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Abstract. We consider statistical (sampling-based) solution methods
for verifying probabilistic properties with unbounded until. Statistical
solution methods for probabilistic verification use sample execution tra-
jectories for a system to verify properties with some level of confidence.
The main challenge with properties that are expressed using unbounded
until is to ensure termination in the face of potentially infinite sample ex-
ecution trajectories. We describe two alternative solution methods, each
one with its own merits. The first method relies on reachability analy-
sis, and is suitable primarily for large Markov chains where reachability
analysis can be performed efficiently using symbolic data structures, but
for which numerical probability computations are expensive. The second
method employs a termination probability and weighted sampling. This
method does not rely on any specific structure of the model, but er-
ror control is more challenging. We show how the choice of termination
probability—when applied to Markov chains—is tied to the subdomi-
nant eigenvalue of the transition probability matrix, which relates it to
iterative numerical solution techniques for the same problem.

1 Introduction

Probabilistic model checking deals with verification of stochastic systems, such
as a queuing system with random arrivals and departures. Temporal stochas-
tic logics, e.g., PCTL [12] and CSL [1], exist for expressing properties of such
stochastic systems. Our focus is on time-unbounded properties of stochastic sys-
tems. For a queuing system, for instance, an interesting property could be: “the
probability is at most 0.1 that the queue eventually becomes full.” In PCTL,
such properties are expressed using the formula P≤ 0.1[⊤ U full].

We present two statistical algorithms for solving such model-checking prob-
lems that are based on unbiased sampling. Sampling is said to be unbiased if the
expectation of the sample distribution is the same as the expectation of the true
distribution. The use of unbiased sampling distinguishes our methods from most
recent efforts to devise sampling-based algorithms for time-unbounded proper-
ties, which are based on biased sampling [21, 18, 27, 3] (see Sect. 4).

Statistical algorithms for probabilistic model checking use discrete-event sim-
ulation to generate sample trajectories, and verify some temporal formula over
each generated trajectory. This is combined with hypothesis testing or statistical



estimation to verify probabilistic properties [26, 18]. The challenge for statistical
algorithms with time-unbounded properties is to determine the truth-value of
Φ U Ψ without generating infinite sample trajectories.

The first method (see Sect 3.1) combines reachability analysis with statistical
sampling. This approach has been used in the past for program analysis [20],
and more recently for model checking [27] using biased sampling. The algorithm
is ensured termination for any finite-state homogeneous discrete-time Markov
chain, although it is potentially applicable for any model for which we can per-
form reachability. The use of reachability analysis requires that we construct the
full model, so it may seem counter to the appeal of statistical methods, which
usually avoid model construction. The real cost in probabilistic model checking,
however, lies in the numerical computation of probabilities, which we replace
with sampling. We show in Sect. 5 that the combination of reachability analysis
and statistical sampling scales better with the size of the model than standard
numerical solution methods. As a result, we can verify time-unbounded prop-
erties for larger models than possible with existing numerical algorithms. By
using unbiased sampling, we can also make strong guarantees regarding error
bounds. Other sampling-based methods, as well as iterative numerical solution
methods, do not give the same strong guarantees as they depend on heuristics
for bounding sample trajectory lengths or number of iterations.

The second method (see Sect. 3.2) is based on a Monte Carlo method devised
in the 1940s by John von Neumann and Stanislaw Ulam for computing the in-
verse of a matrix [10]. This method uses a termination probability pT that is
applied in each state along a trajectory to ensure finite sample trajectories. To
account for the change in sample distribution, we weigh satisfying trajectories
more heavily the longer the trajectory is. This way, we obtain an unbiased esti-
mator of the probability that Φ U Ψ holds over the set of trajectories that start
in some state s. The second method does not rely on reachability analysis, so
it has minimal memory requirements. It generally requires a larger number of
sample trajectories to achieve the same precision as the first method, so it can
be slower than the first method when reachability analysis is fast. It also suffers
from the same problem as iterative numerical solution methods in that accuracy
can be hard to guarantee. Still, the second method is potentially applicable for
a much larger class of models.

We limit our attention to discrete-time Markov chains. The results extend
trivially to continuous-time Markov chains and semi-Markov processes, as veri-
fication of time-unbounded properties for such models is done on an embedded
discrete-time Markov chain.

2 Probabilistic Model Checking

This section describes discrete-time Markov chains (without nondeterminism),
which is the class of models that we consider for probabilistic model checking.
We present a temporal stochastic logic (a subset of PCTL) and discuss realistic
error control for statistical model-checking algorithms.



2.1 Stochastic Processes and Discrete-Time Markov Chains

The terminology introduced here follows that of Stewart [22]. A stochastic process
with state space S and time domain T is a family of random variables X =
{Xt | t ∈ T }. A random variable Xt ∈ X represents the outcome of observing
the state of the stochastic process at time t.

A discrete-time Markov process is a stochastic process where T is the non-
negative integers, ZZ∗, and

Pr[Xn+1 = sn+1 | X0 = s0, . . . , Xn = sn] = Pr[Xn+1 = sn+1 | Xn = sn] (1)

holds for all n ∈ ZZ∗ and si ∈ S. If the state space is discrete as well, then we
refer to the process as a discrete-time Markov chain. We will limit our attention
to discrete-time Markov chains. The techniques we present later on can be gen-
eralized to other types of stochastic processes, but it is beyond the scope of this
paper.

Let pij(n) = Pr[Xn+1 = j | Xn = i], which denotes the probability of
transitioning from state i at time n to state j at time n + 1. We call pij(n), for
all i and j in S and all n ∈ ZZ∗, the transition probabilities of the discrete-time
Markov chain. We have pij(n) ∈ [0, 1] and, for all i ∈ S,

∑

j∈S pij(n) = 1. If, in
addition to (1), we have pij(n) = pij(m) for all n and m in ZZ∗, then the discrete-
time Markov chain is called homogeneous. In a homogeneous Markov chain,
transition probabilities are independent of time. The transition probabilities of
a finite-state homogeneous discrete-time Markov chain can be represented by
a single |S| × |S| transition probability matrix P. For notational convenience,
we will use P to represent the collection of transition probabilities, pij(n), for
nonhomogeneous Markov chains as well.

The evolution of a discrete-time Markov chain over time is captured by a
trajectory. The trajectory of such a system is a sequence of states σ = s0 →
s1 → · · · , with si ∈ S. We denote by σ[i] the ith state, si, along the trajectory
σ, and the finite prefix of length n of σ is denoted σ↑n.

Let Path(s) denote the set of trajectories with initial state s. Following Hans-
son and Jonsson [12], we define a probability measure µ on the set Path(s), for
each s ∈ S. The measure µ is defined on the probability space 〈Ω,FΩ〉, where
Ω = Path(s), and FΩ is a σ-algebra generated by sets {σ ∈ Path(s) | σ↑n = s →
s1 → · · · → sn} of trajectories with common finite prefix of length n. The mea-
sure µ can then be defined uniquely by induction on the length of the common
prefix as follows:

µ({σ ∈ Path(s) | σ↑0 = s}) = 1 (2)

µ({σ ∈ Path(s) | σ↑n = s → s1 → · · · → sn}) =

µ({σ ∈ Path(s) | σ↑(n − 1) = s → · · · → sn−1}) · psn−1sn
(n − 1) (3)

2.2 Temporal Stochastic Logic

We use the Probabilistic Computation Tree Logic (PCTL [12]) to specify prop-
erties of discrete-time Markov chains. We describe only a subset of PCTL that



includes unbounded until, since that is the focus of this paper. The techniques
described later in the paper can of course be combined with the techniques de-
veloped by Younes and Simmons [26] to handle a more expressive logic. The
logic permits nested probabilistic operators, although we do not discuss such
formulae here. Younes and Simmons [26] have already shown how to deal with
nested probabilistic formulae without ties to any specific type of path formula.
We could also replace PCTL with probabilistic LTL, which would avoid nested
probabilistic operators altogether. The solution methods of this paper can be
adapted for probabilistic LTL, but we do not consider that here.

Let AP be a fixed, finite set of atomic propositions. We assume a labeled
discrete-time Markov chain M = 〈S,P, L〉. S, and P as above, with the addition
of a labeling function L : S → 2AP . L(s) is the set of atomic propositions a ∈ AP
that are valid in s. PCTL formulae (for the relevant subset that we consider)
are of the form

Φ ::= a
∣

∣ ¬Φ
∣

∣ Φ ∧ Φ
∣

∣ P⊲⊳ θ[Φ U Φ] ,

where θ ∈ [0, 1] and ⊲⊳ ∈ {≤,≥}. Additional PCTL formulae can be derived in
the usual way. For example, ⊥ ≡ a ∧ ¬a for some a ∈ AP , ⊤ ≡ ¬⊥, Φ ∨ Ψ ≡
¬(¬Φ ∧ ¬Ψ), Φ → Ψ ≡ ¬Φ ∨ Ψ, and P< θ[ϕ] ≡ ¬P≥ θ[ϕ].

The standard logic operators have their usual meaning. P⊲⊳ θ[ϕ] asserts that
the probability measure over the set of trajectories satisfying the path formula ϕ
is related to θ according to ⊲⊳. Path formulae are constructed using the temporal
path operator U (“until”). The path formula Φ U Ψ asserts that Ψ becomes true
at some time t ≥ 0 while Φ holds in all states prior to t. We can define mutually
inductive satisfaction relations for PCTL state and path formulae as follows:

M, s |= a if a ∈ L(s)

M, s |= ¬Φ if M, s |6= Φ

M, s |= Φ ∧ Ψ if (M, s |= Φ) ∧ (M, s |= Ψ)

M, s |= P⊲⊳ θ[ϕ] if µ({σ ∈ Path(s) | M, σ |= ϕ}) ⊲⊳ θ

M, σ |= Φ U Ψ if ∃i.
(

(M, σ[i] |= Ψ) ∧ ∀j < i.
(

M, σ[j] |= Φ
))

The fact that {σ ∈ Path(s) | M, σ |= ϕ} is measurable can be verified
from the probability-space construction in Sect. 2.1 (cf. [1]), which makes the
semantics for PCTL well-defined.

2.3 Error Control

Statistical solution methods cannot achieve the exact precision for probabilistic
PCTL formulae that is required by the semantics given above. Following Younes
and Simmons [25], we relax the semantics of PCTL by introducing an indifference
region of half-width δ centered around any probability thresholds. The purpose
is to quantify the error that we are willing to accept by using sampling and
simulation in place of exact computations of probability measures.



Consider the model-checking problem M, s |= P⊲⊳ θ[ϕ], and let p be the proba-
bility measure for the set of trajectories that start in s and satisfy ϕ. If |p−θ| < δ,
then the truth value of P⊲⊳ θ[ϕ] is undetermined (“too close to call”) under the
relaxed semantics; otherwise, it is the same as for PCTL.

Formally, given δ > 0, we define two relations: |≈δ
⊤

(approximate satisfaction)
and |≈δ

⊥
(approximate “unsatisfaction”). The definitions of |≈δ

⊤
and |≈δ

⊥
coincide

with |= and |6=, respectively, except for probabilistic formulae where we instead
have:

M, s |≈δ
⊤
P≥ θ[ϕ] if µ({σ ∈ Path(s) | M, σ |≈δ

⊤
ϕ}) ≥ θ + δ

M, s |≈δ
⊥
P≥ θ[ϕ] if µ({σ ∈ Path(s) | M, σ |≈δ

⊥
ϕ}) ≤ θ − δ

M, s |≈δ
⊤
P≤ θ[ϕ] if µ({σ ∈ Path(s) | M, σ |≈δ

⊤
ϕ}) ≤ θ − δ

M, s |≈δ
⊥
P≤ θ[ϕ] if µ({σ ∈ Path(s) | M, σ |≈δ

⊥
ϕ}) ≥ θ + δ

Let M, s accept
A

Φ represent the fact that Φ is accepted as true in state s of
M by a model-checking algorithm A, and M, s reject

A
Φ that Φ is rejected as

false in state s of M by A. The solution methods we present aim to guarantee
the following error bounds:

Pr[M, s reject
A

Φ] ≤ α if M, s |≈δ
⊤

Φ (4)

Pr[M, s accept
A

Φ] ≤ β if M, s |≈δ
⊥

Φ (5)

The parameters α and β allow a user to control the probability of false
negatives and false positives, respectively. For example, consider the formula
P≥ 0.5[Φ U Ψ] and let p denote the probability measure of trajectories that start
in some state s and satisfy Φ U Ψ. Let δ = 0.01. The statistical model-checking
algorithms in this paper aim to guarantee that we reject the formula as false
with probability at most α if p ≥ 0.5+ δ = 0.51, and that we accept the formula
as true with probability at most β if p ≤ 0.5 − δ = 0.49. The three parameters
α, β, and δ determine the precision of the model-checking algorithm. It is up
to the user to set these to his or her satisfaction, with the understanding that
higher precision will result in longer model-checking times.

3 Sampling-Based Verification of Unbounded Until

This section presents two methods for verifying probabilistic properties with
unbounded until, based on statistical sampling. For the model-checking problem
M, s |= P⊲⊳ θ[Φ U Ψ], define the random variable X : Path(s) → {0, 1} as follows:

X(σ) =

{

1 if M, σ |= Φ U Ψ

0 if M, σ |6= Φ U Ψ
. (6)

X represents a Bernoulli trial (i.e., outcomes are limited to 0 and 1). The ex-
pectation of X is

E[X ] = µ({σ ∈ Path(s) | M, σ |= Φ U Ψ}) . (7)



Hence, M, s |= P⊲⊳ θ[Φ U Ψ] has a positive answer if and only if E[X ] ⊲⊳ θ.
If we could sample observations of X , then we could use statistical hypothesis

testing or estimation to verify P⊲⊳ θ[Φ U Ψ]. To sample an observation of X , we
would sample a trajectory from Path(s) (e.g., using discrete-event simulation)
and verify Φ U Ψ over the sample trajectory. A single sample trajectory would
be extended incrementally until we reach a state that satisfies either Ψ (positive
observation; the path formula holds over the sample trajectory) or ¬Φ (negative
observation; the path formula does not hold over the sample trajectory). The
problem with this naive approach is that we are not guaranteed to ever reach
a state that satisfies either Ψ or ¬Φ. It works well for probabilistic properties
with time-bounded until, as demonstrated by Younes and Simmons [26], because
we can stop extending a sample trajectory if the time bound is exceeded. This
ensures termination (with probability 1) provided that the model is time diver-
gent. For unbounded until, however, there is no finite time bound to stop us
from going on indefinitely, so we can no longer guarantee termination.

Consider, for example, the model in Fig. 1(a), with a single state satisfying
some state formula Ψ. Assume that we want to verify M, s0 |= P≥ 0.15[⊤ U Ψ]
(i.e., the probability of eventually reaching the state satisfying Ψ is at least 0.15
if we start in state s0 at time 0). Note that the state satisfying Ψ is shown as
absorbing—i.e., it has no outgoing transitions. This is to reflect that sample-
trajectory generation ends in that state. For all other states, the outgoing tran-
sition probabilities sum to 1. Any trajectory that starts in s0 and does not satisfy
⊤ U Ψ is infinite. For this simple model, the probability measure of the set of
satisfying trajectories that start in s0 at time 0 can be computed as:

µ({σ ∈ Path(s0) : M, σ |= ⊤ U Ψ}) = 0.1 ·
∞
∑

i=0

0.4i =
1

6
. (8)

Thus the stated model-checking problem has a positive answer, but a naive
sampling-based approach does not work due to the positive probability (5

6
) for

the set of infinite trajectories.
Next, we describe two sampling-based solution methods that aim to avoid

infinite sample trajectories.

s0 Ψ1 0. 1

1

0. 5

0. 4

1

(a) M

s0 Ψ1 0. 1
0. 5

0. 4
(b) MR

s0 Ψ0. 9 0. 09

0. 9

0. 45

0. 36

0. 9

(c) MT (pT = 0.1)

Fig. 1. Three variations of a simple discrete-time Markov chain



3.1 Sampling-Based Method with Reachability Analysis

The first method uses reachability analysis to avoid infinite sample trajectories.
For an unbounded until formula Φ U Ψ to hold over a single sample trajectory σ
for model M, it is necessary (although not sufficient) that M, σ[i] |= Ψ for some
i ≥ 0. If after the generation of a finite prefix σ↑n it becomes evident that ¬Ψ
invariably holds along all possible extensions of σ↑n, then we can determine that
Φ U Ψ does not hold over σ without generating a complete (possibly infinite)
sample trajectory.

This condition for early termination can be expressed formally as the non-
probabilistic CTL [6] formula AG¬Ψ, or equivalently ¬EF Ψ. Hence, if we first
verify EF Ψ for a model M, which amounts to reachability analysis, then we
can terminate the generation of any sample trajectory entering a state of M
that does not satisfy EF Ψ. This pre-processing step requires that we construct
the full model, so it may seem counter to the appeal of sampling-based methods,
which usually avoid model construction. We show, however, in Sect. 5 that this
approach that combines symbolic reachability analysis and statistical sampling
can work very well in practice. It scales better with the size of the model than nu-
merical solution methods, which enables us to verify time-unbounded properties
for larger models.

Let MR be the model we get by removing all outgoing transitions from all
states in M that do not satisfy EF Ψ. We can now define the Bernoulli random
variable XR : PathR(s) → {0, 1} as follows:

XR(σ) =

{

1 if MR, σ |= Φ U Ψ

0 if MR, σ |6= Φ U Ψ
. (9)

Theorem 1. Let X be the random variable defined in (6) and let XR be the ran-
dom variable defined in (9). The expectation of XR is the same as the expectation
of X: E[XR] = E[X ].

This theorem is a standard result in Markov chain theory (see, e.g., [2]),
and a consequence of it is that we can use statistical hypothesis testing with
observations of XR instead of X to verify P⊲⊳ θ[Φ U Ψ] in M. The benefit of using
observations of XR instead of X is that certain trajectories that are infinite in
M have been made finite in MR. Since XR still represents a Bernoulli trial,
the exact same techniques as for formulae with time-bounded until (described
in detail by Younes and Simmons [26]) can be used to verify formulae with
unbounded until for model MR, satisfying conditions (4) and (5).

We illustrate this solution method on the discrete-time Markov chain in
Fig. 1. The original model is shown in Fig. 1(a). After performing reachabil-
ity analysis, we obtain the model in Fig. 1(b). The gray states have been made
absorbing because they do not satisfy EF Ψ. Trajectories generated from the
modified model will almost surely (with probably 1) eventually terminate.

We assume here that reachability analysis can be performed efficiently on
the model M. For Markov chains, we can ignore the actual values of transition
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Fig. 2. A nonhomogeneous discrete-time Markov chain

probabilities and use BDD-based symbolic model checking [4]. Other models
may require more advanced techniques (see, e.g., [13]). A discussion of concrete
techniques for reachability analysis is beyond the scope of this paper. Clarke et
al. [6] cover this topic in great depth.

For some nonhomogeneous Markov chains, termination may not be guar-
anteed (with probability 1) even after states have been made absorbing based
on reachability analysis. Consider the nonhomogeneous Markov chain in Fig. 2,
where i represents time. While EF Ψ holds in s0, the probability measure of
trajectories that start in s0 and never terminate is approximately 0.56. Hence,
if we applied the reachability-based approach to this model, more than half of
the sample trajectories would never terminate.

This example shows that the reachability approach is not applicable to all
Markov chains. The following theorem, however, identifies a large class of models
for which this approach is applicable. This theorem, too, is standard in Markov
chain theory (see, e.g., [2]).

Theorem 2. if M is a finite-state homogeneous discrete-time Markov chain,
then the probability measure is zero for the set of infinite trajectories of MR.

3.2 Sampling-Based Method with Termination Probability

The first solution method cannot be used if reachability analysis is ineffective as
exemplified by the model in Fig. 2. In the case of infinite-state systems, reacha-
bility analysis may not even be feasible.

To ensure finite trajectories without relying on reachability analysis, we can
introduce a termination probability pT < 1, which is used as follows. Start with
the stochastic discrete-event system M. Let MT be the system we get if before
each transition out of a non-absorbing state in M we terminate execution pre-
maturely with probability pT. Concretely, for a discrete-time Markov chain with
transition probabilities pij(n), we construct a new discrete-time Markov chain
with transition probabilities (1−pT) ·pij(n). Figure 1(c) shows the result of this
transformation on the model in Fig. 1(a) using termination probability pT = 0.1
(we note later on that there are limitations on the choice of pT—0.1 is not an
admissible choice for all models). Each transition probability in M is multiplied
by 1−pT to obtain the corresponding transition probability in MT. For example,
0.5 becomes (1−0.1) ·0.5 = 0.45. The outgoing transition probabilities now sum
to 1 − pT for all non-absorbing states. In reality, of course, we never construct
the new Markov chain. Instead we just take the termination probability into
account when we generate sample trajectories. At each state, we terminate the
generation of the trajectory prematurely with probability pT.



Let |σ| denote the number of state transitions along the trajectory σ. Define
the random variable XT : PathT(s) → [0,∞) as follows:

XT(σ) =

{

(1 − pT)−|σ| if MT, σ |= Φ U Ψ

0 if MT, σ |6= Φ U Ψ
. (10)

Trajectories that satisfy Φ U Ψ are finite as they must terminate in a Ψ-satisfying
state, so (10) is well-defined. Note the negative exponent, which means that
the weight of a satisfying trajectory grows exponentially in the length of the
trajectory. This construction is due to von Neumann and Ulam (see [10, 11]) as
a way to compute the inverse of a matrix by the Monte Carlo method.

Theorem 3. Let X be the random variable defined in (6) and let XT be the
random variable defined in (10). The expectation of XT is the same as the ex-
pectation of X: E[XT] = E[X ].

We can thus use observations of XT instead of X to solve the model-checking
problem M, s |= P⊲⊳ θ[Φ U Ψ]. Unlike XR, which represents a Bernoulli trial,
the distribution of XT is unknown. Therefore we cannot use the same efficient
hypothesis-testing techniques as before. However, because E[XT] = E[X ] we can
use an estimation-based approach. If we can obtain an estimate p̃ of E[XT], then
we can decide P⊲⊳ θ[Φ U Ψ] by comparing p̃ to the threshold θ. While model
checking using MT requires more expensive sampling techniques than MR, we
can show that it is more generally applicable.

Theorem 4. The probability measure is zero for the set of infinite trajectories
of MT.

Note that Theorem 4 does not depend on any property of M, so we are
guaranteed (with probability one) finite sample trajectories for any model. For
example, Theorem 4 applies to the nonhomogeneous Markov chain in Fig. 2,
as well as to any infinite-state Markov process and even general discrete-event
systems.

It remains to find a way to estimate E[XT]. Chow and Robbins [5] provide
such a method. Their method sequential procedure for computing a fixed-width
confidence interval for a random variable with unknown but finite variance. We
can use their procedure to obtain a confidence interval for E[XT] of width 2δ
centered around a point estimate p̃ with coverage probability at least 1−α. Let
xi be the ith observation of XT and let x̄n be the arithmetic mean of the first
n observations. Furthermore, let a1, a2, . . . be a sequence of positive constants
such that limn→∞ an = Φ−1(1 − α

2
), where Φ−1 is the inverse standard normal

cumulative distribution function (in practice, we can choose an to be the 1 − α
2

quantile of the t-distribution with n − 1 degrees of freedom). The stopping rule
for the sequential procedure is then given by [5, Eqn. 3]:

N = inf

{

n ≥ 1 :
1

n
+

1

n

n
∑

i=1

(xi − x̄n)2 ≤
δ2n

a2
n

}

(11)



We can now use p̃ = x̄N as a point estimate for E[XT], and accept P⊲⊳ θ[Φ U Ψ] as
true if and only if p̃ ⊲⊳ θ. As shown by Younes [25], this gives us a model-checking
procedure that satisfies conditions (4) and (5) with β = α.

It should be noted that the procedure of Chow and Robbins provides asymp-
totic guarantees only, meaning that the coverage probability of the confidence
interval is guaranteed to be 1 − α in the limit as δ approaches 0. In practice,
the coverage probability can be somewhat less than 1 − α for any selected δ,
no matter how small, as has been shown for the normal distribution [9]. On the
other hand, empirical coverage tends to be greater than 1−α for Bernoulli ran-
dom variables. Further empirical studies are needed to determine the empirical
coverage for the type of random variables we have here, which are neither normal
nor Bernoulli, but this is beyond the scope of our paper.

A prerequisite for using the procedure of Chow and Robbins is that XT has
finite variance. This restriction effectively limits our choice of the termination
probability pT. For finite-state homogeneous Markov chains, we have the follow-
ing theoretical result:

Theorem 5. Let P be the transition probability matrix for M (the original
model). XT has finite variance iff pT < 1−ρ(P), where ρ(P) is the subdominant
(second-largest) eigenvalue of P.

In practice, computing the subdominant eigenvalue of a stochastic matrix
is no easier than solving the model-checking problem at hand, so choosing the
right value for pT is not trivial. In Sect. 5, we apply the algorithm to parametric
models [6] and compute ρ(P) for small models to find a pT that is likely to give
finite variance for larger variations of the same basic model. It is important to
note, however, that numerical iterative solution methods suffer from the exact
same problem as discussed in the next section.

4 Related Work

To verify the formula P⊲⊳ θ[Φ U Ψ] in some state s, we can first compute the
probability measure p of the set of trajectories that start in s and satisfy Φ U Ψ,
and then compare p to θ. A numerical computation of p for any state of a Markov-
chain model amounts to the solution of a set of linear equations specified as
follows (cf. [1]). Let P be the transition probability matrix of the Markov chain
and let P′ equal P, with the exception that states satisfying ¬Φ ∨ Ψ have been
made absorbing. Furthermore, let v be a binary column vector with a 1 in each
row corresponding to a state that satisfies Ψ. Then p is the solution to

p = P′ · p + v . (12)

The equation system in (12) can be written as (I − P′) · p = v and solved
using Gaussian elimination, which is guaranteed to be polynomial in the size of
the state space. This approach is memory intensive, however, and also suffers
from numerical instability. For these reasons, Iterative solution methods, such



as Jacobi and Gauss-Seidel [22], are typically preferred. The leading tool for
probabilistic model checking, PRISM [17], relies on iterative methods to verify
properties with unbounded until. Each iteration involves a matrix–vector multi-
plication, which in the worst case is O(n2), but often O(n) (for sparse models),
where n is the size of the state space. This dependence on the size of the state
space make numerical solution methods impractical for very large models, in
which case sampling-based solution become an attractive alternative.

The number of iterations (k) required to achieve some numerical precision
ǫ is related to the subdominant eigenvalue (ρ) of P′ as follows [22, p. 156]: k =
log ǫ
log ρ

. Since computing eigenvalues is no easier than solving the model-checking
problem, heuristics must be employed to bound the number of iterations, but this
means that no formal correctness guarantees can be made. This is similar to the
situation for the second sampling-based method we described. The reachability-
based sampling approach, in contrast, does not suffer from this weakness as the
precision of the result is independent of any property of the model.

John von Neumann and Stanislaw Ulam, as early as the 1940s, devised a
Monte Carlo method for solving systems of linear equations of the type in (12).
It is this algorithm, first published by Forsythe and Leibler [10], that we use in
the second of our solution methods. It should come as no surprise that both the
iterative numerical solution methods, and the Monte Carlo approach that uses
a termination probability, have a dependency on the subdominant eigenvalue to
provide some prescribed precision. The method of von Neumann and Ulam is
essentially a Monte Carlo version of a numerical iterative algorithm.

Sampling-based solution methods for time-unbounded formulae have received
some attention recently [21, 18, 3, 7], but these authors appear unaware of the
method devised by von Neumann and Ulam.

Sen et al. [21] propose a solution method that on the surface looks similar
to our second approach (the one based on the method by von Neumann and
Ulam). They use a termination probability pT in the same way as we to ensure
terminating sample trajectories. Instead of using weighted sampling with the
random variable XT, however, they use the following Bernoulli random variable:

YT(σ) =

{

1 if MT, σ |= Φ U Ψ

0 if MT, σ |6= Φ U Ψ
. (13)

The problem with YT is that its expectation does not match that of the random
variable X . Sen et al. recognize this problem and provide a bound on the expec-
tation E[X ] expressed in terms of E[YT]. The bound depends on the size of the
model, however, and is too loose to be useful in practice.

In other work [18, 27, 3], it is proposed to use the results from verifying time-
bounded properties to obtain a probability estimate for unbounded properties.
These methods essentially boil down to estimating the expected value of the
following random variable:

Zk(σ) =

{

1 if M, σ↑k |= Φ U Ψ

0 if M, σ↑k |6= Φ U Ψ
. (14)



As with YT, Zk does not have the same expectation of X , although we do have
limk→∞ Zk = X . The expected value for Zk is estimated for a series of increasing
values for k until some convergence criterion is met. Lassaigne and Peyronnet [18]
relate the choice of k to the subdominant eigenvalue, but as with the other
theoretical results mentioned earlier that involve the subdominant eigenvalue,
this result does not help to choose k in practice. Ensuring a certain accuracy
becomes hard because each successive iteration with a different value for k is
subject to error, and different ad-hoc termination criteria are proposed by the
various authors. In the solution methods presented in this paper, we avoid this
iterative estimation approach by always setting up experiments that preserve
the expected value of the quantity of interest.

Rabih et al. [7] present a very different simulation-based approach to veri-
fying unbounded until properties. They develop an algorithm based on perfect
simulation. The approach is interesting, but impractical unless the model is
monotone. The authors do not discuss how to determine monotonicity for a
model, or whether the widely-used PRISM benchmarks satisfy this property, so
it is hard to assess the general applicability of their method.

The termination-probability approach has been used for rare-event simula-
tion (see, e.g., [19]). Improvements to the basic algorithm from the simulation
community would be valuable for model checking as well.

5 Empirical Evaluation

We use two different continuous-time Markov-chain models as the basis for
our empirical evaluation, with rather different characteristics. Note that model
checking of unbounded until for continuous-time Markov-chains reduces to model
checking for the embedded discrete-time Markov chain [1]. Thus, a continuous-
time Markov chain presents no additional challenge for the algorithms described
in Sect. 3.

5.1 Modified Polling System

The first model is a variation of an n-station symmetric polling system, described
by Ibe and Trivedi [16]. In the original polling-system model, each station has a
single-message buffer and the stations are attended to by a single server in cyclic
order. When attending to a station, the server checks for a message in the buffer
of the station by polling the station, and goes on to serve the station if there is a
message. The polling and service times are exponentially distributed with rates
γ = 200 and µ = 1, respectively. Furthermore, each station has an inter-arrival
time for messages that is exponentially distributed with rate λ = 1/n.

Here, we consider a modified version of the polling-system model, where
polling stations can fail and stop accepting messages. The failure rate of a station
is κ = λ/3. After a station has failed, it can never be served again. This way,
infinite sample trajectories become a possibility for the property we consider.



We verify the following property: the probability is at least 0.4 that station
1 is served before station 2. Let s ∈ {1, . . . , n} be the station currently attended
to by the server, and let a ∈ {0, 1} represent the activity of the server (0 for
polling and 1 for serving). The property can then be expressed as the formula
P≥ 0.4[¬(s=2∧a=1) U s=1∧a=1]. We verify this formula in the state where the
server is about to attend to station 1 (s=1 and a=0) and all buffers are empty.
If both station 1 and station 2 fail before they are served, ¬(s=2 ∧ a=1) will
remain true and s=1 ∧ a=1 false indefinitely, and a sample trajectory for the
given model-checking problem may never terminate.

We have implemented the two sampling-based algorithms described in this
paper in Ymer [24]. We compare the sampling-based approaches with numerical
iterative algorithms implemented in PRISM [17]. For the experiments, we used
α = β = 0.01 and δ = 0.005 for the sampling-based algorithms, and ǫ = 0.005
(absolute error) for the numerical algorithms. These choices are of course some-
what arbitrary. Younes and Simmons [26] provide a thorough investigation of
how these parameter choices affect performance for sampling-based algorithms.
For example, using α = β = 10−8 increases verification time by about a factor
10. For the reachability approach, we tried both Wald’s SPRT [23] (sequential
hypothesis testing) and estimation based on the Hoeffding bound [15] that gives
a fixed sample size of N = ⌈ 1

2δ2 log 2
α
⌉ (105,967 for our choice of parameters). For

the approach based on termination probability we used Chow and Robbins’ se-
quential estimation procedure mentioned earlier and pT = 10−4 (this choice was
made after computing the subdominant eigenvalue for the transition matrices of
models with up to 12 stations). Finally, for the numerical approaches, we used
the hybrid engine in PRISM, trying both Jacobi and (backwards) Gauss-Seidel.

Figure 3 plots the verification time as a function of state-space size for the
modified polling system, when verifying the stated property using different al-
gorithms. For the sampling-based approaches, the graph shows the average time
over 20 trials. The state-space size for a model with n stations is 4n · 3n−1. A
model with 24 stations, for example, has close to 1013 states.
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Fig. 3. Verification time as a function of state-space size for modified polling system



The sampling-based approaches scale well as the state-space size grows.
Reachability combined with the SPRT does best, partly because the underlying
probability is close to 0.5, while the bound in the formula is 0.4, so a decision
can be reached with an average sample size of about 1,200. The estimation-based
approaches require much larger sample sizes. The termination-based approach
beats the reachability-based approach when the latter is used with a sample size
derived from the Hoeffding bound.

The numerical algorithms are much faster for small state spaces, but per-
formance deteriorates quickly for larger state spaces. They also use much more
memory than the sampling-based approaches. For a model with 16 stations (al-
most 1 billion states), PRISM caused serious thrashing on our test computer
equipped with 8GB of RAM. The reachability-based approach has a much more
modest memory growth, and nothing suggests that it could not handle models
much larger than what we have tested here. The termination-based approach
uses the least amount of memory, as it does not require reachability analysis,
and does not show any noticeable growth as models get bigger.

5.2 Tandem Queuing Network

The second model is a tandem queuing network due to Hermanns et al. [14]. The
network consists of two serially connected queues, each with capacity n. Messages
arrive at the first queue, get routed to the second queue, and eventually leave
the system from the second queue. The inter-arrival time for messages at the
first queue is exponentially distributed with rate λ = 4n. The processing time
at the second queue is exponentially distributed with rate κ = 4. The size of the
state space for this model is O(n2).

We verify that the probability is at most 0.03 that the second queue becomes
full before the first queue: P≤ 0.03[¬full1 U full2]. We use the same experimental
setup as for the first model, except for the choice of pT. Instead of a fixed value,
we use pT = 1

n+2
for a model with queues of size n. We do so because the

subdominant eigenvalue for this model more quickly approaches 1 as n grows.
Figure 4 plots the verification time as a function of state-space size for the
tandem queuing network, using the same algorithms as before. Again, the results
for sampling-based approaches are averages over 20 trials.

For this model, the sampling-based algorithm that uses termination proba-
bility comes out on top. The reason is that reachability analysis is much more ex-
pensive for this model. The difference between Hoeffding and SPRT gets smaller
for larger state spaces, as the time needed to perform reachability analysis starts
to dominate the difference in sample size (446 for SPRT; 105,967 for Hoeffding).

6 Discussion

We have presented two sampling-based algorithms for probabilistic model check-
ing of time-unbounded properties. Both solution methods are based on unbiased
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Fig. 4. Verification time as a function of state-space size for tandem queuing network

estimators. This avoids the convergence issues that haunt existing sampling-
based algorithms, which all use biased estimators. The first method, especially,
is valuable as it provides correctness guarantees that are independent of any
model parameters. The second method has the same weakness as popular iter-
ative numerical solution methods, in that accuracy cannot be guaranteed fully
without knowledge of the subdominant eigenvalue. Still, it allows us to analyze
models far beyond the reach of methods that require model construction (as is
the case for the first method, as well as numerical methods). Future work could
focus on extending the theoretical results of this paper. In particular, conditions
under which XT has finite variance should be established for a more general
class of systems. Techniques from the simulation community should be incorpo-
rated to reduce the variance of XT, and the empirical coverage probability for
sequential estimation should be established.
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