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Abstract

Background: The pervasive expression of circular RNA is a recently discovered feature of gene expression in highly

diverged eukaryotes, but the functions of most circular RNAs are still unknown. Computational methods to discover

and quantify circular RNA are essential. Moreover, discovering biological contexts where circular RNAs are regulated

will shed light on potential functional roles they may play.

Results: We present a new algorithm that increases the sensitivity and specificity of circular RNA detection by

discovering and quantifying circular and linear RNA splicing events at both annotated and un-annotated exon

boundaries, including intergenic regions of the genome, with high statistical confidence. Unlike approaches that

rely on read count and exon homology to determine confidence in prediction of circular RNA expression, our

algorithm uses a statistical approach. Using our algorithm, we unveiled striking induction of general and tissue-specific

circular RNAs, including in the heart and lung, during human fetal development. We discover regions of the human

fetal brain, such as the frontal cortex, with marked enrichment for genes where circular RNA isoforms are dominant.

Conclusions: The vast majority of circular RNA production occurs at major spliceosome splice sites; however, we find

the first examples of developmentally induced circular RNAs processed by the minor spliceosome, and an enriched

propensity of minor spliceosome donors to splice into circular RNA at un-annotated, rather than annotated,

exons. Together, these results suggest a potentially significant role for circular RNA in human development.

Background
The pervasive expression of circular RNA from protein-

and non-coding loci is a recently discovered feature of

highly diverged eukaryotic gene expression programs,

conserved from humans to very simple organisms such

as fungi [1–5]. Isolated reports of expression of circular

RNAs from single genes have existed for decades, but

mainly due to technological and methodological biases

were generally considered to be rare splicing “mistakes”

until quite recently [1]. We and others have shown that,

in humans, thousands of genes have circular RNA iso-

forms, their expression relative to that of cognate linear

RNA and their alternative splicing varying by cell type

[3, 6]. For hundreds of genes, the circular RNA isoform

is more abundant than linear RNA from the same locus,

raising the intriguing possibility of functional roles for

these molecules [1, 3, 6].

While isolated examples of circular RNA acting as

microRNA sponges have been reported [2, 7], compre-

hensive detection and quantification of circular RNA is a

necessary foundation for future studies aimed at discov-

ery of additional circular RNA functions and elucidation

of mechanisms for circular RNA regulation. Identifica-

tion of biological systems in which the expression of

circular RNA differs according to time, space, or cell

type may provide insights into both the function and

regulation of circular RNA. In order to screen large

numbers of diverse datasets for this purpose, precise

statistical algorithms to quantify circular and linear RNA

splicing are required, and currently available algorithms

for doing so have significant shortcomings. Lack of
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rigorous statistical testing and/or biases in ascertainment

of circular RNA expression have the potential to reduce

both the sensitivity and the accuracy of circular RNA

detection and quantification, and can in fact lead to

artifactual discovery of spurious circular RNAs. The

significance of this problem was highlighted in a recent

survey of circular RNA in Drosophila, where non-

statistical alignment procedures produced millions of can-

didate circular RNAs which those authors believed to be

dominated by artifacts [8].

High confidence reconstruction of mRNA splicing

events in linear RNAs from short read RNA-Seq data

remains a challenging and unsolved problem, despite

advances in this area. Detection of circular RNA faces

the same challenges as well as additional concerns, in-

cluding systematic biases in many widely used sequen-

cing techniques and algorithms that can lead to

characteristic false positive or false negative calls. For

example, some approaches will be biased against de-

tecting very small exonic circles because read lengths

exceed the length of these circular RNAs. Such an

ascertainment bias might negatively impact results

from genome-wide approaches to test the hypothesis

that circular RNAs containing a single exon tend to be

longer than other circularized exons and are therefore

more efficiently circularized, as was suggested in [9].

In this paper, we present a new statistical algorithm

for quantifying the expression of circular and linear

RNA spliced at annotated and un-annotated exon

boundaries. This new algorithm assigns confidence (a

posterior probability that a junction is expressed, and a

p value for this probability) for each detected circular or

linear RNA junction from RNA-Seq experiments. It

differs from other published methods in that it calculates

a statistical score for each read based on alignment

properties, including the number of mismatches and

mapping quality. These scores are aggregated for all

reads that span a putative junction to assess the strength

of evidence that this junction is expressed, a concept

which we previously used in a much more simple form

to detect circular RNAs only at annotated exonic bound-

aries [3]. We demonstrate a reduction of false positive

and negative results compared with other methods, and

show that our improved accuracy can have significant

implications for genome-wide analysis. While we focus

on the methodological approach applied to circular RNA

in humans in this paper, our algorithm is equally power-

ful and applicable to the study of linear mRNA splicing

and can be applied to any genome.

We used this algorithm to rapidly test large numbers

of data sets for regulation of circular RNA. Motivated by

the observation that a highly expressed circular RNA in

the mouse, Sry, is induced during embryonic develop-

ment [10], we included data from developmental time

courses to test the hypothesis that developmental

induction of circular RNA could be a more general

phenomenon. Our algorithm allowed us to discover

striking induction of circular RNA during weeks 10–20

of human fetal development, including in the heart and

lung. We found particularly high levels of circular RNA

isoforms in the developing brain, including in genes

essential to neurogenesis, such as lncRNA RMST [11],

adding to the recent report that circular RNA is

enriched in the aging fly brain [8]. We have shown that

induction of circular RNA in the heart is recapitulated

in in vitro directed differentiation of human pluripotent

stem cells to the cardiomyocyte lineage and focus on the

circular RNA from the gene NCX1, a calcium trans-

porter that is essential for cardiac development [12, 13].

The developmental induction of the circular RNA from

NCX1 is conserved at least between human and mouse,

suggesting that developmental regulation of circular

RNA may be evolutionarily conserved. In addition to

these results, our algorithm unveiled circular RNAs that

use splice sites not annotated in the current genome

databases, including some spliced by the U12 (minor)

spliceosome that likely use splice sites that are not used

for splicing of the linear mRNA.

Results

Statistical annotation-dependent algorithm

Our analysis pipeline (Fig. 1a) uses statistical modeling

to improve sensitivity and specificity of circular RNA

detection from RNA-Seq data. For paired-end data, we

map each read independently to separate Bowtie2 in-

dexes for the genome, ribosomal RNA, linear exon–exon

junctions, and scrambled exon–exon junctions. Each

junction index contains all exon pairs within a one

megabase sliding window. For a read to be considered

“junctional”, read 1 (R1) must overlap the junction by a

user-specified number of nucleotides and must not have

a high-scoring alignment to the genome or ribosomal

indexes. If a read has a high-scoring alignment to both a

linear junction and scrambled junction, only the linear

junction alignment is considered. We model false positives

in a sample using two categories of reads: 1) those that

map to canonical linear isoforms (“real” alignments); and

2) those which are likely artifacts because the relative

alignment orientations of the paired-end reads are consist-

ent with neither a linear nor a circular RNA (“decoy”

alignments). As recently reported, these decoy alignments

are not on their own sufficient to discriminate true posi-

tive circular RNA from false positives, and are typically

simply removed from analyses [8].

Decoy reads could result from a convolution of

sequencing errors and homology between genes as

described in [14]. For example, many exons in the hu-

man genome derive from ALU elements and hence
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have very similar sequences, leading to genes for which

two or more exons in a single gene are distinguished by

only a handful of nucleotides [15]. As depicted in

Fig. 1b, if read 1 of a paired-end read truly originates

from an exon 2–exon 3 linear junction and exons 2

and 3 are nearly identical, sequencing and/or polymer-

ase errors may cause this read to best map to an exon

3–exon 2 circular junction. If read 2 maps to exon 4, as

shown for fragment X, the read would be put into the

“decoy” category because the read pair is incompatible

with a circular or linear transcript. However, if read 2

mapped into exon 3, as shown for fragment Y, it would

not be flagged as a decoy as the relative orientations of

the reads would be consistent with a circular RNA.

Therefore, due to a combination of sequencing errors

and exon homology, such a read would result in a false

positive observation of an exon 3–exon 2 circle. This is

an example of what we subsequently refer to as “arti-

facts” or “false positives”. Other processes that give rise

to decoy reads include technical artifacts such as tem-

plate switching during the reverse transcription step of

RNA-Seq library construction [16].

The above models for the production of decoy reads

suggest that sequencing base quality, the number of mis-

matches in an alignment, the “uniqueness” of alignment

(mapping quality) and the offset (the number of nucleo-

tides that overlap the junction boundary) should jointly

predict the likelihood that a read is a decoy. Decoy

reads, considered as a group, would be predicted to gen-

erally have smaller offsets and worse mapping quality

and alignment scores compared with other classes of

reads. We therefore built a statistical model, described

below, to predict whether a read is a decoy based on

these variables. Specifically, rather than ignoring decoy

reads, we assigned them to a bucket (class 2) and com-

pared them with reads consistent with originating from

linear mRNA (class 1). We fit a logistic generalized lin-

ear model (GLM) with three predictors — alignment

score (a composite of sequencing quality and mismatch

rate), mapping quality, and offset position — to the

response variable, which is the binary set of class labels

(class 1 or 2 above). Because of the systematic differences

in biochemistry and read quality between read 1 and read

2 on Illumina platforms, particularly for random-primed

Fig. 1 Computational pipeline to identify circular RNA candidates. a We start with an annotated genome to create a database of junction

sequences which is used to create two custom Bowtie2 junction indices: 1) a scrambled junction index containing all possible junction sequences

formed either from circularization of a single exon or by each pair of exons in non-canonical order within a 1 Mb sliding window; 2) a linear junction

index containing these exon pairs in canonical order. For single-end data (SE), mismatch rates in all reads aligned to a given junction are used to

determine whether it is a true or false positive (see “Materials and methods”). For paired-end RNA-Seq data, read 1 (R1) and read 2 (R2) are aligned

independently as single-end reads to these junction indices and a Bowtie2 genome index. Each R1 that aligned to a scrambled junction and did not

align to the genome or a linear junction is categorized based on its mate alignment: circular if the mate aligns within the genomic region of

the presumed circle defined by the junctional exons or decoy if the mate aligns outside this region. Each R1 that aligned to a linear junction

is categorized as linear if the mate aligns concordantly to support a linear transcript. Reads in the linear and decoy categories are used to fit a

generalized linear model (GLM). The GLM predicts the probability that each circular read belongs to class 1 (true positive) versus class 2 (false

positive). The de novo analysis pipeline is shown in green. All reads that did not align to any of the indices are used to create a Bowtie2 index

of de novo junction sequences, and all of the unaligned reads are re-aligned to this index. Each R1 from the de novo alignment is categorized

based on its mate alignment just as the reads aligned to annotated exon junctions are. See “Materials and methods” for details. b Sequencing

errors can lead to incorrect alignment to a circular junction. This results in either a false positive circular read or decoy read depending on

whether R2 aligns inside or outside of the circularized region defined by R1
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libraries, we only considered read 1 in assigning a paired-

end read to class 1 or 2 [17, 18]. This makes our counts of

junction expression comparable to roughly half the num-

ber that are reported by algorithms that use both reads to

quantify junction expression.

The GLM was fit for each dataset, with the larger

class downweighted so that each class had equal influ-

ence in the model. All reads within a class were initially

weighted equally. After fitting this model, the weights

of reads with poor fit to the model were downweighted

in proportion to their lack of fit, maintaining the con-

straint that, together, reads in each class had equal total

weight (see “Materials and methods” for details). The

model was then fit again to the dataset using the modi-

fied weights to obtain the final estimates of the three

coefficients in the GLM and their statistical signifi-

cance. We used this model to predict the probability of

class membership in the independent set of reads with

paired-end alignments consistent with being generated

from circular RNA. The fit of the model and signifi-

cance of each predictor is data-dependent, but in all

data sets evaluated here, each predictor was highly

significant, which corresponds to a significant improve-

ment of model fit by including it [19].

The next step of our algorithm was also novel com-

pared with other methods: rather than treating each read

independently, we borrowed strength across all reads

aligning to the junction and formalized quantification of

each putative junction via Bayesian hypothesis testing.

For each junction, we computed the posterior probabil-

ity that junction-spanning reads, in aggregate, had a

statistical profile consistent with decoy reads, which

would suggest they are artifacts versus those from linear

splice junctions, which would suggest they are real [20].

The posterior probability is the conditional probability

that a junction is a true positive conditioned on one of

two scenarios: reads from the junction are all decoys or all

true positives. The posterior probability thus reduces to:

Pi ¼
Q

p̂
Q

p̂ þQ

1−p̂ð Þ

where the product is over all non-decoy reads aligned to

the junction. See Fig. 1 and “Materials and methods” for

workflow and statistical details of the algorithm. Intui-

tively, if half of the reads from a given junction have

statistical profiles consistent with artifacts while the

other half are consistent with a true circular isoform, the

posterior probability of this junction would be 50 %. We

were most interested in circular junctions with a strong

level of support, and hence only focused on junctions

with high posterior probabilities exceeding 90 %, corre-

sponding to a very small fraction of reads with statistical

similarity to the profile of decoy reads (see “Materials

and methods”).

Posterior probability of circular RNA expression is

independent of read count

As an initial orthogonal evaluation to determine whether

our approach provides information that cannot be ob-

tained based on read count alone, we assessed the rela-

tionship between the posterior probability assigned to a

circular junction and the number of reads aligned to the

junction. Analysis of multiple datasets (see Fig. 2a for a

representative sample) shows that the level of confidence

is not merely a function of read count.

We also control for the effect of total junctional

counts on posterior probability for linear junctions by

computing the distribution of posterior probability per

junction, conditioning on total junctional counts and

the distribution of predicted p̂i across all linear reads.

This is necessary because our GLM classifier is trained

on linear junctional reads and in principle could assign

a very high predicted probability of being “real” to all

reads from a linear junction [19]. To control for this,

after estimating the predicted probabilities of each read,

we compute a p value for the posterior probability of a

junction based on the null hypothesis which induces a

permutation distribution on the p̂if g , the distribution

that randomly assigns a p̂i for each read independent of

the junction to which the read aligned. The permutation

distribution on p̂if g induces a distribution on the poster-

ior probability for a linear junction as a function of num-

ber of aligned reads (see “Materials and methods”). We

perform an analogous test for each circular junction with

a simple model to provide a false discovery rate (FDR)

because the above approach is too conservative for circu-

lar RNA junctions, as these reads were not used to fit the

GLM model (see “Materials and methods”).

Unlike existing methods, which generate a list of

circular RNAs that are prioritized based on read

counts, our approach is based on calculating a statis-

tical confidence score for each junction with aligned

reads. This is particularly important given that, like

long non-coding RNAs, and some essential genes such as

Smoothened (supplemental file for accession GSE64283),

the vast majority of circular junctions (70–80 %) detected

in RNA-Seq data have fewer than five aligned reads. This

holds even when experimental procedures to enrich for

circular RNA, such as RNase-R, are used (Additional

file 1). This is due to the low abundance of many circular

RNAs as well as the fact that some circular RNAs are

sensitive to RNAase-R [5, 6, 21]. While we have focused

our analyses and discussion on circular RNA using deep

sequencing data with high coverage of most linear junc-

tions, in shallow sequencing experiments both circular

Szabo et al. Genome Biology  (2015) 16:126 Page 4 of 26



and linear junctions can have low coverage and still be

statistically significant.

Statistical model decreases false positive identification of

highly expressed circular RNA

To further evaluate our statistical approach, we per-

formed a global assessment of the performance of our

algorithm in the RNA-Seq data for poly(A) + and

poly(A)- fractions of multiple cell lines generated by

the ENCODE consortium. Although poly(A) + libraries

are greatly enriched for RNA with poly(A) tails, a small

number of RNAs that lack poly(A) tails, such as small

nucleolar RNAs (snoRNAs), are still present. For

example, in RNA-Seq data from H9 embryonic stem

cells (ESCs), although snoRNA is depleted during

poly(A) selection as expected (25 % of snoRNAs have

an average coverage of 0.6 or less in poly(A) + libraries

compared with an average coverage of 1 or less in

poly(A)- and of 2 or less in RNase-R+ libraries), some

snoRNA are still readily detected in poly(A) + samples

(25 % of snoRNA have an average coverage of 3.9 or

more compared with 6.3 or more in poly(A)- and 31.9

or more in RNase-R+ libraries) (see “Materials and

methods”; Additional file 2). As exemplified by this

survey of snoRNA in RNA-Seq data generated from

different library preparations of the same cell line,

biochemical methods used to enrich for specific types

of RNA significantly alter the composition of RNA

sequenced, but do not result in a purified sample con-

taining only the RNAs of interest.

Assessing circular RNA expression in poly(A)+/−

datasets, compared with benchmarking against RNase-

R-treated RNA-Seq, allows a completely orthogonal

approach to assessing computational methodology. As

our previous work [1] and the above assessment of snoR-

NAs show, most, but not all, apparent circular junctions
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Fig. 2 Statistical algorithm improves the precision of circular RNA detection. a Circular junctions with at least one aligned read are divided into

two groups based on posterior probabilities: greater than 0.5 (orange); 0.5 or less (purple). Density distributions of the read counts are shown for

each group in a representative ENCODE tissue sample (adult heart). b Cumulative distribution of posterior probability for circular RNA detected

(read count≥ 1) in poly(A) + and poly(A)- ENCODE H1 human embryonic stem cell line. Higher posterior probability indicates increased confidence

that a circle is a true positive versus an artifact. c Putative circles with the highest read counts (labeled in red) in the H1 poly(A) + sample are identified

as false positives. d Cumulative distribution of p value calculated based on the naïve model described in “Materials and methods”, using the same

paired-end data used in panel (b). Higher p value indicates increased confidence that a circle is a true positive versus an artifact
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in poly(A) + libraries are likely to be artifacts of the type

described in our discussion of decoys, as circular RNAs

lack poly(A) tails, and are generally not purified by poly(A)

selection. Under this model, purely computational

methods should detect very different expression levels of

circular RNA in the two types of libraries [1, 6]. Our

model, blinded to whether input data were poly(A) se-

lected or depleted, flagged approximately 90 % of circles

with mapped reads in the poly(A) + data as false positives

(Fig. 2b). At the same time, the model was able to identify

circular RNAs that were not completely depleted in the

poly(A) + data; as expected, these true positives were less

abundant than the false positives. Examples include circu-

lar RNAs that have been validated in other cell lines, such

as RNF220, HIPK3 and MAN1A2 in HeLa cells [1], CRKL

in H9 ESCs [22], LRP6 and SPECC1 in 293 T cells [2], and

FAT3 [3].

Examples of the effectiveness of our approach in iden-

tifying false positive junctions with many mapped reads

are depicted in Fig. 2c. GAPDH is not expected to ex-

press a circular isoform as it is sensitive to RNase-R [2].

Also, in the absence of statistical checks, previous re-

ports have excluded putative circles from paralogous

genes such as TUBA1A/1B and HLA genes as being

false positives based on heuristics rather than quantita-

tive modeling [6, 23]. Our algorithm detects these false

positives without manual ad hoc filtering.

Another example is highlighted in the analysis of our

own RNA-Seq data from fetal heart tissue introduced

below. In multiple samples, a putative circle formed by

splicing MYH6 exon 7 to MYH7 exon 8 appears to be

one of the two most highly expressed circular RNAs,

and is a putative circle predicted by find_circ [2]. MYH6

and MYH7 are highly homologous myosin heavy chain

proteins, both of which are highly expressed in the heart

and essential for cardiac function. Gene homology, con-

volved with sequencing errors, could cause some reads

from linear junctions in MYH6 to have a better match

to junctions comprised of one exon from MYH6 and one

from MYH7. Our method predicted that MYH6-MYH7 is

a false positive, despite its apparently high expression

level. As orthogonal support, more than one-third of the

reads aligned to this junction in each sample were decoys

which were not considered in the calculation of the pos-

terior probability of the putative MYH6-MYH7 circle, but

supported the conclusion that it is a false positive due to

the high homology between the two genes. Furthermore,

linear isoforms of MYH6 and MYH7 were readily detected

by PCR in our hands, while several attempts to amplify a

MYH6-MYH7 junction all gave negative results.

We have also compared our method to a naïve method

to calculate the per-junction p value for having the

observed number of mismatches in the reads aligned

to that junction under the null hypothesis that all

mismatches are due to sequencing errors [14]. Given

this null, a low p value represents a junction identified

as a false positive while those with high p values repre-

sent junctions identified as true positives. As demon-

strated by comparing the results of applying both

methods to the ENCODE poly(A) + and poly(A)- RNA-

Seq data for H1 ESCs (Fig. 2b, d), the naïve method

provides p values that can be useful in flagging likely

false positive junctions, which is our algorithm’s default

when only single-end data are available, but our GLM

approach provided much stronger discrimination.

Statistical algorithm increases sensitivity of circular RNA

detection compared with published algorithms and

influences genome-wide analyses

To evaluate the sensitivity of our approach, we com-

pared the number of circles detected in ENCODE

poly(A) + and poly(A)- RNA-Seq data as well as RNase-

R-treated RNA-Seq data generated in [23] with the num-

ber detected by the de novo circular RNA algorithms

CIRI [23] and find_circ [2] (Fig. 3a–c; Additional file 1).

We ran CIRI v.1.2 with default parameters except for

adding the -E flag to exclude false positives resulting

from identical colinear exons. We used default parame-

ters for find_circ and followed recommendations in the

README file provided with the source code to filter

results to obtain high quality circles. For our algorithm,

we reported circles comprised of annotated exons with

at least one junctional read and a posterior probability of

0.9 or higher. Since our counts reflect only cases where

read 1 aligned to the junction, a threshold of 1one junc-

tional read for our algorithm is comparable to a thresh-

old of two junctional reads for algorithms that count

read 1 and read 2 from paired-end reads. Additionally,

as pointed out in [24], counting both reads could result

in double counting individual reads if both sides of a

read are junctional, as would be expected for long reads

and small inserts or small circles. In reporting circles

detected by our de novo algorithm, we applied the filters

described in “Materials and methods” that were used for

all subsequent analyses.

In data from HeLa RNA treated with RNase-R to enrich

for circular RNA, we detected approximately 30 % more

circles than CIRI, and comparable levels in poly(A)- data

from BJ cells. However, in the RNase-R- HeLa cells, we

detected an additional 984 circular RNAs, 1.6 times the

number of circles reported by CIRI. Although these 984

circular RNAs were depleted by RNase-R, it has been

demonstrated by PCR that some circular RNAs are

particularly sensitive to RNase-R, although certainly much

less sensitive than linear mRNA [2, 8, 25]. CIRI found

almost twice as many circular RNA as our algorithm in

the BJ poly(A) + sample, but many of these additional find-

ings were likely false positives given that circular RNA
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which lack poly(A) tails are generally not purified by

poly(A) selection. Of note, 100 circles detected only by

CIRI had 50 or more aligned reads, many of which were

in highly homologous genes, such as the HLA and colla-

gen genes, further suggesting that they may have been

false positives (Additional file 1).

As reported in [23], find_circ detected fewer circles than

CIRI in all samples tested. In the poly(A)- and RNase-R-

samples, our algorithm detected over 2000 more circles

than find_circ. We received errors when attempting to

run find_circ on the RNase-R+ HeLa sample, and so were

unable to directly compare the algorithms on these data.

Taken together, these results support the idea that our

balanced use of annotations and de novo discovery is

more sensitive than these strictly de novo approaches.

In order to assess whether our increased sensitivity is

accompanied by an increase in detection of likely false

positive circular RNA, we quantified the overlap of cir-

cular RNA predicted in poly(A)+, poly(A)-, ribosomal

RNA-depleted, and RNase-R-treated libraries generated

from HeLa cells (Fig. 3c; Additional file 1). Our GLM

algorithm reported 11,965 high confidence circular
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Fig. 3 Statistical algorithm improves the sensitivity of circular RNA detection. a, b Circular RNA detected by both algorithms are divided into false

positives (FP; flagged as false positives due to low posterior probability) or true positives (TP; our posterior probability≥ 0.9). a Number of circular

RNAs detected by our GLM or CIRI in ENCODE BJ poly(A)+/− data and HeLa RNase-R+/− data generated by Gao et al. [23]. CIRI results are based

on all default parameters except the -E flag set to exclude false positives resulting from identical colinear exons. b Number of circular RNAs detected

by our GLM or find_circ in ENCODE BJ poly(A)+/− data and HeLa RNase-R- data generated by Gao et al. [23]. c Circular RNAs detected in HeLa RNase-R

+ and Ribo- data generated by Gao et al. [23] and poly(A)+, and poly(A)- data generated by ENCODE. Number of circular RNAs detected by our GLM

method (one or more reads, posterior probability≥ 0.9) compared with CIRI (default parameters except -E). For GLM results, the first number is the total

number of circles and the number of those which were detected by the de novo portion of the algorithm are listed in parentheses. d Venn diagram

comparing the number of putative circular RNAs identified by our annotation-dependent algorithm in Rnase-R-treated H9 cells and the results

published by Zhang et al. [22]. Green circles and red circles show circular RNA identified by our algorithm with high and low confidence, respectively;

the blue circle shows those identified by Zhang et al. e Total junctional reads for circles comprised of a single exon (posterior probability≥ 0.9, read

count > 1) shown by size for same data as in panel (d). Median exon length is shown in red. The x-axis is truncated at 2000 excluding 31 long exons, all

but one with total read counts < 50
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RNAs. As expected, the largest number were found in

the sample treated with RNase-R, which should be

enriched for circular RNA, while the fewest were found

in the poly(A) + sample enriched for RNA with poly(A)

tails. This result is not due to sequencing depth, as the

number of mapped reads in the poly(A) + sample was

more than twice the number of mapped reads in the

RNase-R+ sample. In comparison, CIRI detects only

75 % of the circular RNAs detected by our GLM

method in the same dataset: 9078 circular RNAs in the

HeLa cells, reporting fewer circular RNAs than our al-

gorithm in each of the samples except in the poly(A) +

sample. We repeated this comparison using single-end

data from poly(A)+, poly(A)- and RNase-R+ libraries

from H9 ESCs and found that our naïve algorithm also

matches predictions based on the method of biochem-

ical purification better than CIRI (Additional file 3). Fi-

nally, the GLM algorithm developed in this paper also

represents a great improvement over our previously

published algorithms [1, 3], increasing sensitivity by

40–50 % with a negligible change (~2 %) in the rate of

false positive detection (Additional file 4).

We also analyzed the human H9 ESC data used by [22]

to benchmark their circular RNA detection method, which

they found to be more sensitive than MapSplice [5] and

comparable to Segemehl [26]. In this dataset, we detected

a total of 15,024 circles, of which 12,472 were high-

confidence, compared with 9639 circles with at least one

read identified by the authors [22]. There were 9281

circles detected by both algorithms, with 3946 additional

high-confidence circles detected by our algorithm and 358

circles only detected by their algorithm, of which only 152

had more than one read (Fig. 3d; Additional file 5).

We tested whether these improvements in detection

sensitivity could have implications for inferences regarding

mechanisms underlying species-specific circular RNA pro-

duction by considering two examples highlighted in [22]:

1) that circularized exons are larger than average exon

sizes in humans; and 2) that presence or absence of re-

peats can predict whether circular RNA production occurs

in orthologous genes in human and mouse.

Previous analyses suggest that short exons are less

likely to be circularized [6, 22]. We considered the possi-

bility that this observation may reflect a size bias in both

experimental techniques and existing informatics pipe-

lines for the detection of circular RNA. By minimizing

size bias at the alignment step by using junctional refer-

ence sequences of the same length regardless of flanking

exon length (see “Materials and methods”), we found

evidence of numerous small, circularized exons. For

example, in H9 human ESCs we found that the median

length of circularized exons with a high posterior prob-

ability of being a true circle was 260 nucleotides (Fig. 3e;

number of circular RNAs by exon length shown in

Additional file 6). When we applied a threshold based

on read count instead of posterior probability to select

high-confidence circles, the median length of circular-

ized exons was much larger. Consistent with a recent

report [22], we observed that using a threshold of five or

more reads resulted in a median circularized exon length

of 353 in H9 cells. This may be due to small circles

being prevalent but detected at low levels due to selec-

tion for fragments > 200 nucleotides during sample prep-

aration, and excluded from analyses that impose hard

filters on read counts. The distribution of lengths of

circularized exons was highly similar in all tissues and

cell types examined, suggesting that circles form more

readily from smaller exons than previously hypothesized.

Our analysis is consistent with the true expression level

of these small circles being higher than currently esti-

mated, resulting in an overestimation of the true median

length of circular RNA comprised of a single exon.

Testing the extent of evolutionary conservation between

circular RNA production in orthologous genes has the po-

tential to uncover mechanisms underlying circular RNA

biogenesis and to infer function of these molecules [1, 3,

4, 6, 22]. Examples where an orthologous gene in human

and mouse produces circular RNA in only one of the

species may yield insights into the mechanism of its pro-

duction [22]. For example, Zhang et al. [22] found that

while mouse ESCs had detectable levels of circular RNA

from the gene Zwilch, a circular isoform was not detected

in humans. Conversely, human H9 ESCs had detectable

levels of circular POLR2A whereas this isoform was not

detected in mouse, and a mechanistic explanation for

these observations was suggested [22].

In contrast to this previous report, our algorithm identi-

fied expression of circular RNA from Polr2a in mouse

ESCs, including in exons lacking flanking inverted repeats

(Additional file 7). Using the same RNA-Seq data as ana-

lyzed by [22], we also detected and validated circular

isoforms from the human ZWILCH gene at the compar-

able, and low, levels expressed in mouse ESCs, although

none were the exon 6–exon 7 circle homologous to the

circle detected in mouse [22]. We have also detected many

circular isoforms of ZWILCH across larger ENCODE

datasets (results available in the supplemental file of acces-

sion GSE64283). More study will be necessary to test

whether the newly detected circular isoforms of ZWILCH

are compatible with the model put forth by [22] because,

for example, in ENCODE poly(A)- mononuclear cells, we

detected a circular isoform of ZWILCH which lacks flank-

ing inverted repeats.

Statistical de novo assembly identifies significantly

expressed circular RNAs

To expand methods to quantify circular RNA, we also de-

veloped a statistical algorithm to discover un-annotated
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splice sites used in circular RNA production. If circular

RNAs use splice sites distinct from those used in mRNA,

they may be missed using annotations, as most annotated

splicing boundaries are based on cDNA libraries derived

from poly(A) selected RNA [23]. Furthermore, exon anno-

tations for most genomes are much lower quality than the

highly scrutinized human genome; in such organisms,

circle ascertainment using annotations will be correspond-

ingly poorer. We sought to test this directly by developing

a statistical algorithm that analyzes reads that fail to align

to the genome or any annotated splice site (“unaligned”

reads).

In its first step, the algorithm proceeds like many

previously published methods: splitting each unaligned

read into two parts and aligning each part separately to

the genome. The algorithm then selects reads where the

two parts aligned to the genome on the same strand, but

in a relative orientation inconsistent with a linear RNA

splice. Next, the algorithm bins the genome into non-

overlapping 50-nucleotide bins and computes a list of all

pairs of bins (A, B) where two separate fragments of the

same read have aligned. For each such pair, the algo-

rithm compiles all sequences which have split reads

aligning to the bin pair (A, B) and performs a statistical

test of whether these reads are consistent with being

independent realizations of a single splicing event, pro-

ducing a score statistic (see “Materials and methods”).

To reduce false positives (for example, due to reverse

transcription [RT] artifacts), we do not consider bin

pairs where the statistic suggests that multiple distinct

breakpoints/putative splices have occurred. This step of

the algorithm also produces a consensus sequence for

the putative splice represented by each (A, B) bin pair.

In the final step of the algorithm, we align all unaligned

reads to a Bowtie2 index containing these de novo junc-

tion consensus sequences and use the framework devel-

oped for our annotation-dependent analysis to classify

reads that align to a de novo junction into putative cir-

cles or decoys and assign confidence to each junction

(Fig. 1), with a slight modification (see “Materials and

methods”).

Using this de novo method, we detected 38 of the

junctions missed by our annotation-dependent algo-

rithm when comparing our results with [22] on their

human H9 ESC data (Fig. 3d), including all with more

than 13 reads and all but 13 with 5 or more reads

reported by [22] (Additional file 5). Our algorithm also

unveiled exons that were annotated subsequent to the

creation of our comprehensive exon–exon database, or

were clear incomplete annotations of the human genome.

For example, we discovered and validated a circular iso-

form of the gene RMST that was not present in our cu-

rated list of annotated splice junctions because the UCSC

annotation available at the time contained an RMST

isoform extending only to position 97,927,544 while the

circle is formed from a recently annotated exon further

downstream. In addition, by manual inspection, we found

examples of circular isoforms using exons that were anno-

tated in expressed sequence tags (ESTs) but not included

in curated gene models (Additional files 8 and 9; gel

shown in Additional file 10; data for RNase-R sensitivity in

Additional file 11).

Un-annotated splice sites are enriched for canonical U2

exon boundaries

To benchmark our algorithm, we examined the global

distribution of the dinucleotides flanking the backspliced

junctions identified by our de novo pipeline. This distribu-

tion is an unbiased assessment of its ability to discover

splicing events as, importantly, generation of candidates

has no bias to discover splicing events at canonical U2

“GT-AG” boundaries. However, in cases where the break-

point of a circular junction read was ambiguous, we

assigned it to a “GT-AG” boundary (or analogous consen-

sus for the U12 spliceosome; see below) if such existed.

We focused our analysis on ENCODE tissue data (EN-

CODE accession GSE24565), and found a strong enrich-

ment for the consensus motifs that flank canonical introns

recognized by the major spliceosome: “GT” at the 5′ end

of the intron and “AG” at the 3′ end. After re-alignment

to the de novo junctional database (see “Materials and

methods”), ~70 % of junctions were annotated as having

canonical flanking nucleotides (supplemental file in acces-

sion GSE64283), as defined by consensus motifs of the

major or minor spliceosome [27], and similar results were

found in all other datasets we analyzed. Others are likely a

combination of artifacts, lariat junctions and possibly bona

fide splicing events.

Global induction of circular RNA during fetal

development

Complex alternative splicing is a hallmark of multicel-

lular development. For example, a handful of splicing

regulators are known to control essential alternative

splicing programs in the brain and heart [28–31]. To

test whether regulated circular RNA splicing is a fea-

ture of early developmental gene expression programs,

we tested rRNA-depleted RNA-Seq libraries across a

panel of human fetal tissues sampled at developmental

time points ranging from 10 to 21 weeks of develop-

ment (Additional file 12) and used our statistical algo-

rithm to detect linear and circular splicing events in

these data. The most complete developmental time

courses were available for the heart and lung.

We used our algorithm’s quantitative estimate of junc-

tional splice expression and a posterior probability of the

confidence of this estimate to identify circular and linear

RNAs that were expressed with high confidence (see
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“Materials and methods”; accession GSE64283), and

subsequently used these quantitative estimates to test

for evidence of circular RNA induction during fetal

development. Each circular RNA is uniquely identified by

its “backsplice” and its expression is therefore estimated

by counting reads aligned to this diagnostic junctional

sequence. Since linear splice junctions contained within a

circle could be present in circular or linear isoforms, we

considered only linear splice junctions strictly outside of

the boundaries defined by the circular backsplice (“exter-

ior” splices) for the purpose of quantifying linear splicing

expression. In cases with multiple circular RNAs from a

single gene, we took the intersection of all exterior splices

to define the composite “exterior” category.

For each organ and each gene with a circular isoform(s),

we derived a z score for each circular splice and each cog-

nate exterior category of linear splices (Additional file 13).

At a fixed sampling depth, this z score is expected to reach

its maximum when junctional reads (corrected for se-

quencing depth per library) increase linearly as a function

of fetal age, and should be distributed as a standard nor-

mal under a model where there is no relationship between

expression and age. As expected from theory, the z score

captures variable expression of linear junctions with age

and is roughly normally distributed (see Fig. 4a left panels

for representative examples), with outliers in well-known

developmentally induced genes, such as TTN in the heart,

serving as positive controls. Note that the size of a z score

Fig. 4 Circular RNAs are induced during development. a Genome-wide distributions of z scores for linear and circular junctions in our heart and

lung data show significant skewing of z scores in circular junctions towards positive values corresponding to circular RNA induction. b Quantitative

RT-PCR confirms greater induction of circular RNA in several organs; heart and lung are shown here (intestine and stomach in Additional file

14). Plotted values are ΔΔCt = ΔCt(Age 20 weeks) – ΔCt(Age 10 weeks), where ΔCt = Ct(ACTB) – Ct(target); error-bars are standard error of the

mean of technical replicates. Positive ΔΔCt indicates increased expression later in development, and is log2 scale. c A similar trend is seen in

the ENCODE data: 14 out of 20 tissues, including heart and lung, have a majority of genes with increasing circular:linear expression compared

with decreasing circular:linear expression (genes called with p < 0.05). Net # genes with circle fraction increasing is defined as Number of

genes with circle fraction increasing from early to late timepoint – Number of genes with circle fraction decreasing. Tissues not labeled in the

figure contained in the 0–500 bar are spinal cord, thyroid, metanephros, liver, umbilical cord, occipital lobe, cerebellum, diencephalon, uterus

(all with data only available from ENCODE)
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represents a combination of effect size and sample size:

for example, NCX1 had the highest z score among cir-

cular RNA in the fetal heart (Fig. 4a lower right panel)

because its expression level is high and therefore very

well-sampled, resulting in high statistical confidence

that it increases over time.

Compared with linear RNA junctions, circular RNA

junctions in the heart and lung display a strong bias

towards positive z scores, representing relative induction

over time (Fig. 4a right panels); similar induction is seen

in the intestine and stomach (Additional file 14). This

trend can be readily seen in the developing heart where

virtually all z scores are positive, even if they do not reach

statistical significance at this sequencing depth. Quantita-

tive PCR (qPCR) validated our RNA-Seq predictions

(Fig. 4b; Additional files 9, 15 and 16), and in most cases

induced circular RNA expression cannot be explained by

the level of induction of the mRNA, as measured by z

scores. To check the robustness of this finding, we re-

peated this analysis using the subset of linear junctions

with the same donor (or acceptor) as used in the circular

junction but that splice downstream (or upstream) rather

than “back”. Results were very similar (Additional file 17).

Independent datasets corroborate global induction of

circular RNA during fetal development

To examine the generality of the results from our fetal

data set, we performed a comparable experiment on EN-

CODE data collected from fetal samples at similar devel-

opmental times as our own data (splice quantification

results in supplemental file of accession GSE64283). The

ENCODE RNA-Seq data were, like our own, produced

from ribosomal-depleted RNA, and allow us to survey a

wider array of tissues for evidence of circular RNA

induction during fetal development. However, the EN-

CODE data do not have as much temporal sampling as

our data; for most organs, there are only two develop-

mental time points, collected between 2 and 10 weeks

apart (Additional file 18); hence, z scores cannot be used

to evaluate temporal induction.

We used another statistical test to evaluate induction

of circular RNA in these data: for each gene, we quanti-

fied the maximum expression of any circular splice (C)

and the maximum expression of any exterior mRNA

splice (E). We quantified the number of genes where

the ratio of circular RNA expression compared with

mRNA was higher (p < 0.05) in the later developmental

time point compared with the earlier time point using

binomial confidence intervals for the ratio of C/(E + C),

which intrinsically normalizes for sequencing depth

(see “Materials and methods”). Fourteen of the 20

tissues, including all of the organs in which we identi-

fied global circular induction in our own dataset, exhib-

ited an increase in the ratio of circular RNA to linear

mRNA over developmental time in at least 50 % of

genes, although some other tissues available only in the

ENCODE data exhibited the opposite trend (Fig. 4c).

Dominant circular RNAs are expressed in a tissue-specific

manner and enriched in the brain

We used the ENCODE data to test whether the in-

creased abundance of circular RNA over time was

driven by induction of linear RNA, particularly whether

the most highly expressed circular isoforms were posi-

tively correlated with the cognate linear isoforms and

whether they had tissue-specific expression. First, for

each sample, we quantified the number of genes where

circular RNA was estimated to exceed linear RNA (esti-

mated by the exterior category). Under the assumption

that at least one splice junction is constitutive in each

linear transcript, this will be a fair estimate of circular

RNA:mRNA expression, if not an underestimate. These

estimators revealed hundreds of genes with higher

expression of circular RNA compared with linear RNA

in many fetal tissues (Fig. 5a), including genes essential

for development, such as NCX1 in the heart, and genes

with genetic links to severe neurodevelopmental phe-

notypes such as RMST and FBXW7 [11, 12, 32, 33].

RNA-Seq quantification was orthogonally supported by

qPCR (Additional files 9, 15, and 16; data showing

RNase-R resistance in Additional file 11). The enrich-

ment of circular RNA in the brain was not due to

simply detecting larger total numbers of genes or spli-

cing events as demonstrated by computing the total

number of such events in each ENCODE dataset (sup-

plemental file for accession GSE64283).

We also tested for a relationship across all samples

between the level of circular:linear isoform expression,

which is intrinsically normalized for sequencing depth,

and the level of linear isoform expression normalized

to the total number of reads mapping to linear splice

junctions. Specifically, for the 100 genes having the

highest levels of circular RNA expression across all

datasets, we computed the fraction of circular counts

C/(C + E), and tested for a significant relationship with

normalized exterior linear count expression (E) using

regression (see “Materials and methods”). The majority of

genes (77) did not have a significant regression coefficient

(p < 0.001), suggesting a general lack of a predictive rela-

tionship between circular and linear expression, as previ-

ously reported in cell lines [1, 3, 5, 6].

Even when a regression coefficient is not significant,

residuals from regression analysis can be used to assess

whether the variation in the dependent variable, here

circular RNA expression, is greater than can be ex-

plained by “noise” (see “Materials and methods”). We

used such a residual analysis to identify genes with a

higher level of circular RNA expression in a sample
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than would be predicted based on linear isoform levels

or noise alone (outliers). Using a conservative FDR of

0.001, we found 30 of the above 100 genes with two or

more statistically significant tissue outliers, including

19 genes where both the early and late samples from

the same tissue were outliers, indicating tissue-specific

expression (see Fig. 5b for representative examples, all

of which have higher circular RNA expression than

linear). DOPEY2 had the second largest number of out-

liers, all in subregions of the brain; R3DHM1, an RNA-

binding protein, also had consistent outliers in the

brain. Other examples of tissue-specific outliers de-

tected in this analysis included skeletal muscle samples

with outliers in the gene RYR1, responsible for calcium

extrusion in skeletal muscle, and samples in the frontal

cortex in the gene GLIS3. Many of the outliers were de-

tected in the frontal cortex and temporal and occipital

lobes (Additional file 19).

Expression of NCX1 circular RNA increases more rapidly

than linear RNA during fetal heart development

While the human fetal brain has the most remarkable

level of total circular RNA expression, the single gene

with the highest level of developmental induction of a

circular RNA and highest expression across all of our

RNA-Seq data was the dominant circular isoform of

NCX1 in the heart. NCX1 is a sodium/calcium exchan-

ger responsible for transporting calcium out of the

cardiomyocyte after contraction [34]. We observed a

consistent increase in circular RNA production from

this locus in the heart across all developmental time

points, in both our own datasets (Fig. 6a) and in the

ENCODE dataset (supplemental file for accession

GSE64283).

The dominant circular isoform of NCX1 contains a

single exon encompassing the boundary between the 5′

untranslated region (UTR) and translation start site and

is expressed at roughly two to five times the level of the

linear isoform. Using our de novo algorithm, we also

identified a highly expressed circular RNA differing from

the dominant isoform by a three nucleotide deletion at

the backsplice junction, which is present at roughly 10 %

of the level of the major circular isoform and is also

induced during development (Fig. 6b). We validated

both of these predicted events by TOPO cloning and

PCR (Additional file 10).

Fig. 5 Circular RNAs have high abundance in many tissues and tissue-specific expression programs. a In many fetal tissues, especially regions of

the brain, hundreds of genes have dominant circular isoforms in early and late time point samples. Late time point depicted for simplicity: for

each organ, the total number of genes with greater circular RNA compared with linear RNA is plotted (p < 0.05). Asterisks indicate regions of

the brain. b Many genes with tissue-specific increases in expression are also more highly expressed as circular compared with linear isoforms.

Normalized expression levels from two samples, early (circles) and late time points (squares), in four genes illustrate this phenomenon (see “Materials

and methods”). Statistically significant outliers (p < 0.001) include several subregions of the brain (DOPEY2 and the RNA binding protein R3HDM1), the

frontal cortex (GLIS3) and skeletal muscle (RYR1); regression line (red) is plotted if there is a significant relationship with circular expression; x = y line

plotted in black. JRPKM (junctional reads per kilobase per read mapped) have a comparable interpretation to RPKM (see “Materials and methods”)
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Human ESC-derived cardiomyocyte differentiation

recapitulates induction of expression of circular and

linear NCX1 RNAs

Human tissues are comprised of a mixture of different cell

types. The remarkable abundance of the circular isoform

of NCX1 in the fetal heart samples suggests that it must be

highly expressed in the majority of developing heart cells,

and that its induction might be recapitulated by in vitro di-

rected differentiation of human ESCs to cardiomyocytes.

We tested this by harvesting human ESCs at sequential

stages of differentiation — undifferentiated (day 0), meso-

derm (day 2), cardiac progenitor (day 5) and definitive car-

diomyocyte (day 14) — although these cells still lack some

gene expression characteristics of fetal cardiomyocytes. We

performed RNA sequencing in biological triplicate and the

same analysis to test for temporal induction of circular

RNA as we did for our human fetal samples (Additional

files 20 and 21).

Fig. 6 NCX1 is a highly expressed and conserved circular RNA. a qPCR agrees with sequencing estimates and shows that circular isoforms of

NCX1 are induced in the fetal heart and during in vitro cardiomyocyte differentiation. Plotted values are ΔCt = Ct(ACTB) – Ct(target); error bars are

standard error of the mean of technical replicates for fetal heart, and of biological triplicates for human ESC (hESC) to cardiomyocytes. b Our de

novo sequencing algorithm predicted a minor circular isoform differing by a deletion of three nucleotides from the dominant circular isoform; it

arises from use of a splice-acceptor just downstream of the annotated splice-acceptor. The minor circular isoform was confirmed by PCR and clone

sequencing. In the diagram, exonic sequences from genome annotations are given in bold uppercase, and splice-signal dinucleotides are highlighted

in red; the mouse and rat NCX1 sequences are shown in blue. In the rat, the NCX1 circular isoform was only detected with the aid of our de

novo algorithm, as the circle junction does not coincide with the annotated start of the first exon. Notably, in the mouse the start of this exon

is annotated as exactly where we see circular splicing in the rat and mouse
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The gene with the most significant z score in this time

course of cardiac induction coincided with the most

significant one in the human fetal data from the heart:

NCX1. The second most significant z scores in the

ESC-derived cardiomyocytes and heart also coincided,

corresponding to the gene RHOBTB3. Both of these

circles are expressed at high levels, comparable to the

level of beta-actin by day 15 (NCX1 shown in Fig. 6a).

Evolutionary conservation of circular NCX1 expression

discovered with de novo algorithm

While human genomes are extensively annotated, the

genomes of other organisms have not been as well studied,

and splicing and/or gene models are not complete. In

order to assess evolutionary conservation of circular RNA

splicing, we require accurate unbiased identification of

circular isoform expression. We specifically focused on

NCX1, as a broader study of evolutionary conservation is

beyond the scope of this work. Our pipeline that quantifies

circular RNA at annotated exon boundaries identified a

circular isoform of NCX1 (Fig. 6b) as the most highly

expressed circular RNA in mouse heart RNA-Seq data

(SRA:SRP029464). The circle was also induced in develop-

ment, suggesting that upregulation of the circular isoform

of NCX1 is evolutionarily conserved. Our de novo pipeline

identified expression of NCX1 circular RNA in the rat

heart (SRA:SRP037986; Fig. 6b) mirroring circular RNA

expression in human and mouse (circular:linear ratio of

0.23). The 5′ acceptor splice site identified by our algo-

rithm is flanked by a canonical U2 splice site motif, but is

not present in current gene models, explaining why our

annotation-dependent pipeline failed to identify this

circle. This evidence points to an incomplete annota-

tion of the rat NCX1 gene model and demonstrates the

importance of using an annotation-independent algo-

rithm when assessing evolutionary conservation of

circular RNA expression.

Un-annotated human circular RNAs are highly expressed

at cryptic splice sites

To expand our search for expression of developmen-

tally regulated circular RNA, we also used our de novo

statistical algorithm to test for un-annotated splice sites

used in circular RNA production in human fetal sam-

ples. In total, we identified more than 300 circular RNA

splicing events using either an un-annotated donor or

acceptor in the ENCODE fetal tissue samples (EN-

CODE accession GSE24565). These junctions had a

similar distribution of expression to those using anno-

tated splice sites (Additional file 22). More than 65

circular RNAs identified by this de novo pipeline have

more than 50 reads compared with roughly 2700 such

circular RNAs which use canonical splice sites, increasing

the number of highly expressed circular RNAs by ~2 %.

We validated five out of five de novo junctions predicted

from the ENCODE data in our own samples (Additional

files 10 and 11).

Several examples of circular isoforms reported by our

de novo pipeline involved splicing events that used

donors or acceptors very close (i.e., < 10 nucleotides) to

annotated splice sites, and flanked by canonical U2

dinucleotides. This phenomenon has been reported as

a mechanism to expand the proteome through mRNA

splicing [35], but to our knowledge has not been described

for circular RNA. One of these includes a splice of the

gene NCX1 (Fig. 6b). Estimates of the prevalence of this

isoform from both RNA-Seq and qPCR suggest that

roughly 10 % of the molecules of NCX1 circular RNA are

comprised of this variant.

U12 circular RNAs are spliced at un-annotated boundar-

ies, some developmentally induced

The U12, or minor, spliceosome is highly evolutionarily

diverged from the U2 spliceosome and splices a small

minority of human genes [27]. However, U12 splicing is

known to be essential for development in some meta-

zoans and its disruption causes developmental disor-

ders in humans [36–38]. Because of its evolutionary

divergence from the U2 spliceosome, and because only

roughly 800 human genes are known to have a U12 in-

tron and only five have more than one, U12-dependent

circular RNA expression is not expected and has not

been previously identified [6]. We identified a group of

roughly 60 circular splicing events using a U12 annotated

donor and acceptor in the ENCODE dataset supported by

small numbers of reads (Additional file 23), compared

with the 636 unique linear splice events at annotated U12

junctions (Additional file 24).

However, analysis of U12 splicing with our de novo

pipeline in the ENCODE data revealed a group of 17

predicted U12-dependent circular RNAs that use at least

one splice site not currently annotated as exonic. The

U12 circular RNAs using un-annotated splice sites were

four-fold more highly expressed than U12 circular RNA

at annotated exons. In some cases, U12 acceptors found

by the de novo pipeline were in very close proximity to

the mRNA transcript in the gene, such as in RANBP17

(Fig. 7a). Validation of these U12 circular isoforms of

RANBP17, as well as others (Additional files 10 and 11),

showed even more diverse splicing than we detected by

our algorithm; for example, we only predicted two of three

RANBP17 splicing variants found by PCR. Validation also

confirmed induction of circular isoform expression, which

we predicted in several genes, with circular isoform levels

comparable to linear by 28 weeks (RANBP17 shown in

Fig. 7c). We also detected a U12 circular RNA in the gene

ATXN10 backspliced from exon 10 to a cryptic exon in
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the preceding intron (Fig. 7d); a repeat expansion in this

intron is the causative genetic change responsible for

spinocerebral ataxia type 10 [39].

Discussion and conclusions
In this paper we have developed a new statistical algo-

rithm for detecting and quantifying circular RNA and

Fig. 7 U12 circular RNA has tissue-specific increases in development. In the gene diagrams of (a, d), annotated exons are shown as gold boxes,

un-annotated “cryptic” exons as gray boxes. Definitive U12-type introns are indicated by “U12” in green; other introns are U2-type (or possibly cryptic

U12-type). Splice-signal dinucleotides are shown in red. a Our de novo algorithm identified two circular isoforms in RANBP17 that use the U12-type

splice signal following exon 20; these were validated by PCR and clone sequencing (which also identified the third isoform shown). b By RT-qPCR, the

de novo RANBP17 circular isoforms show induction during fetal development in all tissues examined; the expression varies between tissues,

for example, being significantly higher in the heart than the intestine. Values plotted are ΔΔCt = ΔCt(20 weeks) – ΔCt(10 weeks), where ΔCt

= Ct(ACTB) – Ct(RANBP17); error bars are standard error of the mean of technical replicates. c The fraction of RANBP17 transcripts that are

circular isoforms increases over developmental time. Shown are the percentages of each RANBP17 isoform, based on RNA-Seq junctional

reads, at two different time points in fetal heart development. “circle1” = chr5:170632616:170610174, “circle2” = chr5:170632616 :170610198

(hg19 genome junctional coordinates; the third circle was not included in this analysis). Total junctional read counts were 240 and 267 for

19 and 28 week samples, respectively. d The de novo algorithm identified a circular junction in ATXN10, between the U12-type splice signal

following exon 10 to a specific site within intron 9. PCR and clone sequencing with outward-facing primers in exon 10 verified the junction

and also showed that additional un-annotated exonic sequences also form part of these circular isoforms, which show alternative splicing.

Pathological expansion of a short repeat within intron 9 is a genetic hallmark of spinocerebellar ataxia type 10; the repeat region, marked

with a red triangle, lies close to exonic sequences that we have identified as contributing to the circle
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applied this algorithm to discover new biology of circular

RNA expression. Our methods constitute a contribution

to quantification of splicing events from RNA-Seq data by

assigning statistical confidence to the expression of each

junctional sequence by which we can identify both false

positive junctional expression and improve detection sen-

sitivity. Our approach to de novo detection of circular

RNA is conceptually different from previous approaches

that treat these events as binary without an associated

statistical confidence. While we focus on applying this

algorithm to discover circular RNA, we anticipate that it

will be widely applicable to a range of experimental ques-

tions being addressed by RNA-Seq. The methods are also

applicable to linear RNA splicing and we have used them

to discover and validate novel linear splicing events (data

not shown). We believe further algorithmic development

along the conceptual lines we developed in this paper will

lead to more powerful inferences from sequencing studies.

Given the wide variety of RNA isolation and library

preparation techniques used and the biases inherent in

each [18], many RNA isoforms will be underrepresented

in any given RNA-Seq experiment. Therefore, informat-

ics analysis of such data must be able to distinguish

between noise and true reads present at low levels. Our

algorithm is agnostic to library preparation method,

and, as predicted from biochemical rationale, revealed

significantly different posterior probability distributions

of putative circular RNA detected in poly(A) + versus

poly(A)- data despite being blinded to the data input

type. Importantly, the increased sensitivity of our algo-

rithm for isoforms that are small and/or present at low

levels is not accompanied by an increase in false posi-

tives, suggesting that our algorithm can be applied

widely to libraries generated by diverse biochemical

methods. Highlighting the importance of statistical ap-

proaches to circular RNA detection, we discovered and

validated examples of circular RNA missed by other al-

gorithms, and demonstrated that such results can have

important implications for models of circular RNA

biogenesis.

Our new methods allowed us to rapidly screen diverse

datasets and identify biological contexts where circular

RNA is regulated. We discovered global and specific

examples of circular RNA variation over human fetal

development. The global trend of increasing circular

RNA expression during fetal development points to the

possibility of up-regulation of a trans-acting factor that

generally promotes circular RNA expression. Another

possible explanation for this phenomenon is that circular

RNA degradation is a slow process, and, therefore, as

cells become quiescent and post-mitotic, they accumulate

circular RNA while maintaining relatively constant levels

of mRNA. A trivial explanation for our finding of develop-

mental induction of circular RNA could be derived from

sample handling, resulting in older samples having a bias

towards ascertaining circular RNA at a higher rate than

linear RNA. In principle, this could be due to, for example,

higher activity of endogenous endonucleases in early fetal

samples. However, our orthogonal tests did not support

this hypothesis, as we were able to reproduce our findings

in the ENCODE datasets and recapitulate induction of cir-

cular RNAs such as NCX1 and RHOBTB3 in the heart

using an in vitro system where induced pluripotent stem

cells are differentiated into cardiomyocytes.

There is increasing evidence that circular RNA is

involved in biochemical pathways, including acting as

miRNA sponges [2, 7] and binding proteins [2, 40].

This suggests that there could be functional conse-

quences of developmental variations in levels of circu-

lar RNA, especially in the brain where circular RNAs

constitute the dominant isoform of hundreds of genes.

Uncovering a previously unknown landscape of circular

RNA production has important implications for future

work studying mechanisms of circular RNA biogenesis

and its function. As we have shown that circular RNAs

can be spliced to cryptic exons and these circles can

accumulate to levels comparable to linear mRNAs, it

may be that genomic instability could trigger cryptic spli-

cing of circular RNA. It is tempting to speculate that, in

the case of ATXN10, the expanded repeat (a form of

genomic instability) in diseased patients is contained in

some circular RNA isoforms, especially considering the

aggregation of repeat-containing RNA in the cytoplasm of

patient-derived cell lines without any detectable change in

mRNA levels [39].

Considering our results that circular RNAs are in-

duced during human fetal development, and a recent

study in Drosophila that suggests accumulation of

circular RNA during aging [8], developmentally timed

expression may be a conserved feature of circular RNA

expression. If circular RNA continues to accumulate

during late life in post-mitotic cells in long-lived organ-

isms like humans, we hypothesize two testable explana-

tions: 1) a higher rate of production compared with

degradation of circular RNA, resulting in a consistent in-

crease in circular RNA over time, or 2) regulation of

trans-acting factors controlling the production or deg-

radation as an organism ages.

Developmental regulation of circular RNA could po-

tentially function to change protein–protein interac-

tions (scaffolded by RNA) or the kinetics of bound

protein. Either of these hypothetical functions could be

important in development as gene expression programs

change rapidly. Our finding of dynamic expression of

circular RNA during development is a first step toward

experiments that may reveal functions of circular RNA: it

has already led us to find in vitro differentiation systems

that recapitulate circular RNA expression over time and
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highlighted circular RNAs which we are now studying in

the development of cardiac and neural lineages.

Materials and methods
Fetal sample processing and RNA-Seq data generation

Fetal tissue samples were collected under a protocol

approved by the UCSD Institutional Review Board.

Fetal tissue samples <100 mg in size were placed into

DNase- and RNase-free 1.5 ml microfuge tubes con-

taining 1 ml of RNAlater RNA Stabilization Reagent

(Qiagen) within 1 h of the pregnancy termination pro-

cedure. After storage at room temperature for a period

of 24–72 h, excess RNAlater was removed from the

microfuge tubes and the samples were placed in the

−80 °C freezer for storage until RNA isolation was

performed. The tissues were lysed in mirVana (Life

Technologies) lysis buffer, using a Mini-Beadbeater-16

(Biospec), with agitation for 1 min in the presence of

1 mm zirconia beads. Samples were then centrifuged at

maximum speed in a tabletop microcentrifuge for

1 min and the lysed solution was transferred to a fresh

microfuge tube. The remainder of the extraction was

per the manufacturer’s protocol for the mirVana kit

(Life Technologies). After extraction, RNA was quantified

using the Quant-iT RNA BR Assay Kit (Life Technolo-

gies). RNA quality was assessed using the Agilent 2100

Bioanalyzer (Agilent) using RNA Nano-chips.

Following RNA isolation (mirVana miRNA Isolation

Kit, Life Technologies, Inc.), the RNA was quantified

(Qubit RNA Assay Kit, Life Technologies, Inc.), and

quality controlled (RNA6000 Nano Kit and BioAnalyzer

2100, Agilent). We used 200–1000 ng as input for the

Illumina TruSeq Stranded Total RNA with Ribo-Zero

Gold sample prep kit (Illumina, Inc.) and sequencing

libraries were created according to the manufacturer’s

protocol. Briefly, first both cytoplasmic and mitochon-

drial rRNA was removed by selectively hybridizing

biotinylated probes to target sequences and using mag-

netic beads to capture the bound products. Following

rRNA removal, the RNA was fragmented and copied

into first strand cDNA using random primers and re-

verse transcriptase. Next, second strand cDNA synthe-

sis was completed using DNA polymerase I and RNase

H. The cDNA was then ligated to Illumina supplied

adapters and enriched by PCR to create the final cDNA

libraries. The libraries were then pooled and sequenced

on a HiSeq 2000 (Illumina, Inc.) instrument as per the

manufacturer’s instructions. Sequencing was performed

up to 2 × 101 cycles. Data are available under accession

GSE64283.

RT-PCR, qPCR, and Sanger sequencing

cDNA synthesis was done with random hexamers and

M-MLV Reverse Transcriptase RNase H Minus Point

Mutant (Promega or NEB) with the following program:

25 °C for 10 min, 42 °C for 50 min, 45 °C for 5 min, 50 °C

for 5 min, 85 °C for 5 min, 4 °C hold. Pre-treatment with

RNase-R followed the protocol in [4]. cDNA reactions

were diluted with water and used as template for PCR.

Standard PCR was done with Taq or Phusion DNA poly-

merase (New England Biolabs); qPCR was done with

GreenStar qPCR Mix (Bioneer, with ROX added to final

500 nM) on an ABI 7900HT using the default program.

PCR primers are listed in Additional file 17. PCR products

were either Sanger-sequenced directly using the amplifica-

tion primers, or cloned into a TOPO vector (Invitrogen/

Life Technologies) and sequenced with vector primers.

Gel images of PCR products used for cloning are shown

in Additional file 10 and RNase-R resistance of circular

isoforms is presented in Additional file 11.

Data used

ENCODE cell lines

Raw fastq files available on 8 August 2014 were down-

loaded from the ENCODE project website. We selected

all whole-cell long poly(A)- and poly(A) + reads banked

at [41]. At that time, two poly(A) + replicates from each

of 18 cell types were available, with the exceptions that

one HMEC, three NHEK, and four SKNSHRA replicates

were downloadable. Two poly(A)- replicates from each

of 17 cell types were available, with exceptions that one

HMEC and three NHEK replicates were downloadable.

Read 1 and read 2 reflect directionality of original RNA

and were not processed symmetrically.

ENCODE tissue (GSE24565)

Raw fastq files available on 9 October 2014 were down-

loaded from [42]. We selected paired-end RNA-Seq for

human tissue. At that time, one sample from each of

two biologic replicates was available for 22 tissues, with

exceptions that one mononuclear cell and three heart

samples were downloadable.

Rat tissue (SRP037986)

Raw fastq files available on 1 November 2014 were down-

loaded from the Sequence Read Archive (SRA). There

were two to four technical replicates per sample and we

selected the run that generated the most reads for each

sample. All 32 samples available for adrenal, brain, heart,

kidney, liver, lung, and muscle, and the 16 available for

uterus were downloaded.

Mouse heart tissue (SRP029464)

Raw fastq files for ribo-minus experiments available on

12 December 2014 for ventricle tissues were downloaded

from SRA. One sample from each of five time points

ranging from postnatal day 1 to postnatal day 90 were

available.
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Mouse R1 ESC (SRR1552726)

The raw fastq file for poly(A)- RNA available on 6 De-

cember 2014 was downloaded from SRA.

Human H9 ESC (SRR901967)

The raw fastq file for poly(A)-/RNase-R-treated RNA

available on 8 December 2014 was downloaded from SRA.

HeLa RNase-R+/−

The raw fastq files under SRR1637089 and SRR1637090

were downloaded from SRA on 28 January 2015.

Data processing

Raw fastq files were processed using TrimGalore [43]

version 0.3.7 and cutAdapt [44] version 1.5 to remove

adapter sequences and trim poor-quality bases. As for

all RNA-Seq analysis tools, our algorithm may perform

poorly on low quality data. Therefore, we strongly rec-

ommend using our algorithm only on reads that have

been processed by a tool such as cutAdapt as predic-

tions will be adversely affected by low-quality reads. All

default values were used, with the exceptions that the

length parameter was set to exclude reads where either

mate had a trimmed length of less than 50 and the

phred64 flag was passed for the ENCODE cell lines.

Annotation-based junction index design and Bowtie2

alignments

We start with an annotated genome (hg19 UCSC anno-

tation downloaded from [45]) to create a database of

junction sequences. Each junction sequence is com-

prised of 150 bases from each of the two exons (or the

3′ and 5′ ends of a single exon), and shorter exons are

padded with Ns so that all junctions have a length of

300, thereby reducing the bias against finding circles

comprised of small exons. We include sequences repre-

senting circularization of a single exon as well as all

pairwise combinations of exons within a sliding win-

dow of one million bases across each chromosome. We

use the subset of canonical-order junctions from this data-

base to build a Bowtie2 [46] index of linear isoforms and

the remaining junctions are used to build a Bowtie2 index

of scrambled isoforms. We use Bowtie2.2.2 to align reads

to the genome, linear, and scrambled indices simultan-

eously. We impose a high gap penalty in order to obtain

only ungapped alignments and set the minimum score

threshold to allow an equivalent of up to four mismatches

at high-quality positions per 100 bases in a read. Because

short exons are padded with Ns in the junction indices,

we also reduce the N-penalty to 0.0001 when aligning to

the junction indices. Naïve application of Bowtie2 using

the default N penalty of 1 prevents alignment of simulated

reads originating from genes with short exons to these

small junction sequences, whereas completely removing

the N penalty creates a bias toward the small junctions.

Even a small N penalty results in a slight bias toward

longer exons, as Bowtie2’s behavior in this context is to

preferentially align to the longest possible junctional

sequence, but we found the chosen N penalty mitigates

the bias for or against small exons. Default values are used

for all other parameters.

GLM algorithm for detecting circular junctions in paired-end

RNA-Seq

We align the mate reads from a paired-end RNA-Seq

experiment independently to the genome index, linear

junction index, and scrambled junction index as if they

were single-end reads and subsequently aggregate the

mate information for all diagnostic reads, those where

read 1 (R1) aligned across a junctional sequence. To be

conservative, diagnostic reads where R1 also aligned to

the genome are discarded, and if R1 aligned to both a

scrambled junction and a linear junction, it is assigned

to the linear junction only. Similarly, if read 2 (R2)

aligns to more than one of the indices, we select the

one with the highest Bowtie2 alignment score and in

the case of ties we give preference to the genomic

alignment, then the linear junction, and finally the

scrambled junction. Based on the alignment position of

its mate (R2), each diagnostic read is categorized as lin-

ear, circular, or decoy. Linear reads are those where R1

aligns to the linear junction index and R2 aligns con-

cordantly in the genome or linear junction index to

support a linear transcript. All reads where R1 aligns to

the scrambled index are categorized as circular if R2

aligns within the genomic region of the presumed circle

defined by the junctional exons (with a buffer of 15

nucleotides to account for potential technical artifacts

introduced during RT), or decoy if R2 aligns outside of

this region. We allow for the possibility that the pre-

sumed circle may include or exclude any introns and

exons within the genomic coordinates involved in the

junction.

In the absence of a ground truth, we proceeded with

the premise that the large majority of linear reads most

likely represent true alignments and the decoy reads

are more likely to be false alignments due to either

sequencing or alignment errors. Supporting the validity

of this premise, we do observe that the linear reads

tend to have higher alignment scores (indicating fewer

mismatches) and higher mapping qualities (meaning

Bowtie2 assigns higher confidence to the reported align-

ment) compared with the decoy reads. We also observed a

difference in the distribution of the number of nucleotides

in a junction-aligned read that extend across the junction

boundary. The distribution of these alignment features for

the two categories of reads in a representative sample is

shown in Additional file 25.
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We build a statistical model for each sample that

combines the information contained in these three

alignment features to estimate the probability that each

read potentially representing a circular RNA is a true

alignment, as opposed to an artifactual alignment, using a

logistic GLM. We use this model to achieve an estimated

probability that each read i is a correct alignment (Yi = 1)

or an artifact (Yi = 2). Using a binomial distribution with
probability P Y i ¼ 1ð Þ ¼ p̂i , this probability is modeled

with predictors being the number of nucleotides in the

read that overlap the junction, the Bowtie2 alignment

score, and the Bowtie2 mapping quality. Since read 2 is

used to categorize each read as linear, circular, or decoy,

we only use the value of these predictors from read 1 and

fit the model with linear reads as class 1 and decoy reads

as class 2. Because there are likely some errors in our cat-

egory assignments (some reads in the linear category that

are actually artifacts and some decoy reads that are actu-

ally true alignments), the model is fit in two steps. In the

first step, all of the reads within a category are given equal

weight. The linear category is generally much larger than

the decoy category, so the reads are weighted such that

the sum of the weights in each category is equal. In the

second step, the weight of each read, wi, is adjusted by

an amount proportional to the probability predicted by

the GLM in step 1, p̂i , as follows: the weight of the ith

read in the linear category, wi ¼ p̂ i
X

p̂j

for all linear

reads j, and the weight of the ith read in the decoy cat-

egory, wi ¼ p̂ i
X

p̂j

for all decoy reads j. The result is that

reads are downweighted if the category assignment based

on genomic coordinates of the mates conflicts with that of

the GLM category assignment. Specifically, linear reads

with p̂i close to 0 receive less weight than linear reads with

p̂i close to 1, and conversely decoy reads with p̂i close to 0

are given more weight than decoy reads with p̂i close to 1,

but the sum of weights within a class remains equal.

The model is then fit using these updated weights and

this final model is used to predict p̂i , the probability that

each circular or linear read is a true positive alignment.

The per-read probabilities are then used to calculate a

posterior probability that each junction is truly expressed

based on the cumulative evidence from p̂i for all reads

aligning to the junction:

P ¼
Y

p̂i
Y

p̂iþ
Y

1−p̂ið Þ

To be conservative, we use the lower bound of the 95 %

confidence interval on p̂i for reads in class 1 and the upper

bound of the 95 % confidence interval on p̂i for reads in

class 2.

p value calculation for linear junction posterior

probabilities

As outlined in the text, we compute a p value for the pos-

terior probability based on the null hypothesis that the

probability p̂i computed for each read by the model is in-

dependent of the junction to which the read aligned by

a permutation distribution that randomly assigns reads

to junctions. This controls for the possibility that junc-

tions with many reads are more likely to have extreme

(high or low) posterior probabilities due to chance and

allows us to detect circular and linear splice events with

high confidence across the broad range of expression

levels. For a junction with n reads, the posterior prob-

ability Pn is a function of:

yn ¼
Y 1− pið Þ

pi

where the product is over pi for each read as predicted

from fitting the GLM, and thereby a p value computed

for yn or log(yn) is equivalent to a p value for Pn. We use

this transformation so the empirical variance can be ob-

tained in closed form. We compute the null distribution

for each ln = log(yn) as follows: a normalized z-score is

computed as:

zn ¼
ln−E lnð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var lnð Þ
p

where the mean and variance are calculated from the

data with E(ln) = n ∗ μ and μ is the empirical average of

the random variable ln across all decoys and linear

junctions and var(ln) is the empirical variance of ln.

Since zn is normally distributed under the null hypoth-

esis, we report a p value based on a one-sided test on

this z score that is low if the posterior probability that

the junction is truly expressed is higher than expected

by chance.

p value and FDR calculation for circular junction posterior

probabilities

For circular junctions, the p value as calculated for linear

junctions is overly conservative, since the GLM predicts

on data that was not used in fitting the GLM. Thus, for

circular junctions, we use a simple model to estimate

the p value (and Benjamini-Hochberg corrected FDR)

for each junction. Under this model, we assume a null

model that if a junction is an artifact, with 95 % prob-

ability, a read will have a predicted probability of 0.1,

and with 5 % probability (due to chance), it will have a
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predicted probability of 0.9. Using this model, we com-

pute a z score and p value as described above where:

μ ¼ log :9
:1

� �

and var lnð Þ ¼ nlog :9
:1

� �2
.

The resulting p value is conservatively computed using

the minimum posterior probability for each junction to

be considered in our report processing: 0.9. Using this

lower bound for all posterior probabilities allows us to

estimate a conservative Benjamini-Hochberg FDR which

compares the ith smallest p value to i
total junctions tested

.

Naive algorithm for detecting junctions

We model the null hypothesis that all mismatches are due

to sequencing error using Poisson(0.01) for Illumina reads.

We sum the number of mismatches observed in all reads

aligned to a junction and calculate the p value for observ-

ing this many or fewer mismatches given the total number

of bases in the aligned reads for this junction. This

method is used by our pipeline when only single-end

RNA-Seq data are available, and for de novo discovery.

GLM report processing

Junctions with a posterior probability exceeding p and at

least n reads were carried forward in the analysis and are

reported in Additional file 13 and the processed reports

available under accession GSE64283 for our fetal data

and ENCODE fetal data. For our fetal data, n = 2; for the

ENCODE data, n = 2; for cardiomyocyte reports, n = 1; p

= 0.9 for all datasets.

Algorithm for detecting de novo junctions

Reads that failed to align to any reference in the anno-

tated circular RNA pipeline were culled for further ana-

lysis. In this paper, we only consider R1 for building the

candidate list of novel junctions. To do this, each R1

was aligned to the genome using Bowtie version 0.12.7

in two segments via a ‘split read’ approach: the 5′ end of

the read was aligned using the flag –trim5 65 and the 3′

end of the read was aligned using the flag –trim3 65.

Each such segment must align uniquely with no more

than two mismatches (Bowtie flags -v 2 -m 1).

After this step, the algorithm bins the genome into

disjoint 50-nucleotide bins (this is a parameter that can

be easily updated in scripts we provide by users desir-

ing to evaluate optimal bin size). Note that CIRI [23]

circumvents the requirement to select a bin size by

using a different dynamic mapping strategy (Burrows-

Wheeler Aligner), but does not provide a score-based

filtering of novel junctions to reduce false positive

results. It then computes all pairs of bins where two

separate fragments of the same read have aligned in

the same orientation. After this step, the algorithm

compiles a list of the offsets among all reads assigned

to 50-nucleotide bins based on their offset. If there are

at least three reads with unique offsets mapping to the

bin pair, the algorithm proceeds as follows: using the

offsets of each split pair alignment, the algorithm aligns

all reads to each other according to the offset position

with respect to the bin. It then calculates a score S,

used to screen putative de novo junctions for later con-

sideration, as follows: for each offset with more than

one overlapping read, the algorithm counts the most

frequent nucleotide (consensus) at each position, and

adds number of nucleotides that do not match consensus
total number of sequences overlapping at this nucleotide

to S. A

lower score therefore indicates that more ‘consensus’

has been reached. Under null models that lack of con-

sensus is due to sequencing error alone, the expectation

of this score should be approximately:

XN ip

N i

¼
X

p

where the sum is over all nucleotides with more than

one overlapping sequence, Ni is the number of such se-

quences at position i and p is the technical error associ-

ated with misreading the wild-type base. For Illumina

reads, if p = 0.01 and the sum is taken over roughly 100

nucleotides, the expected score is 1. We do not con-

sider the variance of this score in this paper, but only

consider de novo junctions where the score is lower

than 5. For each pair of bins, the algorithm returns the

consensus assembly of all sequences mapping to the

(bin A, bin B) pair. A name is assigned to each de novo

junction consensus sequence based on a heuristic that

if the junction falls within 1 kb of an annotated gene, it

is named by that gene and “UNAN” (un-annotated) is

assigned otherwise. A de novo index is created from

these consensus sequences.

Processing of de novo reports

All unaligned reads from the annotation-dependent pipe-

line are realigned to the de novo index using Bowtie2.2.2

and the same alignment criteria described above for anno-

tated junction indices. A read was considered a decoy if

the mate aligned to a different chromosome, in the same

orientation instead of opposite as expected for paired-end

reads, or outside the circle defined by the junction

boundary (with a 50-nucleotide buffer due to the fact

that mates were assigned to 50-nucleotide bins. Junc-

tions with p values > 0.9 using the naïve algorithm

detailed above, decoy/circle ratios < 0.1, and bins with

breakpoints greater than 200 nucleotides were carried

forward in analysis, and bins were subsequently col-

lapsed to unique chromosomal breakpoints.
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Estimating circular RNA read counts in RNase-R+/− data

We applied our algorithm and CIRI to H9 RNase-R+

[SRA:SRR901967] and RNase-R- [SRA:SRR1552724] single

-end data and to HeLa RNase-R+ [SRA:SRR1637089] and

RNase-R- [SRA:SRR1637090] paired-end data. Our esti-

mate of 70–80 % is with respect to the number of circular

junctions supported by at least two reads.

snoRNA analysis in H9 cells

We obtained a bed file containing genomic locations of

snoRNA from the UCSC table browser by selecting

Gene Predictions for sno/microRNA gene regions and

filtering out type = miRNA. We then downloaded big-

Wig files from accessions GSM1164885, GSM1480599,

and GSM1480600 and used the UCSC utility bigWigA-

verageOverBed to obtain the average coverage of each

snoRNA in the three samples. Of 402 snoRNAs, the

311 that had an average coverage > 0 in at least one of

the samples were used in the quantile analysis. For

quantification, we used the mean of covered bases as

reported by bigWigAverageOverBed.

Comparison with our previous algorithms

Custom scripts were used to parse data from Table S7 in

[3] to determine circular RNA reported by the algorithms

in [1] and [3]. The Salzman et al. [1] results are the subset

of this table that use RefSeq exon boundaries. The

Salzman et al. [3] true positive results are the subset of this

table where the sum of the alignment score for read 1 and

the alignment score for read 2 is at least −20, while those

where the sum is less than −20 are false positives (see [3]

for a more thorough discussion of these scores and

methods). For our current algorithm, a threshold of 0.9 is

applied to the posterior probability to determine true posi-

tive and false positive circular RNA candidates.

Assignment to exterior splicing

Linear junctions where both splice sites are interior to

any circular RNA expressed at greater than k counts

were excluded from the analysis (k = 10 for our fetal data

and ENCODE data; k = 0 for cardiomyocyte data). Less

stringent lower bounds were imposed for cardiomyocyte

data because sampling depth was much more shallow.

Calculation of z scores per junction in our fetal data

All circular junctions with at least ten reads were used as

“circle boundaries” and all linear reads exterior to these

circle boundaries were included in the analysis. Using the

calculation described above (p value and FDR calculation

for circular junction posterior probabilities), this results in

an estimated FDR of < 0.001. We repeated this analysis

without the minimum read count of 10 (data not shown)

and also using linear junctions that shared a splice site

with a circular RNA (Additional file 10) and found very

similar results. Each sample was normalized for sequen-

cing depth using the median count among all junctions

exceeding five counts under a simplifying and common

assumption that summed over all genes, both linear and

circular, junctions were equally highly expressed at each

time point. This method normalizes for junctional read

depth and is conceptually similar to RPKM normalization

and is achieved with the code below.

Under the assumption that every read aligning to a junc-

tion is a random sample from a Poisson distribution (or

many other distributions used to model sequencing data),

the sufficient statistics (data) for the expression of each

junction are the sum of the read counts. Analysis of

change of junctional expression over time was computed

by z statistics that were functions of these summed counts

and defined as:

xi ¼ ri
ci
, where ri are the raw values and ci are the per-

sample normalizing constants above.

Under the null hypothesis of no change over time, {xi}

are independent and identically distributed (i.i.d.). There-

fore, defining:

yi = xi − μ for any function o with sum ||o||2
2 = 1 and ||

o||1 = 0, define the statistic:

z ¼ < o; y >
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

y=cj jj j1
p

Under the null hypothesis that xi are i.i.d., the numer-

ator of zi is a linear combination of exchangeable random

variables. The mean of the numerator is 0 by construction,

so z has mean zero as o is orthogonal to the unit vector.

By independence:

var < o; y >ð Þ ¼ oj jj j22
r
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under the assumption that {ri} are Poisson, the con-

stant cs has small but nonzero covariance with {xi} and

the plug in estimator for μ is mean {xi}. We approximate

cs and x as being independent. Because ||o||2
2 = 1 by

construction, under the null hypothesis, z is approxi-

mately N(0,1). We chose oi to be proportional to the

sample age in weeks of sample i so that large values of z

can be interpreted as corresponding to consistent and

large changes over time.

Figure 4 and Additional files 13 and 17 represent the

marginal distributions of z scores per junction for all

regular junctions in the exterior category and scatter

plots represent each circular junction’s z score versus

either the maximum or median of all z scores across all

linear junctions in the exterior category. Since in most

cases there are many more than one linear junction in

the exterior category, the median or maximum z score

has a distribution that is the distribution of the median

or maximum of normal random variables and therefore
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has a mean greater than 0. Therefore, comparing the z

score for the circular junction to the median or max-

imum is a conservative comparison for testing that

circular RNA is induced compared with linear RNA

expression.

Analysis of relative circular:linear expression in the

ENCODE fetal tissue data

All circular junctions with at least ten reads were used

as “circle boundaries” and all linear reads exterior to

these circle boundaries were included in the analysis.

Using the calculation described above (p value and FDR

calculation for circular junction posterior probabilities),

this results in an estimated FDR of < 0.001. After linear

reads are assigned to the exterior category for each gene,

the maximum count for any exterior linear junction is

taken. For each gene, a pair of numbers, nc (circle count)

and nl (maximum linear count), is used in the following

analysis. For each tissue with samples from only two time

points, both fetal times, the sample from the earliest time

point is considered “early” and the sample from the latest

time point is considered “late”. For the heart, where there

were samples from three time points, we used the two

earliest time points as early and late (see sample key in

Additional file 18). For each gene in each of the two sam-

ples, a 95 % binomial confidence interval for p̂ ¼ nc
ncþnl

is

calculated. If the confidence intervals in the early and late

samples do not overlap, the gene contributes to the count

in the barplot in Fig. 5a.

Normalization for plotting was performed as follows:

we normalized all counts by dividing by the total num-

ber of reads mapped to linear junctions. In analogy with

the RPKM, we calculated JRPKM (junctional reads per

million mapped) as follows:

we took all reads mapping to a junction and divided

by total reads mapped to linear junctions
180
1000 � 106

since by requiring a mini-

mum ten-nucleotide overlap of the junction boundary

our effective junction length for 100-nucleotide reads is

a window size of 180. Dividing by 180/1000 corrects for

this length since if our effective junctional length were

1 kb, this approach would correspond to dividing by 1.

Outlier analysis methodology

We chose the genes with the 100 most highly expressed

circular RNAs (at the level of absolute counts) in the

ENCODE fetal dataset and performed the following ana-

lysis. First, the fraction of circular reads was calculated

where:

p̂ ¼ nc

nc þ nl

nc being the circular reads and nl being the exterior

linear reads described above. Under the assumption that

nc and nl are Poisson, conditioned on n = nl + nc, nc has

the binomial distribution with success p̂ . We calculated

the value:

zn ¼
p̂−p̂MLEð Þ ffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂ 1−p̂ð Þ
p

estimating p̂ by the maximum likelihood estimator

(MLE) if p did not depend on the sample. We further

tested whether this value, which should be normally

distributed, had any underlying relationship to nl, nor-

malized to the total number of reads. Normalization was

performed by dividing the number of reads mapped to

each junction by the number of reads mapping to linear

junctions. It should be noted that normalization does

not impact the relative circular:linear ratio for any gene

in a given sample since the circular and linear counts

are divided by the same number.

To identify significant outliers and test if there were

tissue-consistent patterns in such outliers if they existed,

we took the residuals from using the normalized linear

reads in a linear model for estimating p̂ (even more

conservative than using the MLE described above); this

estimate is denoted p̂OLS . Using this estimate p̂OLS , which

like p̂ is a vector, we took the vector of statistics:

zo ¼
p̂−p̂OLSð Þ ffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂OLS 1−p̂OLSð Þ
p

which should be approximately standard normal under

the null hypothesis. To account for the overdispersion

in the Poisson, we additionally divided zo by the empir-

ical median estimated standard deviation of zo, sd(zo),

always > 1, and referred the values zo/sd(zo) to the t dis-

tribution with n-2 degrees of freedom where n = num-

ber of data points. We called outliers by transforming

zo/sd(zo) to p values and used Benjamini-Hochberg

multiple testing correction to control the FDR at level

0.001, identifying samples with circular RNA expres-

sion that exceeded what was predicted by the model.

Out of 30 genes with more than one outlier, 19 genes

were represented by both samples from the same organ

(and possibly other outliers also).

Human ESC cardiac directed differentiation

RUES2 human ESCs were maintained in mouse embry-

onic fibroblast-conditioned medium. Standard cardiomyo-

cyte directed differentiation using a monolayer platform

was performed with a modified protocol based on

previous reports [47–49]. The differentiation setup was

initiated by plating undifferentiated human ESCs as sin-

gle cells as described previously [50–52]. The cultures

were treated with CHIR-99021 (Cayman chemical,13122)

for 24 h before reaching confluence. Cells were induced to

differentiate (designated day 0) by replacing the culturing
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medium with RPMI medium (Invitrogen, 11875–119)

containing 100 ng/mL Activin A (R&D Systems, 338-AC-

050), 1:60 diluted Matrigel (BD), and insulin-free B27

supplement (Invitrogen, 0050129SA). An RPMI medium

change the following day (17 h) included different 5 ng/

mL BMP4 (R&D Systems, 314-BP-050), 1 μM CHIR-

99021, and insulin-free B27 supplement. On day 3 of

differentiation, medium was changed to RPMI medium

containing 1 μM XAV-939 (Tocris, 3748) and insulin-

free B27 supplement. RPMI containing insulin-free B27

supplement was utilized until differentiation day 7 in

which the medium was replaced with RPMI containing

a B27 supplement that includes insulin (Invitrogen,

17504044). Subsequent media changes included the

insulin-containing supplement. Data are available under

accession GSE64417.

Flow cytometry

Wild-type RUES2 cells were labeled for flow cytometry

using an anti-cardiac troponin T antibody (Pierce,

MA5-12960) or corresponding isotype control to assess

the purity of purified cells. Cells were analyzed using a

BD FACSCANTO II with FACSDiva software (BD Bio-

sciences). Instrument settings were adjusted to avoid

spectral overlap. Data analysis was performed using

FlowJo (Tree Star, Ashland, Oregon). Statistics were:

replicate 1, 93 ± 0.3 % cTnT+; replicate 2, 92 ± 1.2 %

cTnT+; replicate 3, 91 ± 0.3 % cTnT+.

Annotation of U2 or U12 flanking motifs

All de novo sequences with score S (described above) < 4

were culled for further analysis. Each junctional read

representing the consensus sequence of the de novo

junction associated with the bin (see above) was split

into all possible sequence fragments of at least 20,

modeling each potential breakpoint, and each fragment

was separately aligned to the subset of the genome 500

nucleotides upstream and downstream of the 50-

nucleotide binned coordinates to reduce complexity of the

index, using the Bowtie parameters –all -m 40 -f -v 1

(align fasta files and report all alignments for reads with

40 or fewer alignments with up to one mismatch). The

flanking dinucleotides were then computed for each

potential junction break point. Candidate junctions where

a breakpoint was successfully mapped were carried for-

ward. A Bowtie2 index was built with these sequences and

reads were realigned using the same parameters initially

used to align to the annotation-dependent junction indi-

ces. After realignment of all unaligned reads to the index

of de novo assembled sequences where breakpoints could

be mapped (as above), we computed the total number of

reads mapping to these de novo junctions. Note that in

some cases there is ambiguity in exact breakpoint for a

junction as the consensus at the 5′ splice site is “ag-GT”

(intronic sequence in caps, exonic sequence in lower case).

Therefore, if the mapped donor and acceptors ever had a

flanking GT-AG (or TATCCT one nucleotide downstream

of the donor), the read was called canonical U2 (or U12).

To test whether this default assignment biased our

results, we repeated the di-nucleotide enrichment ana-

lysis for all 44 possible pairs of “donors” and “accep-

tors”. All of these decoy flanking dinucleotides were

significantly less, if at all, enriched than “GT/AG”. Al-

though several U12 flanking dinucleotides were identified,

as with linear RNA, these account for a small minority of

circular RNA splicing.

Data availability

RNA-Seq data and processed reports for our fetal samples,

as well as processed reports for the ENCODE fetal samples

analyzed, are available under accession GSE64283. RNA-

Seq data and processed reports for induced cardiomyocytes

are available under accession GSE64417.

Code availability

The algorithm for the quantification of splicing events and

assigning a confidence to each junction is written in a set

of custom bash, Python, Perl, and R scripts. Running the

entire pipeline requires invoking two bash commands, de-

scribed in a README file available with the code. Code is

provided to execute the analysis pipeline on a single Linux

machine or on a cluster using SLURM. The code is avail-

able at [53].

Additional files

Additional file 1: Comparison to CIRI and find_circ. Data used to

generate Fig. 3a–c comparing our sensitivity to the sensitivity of de

novo algorithms. Note that due to numerical precision, p values and

posterior probabilities > 0.999999999 are reported as 1 and values < 1.0

* 10−45 are reported as 0.

Additional file 2: snoRNA in H9 cells. Mean coverage for covered

bases as reported by UCSC bigWigAverageOverBed utility.

Additional file 3: Comparison to CIRI on H9 cells. Overlap in results

from our GLM algorithm on single-end data from H9 poly(A)+, poly(A)-,

and RNase-R+ samples compared with overlap on these samples

reported by CIRI.

Additional file 4: Comparison to our previous algorithms. Our 2012

(PLosOne) algorithm [1] identified circularRNA candidates without applying

a statistical filter. Our 2013 (PLosGenetics) algorithm [3] introduced an FDR

that reduced false positive (FP) results. The GLM method presented here

increases sensitivity while also increasing specificity. Comparisons of the

three algorithms on ENCODE poly(A)- data are shown, with circles flagged

as FPs by the algorithm shown in shaded regions (FDR > 0.025 for

PLosGenetics or posterior probability < 0.9 for GLM) and those reported

as circular RNA candidates are shown in non-shaded regions. For GLM

results, the total number of circular RNAs is shown, with the count of

those circles identified by the de novo portion of the algorithm called

out in parentheses. a In HeLa poly(A)- cells (Rep1) 6002 circular RNA

candidates were identified in PLosOne 2012. Our PLosGenetics 2013

algorithm identified 6831 circles, most also identified by the previous

algorithm, but used the FDR to flag 3668 of these candidates as FPs.

The GLM method has increased sensitivity and identifies 4761 circular

Szabo et al. Genome Biology  (2015) 16:126 Page 23 of 26

http://genomebiology.com/content/supplementary/s13059-015-0690-5-s1.xls
http://genomebiology.com/content/supplementary/s13059-015-0690-5-s2.xls
http://genomebiology.com/content/supplementary/s13059-015-0690-5-s3.jpg
http://genomebiology.com/content/supplementary/s13059-015-0690-5-s4.jpg


RNAs as likely true positives and 1656 circular RNAs with aligned reads

were flagged as FPs. b In H1 poly(A)- cells (Rep1) 8622 circular RNA

candidates were identified in by our PLosOne 2012 algorithm. Our

PlosGenetics 2013 algorithm identified 6831 circles, most also identified

by the previous algorithm, but used the FDR to flag 3668 of these

candidates as FPs. The GLM method has increased sensitivity and identifies

4761 circular RNAs as likely true positives and 1656 circular RNAs with

aligned reads were flagged as FPs.

Additional file 5: Comparison to Zhang algorithm on H9 cells. Data

used to generate Fig. 3d comparing our sensitivity to the sensitivity of

Zhang et al. 2014 [22] on H9 RNase-R-treated cells. Table S1 Circles identified

by both our annotation-dependent algorithm and the Zhang algorithm.

Table S2 Circles identified only by the Zhang algorithm. Table S3 Circles

identified only by our annotation-dependent algorithm. Table S4 Circles that

were identified by Zhang et al. and missed by our annotation-dependent

algorithm, but subsequently detected using our de novo algorithm. Note

that due to numerical precision, p values > 0.999999999 are reported as 1.

Additional file 6: Number of circles by exon size in H9 cells. Data

used in plot for Fig. 3d, instead showing number of distinct circles by

length.

Additional file 7: Circular and linear splicing identified in mouse R1

ESCs. Linear and circular RNA splices identified in mouse ESCs, including

circular Polr2a. Report generated from analysis using the naïve method

because this is single-end RNA-Seq. Note that due to numerical precision,

p values > 0.999999999 are reported as 1.

Additional file 8: Additional circular RNAs identified by the de

novo pipeline. Exonic sequences from genome annotation are given

in uppercase, and intronic sequences in lowercase with splice-signal

dinucleotides highlighted in red. Definitive U12-type introns are

indicated by “U12” in green. a TCEA3 backsplices from a U12 splice

donor to a cryptic acceptor slightly upstream of the annotated exon;

the dinucleotides used are AT-AC. b MORC3 backsplices from a U12

splice donor to several different locations close to, but not including,

the annotated exon boundary (even though the annotated splice

acceptor is also U12 type). c RMST circular isoform was identified only

by the de novo pipeline, as it involves exons not present in the RefSeq

gene model. Three UCSC gene models are shown in the Genome

Browser snapshot. Below that is a hybrid gene model with 13 exons,

combining exons from different UCSC gene models. The RefSeq gene

model consists of exons 1–9 (same as the first UCSC gene model). The

observed circle is a backsplice between exons 11 and 3.

Additional file 9: Primers and sequencing results.

Additional file 10: Gel analysis of RT-PCR of circular isoforms. a

Agarose gels of RT-PCR products (after 40 cycles) of U12-type circular isoforms

for TCEA3, RANBP17, MORC3, and ATXN10, which were TOPO-cloned and

Sanger-sequenced (Additional file 8), which demonstrated multiple circular

isoforms for most of these genes (in particular, explaining the multiple bands

seen for ATXN10). The outward-facing primers were located in the

same exon, so products are nearly the full size of the circle. The asterisk

marks a primer-dimer band in the MORC3 lane. b Agarose gel of bands

after RT-qPCR (45 cycles) for circular (cir) and linear (lin) isoforms of genes

regulated in fetal development. The NCX1 circular isoform product was

directly Sanger-sequenced and also TOPO-cloned and sequenced; note that

it appears as a single band, since the variant isoform is only 3 bp shorter

than the main circular isoform.

Additional file 11: RNase-R resistance of circular isoforms. Circular

isoforms show resistance to the exoribonuclease RNase-R, compared with

linear isoforms, in the fibroblast cell line BJ. Values plotted are ΔΔCt

= ΔCt(circle) – ΔCt(linear), where ΔCt = Ct(mock-treated) – Ct(RNase-R-

treated); error bars are standard error of the mean of technical replicates.

The absolute Ct values shown are for mock-treated RNA.

Additional file 12: Our fetal data sample key. Sample_ID, index

sequence, and gestational age for the fetal data we generated.

Additional file 13: Z score plots for each of our fetal samples. For

our fetal tissue data, z score plots per organ, leaving out earliest time point

to be conservative. Clockwise from top left, histogram of linear z scores,

circular z scores, plots of circular z score versus median and maximum linear

z score per gene. Linear junctions were used if a splice site was excluded

from any splice site used in circular RNA having at least ten counts. Points

with most positive z score are labeled for visualization.

Additional file 14: Circular induction in fetal intestine and stomach.

RT-qPCR confirms greater induction of circular RNA in several organs;

intestine and stomach are shown here (heart and lung in Fig. 3b).

Plotted values are ΔΔCt = ΔCt(age 20 weeks) – ΔCt(age 10 weeks),

where ΔCt = Ct(ACTB) – Ct(target). Error bars are standard error of the mean

of technical replicates. Positive ΔΔCt indicates increased expression later in

development, and is log2 scale.

Additional file 15: qPCR validation of sequencing-based

quantification.

Additional file 16: correlation of qPCR and sequencing-based

quantification.

Additional file 17: Z score plots per tissue for our fetal samples. For

our fetal tissue data, z score plots per organ, leaving out earliest time

point to be conservative. Clockwise from top left, histogram of linear z

scores, circular z scores, plots of circular z score versus median and maximum

linear z score per gene. Linear junctions were used if a splice site was shared

with any splice site used in circular RNA having at least ten counts. Points

with most positive z score are labeled for visualization.

Additional file 18: ENCODE fetal data sample key. Tissue and age in

weeks.

Additional file 19: Outlier list by tissue. Outlier list by tissue; “early”

and “late” correspond to earliest and second earliest time points per

tissue.

Additional file 20: Cardiomyocyte processed reports. Junctions with a

posterior probability exceeding p= 0.9 and at least one read are reported for

each of three biological replicates of the cardiomyocyte time course. Note

that due to numerical precision, posterior probabilities > 0.999999999 are

reported as 1.

Additional file 21: Z score plots for cardiomyocytes. Clockwise from

top left, histogram of linear z scores, circular z scores, plots of circular z

score versus median and maximum linear z score per gene. Linear junctions

were used if a splice site was shared with any circular RNA having at least

one count. Points with most positive z score are labeled for visualization.

Additional file 22: Comparison of de novo and annotated circular

RNA counts. Many de novo junctions have high expression, comparable

to circular RNA expression from RNA spliced at canonical boundaries. We

plotted empirical cumulative distributions of total circular counts per gene

from all annotated junctions and separately for all de novo junctions after

reports had been screened as described in the methods; total expression

estimates were collapsed across samples and reported at the gene level.

ECDF empirical cumulative distribution function.

Additional file 23: ENCODE circular junctions detected at canonical

U12 splice sites. Note that due to numerical precision, posterior

probabilities > 0.999999999 are reported as 1.

Additional file 24: ENCODE linear junctions detected at canonical

U12 splice sites. Note that due to numerical precision, posterior

probabilities > 0.999999999 are reported as 1.

Additional file 25: Cumulative distribution of predictors used in

GLM. Bowtie2 alignment score, mapping quality, and the amount of

junction overlap are distributed differently in the two categories of

reads used to fit the model: 1) that map to canonical linear isoforms

(real alignments); 2) that are likely artifacts because their relative

alignment orientations are inconsistent with coming from a linear or

circular RNA (decoy alignments).

Abbreviations

ESC: embryonic stem cell; FDR: false discovery rate; GLM: generalized linear

model; i.i.d.: independent and identically distributed; PCR: polymerase chain

reaction; qPCR: quantitative PCR; RT: reverse transcription; snoRNA: small

nucleolar RNA; SRA: Sequence Read Archive.
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