESULTS

Quantifying diffusivity, ionic conductivity, and activation energy
from AIMD simulations
The diffusional properties are calculated from the trajectory of
ions (or atoms) riðtÞ from AIMD simulations. The displacement Δri

of ion i from time t1 to t2 can be calculated as

Δri Δtð Þ ¼ ri t2ð Þ � ri t1ð Þ; whereΔt ¼ t2 � t1: (1)

The total squared displacement sums up the squared displace-
ment of all mobile ions,

PN
i¼1 Δri Δtð Þj j2

� �

, and describes the
movement of all N mobile ions over a time interval Δt. During
AIMD simulations over a total time duration ttot, there are many
(NΔt) time intervals with the same duration Δt (Δt < ttot) but with
different starting time t. Since the displacement of ions over Δt
reflects the mobility of ions, the total mean squared displacement
(TMSD) for all diffusional ions over time interval Δt is calculated as:

TMSD Δtð Þ ¼
XN

i¼1
ri Δtð Þ � rið0Þj j2

D E

¼
XN

i¼1

1
NΔt

Xttot�Δt

t¼0
ri t þ Δtð Þ � riðtÞj j2;

(2)

by averaging over a total of NΔt time intervals with the same
duration Δt. This averaging over different NΔt time intervals
provides essential ensemble sampling to obtain more accurate
diffusional properties. To estimate the diffusivity of the mobile-ion
species, the MSD over time interval Δt is calculated as the TMSD
per mobile ion:

MSD Δtð Þ ¼ 1
N
TMSD Δtð Þ: (3)

N is the number of ions that are assumed to be the mobile
carriers contributing to diffusion.
In general, the dependence of MSD over time interval Δt follows

a linear relationship if a large amount of diffusional displacement
is captured during the MD simulation. The diffusivity of these ions
is calculated as the slope of the MSD over time interval Δt
according to the Einstein relation:

D ¼ MSD Δtð Þ
2dΔt

þ Doffset; (4)

where d= 3 is the dimension of the system, and the offset Doffset

of this linear dependence is discussed in later sections. This
calculated diffusivity D is the tracer diffusivity of the mobile-ion
species and is an intrinsic property of the material at the given
condition.
From the diffusivity D, the ionic conductivity is calculated based

on the Nernst–Einstein relation:

σ ¼ Nq2

VkT
D;

(5)

where V is the total volume of the model system, q is the charge of
the mobile-ion species, T is the temperature, and k is the
Boltzmann constant. By combining Eqs. (3–5), the ionic con-
ductivity is directly determined by TMSD(Δt)/Δt:

σ ¼ q2

VkT

TMSD Δtð Þ
2dΔt

:
(6)

The ionic conductivity and TMSD calculated in Eq. (6) are
independent of the specific choice of the diffusion carrier, such as
vacancy or interstitial. In comparison, the diffusivity D can be
calculated for specific carriers, e.g., Li+ or vacancy, by normalizing
the specific number of carriers in Eq. (3). The choice and counting
of mobile carriers do not affect the calculated ionic conductivity
from Eq. (6). Therefore, the use of conductivity and TMSD is more
straightforward in describing the overall diffusion that occurred
during the AIMD simulations.
In addition, the Nernst–Einstein relation (Eq. (5)) assumes dilute,

non-interacting mobile ions in the materials systems. However,
recent AIMD simulation studies have shown the strong correlation
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of the ionic diffusion in fast ionic conductors.9,24–26,35–37 The
Haven ratio is often used to describe the correlation factor, and
can be quantified by the ratio of the jump diffusion coefficient DJ

against the tracer diffusivity D calculated from Eq. (4).38–40 The
jump diffusion coefficient DJ, which describes the collective
migration of all ions, is estimated from the MSD of the mass center
of all mobile ions. However, our analysis found that tracking the
displacement of the single center point exhibits higher statistical
variance. In this study, the scheme for estimating statistical
variance is developed for tracer diffusivity D in Eqs. (5, 6), but a
similar scheme can be applied and developed for analyzing the
variance of DJ.
As in the experiments,41–44 AIMD simulations can be performed

at multiple temperatures to obtain the Arrhenius relation of D as a
function of T:

D ¼ D0exp � Ea

kT

� �

: (7)

The activation energy Ea of ion diffusion can be obtained
through fitting the data of log D vs. 1/T to the Arrhenius
relationship (Eq. (7)). The fitted Arrhenius relationship can be used
to extrapolate the diffusivity D and conductivity σ to other
temperatures. It should be noted that, by extrapolating this
Arrhenius relation to other temperatures, the identical diffusion
mechanism is assumed at those extrapolated temperatures.

Regions of MSD–Δt dependence
Figure 1 shows a typical MSD–Δt curve from AIMD simulations of
the Li-ion superionic conductor Li1.33Ti1.67Al0.33(PO4)3 (LATP). The
linear MSD–Δt dependence as described in the Einstein relation-
ship (Eq. (4)) only holds within a certain range of time intervals Δt,
and a notable fraction of this dependence is not linear. The MSD–
Δt curve at short time interval Δt < 0.1 ps follows MSD / Δt1:42,
which is consistent with the local harmonic vibration motion
model as shown in the Supplementary Note 1 and Supplementary
Figure 1. This portion of the MSD–Δt curve is named the ballistic
region, corresponding to the ballistic and vibrational motion of Li
ions around their local equilibrium sites rather than Li-ion hopping
to new sites.33,45 More details of this ballistic region are discussed
in the next section.
In Δt range of 10–100 ps, the MSD–Δt curve follows MSD / Δt,

the linear Einstein relationship for diffusional displacement.

However, when Δt reaches a large fraction of ttot (>100 ps in the
case of Fig. 1), the MSD–Δt curve shows notable variance and
deviation from the linear relationship. This deviation is a result of
poor statistics for large Δt values, as values that are comparable to
ttot result in averaging a smaller number of time intervals NΔt in Eq.
(2) than would be averaged for small Δt values that are a small
fraction of ttot. The effect of this deviation is quantified in the next
section.
Given that the linear MSD–Δt dependence only holds at certain

Δt range, one should not utilize the entire MSD–Δt curve to fit the
Einstein relation (Eq. (4)) and to deduce the diffusivity. The ballistic
region at short times intervals and the poor statistical region at
large time intervals should be excluded from fitting diffusivity. The
linear fitting of MSD–Δt curve should be performed in a range
[Δtlow, Δtup], where Δtlow and Δtup are the lower and upper bound,
respectively. In last sections, we establish the procedures to
determine the bounds Δtlow and Δtup for the linear fitting of MSD–
Δt in order to minimize the errors caused by improper fitting to
the Einstein relation.

Lower bound of linear diffusion region
In Fig. 2, the local derivative dMSD/dΔt calculated using a finite
difference method shows the transition from the ballistic region to
the linear region and is used to determine the lower fitting bound
Δtlow. The derivative dMSD/dΔt has a large value at small Δt values
(<0.2 ps), and decreases significantly as Δt increases. The MSD–Δt
curve becomes linear at Δt≳ ~ 1 ps, and the value of dMSD/dΔt
reaches a plateau value of ~3 Å2/ps. In the case of Fig. 2, the cut-
off of the ballistic region (black dotted line in Fig. 2) is at an MSD
value of ~5 Å2. An MSD of 5 Å2 is approximately 0.5a2, where a is
the distance between two neighboring Li sites and is 3.2 Å in
LATP, which is typical of Li ionic conductors. The ballistic region
has the MSD cut-off at a fraction of a2 because the local vibration
of Li ions on their equilibrium sites is confined within the potential
well between two nearby sites. This local vibrational displacement
at small Δt < Δtlow does not represent the ionic diffusion from site
to site, and should be excluded from the linear fitting for D.
One may identify the specific range of the ballistic region and

the precise lower fitting bound Δtlow for each individual AIMD
simulation of different materials systems at different temperatures
using the same procedure shown in Figs. 1 and 2. The cut-off
values of Δt (i.e., Δtlow) and MSD for the ballistic region are
dependent on the temperatures and the materials, which yield
different potential energy surfaces near the equilibrium sites. In
general, the displacement of local vibration is within a fraction of
site distance a, so the ballistic region corresponds to the MSD

Fig. 1 MSD of Li+ as a function of Δt in LATP from an AIMD
simulation over 200 ps at 1200 K. The linear MSD / Δt dependence
(red dash line) corresponds to diffusional displacement. The MSD /
Δt1:42 dependence (blue dash line) shows the behavior for the local
vibrational motion of ions. Inset: The MSD–Δt curve at <0.1 ps in
linear-scale axes

Fig. 2 MSD (black) of Li+ and dMSD/dΔt (red) as a function of Δt
from the AIMD simulation of LATP in Fig. 1. The black dotted line
illustrates the cut-off of the ballistic region
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ranging from 0 to a fraction of a2 (Supplementary Note 1 and
Supplementary Figure 1). Therefore, we propose to quantify the
cut-off values of Δt, i.e., Δtlow, by defining the cut-off in MSD using
the value of a fraction of a2 (e.g., 0.5 a2). As a safer measure for
lower fitting bound (i.e., Δtlow), the entire region with MSD less
than this cut-off based on a2 may be excluded.
The linear fitting to Einstein relation should only be performed

on the linear region corresponding to diffusional displacement.
Otherwise, a part of ballistic motion would be included into the
fitting for D, leading to an over-estimation of D. This over-
estimation of D would be pronounced for the MSD–Δt curves with
small values of the maximum MSD (~ a few Å2), due to a
significant fraction of ballistic motion mixed into the MSD–Δt
curve. Therefore, AIMD simulation should be long enough to have
the MSD per mobile ion larger than a few a2, so that the ballistic
region (and Δtlow) can be distinguished and separated from the
linear fitting for D.

Upper bound of linear diffusion region
The upper fitting bound Δtup is determined by the transition from
the linear diffusion region to the region at large Δt with large
variance and deviation. Ten different MSD–Δt curves from AIMD
simulations of the same LATP structure model at 1200 K over 50 ps
(Fig. 3a) were obtained by dividing a total AIMD simulation over
500 ps into ten non-overlapping parts. The significant deviations
from the linear dependence of these ten MSD–Δt curves are
typically observed at large values of Δt, i.e., >25 ps in Fig. 3 or
≳50% of ttot. At large Δt, a smaller number of time intervals NΔt is
averaged in Eq. (2) and many of these Δt intervals overlap other
intervals that contain physically identical trajectories of ions, thus
leading to larger deviation from the linear MSD–Δt relation.
Therefore, the linear fitting for D should be performed below the
upper bound Δtup of the linear diffusion region.
To determine the upper fitting bound Δtup, we fitted these

MSD–Δt curves to the Einstein relation (Eq. (4)) with different Δtup
values ranging from 10% to 100% of ttot. For the fitting of each
curve, the value of R2 in the linear regression was calculated to
evaluate the goodness of fitting. The average and standard
deviation of R2 values over these ten curves are shown in Fig. 3b.
At Δtup ≤ 0.3ttot, all values of R

2 are very close to 1, showing good
linearity of MSD–Δt curves at small Δt. At Δtup > 0.7ttot, R

2 values
decrease significantly from 1, indicating poor linearity of MSD–Δt
curves at large Δt, and the standard deviation of R2 also increases.
Therefore, one should only fit the linear region of MSD–Δt below
an upper fitting bound of Δtup < 0.7ttot. By performing the same
test on other fast ion conductor materials, such as LGPS and

Li7La3Zr2O12(LLZO) at a few different temperatures, we found this
Δtup < 0.7ttot to be generally applicable (Supplementary Figure 3).
As the optimal Δtup values may depend on the material (the
mobile ions) and temperatures, for unique systems one may use
this scheme to determine the specific Δtup values.
Within properly determined lower and upper fitting bounds, the

goodness of fitting to the MSD–Δt curve would always be good.
Therefore, the goodness of fitting itself does not reflect the
statistical variance in the fitted D, the slope of the MSD–Δt curve,
and is different among different AIMD simulations for the same
materials model (Fig. 3a). The changes in the slopes of MSD–Δt
curves below Δtup reflect the statistical variances in the fitted
diffusivity D from different runs of AIMD simulations, which are
quantified and analyzed in the next section.

Statistical variance of diffusivity and conductivity
In Fig. 3a, the diffusivities, i.e., the slopes of different MSD–Δt
curves, exhibit significant variance among different AIMD simula-
tions of the exact same material model. The variance among the
fitted diffusivities D are a result of the stochastic nature of the
diffusion process, which causes different numbers of ion hops
during AIMD simulations with different initial conditions.
In this section, we quantify the statistical variance of the fitted

diffusivity D from AIMD simulations. The statistics were calculated
based on a set of MD simulations that were created by dividing a
long MD simulation into several non-overlapping shorter MD
simulations, each of which was treated as an individual MD
simulation. Following our established fitting procedure, the value
of D was extracted from each MD simulation. The standard
deviation of D, sD, was calculated from the set of fitted D values
(Supplementary Figure 2). The relative standard deviation (RSD) of
D was calculated as sD/Dtrue, where the true value of the diffusivity
Dtrue is calculated from the longest available MD simulation. Since
more ion hops improve the sampling of the diffusional property,
we found that the RSD of D decreases with the total effective ion
hops Neff as

SD

Dtrue
¼ A

ffiffiffiffiffiffiffiffi

Neff
p þ B: (8)

Neff is calculated as

Neff ¼
maxΔt TMSD Δtð Þ½ �

a2
;

(9)

where maxΔt TMSD Δtð Þ½ �; is the maximum value of TMSD over the
entire MSD–Δt curve. Neff can be considered as the effective
number of ion hops that contributed to the TMSD of all mobile

Fig. 3 Variances of MSD–Δt curves. a MSD–Δt curves from ten different AIMD simulations of the same LATP structure model over 50 ps at
1200 K. Each curve represents an independent AIMD simulation over 50 ps (ttot= 50 ps). b Goodness of linear fit R2 of MSD–Δt curves using
different upper fitting bound. The values and error bars of R2 are the average and the standard deviation, respectively, from ten AIMD
simulations
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ions in the entire duration of the MD simulation. The value of a is
2.4, 3.2, 2.8, 3.4 Å for LLZO, LATP, LGPS, RbAg4I5, respectively, as
averaged distance between neighboring mobile-ion sites. For all
materials in Fig. 4, the values of A and B are fitted as 3.43 and 0.04,
respectively. As shown in Fig. 4, Eq. (8) and its parameters are
general for ionic conductor materials and also hold for a classical
MD simulation of LLZO over much longer time duration with a
large number of ion hops (Fig. 4b).
Equation (8) can be used to estimate the statistical variance of D

calculated from any given AIMD simulation, where the number of
total effective ion hops Neff can be first estimated from the
maximum TMSD of all mobile ions using Eq. (9). For example, in a
material with site distance a= 3 Å (assumed for all following
estimations), an AIMD simulation that reaches a maximum TMSD
of 1800 Å2, corresponding to Neff= ~ 200, results in an RSD of D of
~28%. In addition, since the diffusivity D and ionic conductivity σ

are linearly dependent (Eq. (5)), the RSD of σ is equivalent to the
RSD of D. Thus, Eq. (8) is also valid for estimating the RSD of ionic
conductivity σ from AIMD simulations.
This result suggests that in order to obtain more accurate

diffusivity from AIMD simulations, one should run longer MD
simulations that sample more diffusion events, i.e., have larger
Neff. For AIMD simulations with an estimated Neff of 50, 100, and
150, corresponding to max (TMSD) of 450, 900, and 1350 Å2,
respectively, RSD of D is 52%, 38%, and 32%, respectively. These
levels of RSD are reasonable, but still allow for a notable statistical
error of the fitted D. To obtain D with <20% RSD, the AIMD
simulation should observe more than max (TMSD) of ~4150 Å2

(Neff= ~ 460). The RSD is reduced to ~ 10% for Neff= 3200 and
max (TMSD)= ~ 30,000 Å2. It should be noted that Neff and TMSD
are from all mobile ions, while only MSD per ion is often presented
in the literature. A max(TMSD) of a few thousand Å2 is quite

significant for typical AIMD simulations within 1 ns and can only
be reached in fast ion conductors at relatively high temperatures.
In addition to running longer MD simulations, running MD
simulations on larger systems with more mobile ions, for example
as is done in classical MD simulations, can achieve more effective
ion hops Neff and hence less statistical variance in D and σ.

Accessible range of diffusivity, activation energy, and temperature
Given the short physical time duration of 100 ps to 1 ns in typical
AIMD simulations, AIMD simulations of materials with large
activation energy Ea or at low temperature T may not observe
enough number of ion hops. In order to achieve a reasonable
accuracy of the fitted D, AIMD simulations may only be applicable
to materials with relatively high ionic conductivity. Given the high
computational costs of AIMD simulations, it is often desired to pre-
estimate the range of temperatures that can be performed for a
given material (with an estimated Ea). The accessible ranges of T at
a given Ea can be estimated as follows. The estimation here
assumes an AIMD simulation over a total physical time duration of
1 ns and a supercell with a volume V of 1000 Å3 (i.e., 10 Å × 10 Å ×
10 Å) with N= 20 mobile ions and a site distance a= 3 Å. In order
to achieve <50% RSD of D and σ, Neff should be >55 according to
Eq. (8). For this RSD limit, the ionic conductivity should be
>0.025 S/cm at 600 K to achieve Neff > 55 over 1 ns (Eqs. (4), (5)).
This ionic conductivity corresponds to a Li+ diffusivity of ~4.2 ×
10–7 cm2/s (Eq. (5)) for the assumed supercell model. For the
materials supercell with different size V or different number of
mobile carriers N, the accessible range of diffusivity can be
estimated in the same way using Eqs. (5–8). In general, a minimum
diffusivity of ~10−7 cm2/s is accessible by the AIMD simulations
with typical size (~1 nm3) and time duration (~1 ns), in order to
have a reasonable number of effective ion hops (Neff > 50).
Figure 5 shows a plot of D as a function of Ea and T estimated

from the transition state theory

D ¼ a2v� exp � Ea

kT

� �

; (10)

where v� is the attempting jump frequency and is chosen to be
1012 Hz, a is the neighboring-site distance, and k is the Boltzmann
constant. The geometric factor and correlation factor, which also
affect the value of D, were neglected in this back-of-the-envelope
estimation. This plot can be used to estimate the range of Ea and T
accessible to typical AIMD simulations. In the same example
model above, a minimum diffusivity of ~5 × 10–7 cm2/s is needed
to achieve an RSD of ~50% within 1 ns. The highest Ea and lowest
temperatures to have the desired D value can be read from this

Fig. 4 Relative standard deviation (RSD) of D, sD/Dtrue, as a function
of total effective hops Neff of the mobile ion (Li+ or Ag+). Red line is
the fitted relationship between RSD of D and the total effective ion
hops Neff

Fig. 5 Diffusivity D as a function of activation energy Ea and
temperature T for a typical ionic conductor with assumed site
distance a= 3 Å and an attempting frequency ν= 1012Hz
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plot (Fig. 5). For materials with an Ea of 0.6 eV, as in some cathode
materials, AIMD simulations below 900 K may not observe enough
ion hops and the fitted D would have a large error. For super ionic
conductors with an Ea of 0.20 eV or lower, the temperature
accessible by AIMD simulations may go as low as 300 K.
In addition, this plot can be used to determine the appropriate

temperatures for AIMD simulations to obtain D with reasonable
accuracy. For example, in order to achieve a desired RSD of ~20%,
a maximum TMSD of 4150 Å2 over 1 ns is needed (Eqs. (7–8)), and
this maximum TMSD corresponds to a minimum diffusivity of
~3 × 10–6 cm2/s (Eq. (5)) in the same example material model. To
achieve that diffusivity, AIMD simulations of a material with Ea of
0.2 eV need to be at above 450 K (Fig. 5). An ionic conductor with
Ea of 0.3 eV should have AIMD simulations above 700 K to achieve
similar accuracy (RSD= ~20%). An AIMD simulation at >1150 K is
needed for an ionic conductor with Ea of 0.5 eV. Therefore, for
materials with slow diffusion, long AIMD simulations at high
temperatures are essential to obtain D with low statistical
uncertainty. In general, AIMD simulations containing a significant
number of ion hops are crucial for achieving small error bounds
and a high confidence level in the fitted D.

Estimating errors of diffusional properties from Arrhenius relation
Given the statistical uncertainty of fitted D, it is crucial to include
the statistical uncertainty of every D data point into the fitting of
the Arrhenius relation. In particular, the data points from the
simulations at lower temperatures or over shorter durations may
have a significantly smaller number of ion hops and thus a higher
uncertainty, and this uncertainty should be taken into account
during the fitting. The data points in Fig. 6 indeed show
significantly larger variance at lower temperatures. Therefore,
these lower-temperature data points should have less weight in
the fitting. As a common practice in linear regression, the inverse
square of the standard deviation of log(D) is factored into the
fitting as the weight of each data point to account for the
statistical uncertainty.46 Given that the fitting of the Arrhenius
relationship is usually performed as a linear fitting of log(D) and 1/
T, the derived standard deviation of log(D) shall be used as the
weight on each point (as shown as error bars in Fig. 6) for the
linear fitting (Supplementary Note 2). Therefore, the error bounds
and statistical intervals of Ea and D0 in the Arrhenius relation (Eq.
(7)) can be obtained using standard error analysis for linear
regression, and so are also the errors for diffusivity and
conductivity when extrapolated to other temperatures.

Table 1 shows the error bounds of the activation energy Ea and
ionic conductivity σ extrapolated to 300 K for LATP, LGPS and
LLZO Li-ion conductors. Ea and extrapolated σ at 300 K agree well
with experimental values, showing the capability of AIMD
simulations for quantifying diffusional properties.41,42,47,48 For all
three materials, the Ea has a standard deviation of ~0.02 eV, and
the extrapolated σ at 300 K has the error bound within 1–2 orders
of magnitude. It should be noted that extrapolated conductivity
(i.e., room temperature conductivity) assumes that there is no
change in the slope of the Arrhenius relation due to a phase
change. While excellent agreement of AIMD simulations and
experiments is widely reported, one should note that the
statistical uncertainty of extrapolated σ at 300 K can be as large
as an order of magnitude for typical AIMD simulations. The errors
in Ea and σ may be larger for AIMD simulations over shorter
duration or on slower ion conductors, which sample fewer
diffusion events. As shown in Supplementary Note 3 and
Supplementary Figure 4, using short AIMD simulations, especially
at low temperatures, would lead to significant overestimation of
diffusivity and, in particular, the RT conductivity.
In addition, the errors of Ea and extrapolated σ also depend on

the number of data points and the linearity of the relationship
according to the error analyses of linear regression.46 To minimize
the error of Ea and extrapolated σ, more data points are helpful.
For example, the error of Ea and σ may increase significantly if
some data points are omitted for the LGPS data in Fig. 6, leading
to more deviations from the experimental values (Supplementary
Figure 5 and Supplementary Table 1). Therefore, having more data
points of D (from sufficiently long AIMD simulations) would lead to
smaller error and less statistical uncertainty for fitted diffusional
properties.

DISCUSSION

In this work, we systematically test and establish the procedures to
obtain the diffusional properties and their statistical variances
from AIMD simulations. Only the linear region of the MSD–Δt
curve within the lower and upper fitting bound Δtlow and Δtup,
which corresponds to diffusional displacements, should be used
to fit the diffusivity. The cut-off of the ballistic region, Δtlow, is at
the MSD per mobile ion of less than a fraction of a2 (a is the
distance between neighboring mobile-ion sites), since the local
ballistic vibration is limited within the potential well of the
equilibrium site. The AIMD simulation should be long enough to
have the MSD per mobile ion larger than a few times a2 so that
the distinction between the linear diffusion region and the ballistic
region can be clearly observed. Otherwise, a part of ballistic
motion would be mixed into the fitting, leading to the over-
estimation of D. Moreover, the upper fitting bound Δtup should be
set as <30–70% of ttot to exclude the region with poor linearity at
large Δt. An adequately long AIMD simulation with properly
determined lower and upper fitting bounds is crucial to have a
linear MSD–Δt curve for fitting D.
If the proper procedure is followed to determine the linear

diffusion region of the MSD–Δt curve, the goodness of fitting to
the MSD–Δt curve would be nearly perfect and would not reflect

Fig. 6 Arrhenius plot of Li+ diffusivity D as a function of
temperature T in Li1.33Ti1.67Al0.33(PO4)3 (LATP), Li10GeP2S12 (LGPS)
and Li7La3Zr2O12 (LLZO) from AIMD simulations. The error bar is the
statistical uncertainty of each diffusivity data point estimated from
Eqs. (7–9)

Table 1. Activation energy Ea and extrapolated Li+ conductivity σ at
300 K from fitted Arrhenius relation

Composition Ea (eV) σ at 300 K
(mS cm−1)

Error bound
[σmin, σmax]
(mS cm−1)

Li1.33Ti1.67Al0.33(PO4)3 0.25 ± 0.02 1.2 [0.5, 2.5]

Li10GeP2S12 0.21 ± 0.01 14.2 [8.1, 25.0]

Li7La3Zr2O12 0.26 ± 0.02 1.1 [0.5, 2.1]
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the statistical variance of the fitted diffusivity. The statistical
variance of the fitted diffusivity and conductivity is instead a direct
result of the total number of ion hops sampled during the MD
simulations. The statistical variances of D from fitting Einstein
relation should be quantified by the total displacement TMSD
using the empirically determined relation in Eq. (8).
On the basis of these results, AIMD simulations should be

adequately long to collect a sufficient number of ion hopping
events. As shown in typical alkali-ion conductor materials, a simple
rule of thumb is that a maximum TMSD of a few hundred Å2 is
necessary to obtain a reasonable estimation of D (with ~50% RSD),
and a maximum TMSD of a few thousand Å2 is necessary to obtain
a more accurate D (~20–30% RSD). Given the high uncertainty of
D from typical AIMD simulations, the error bounds of diffusivity
and conductivity should be reported.
Given the need to collect a large number of ion hops, AIMD

simulation is more suitable for studying fast-ion-conducting
materials. Likewise, it is necessary to perform AIMD simulations
at high temperature for most materials. A minimum diffusivity of
~10−7 cm2/s is necessary for a material to be accessible by AIMD
simulations and a diffusivity of ~10−5 cm2/s may allow for the
calculation of a more accurate D. On the basis of these estimated
bounds of minimum diffusivity, the approximate accessible
temperature ranges of AIMD simulations may be estimated using
the plot in Fig. 5 or using a back-of-the-envelope estimation based
on the Arrhenius relation. For materials with a high activation
energy, running AIMD simulations at sufficiently high tempera-
tures is crucial for simulating an adequate number of ion hops.
In addition, it is also crucial to include the statistical error

bounds of each diffusivity data point when fitting to the Arrhenius
relation (Eq. (7)). The error bounds of D should be accounted for as
a weight into the linear fitting of log(D) over 1/T. The error of Ea
and extrapolated σ can be established through standard
regression error analysis. Such error analyses indicate that the
typical statistical error bounds of extrapolated σ at 300 K may be
as large as an order of magnitude, even for fast ionic conductors
with many data points at different temperatures and with long
AIMD simulations. One should consider the statistical variances
when interpreting the diffusional properties calculated from AIMD
simulations.
While the results of this study are largely based on AIMD

simulations, our analyses, schemes, and conclusions are applicable
for diffusional studies using classical MD simulations. While AIMD
simulations provide ab initio potential energy surfaces, leading to
more accurate diffusion properties, classical MD simulations can
be performed on significantly larger model systems with more
mobile ions and over longer time scales, so more diffusional
events can be observed. When the TMSD and total effective ion
hops Neff from classical MD simulations are large, the statistical
variances of diffusional properties are expected to be small.
However, in classical MD simulations in which TMSD or Neff is
small, which is common for systems with slow diffusion or at low
temperatures, our scheme and analyses should be carried out to
properly quantify diffusional properties and their statistical
variances.
In summary, the major conclusions for calculating diffusional

properties from AIMD simulations are as follows. These conclu-
sions also serve as specific guidelines for future practices.

1. In the calculation of diffusivity, fitting to the Einstein relation
(Eq. (4)) should be limited to the linear diffusion region of
the MSD–Δt curve. This linear diffusion region excludes the
ballistic region at MSD≲ a2 and the poor linearity region at
large Δt > Δtup (Δtup < 0.7ttot).

2. The AIMD simulations should be long enough and should
only be performed on materials with reasonably fast
diffusion so that a large number of diffusion events can
be captured to obtain accurate diffusivity. In addition, the

MSD per mobile ion should be larger than a few times a2 to
distinguish the ballistic region (i.e., Δtlow).

3. The statistical variance of the diffusivity should be derived
from the total diffusional displacements (such as maximum
TMSD using Eqs. (8–9)) rather than the goodness of fitting to
the Einstein relation. The statistical variance of fitted
diffusivity values from AIMD simulations should be reported.

4. The statistical uncertainties of each data point of diffusivity
should be included when fitting to the Arrhenius relation.
The error bounds of activation energy and extrapolated
ionic conductivity are non-negligible and should be
evaluated using standard regression analysis.

Our study establishes the proper calculation procedures and
statistical error analyses for the correct application of AIMD
simulations in estimating diffusional properties. The obtained
knowledge and established procedures are the basis for quantify-
ing diffusional properties, drawing proper conclusions from the
AIMD simulation results, and further developing AIMD simulations.

METHODS

In this study, all DFT calculations were performed using the Vienna ab initio
Simulation Package49 within the projector augmented-wave approach
with the Perdew−Burke−Ernzerhof generalized-gradient approximation.50

The initial structures for AIMD simulations are statically relaxed in DFT
using the standard parameters from Materials Project.51–53 In AIMD
simulations, the DFT-based force evaluations were non-spin-polarized with
a single Γ-center k-point grid. The AIMD simulations performed in this
study were based on the Born–Oppenheimer approximation with a time
step of 2 fs. Classical MD simulations of garnet were performed using
Large-scale Atomic/Molecular Massively Parallel Simulator54 in a supercell
model of 8 formula units of Li7La3Zr2O12 and the interatomic potential
from ref. 55. All AIMD and classical MD simulations used a time step of 2 fs,
an NVT ensemble using a Nose–Hoover thermostat, and a
velocity–Verlet algorithm for integrating the equation of motion.
The crystal structures of LGPS, cubic phase LLZO, and RbAg4I5

investigated were obtained from Inorganic Crystal Structure Database
(ICSD)56 and Materials Project.51–53 We used the Li super-ionic conductor
LATP based on the NASICON structure to establish the fitting scheme, and
then tested the same scheme in other Li super-ionic conductors. The
structure of LATP was derived from the LiTi2(PO4)3 structure by partially
substituting Ti with Al and by inserting extra Li atoms. The structures with
disordered site occupancy were ordered using the same method in the
previous studies.5,7

Data availability
The computation data to support the findings of this study is available
from the corresponding author on reasonable request. The code to analyze
AIMD simulation is available at: https://github.com/mogroupumd/aimd
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