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Abstract. A classical, Neyman-Pearson hypothesis test results in a decision (choice of action) justified

not by any assessment of sample evidence, but by the pre-specified frequencies with which that

procedure generates errors of the two possible types. By applying such a test in auditing, the

hypothesis tested is accepted or rejected without the auditor having to consider whether the data

observed confirms (in any degree), or disconfirms, that hypothesis. In contrast with the classical

framework, the Bayesian approach is to evaluate the probability of the hypothesis tested conditional on

the data observed, and then to make a decision on the basis of that revised probability. Decisions are

thus evidence-based rather than rule-based. So as to compare the classical and Bayesian programs, a

familiar test example is considered, and hypothetical data, which, on a classical view, marginally reject

the auditee's stated account balance, are re-interpreted from a Bayesian, evidential perspective. The

results of this comparison reveal that classical hypothesis tests in auditing do not have a consistent

(from test-to-test) evidential basis, and, in Bayesian terms, are therefore "incoherent". Also, contrary to

intuitive expectations, marginal rejection is found to imply evidence in favor of the auditee's stated

balance. Asymptotically, an account balance which is rejected only marginally in a classical hypothesis

test has an "objective" (not-dependent-on-prior) posterior probability arbitrarily close to one.
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1. Introduction

This paper contrasts the classical, Neyman-Pearson logic of hypothesis testing

with the Bayesian program for statistical inference and decision making. Unlike

previous studies in auditing comparing classical and Bayesian statistical

methodology, primary consideration is given to foundational, philosophical

and logical issues underlying the distinction and longstanding conflict

between classical and Bayesian statistics. In particular, the question is asked

of the result of a Neyman-Pearson hypothesis test, "What does it mean?", or

more specifically, "What is the evidence so represented?". Comparison of the

classical and Bayesian responses to this fundamental question reveals aspects

of the classical paradigm which, to a Bayesian, are logically indefensible.

Comparative study of the foundations of classical and Bayesian statistical

methodologies is anticipated in a chapter by Akresh et al. (1988) on "Audit

Approaches and Techniques", in the American Accounting Assoclotlon's

agenda of Research Opportunities in Auditing. Amoung the identified

research issues relating to audit sampling and decision theory is the following:

What are the properties/advantages/disadvantages of Bayesian decision­
theoretic models in auditing as compared to classical statistical models? Given
that the goal is to improve audit decision making, how do these approaches
compare in terms of sample sizes, defensibility, ability to aggregate with other
souces of evidence. etc.? (p.50)

Each of the specifics mentioned in this passage, viz. the matters of sample size,

evidence aggregation, and in particular the logical defensibility of classical

decision theory in comparison with the Bayesian alternative, comes into focus

once the evidential content of classical test results is questioned in the

fundamental manner described above.

Previous research in auditing contrasting orthodox (Le. "classical") and

Bayesian statistical methods is mostly concerned with 'proctlcot" or technical
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matters - for example, there is a rich body of work correlating the frequentist

coverage probabilities of Bayesian and classical confidence bounds in money

unit sampling (e.g., Tsui et al. (1985), Dworin and Grimlund (1986), Smielianskas

(1986) and Grimlund and Felix (1987)). While such cross-validation is of obvious

theoretical and practical importance, many of the more foundational issues

separating the classical and Bayesian formalisms have been given relatively

little attention in the statistics-in-auditing literature, at least by comparison with

the profile and history of philosophical debate in the disciplines of

mathematical statistics and the philosophy of science.

There is sometimes the supposition in auditing that although practitioners

employing classical statistical methods, including hypothesis tests, are formally

commited to orthodox statistical concepts and terminology, they retain the

status of "informal" or de facto Bayesians. Unfortunately, this ecumanical

standpoint is generally untenable, as has been known to Bayesians since

Jeffreys (1961, pp.359-60; 1st ed. 1939). More recently, following much related

Bayesian criticism of the orthodox or classical paradigm (e.g., de Finetti (1975),

Edwards et 01. (1963); Good (1981), (1983); Lindley (1957), (1972); Pratt (1965)

and Zellner (1971), (1984)), articles by Berger and Sellke (1987, p.136) and

Berger and Delampady (1987, p.330) published in the Journal of the American

Statistical Association and Statistical Science (also an ASA journal), and

commended by various eminent discussants, conclude with the view that the

results of classical hypothesis tests are so commonly and systematically

disparate with Bayesian probability revision that the future of such tests in

statistics is highly questionable. The mathematical theory of statistical sampling

in auditing is very well developed, even by the standards of statistics proper,

however the substance and severity of authorative Bayesian dissatisfaction

with Neyman-Pearson methods, as seen in papers such as those cited above,

is not similarly well represented in the applied literature in auditing.
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To preclude unnecessary technical difficulty, the analysis below begins with

consideration of the most well known of Neyman-Pearson hypothesis tests

employed in auditing, that of the mean of a normal population. This is one of

the tests by which Neyman and Pearson (1933, pp.153-6) exposited their logic

of statistical hypothesis testing, and through which most students are

introduced to the application of that theory in ouditlnq. More importantly, the

test of a normal mean, although technically straightforward, embodies all the

paradigmatic characteristics of Neyman-Pearson logic and philosophy, and is

therefore an appropriate starting point when the foundations of that paradigm

are in question. Indeed, by avoiding the added distractions of tests which

involve more difficult, or less familiar, applications of the same underlying logic,

attention is restricted to issues of principle affecting all Neyman-Pearson

hypothesis tests, regardless of technical idiosyncracy.

2. An Example Test

Assume a population X-N(e,(j2) of individual accounts (e.g., receivables) with

unknown mean e, and variance 0'2. To decide between the actions of

accepting and rejecting the auditee's aggregate account balance, an

auditor conducts a statistical hypothesis test of

Ho: [B l5:m versus Hj : Ie I»rri

where e represents the population average error (Le., the average of the errors

in the auditee's accounts receivable) and m denotes the average error

amount deemed material (intolerable) by the auditor. Following a textbook­

standard procedure (e.g., Roberts (1978) p.45; Arens and Loebbecke (1981)

pp.137-44; (1991) p.520), the auditor's decision rule is to accept Ho, and thus

the auditee's stated balance, only if the two-sided 100(1-P)% confidence

interval estimated for e lies entirely within the predetermined materiality
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bounds [-m,m]. Otherwise the stated balance is rejected. The effect of this

decision rule is to set the minimum power of the test against H]: /8 I»rti.

min p(Reject HoI8),
lel>m

greater than 100(1-P/2)%. Having this power characteristic, the test described

fits the definition of Duke et al. (1982, p.51) of a IInegative" test.

Example Results. For the purpose of exposition assume known a=170, and

suppose the auditor tests

observing a sample mean X with n observations, where n is fixed before any

data have been drawn or inspected. The classical two-sided 100(1-P)%

confidence interval for 8, the population mean, is X ±z~/2aNn (disregarding

finite population correction). For P=0.05, Z~I2= 1.96, etc. The rejection level, or

"crltlcol" value of the test statistic, henceforth denoted by Xc' is m-z~l2aNn.

A result X=X c marginally rejects Ho since the right-hand confidence limit,

X c+z~/2aNn, equals exactly the materiality limit tri' Letting P=0.05, consider the

following three such results and their associated 95% confidence intervals:

(n=20, X=0.4942) ~ [-74.012, 75]

(n=50, X=27.8784) ~ [-19.243, 75]

(n=90, X=39.8776) ~ [4.755, 75].

For an auditor having observed one of these results, the problem is one of

interpretation. Specifically, of what logical meaning or use is that observation?

This question, which might arise in negotiation with a client or in defence of

the auditor's decision process in a court, is answered below, first from a

classical frequentist-decision-theoretic perspective, and then from the less
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conventional, Bayesian standpoint. Contrary to what seems a "common

sense" understanding of classical hypothesis tests, marginal rejection of Ho is

found to confirm, rather than disconfirm, that hypothesis. Indeed with

sufficiently large n. the probability of hypothesis Ho conditioned on data

marginally rejecting Ho is close to one, whatever the assumed prior.

3. Classical Interpretation

Each of the supposed results leads the auditor to formally "reject" Ho and thus

to take accordant action, possibilities including marginal adjustment of the

oudltee's stated balance (Arens and Loebbecke (1981) pp.149-50) and, in the

other extreme, qualification of the audited accounts (Kinney (1975) p.119).

The "orflclol" Neyman-Pearson rationale underlying this orthodox interpretation

is that by acting strictly in accord with a predesignated decision rule, in one

test after another, the frequencies of errors of types I and II built into that rule

will almost certainly be achieved (approximately) over the long-run of

applications. For instance, if the minimum power ( 1 - " ~ risk") of a test

procedure is 97.5%, then account balances will be accepted in no more than

2.5% of those test repetitions in which the stated balance is in fact materially

incorrect. Note the order of the conditionality here - specifically the figure

2.5% represents the maximum probability of an acceptance given an

incorrect balance, not the maximum probability of an incorrect balance given

an acceptance. The former of these two probabilities is sometimes translated

mistakenly as the latter (cf. de Finetti (1975) p.248).

Ignoring assumptions (e.g., normality), actual error frequencies close to their

theoretical or nominal values are "guaranteed" by the law of large numbers,

provided, of course, that the practitioner complies in each test with the

decision rule established before the test was run. No allowance may be made

for the possibly narrow margin by which a particular result rejects or accepts
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Ho, or for any counteNailing factor such as an apparently "unlucky".

unrepresentative or biased-looking random sample. If by occasionally and

subjectively setting aside a decision rule stipulated before seeing the data ­

e.g., by treating a IIjust-overll rejection of Ho as an acceptance, or by

discounting an unstratified sample which, albeit drawn at random, has the

appearance of being unrepresentative or "blosed'' 2 - the auditor introduces

personal judgement and possible statistical bias, the nominal error frequencies

attached to that decision rule no longer have the same objective meaning or

relevance (cf. Kyburg (1974, p.221); Roberts (1978, p.43)). The 'true" error

frequencies of such a discretionary procedure are indeterminate, and may be

better or worse than their nominal values. It is this latter possibility which

underlies the joint tenets in frequentist (l.e.. classical) statistics of predesignation

and "no looking back".

4. Why a Bayesian Interpretation?

The orthodox or classical approach leads to a decision (choice of action)

based not on an assessment of evidence contained within the data, but on

the long-run average error frequencies (lloperating characteristics") of the test

procedure (decision rule) by which that choice is made:

Neyman's school. followed strictly, maintains that there is no such thing as
inconclusive evidence for hypotheses. We can only make decisions about
hypotheses, following some pattern of decision-making with desirable
characteristics. When we decide for an hypothesis, we do not do so because the
evidence makes it credible. (Hacking (1973) p.490).

This instrumentalist philosophy is most clearly evident in Neyman's instruction on

the interpretation of confidence lntervols:

/\ /\

The specific interval s-c < e< S+C, calculated for a confidence coefficient a,

selected by the statistician to suit his purposes, gives an unambiguous answer: act

on the assumption that the unknown e lies between the limits indicated. If the

consumer asks why he should do so, the answer is: if you behave that way, you will
be right (approximately) in 100a per cent of cases. (Neyman (1971) p.80).
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By comparison, the Bayesian approach is to think of ahypothesis test not as

one of a long and perhaps hypothetical (imaginary) sequence, but as a

logical procedure by which to gain information about the parameter e; and

hence to support with evidence a decision either to accept or reject the

auditee's stated balance. Interpreted this way, hypothesis tests provide for

both inference and decision. Data X are gathered and the probability

distribution of e conditional on that data, pee IX), is calculated. This distribution

permits inferences concerning e in the form, for example, of 95% "credible

mtervols" (the Bayesian correspondent of orthodox confidence lntervols).

Decisions might then ensue on the basis of pee I X), in conjunction with relevant

loss functions, according to the criterion of minimum expected loss.

In basing decisions on a logical evaluation of evidence, pce IX), rather than

on the hypothetical error frequencies of a test mechanism which might not be

used again, the Bayesian paradigm is a model for what auditors purport to do.

This apparent congruence between Bayesian methods and the audit process

is well recognized (e.g" Beck et al. (1985), Kinney (1975) and Scott (1973;

1975)), but in practice, orthodox (non-Bayesian) statistical methods remain

more generally accepted. Part of the reason for this is that Bayesian methods

come to a posterior distribution for e, pee I X), by way of Bayes' theorem, l.e..

pee I X) oc pee) p(X Ie), thus requiring a prior probability distribution for e, pee).

Prior distributions are seen by many as generally subjective (personal), and

therefore of doubtful standing within the ideally "scientific" audit process.

This same argument is cited often by researchers in the social sciences when

explaining why Bayesian methods have not been given greater application in

published empirical research. It is widely conceded, however, that in

applications where an "objective" (Le., empirical, or deduced from theory)

prior distribution is available, Bayesian methods should be employed (Kyburg
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(1974) p.58). This concession traces to Neyman (e.g., 1957, p.19) and Fisher

(e.g., 1973, p.17) who together convinced earlier generations of statistical

theorists and applied statisticians of the general virtue, for the purposes of

scientific inquiry, of eschewing altogether the methods of inverse probability

(Bayesian statistics).

Rather than arguing the legitimacy of the subjectivist approach, or the

associated argument that objectivist statistics are an illusion - their subjective

aspects are merely "swept under the carpet" (cf. Good (1976), (1981, p.149);

Barnett (1975, p.19); Savage (1961, pp.178, 183); (1962, p.53) - this paper takes

the position that since Bayesian reasoning is considered the logical ideal, the

auditor's intuitive interpretation of statistical results should be aided by a type

of "what if" analysis, whereby posterior probabilities are found for Ho assuming

one possible prior and then another, covering as broad a range of possibilities

as necessary or desired. By exploring the logical connotations of the data

from various possible perspectives or starting points (priors), the auditor can

develop intuitive "feel" for the direction and strength of evidence represented,

and learn by experience which factors determine these evidential qualities,

and the ways in which such relevant factors work and interact.

With some data sets it is found that the class of prior distributions under which

a certain inference - e.g., PCHaIX) > p(Ho> - remains valid, is so wide as to

include practically all those which could possibly be considered reasonable

(Edwards et al. (1963) pp.20l, 210-11). That is, to come to any other conclusion

one would have to manufacture a highly "personal" distribution of prior

probability, which, apart from producing the desired posterior, would have no

cause for being considered. In these circumstances of "practical objectivity"

(inter-subjectivity), where the data tends to dominate or "swamp" the prior,

any attempt to justify a rival inference would be hard pressed. To do so would

involve, implicitly, either a perverse appeal to a tailor made and clearly
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inappropriate prior, or, alternatively, the abandonment of Bayes' theorem and

of the fundamental probability axiom from which this theorem is deduced

(Le., the multiplication law).

By opting not to apply Bayesian methods, auditors and other practitioners

pass up experience in inductive inferential reasoning which would extend and

refine their abilities to assess evidence intuitively. As with deductive reasoning

(e.g., mathematics), training and experience can greatly enhance human

inductive inferential capabilities, particularly since it is known that in some

situations data has an "oblectlve" Bayesian interpretation quite disparate, at

least in degree, from that usually attributed to it on the methods of analysis

and principles of classical statistics (see, e.g., Edwards et al. (1963) pp.221, 225;

Berger and Sellke (1987) pp.135-6, 138 and Berger and Delampady (1987)

p.318). The results provided below represent a straightforward instance of this

sometimes diametric disparity between Bayesian inference and conventional

statistical practice.

4. Bayesian Interpretation

In this section posterior probabilities of Ho are calculated, based on the three

observations (marginal rejections of Ho) supposed in Section 2, and assuming

various prior distributions for 8. For mathematical simplicity, normal prior

distributions are presumed. This allows the use of standard Bayesian

calculations for the normal mean (see below). The results described are not,

however, dependent on priors of this parametric family. Rather, it is the

general location and relative concentration of prior mass which affects results,

not the particular mathematical or parametric "shope" of that distribution.

Priors (i) and (ii). The first two priors considered have mean f.l=0, prior (i) with

variance y2= 1002 and prior (ii) with variance y2=50002
. For graphical
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representation of these distributions, see Figure 6 (in appendix). Prior (i) is quite

lIinformative" (low variance), at least compared with (ii) which is highly diffuse

or "unlntorrnotlve", Both (i) and (ii) indicate that the auditor's expected

average population error is zero, however (i) implies far greater confidence in

8 close to zero than does (ii). Distribution (ii) is very close to uniform and

represents extremely vague prior knowledge about 8, thus implying little

confidence in 8 close to zero, or in any other particular narrow interval of the

parameter space. Results of calculations for all priors, inclUding (i) and (ii), are

provided in Table 1. The formulae (1) and (2) with which these Bayesian results

are calculated are provided below.

Table 7 about here

Note from this table that both for priors (i) and (ii) the posterior probabilities of

Ho' p(HoI Xd' are all very high and much greater than their respective priors,

p(Ho), meaning that in each case Ho is strongly confirmed. It is inferred,

therefore, given anyone of the supposed results, that the account balance

tested is in fact supported rather than 'rejected", This would be the logical

conclusion of one who begins with a prior which either: (i) gives appreciable

probability to 8 in the null (immaterial) interval [-m,m] relative to alternative

8 values, or (ii) is quite diffuse, and therefore lets the data, in a sense, "speok for

ltselt",

Priors (iii) and (iv). For diffuse priors like (ii), the posterior probability of Ho is

highly insensitive to the prior mean (location) u. To demonstrate this, results are

calculated for priors with the same high variance v2=50002 as prior (ii) but with

means greatly different from zero. Note that for each of the three supposed

- -
marginal rejections Xc' PCHoIXJ remains very high, despite PCHo) being very

low, suggesting, as for priors (i) and (ll). that Ho is strongly supported.

..
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How Marginal Rejection Supports Ho. How is it that an observed sample mean

which rejects Ho (the auditee's balance) in a classical hypothesis test can

actually greatly increase the Bayesian probability of that hypothesis? The

answer to this question lies in the inherent conservativism of the "negative" type

of hypothesis test, for which minimum power against Ie I»tn is 0.975 or some

similarly high figure. To institute such a high probability of rejecting Ho when e is

barely material, the "critical" value of the sample mean, Xc' must be set at

~ Z ~ / 2 ( J / - - J n , which is clearly within the null (immaterial) interval [-m,m]=[-75,75],

even with large n. This means that marginal rejection of Ho occurs when the

observed X is inside [-m,m], which, of course, tends to support e values in that

null interval relative to alternative (material) values of the parameter.

Priors (v) and (vi). We now consider priors appropriate when the auditor is

confident of an average error size. greater than m. Prior (v) has mean f.l=90

and variance y2= 15
2, and (vi) has f.l= 120 and y2=252. Both (v) and (vi) are

informative rather than vague priors, (vi) indicating a higher expected

average error than (v), but less confidence in e about its expected value.

Figure 6 (in appendix) depicts these distributions. It is found with both priors, (v)

and (vi), that marginal rejection increases the probability of the "rejected"

hypothesis - i.e., p(HoIXJ>p(Ho) - the more so the larger the sample size n

(indeed if f3 is held at 0.05, then for n=1000, p(HoIXJ is about 0.94 for both (v)

and (vi)).

Priors (vii) and (viii). The final class of priors considered allows for the unusual

situation where the auditor is confident of a negative material error

(understatement) in the auditee's stated balance. The priors used are the

same as (v) and (vi) but with negative rather than positive means. With both

priors (vii) and (viii), p(HoIXJ is high, even with n as low as 30. This is because

the combination of prior mass to the left of the null interval, [-m, m], and an

observed mean, Xc' towards the right of this interval, leads to a posterior
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distribution concentrated, between the two, mostly within [-m,m]. This is

particularly so for large n as the weight of sample information pulls the prior

mass more and more within the null interval.

Value of p(HoIX c) with large n. Given a normal population X-N(a,(J2) and a

conjugate, normal prior distribution a-N(Il,y2), the posterior distribution of a,

based on an observed sample mean X, is normal with mean

(1)

and variance

(2)

These standard Bayesian results (e.g., DeGroot (1986) pp.324-6) are the basis

for the calculations tabulated above.

It follows from (1) that with large enough n the posterior distribution for a will

have a mean close to the sample mean X. Similarly, the value of (2), the

posterior variance, which can be written (1/y2+n/(J2yl, will be approximately

(J2/n. particularly with large prior variance y2. Using these approximations, the

posterior probability of Ha: IaI::; m given a result X=Xc : PCHaI Xd' is, for large n,

given by

pc-m::; a::; X c+z~/2(JNn I Xd

= p(a::; X c+z~l2crrv n I xd - p(a< -m I XJ

= 4>(Z~/2) - <1>(-{m+XJ"n/(J)

_ 4>(Z~I2) since <I>(-{m+XJ...Jn/cr) =0,

_ 1-~/2,

where 4>(.) is the standard normal curnulotlve distribution function (e.g..

<1>(-1.64)=0.05, etc.). It is seen from this result that for a two-sided hypothesis test
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with minimum power against H1: I8 I»m of 100(1-P/2)%=97 .5%, p(HoIX J will, for

sufficiently large n. equal 1-P/2=0.975 (approximately), whatever the prior.

With a uniform prior, the posterior is 1-P/2 for any n.

With informative (Le., low v2) priors favoring 8E [-m,m], such as (I), p(HoIXJ

may actually be higher than 1-P/2 for small n (see Table 1), but as n increases

the information about 8 represented in the prior becomes relatively less and

less and the posterior probability of Ho approaches 1-J312, the value it would

have for a uniform or uninformative prior. The same is true of priors with a spike

at 8=0, as proposed by Edwards (1994) in comments on this paper.

The protocol of classical hypothesis tests requires that as n increases the more

important error probability is allowed to fall from its preset level (e.g., 0.05 or

0.01) toward zero, thereby maintaining parity (Le., an optimal trade-off)

between the two error probabilities, or at least preventing the less important

error probability from becoming the lower of the two (e.g., Cox and Hinkley

(1974) pp.397-8; Kendall and Stuart (1979) p.197; Lehmann (1986) p.125).3

Following this fundamental methodological requirement, the auditor must

have P---70 as n---700, the type II ('beta") error being regarded as the more

important to avoid. Consequently,

lim p(HoIXc) == 1-P/2 ---7 1,
n-7 00

and thus, for large enough n. Ho is rejected by a result Xc when, whatever the

prior, its Bayesian posterior probability isarbitrarily close to one.

This is similar to, but not the same as, "Lindley's paradox", examples of which,

usually applying to point (8=80) rather than interval ( 8 1 ~ 8 ~ 8 2 ) null hypotheses,

are well known in stotlstlcs." Johnstone (1990) provides references on this

paradox and example calculations. See also Berger and Mortera (1991) and

Johnstone and Lindley (1993), and in accounting literature, Christie (1990,

p.80). Contrary to what is found above, it has been considered previously that
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classical tests of interval null hypotheses are immune to problems of the like of

Lindley's paradox (e.g., Casella and Berger (1987) p.133).

For one hoping to avoid any qualitative inconsistency between the classical

and Bayesian interpretations of a result X=X c : it is possible to engineer a prior

distribution so as to inhibit or at least delay p(HoIXJ increasing with n. This can

be achieved by putting a "splke" of prior probability at e marginally greater

than m. but any such prior distribution would be obviously forced and

unacceptable. For more reasonable priors, p(HoIXJ tends to increase

smoothly and rapidly as n increases. The intuitive reason for this is that the

greater n, the greater the support offered by the sample for eequal to its own

mean, Xc E [-m,m]. Inevitably this volume of data will "swornp" relatively

informative prior distributions like (v) and (vi), and so too even the most

tendentious prior such as one with a spike at e=m+o (0 small).

5. Apparent Incoherence

If p(HoIXJ is very high, perhaps close to one, whatever the (reasonable) prior,

a Bayesian auditor having observed X=X c may well accept Ho, and hence the

auditee's balance, without alteration or further inquiry. From a conventional

viewpoint, however, Ho is 'rejected" and some accordant action is necessary.

If this action is merely a marginal adjustment to the stated balance, so as to

bring it into the formal acceptance region of the test, then the practical cost

and inconvenience to either auditor or auditee may not be much. Other

possible responses, particularly that of adjusting the auditee's stated account

balance to its point estimate, or perhaps some qualification of the accounts,

will usually be of greater consequence.

The auditor's problem in these circumstances is not necessarily one of

significant needless costs, but of justifying a decision procedure which formally
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"rejects" a balance with high probability of being materially correct. and yet in

other, smaller tests, "accepts" balances which, subjectively at least. have

appreciably lower probabilities of being correct in this sense. Consider, for

example, the further. possible result (n=30, X=14.1), which yields a 95%

confidence interval for 8, [-46.734,74.934], lying wholly, albeit marginally, within

[-m,m]=[-75,75], and therefore leads the auditor to accept Ho. Posterior

probabilities of Ho based on this assumed result are compared in Table 2 with

those given marginal rejection of Ho in the test with sample size n=90.

Table 2 about here

Depending on the prior used, p(HoIX) is either the same (approximately) or

lower for the (n=30, X=14.1) marginal acceptance of Ho as for the larger

sample result (n=90, X=Xc=39.8776) which formally rejects Ho. Moreover, with

priors (v)-(viii), according to which the auditor needs some strong reassurance

before being persuaded from a contrary belief, the posterior probability that

the stated balance is materially correct is much higher on the larger (n=90) test

which rejects Ho than on the smaller (n=30) test which accepts that hypothesis.

Indeed, for the n=30 result, p(HoIX) is only .481 given prior (v) or .432 with prior

(vi), Ho being accepted, whereas for the n=90 result. the minimum value of

p(HoIXJ across all priors (i)-(viii) is .688, and yet here Ho is rejected. These

outcomes appear anomalous and indicate that an intuitive or "common

sense" evidential interpretation of conventional test results (e.g., "reject Ho"

implies strong evidence against Ho) can be very misleading.

6. How Important is the Prior?

The paradoxical finding of Section 5, that the n=90 marginal rejection of Ho

implies at least the same weight of evidence in favor of that hypothesis as the

!

L _
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n=30 acceptance, is highly insensitive to the choice of prior. and is, therefore,

quite "oblectlve", Consider the difference between posterior probabilities:

p(HoI X=14.1, n=30) - p(Ho I X=Xc=39,8776, n=90), (3)

which is represented in Figures 1 and 2, in the forms of surface and contour

plots, as a function of prior parameters /l and v. The contour plot (Figure 2) is a

"topoprophicot mop" of the surface plot darker shades representing bigger

negative values of the difference defined by (3),

Figures 1 and 2 about here

The maximum value of (3) is only ,0018, this difference occuring with prior

parameters J..l=-5,04 and v=51 ,60, on which the posteriors are .9927 (n=30) and

,9909 (n=90). Apart from a class of normal priors with about this same mean /l,

all yielding posteriors near one for both the data, the difference defined by (3)

is negative, the posterior based on the n=90 rejection being the higher, and

clearly so for a large class of priors with v between about 15 and 65, It is seen,

therefore, at least for normal priors, that the posterior probability of Ho is either

practically the same, or higher, given the n=90 rejection as that conditioned

on the n=30 acceptance.

The robustness or "oblectlvltv" of this finding can be tested further by

searching for priors of any form which might upset it. If these are hard to find,

or unreasonable on other grounds, it should be acceptable, even to those

who would not normally take a Bayesian approach, that the conclusion

reached is not "sublecrfve" or personal in the sense that it holds only for a

narrow subclass of possible priors.
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Since by Bayes' theorem p(8 IX) ex: p(8) p(X I8), the starting point when looking

for priors which might make the difference between posteriors defined in (3)

more than negligibly greater than zero is to compare the likelihood functions,

p(X 18) = exp[-n(8-X)2/2cr2],

of the two results. These are plotted in Figure 3.

Figure 3 about here

An informal approach to maximizing (3) is to distribute p(8) jointly between

values of 8 within Ho (Le., 8E [-75,75]) for which the likelihood of the n=30 result is

higher than that of the n=90 result.' and 8 values outside Howhere the opposite

is true. As shown in Figure 3, the likelihood functions intersect at 8=30,442 and

8=75.091, which means that p(8) must be concentrated on the sub-null interval

-75$8<30.442, or better still on 8 within this interval for which the difference

between likelihoods is greatest (Le., around 8=1.49), and on the alternative 8

values 75<8~75.091. There can be little or no prior mass on the intervening 8

values (Le., on the remainder of the null interval, 30.442<8~75) because in this

interval the n=90 likelihood is much the larger. Similarly, p(8) cannot be large

for alternative 8 values other than those in the extremely narrow interval

between 75 and 75.09', since outside this tiny segment of H, the n=30

likelihood is the higher of the two.

Note that prior distributions with only one of the two suggested modes or

points of concentration will not lead to (3) being appreciably greater than

zero. In particular, with priors massed only within - 7 5 ~ 8 < 3 0 . 4 4 2 , both posteriors

will be approximately one. This has been seen already with the prior N(-5.04,

51 .602
) which maximizes (3) for normal priors, the posteriors here both being

greater than .99. Similarly, for priors which are essentially spikes in 75<8~75.091,
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both posteriors will be zero or approximately zero. For example, assuming the

prior distribution 8 - N(75.0455, .032
) , which gives p(Ho)=.0647, the respective

posteriors are .0651 (n=90) and .0649 (n=30).

These considerations reveal that to make the difference between posterior

probabilities represented by (3) more than negligibly greater than zero, peS)

must be bi-modal with a spike or sharp peak in the tiny interval 7 5 < 8 ~ 7 5 . 0 9 1 . A

prior of this form is hardly likely to be considered reasonable - indeed any

inference hinged on such a prior could not be taken seriously." Here we have

used the Bayesian device of excluding some particular inference on the basis

that the prior required to come to such a conclusion is unsustainable. Any

inference which is not explicitly Bayesian is liable to be "found out" with this

form of hypothetico-deductive refutation.

7. No Possible Reconciliation

An auditee obliged to alter a stated balance when the evidence supporting

that balance is strong - i.e., when p(Ho IX) is high over a wide class of priors ­

might attribute this imposition to the auditor's innate and justifiable

conservativism. The perception of the auditor as one who requires almost

deductive (100%) confirmation of Ho before accepting the auditee's balance

is appealing, yet cannot be sustained once an instance of Ho being accepted

when indeed its posterior probability is not high (for at least a subclass of

reasonable priors) is seen to occur.

A possible orthodox defence of such apparently inconsistent behavior by the

auditor is that the acceptance of Ho when p(HoIX) is relatively low might be

explained by a difference in error costs between that test and any larger test

in which Ho is rejected when p(HoIXJ is relatively high. That is, there might

possibly be a reconciliation between the two results once error costs are

considered, particularly since one test uses smaller n than the other, this in itself
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suggesting a lesser error cost for one or other error type (or both), in the test

with lesser n.

To examine this possibility, compare again the tests with sample sizes n=30

and n=90 discussed above. The power functions, p(Reject Ho Ia, n), of these

two tests are shown in Figure 4.

Figure 4 about here

Both tests are "negative" in that each has preset minimum power against

IaI»tn of 97.5% (ct. Duke et al. (1982) p.51). The power functions of the tests

over IaI»tn are practically equal, both tests giving very high priority to errors

of type II (incorrect acceptance of Ho)' Clearly, however, the smaller (n=30)

test has a higher probability of rejecting Ho when Ia I ~ m; i.e.. a higher

probability of type I ("alpha") error (incorrect rejection of Ho).

The underlying difference between the two tests implied by this comparison is

that in the test with smaller n there is less cost associated with incorrectly

rejecting Ho (the auditee's balance); errors of this type can therefore be

tolerated more frequently. But this difference does not explain why Ho is

accepted in the smaller test with, for priors such as (v)-(viii), relatively low

posterior probability, for if anything, a lower cost of incorrectly rejecting Ho

would suggest, ceteris paribus, that Ho might have relatively high probability,

rather than low probability, before being accepted.'

It appears, therefore, that the decisions compared, despite both being "by

the book" from the classical viewpoint do not have a consistent evidential

basis. Rather, one hypothesis with either practically the same or smaller

probability than another (depending on the prior) is accepted when the other,

better supported, hypothesis is rejected, the only difference between the two
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tests being that the cost of a false rejection of the hypothesis tested is higher in

the test where that hypothesis is rejected than in the one where lt is not.

Bayesians refer to such logical inconsistencies as "incoherence" and regard

statistical coherence, or mutually consistent decisions and inferences, as the

hallmark of rationality and the fundamental objective of mathematical

reasoning (Lindley (1972) pp.3-10).

8. Possible Cross-Subsidies

Having observed a marginal rejection of Ho in circumstances where p(HoIXJ is

"objectively" (independent-of-prior), or at least arguably, high, the auditor is

left in an invidious position. Other evidence aside, she must either comply with

her predesignated decision rule, reject Ho, and proceed to negotiation and

perhaps further sampling, thus adding to the cost of the audit. or she can rely

on a Bayesian interpretation, introducing prior beliefs formally into the analysis,

and infer that the auditee's balance is acceptable. Either way she might be

criticised. If she holds to conventional practice and rejects the stated

balance, it could be argued that she has inflexibly and illogically overserviced

the client, thereby giving rise to unnecessary costs, including perhaps those

associated with lowering the auditee's reported net income. On the other

hand, if she fails to act on a marginal rejection in qualitatively the same way as

on a more extreme rejection in which the observed X is much outside [-m,m],

she will have introduced an element of personal discretion or subjectivity and

cast aside the mathematical surety of specified error frequencies over the

long-run. From this frequentist point of view, she is obliged to overlook

considerations which appear relevant (subjectively) within the circumstances

and requirements of a particular single test. so as to ensure (mathematically)

good results on average over many tests. Note here the follOWing remarks of

Beck et al. (1990) pp.173-4:
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While such ex post-to-sampling modifications are permissible (even necessary)
within a Bayesian framework, we recognize that they can be viewed as
fundamentally inconsistent with classical hypothesis testing. Under classical
hypothesis testing, the decision maker (auditor) precommits to reject the null
hypothesis under specified conditions. Provided that the underlying assumptions
are satisfied, precommitment enables the decision maker (auditor) to control
statistically the frequency of inferential errors [incorrect decisions] associated with
the sampling/estimation process. (square brackets mine)

If she abides strictly by her predesignated decision rule, an auditor can

defend her behavior (decision) in a particular single test by appeal to the

theoretical error frequencies of that rule of "inductive behavior" (Neyman's

term) over a long run of different tests and different audits and auditees.

Taking such an approach, all individual tests in a sequence of such tests

conducted by a given auditor (or firm) are equally defensible, but by being

treated as merely one of a sequence, those tests in which rejection of Ho is

only marginal give rise to costs higher than might have been, had such tests

been treated severally (i.e., without reference to any other test, or to any

envisaged sequence of tests). This implies a form of cross-subsidy, some clients

bearing higher than necessary costs so as to allow the auditor to instantiate

strict compliance with a forestated decision rule, thereby cementing the

theoretical defence of her similarly mechanistic, precommited practice in the

cases of other clients, past and future.

9. Confidence Intervals Rather Than Hypothesis Tests

By attributing any rejection of Ho, marginal or otherwise, the same qualitative

meaning regardless of the sample size and other evldentlollv relevant factors,

users of classical hypothesis tests make decisions without a consistent rational

basis. To avoid such incoherent behavior, it would help if decisions were

based on confidence measures rather than hypothesis tests. Consider, for

example, the orthodox 1OO(l-~)% confidence interval for e, assuming the

model X-N(e, (J2), that is X ±z~/2(JNn. This interval is also the Bayesian maximum

density credible interval for e, provided either (a) the prior is at least locally
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unlntorrnctlve." or (b) n is large enough that the prior is in effect uninformative.

Under these circumstances, it can be held legitimately that the probability that

S lies in [X-z~l2crNn, X+z~/zO"Nn] is approximately 1-p. From here, it is a

straightforward and natural mathematical extension to calculate the

probability, or level of inductive confidence, applying to the null lntervol

Ho: SE [-m,m].

The mathematical correspondence between orthodox and Bayesian

confidence measures for sufficiently large n. or where the prior assumed is

suitably uninformative, affords orthodox results quasi-Bayesian status. By

observlnq the confidence coefficient applying to the S-inteNal Ho: SE [-m,m],

rather than merely whether Ho is formally "accepted" or "rejected" at a

sometimes quite arbitrary "crltlcol" level, the auditor is able to make a judicial

(evidence-based) rather than mechanical (rule-based) decision to either

accept or reject the auditee's stated balance. Also, there is the possibility of

incorporating other, perhaps extra-statistical, considerations into the decision

process, as is normally imperative.

This argument is consistent with remarks of Loebbecke and Neter (1975,

pp.39-40) on the respective uses in practical situations of hypothesis tests and

confidence intervol estimates:

While there is generally a direct connection between the testing and [confidence
interval] estimation approaches, the important distinction is in their uses. When a
testing approach is utilized, a decision is made on the basis of a particular sample
result. With the estimation approach, on the other hand, information about the
magnitude of the characteristic of interest is obtained without leading directly to a
decision. A decision may, indeed, be made after a number of characteristics have
been estimated or after additional nonquantitative information has been considered;
however, a decision is not made on the basis of one sample result alone. (square
brakets mine)

These comments appear to support an approach based on an inductive or

inferential interpretation of confidence mtervols. as opposed to the strictly

decision-theoretic approach of classical hypothesis testing, according to

d
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which each point X in the sample space translates without any possible

subjective interpretation into a decision (action) - either the null hypothesis is

rejected or accepted, not on any consideration of the strength of evidence,

but simply according to whether that value of X falls on one side or the other

of a predesignated partition or "crltlcol" value, here denoted by Xc'

An intrinsic logical strength of confidence intervals over hypothesis tests is that

as the sample size increases, or as sampling variation decreases (perhaps

through better experimental design; e.g., stratification) confidence intervals

tend to become "more Bayesian" and hypothesis tests "less Bayesian". In an

auditing context the divergence, as n increases, between the results of

orthodox hypothesis tests and Bayesian inference is apparent in the Lindley-like

paradox seen above (Section 4). On the other hand, because orthodox and

Bayesian confidence levels tend to converge as n increases, the prior

becoming relatively less and less informative, orthodox confidence intervals

have more general relevance as the sample size becomes larger. Specifically,

levels of confidence take on the meaning which users commonly give and

require of them - that is, they become broadly interpretable as measures of

inductive probability, or degrees of certainty, applying to the proposition that e

lies within the stated interval. This type of probability statement is strictly

inadmissible within the strictures of orthodox (Neyman-Pearson) statistics (Arens

and Loebbecke (1981) p.llS), but is sanctioned by Bayesian theory, for a

broader and broader spectrum of priors as n increases.

10. Conclusion

The evidential assessment of classical levels of significance levels is highly

problernotlc." and requires consideration of factors not conventionally

considered relevant ex post (i.e., after the test has been run), including

particularly the sample size n. In general, data of a fixed significance level

(say S%) provide evidence more and more in favor of Ho the larger n (although
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without explicit Bayesian calculations a precise measure of support cannot be

stated). Put another way, the posterior probability of Ho given data Xc

marginally significant at a given "crltlcol" level, p(HoIXJ, tends to increase with

n, and in the auditors 'neqotlve" test structure, is shown to approach one,

whatever the prior. As a consequence, orthodox conclusions based on results

about Xc are generally internally inconsistent across tests of different sample

sizes. Specifically, a result of about Xc with large n. marginally rejecting Ho'

provides practically the same or greater evidence in favor of Ho (depending

on the prior) than a smaller sample result, also about Xc but marginally

accepting that hypothesis. Hence the suggestion above of statistical or

evldentlol vlncoherence''.

The practical consequences of such logical inconsistencies in conventional

statistical decision making in auditing include possible cross-subsidies, where in

commiting to the Neyman-Pearson, frequentist protocol, and its justification in

terms of long-run average error frequencies, marginal rejection of a particular

auditee's stated balance gives rise to costs which would not have been

incurred had the same test result been viewed from a Bayesian (single-case)

rather than classical (long-run average) standpoint. To avoid such

unwarranted costs, it would help if auditors were made aware of the

evidential relevance of the sample size from both ex ante and ex post

perspectives. Pre-test (ex ante), the larger n the better, more information

always being preferred to less (apart from the costs of sampling), irrespective

of whether the logic employed is classical or Bayesian. However, post-test (ex

posf), marginal rejection of Ho with larger n, rather than representing more

reliable or stronger evidence against Ho' tends to more support that

hypothesis. This is contrary to popular intuition (cf. Nelson et al. (1986) p.130l).

Unfortunately, it is usually the case that orthodox textbooks, excepting those

cited in Section 4, make no comment on the ex post relevance, or otherwise,
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of n. Because of this perhaps, there is quite a common view that the sample

size is irrelevant ex post. II This view holds only if users of hypothesis tests are

obliged to maintain a strictly aevidential, frequentist-decision-theoretic

(mechanistic) interpretation of tests, as promulgated by Neyman and Pearson,

although subsequently, it is argued (Johnstone (1987)), recanted by both.

Following standard statistical textbooks, most expositions of hypothesis testing

in auditing are ostensibly frequentist-decision-theoretic in philosophy, but

difficulties arise when the results of such tests have to be aggregated with

other (evidential) considerations so as to allow a broadly-based and

defensible decision. Under obligation to provide a meaningful in-the-single­

case (to client's, courts etc.) interpretation of orthodox results, even the most

technically careful theorists occasionally lapse into an evidential, and

therefore technically heretical, statement of results. For example, Arens and

Loebbecke (1981, pp.133-34), having at first denied the legitimacy of any such

interpretation (see above), make the strictly improper (or, alternatively,

Bayesian) statement that the confidence coefficient attached to an orthodox

confidence interval is the probability that the parameter estimated lies within

that interval:

The concept of the confidence level is the same for variables sampling as it is for
attributes. It is a statement of the probability that the true population error value
actually falls within the limits of the confidence interval.

This is an intuitive but unwarranted response to the question raised by Neyman

(see Section 3) of why users might justifiably decide to act on the presumption

that the unknown parameter lies within the estimated interval. Similarly,

Loebbecke and Neter (1975, p.40) fall into an apparently inductivist, contra­

frequentist interpretation of a test result as substantiating or confirming a stated

account balance:

When an auditor is examining an account bv means of a single ouoitlnq
procedure and the audit objective is to substantiate the correctness of the

account balance, the testing approach may be the appropriate one. (my italics)
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Neyman (e.g., 1950, pp.259-60) specifically disallows any intuitive, inferential

understanding of the terms "accept" and "reject". On his strict, but received."

frequentist view, the result of a hypothesis test is merely an automated

decision to act either as if Howere true (e.g., to accept the clients balance) or

as if HI were true (Neyman (1976) pp.750-l). This action is taken not on the

basis of the "evidence" in any sense, but because a predesignated decision

rule (hypothesis test), with inbuilt low error frequencies, says to do so:

Neyman-Pearson tests are presented as a kind of recipe ... One simply fixes the size
a of a test, finds the the most powerful test having a given size and then accepts or
rejects. If asked why anyone should find it desirable to do this the rationale given
by Neyman is this: If one 'behaves' in this way one will incorrectly reject ho not more
than 1DOa percent of the time and incorrectly accept ho not more than 1DO~

percent of the time, (for a, ~ the probabilities of type I and type II errors

respectively). (Mayo (1981) P.196)

To emphasise the theoretical difference between their program and the Bayesian
one, Neyman-Pearson relied on the ordinary language meaning of such terms as
behavior (in the technical term 'inductive behavior'). as opposed to inference,
and the characterization of their program as fundamentally 'decision theoretic. I

(Seidenfeld (1979) pp. 1L1-5)

To some, Neyman's injunction against an inferential or cognitive interpretation

of test results appears philosophically pedantic and overly "theoretical", but in

fact his position is justified, indeed necessitated, by the logical deficiencies of

classical methods when interpreted as methods of inference (rather than as

mere decision rules), including, as discussed in this paper, their inherent

evidential incoherence. Detailed support for this dismissal of Neyman-Pearson

theory as a normative framework for inference (belief revision) in auditing, is

provided in Johnstone (1994).

Auditing is commonly regarded as an inductive, evidential or judicial process

(e.g., Arens and Loebbecke (1991) p.2), thus raising the issue of whether the

application of statistical procedures which, on the express admissions of their

proponents, are without evidential content, can be justified. Adding to this

infirmity, the argument provided herein reveals that observed results close

about the "crltlcol'' accept/reject partition in conventional hypothesis tests can
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often result in reversed decisions (actions) when the auditor takes an evidential

(here meaning Bayesian) perspective, rather than the classical frequentist­

decision-theoretic view. Because practical audit decisions are bound to be

affected, the logical and philosophical foundations of classical hypothesis

tests in auditing should be re-evaluated. If it is found, as suggested above,

that there is a fundamental incompatibility between conclusions of the genre

offered by this paradigm and those which auditors require, the apparent

tendency of both theorists and practitioners to interpret hypothesis tests and

confidence intervals in ways specifically disallowed by orthodox statistical texts

will be better understood, and to some extent, vindicated.

11. Postscript: A Further Example

In comments on this paper, Aldersley (1994) replicated the calculations of

Section 5 in the case of another test, more common in auditing practice. The

test considered is that in attribute sampling of the population proportion p.

where the number of errors, k, observed in a sample of size n has a binomial

distribution with parameter p (Ospsl) and index n. The auditor tests the null

hypothesis

against its alternative (complement)

H1: p>m,

where m=O.15 (say) is the level at which the relative frequency of errors in the

population is deemed material. Two possible test results are considered:

(n:::30, k=1)

(n=!OO, k=9)

UCL = .149

UCL= .152.

The classical decision rule (Arens and Loebbecke (1981) pp.78-9) is to reject Ho

if and only if the (one-sided) upper confidence limit [UCL] for p exceeds
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m=0.15. On this rule, Ho is accepted in the n=30 test and rejected in the n=100

test. It is found however that the Bayesian posterior probability of Ho is as high

or higher on the n=100 rejection as for the n=30 acceptance, again contra­

indicating the classical results. Note that the decision rule described

constitutes a "neqotlve" test, since its effect is to fix the power function with

respect to p=m. (The power of the test against other possible values of p

depends on the sample size, n.)

The Bayesian calculations are as follows. Assuming a beta (conjugate) prior

with parameters a and b (a.b» 0), the posterior distribution of p is also beta,

with parameters o+k and b-r-k. k denoting the number of errors observed in n

trials (DeGroot (1986) pp.321-2). The posterior probability of Ho is given then by

the normalized incomplete beta function

{r(a+b+n) / [r(o+k) r(b+n-k)]} f ~ 5 a + k - l (l-p)b+n-k-l dp.
o

(4)

Letting each of the prior parameters a and b take any value between 0 and

50, thus allowing for the broadest possible class of prior distributions, the

posterior probability of Ho is found from (4) for each of the two sample

observations supposed above. The difference between these posteriors

p(HoI k=1, n=30) - p(HoI k=9, n=100),

defined as a function of the prior parameters a and b. is plotted in Figure 5. It

is seen from this figure that as in the test of the normal mean, the large sample

rejection of Ho leaves that hypothesis with at least the same posterior

probability as does the smaller sample rejection, regardless of the values

chosen for a and b. Furthermore, by the same argument as discussed above

in the case of the test of the normal mean, it is not possible to reconcile these
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apparently anomalous results through consideration of the two tests' implicitly ­

different error costs.

Figure 5 about here

12. Appendix

Figure 6 is a graphical representation of the prior distributions numbered (i), (ii),

(v) and (vi) in Section 4 above.

Figure 6 about here

To illustrate the results of Bayesian analysis, Figure 7 shows the posterior

distribution corresponding to each of the four numbered priors, assuming the

possible observation (n=90, X =39.8776).

Figure 7 about here

It can be seen by compcring Figures 6 and 7 that although the four priors

represented are greatly different, the resulting posteriors are not much

different. Such comparison of posterior distributions should be regarded as a

method of sensitivity analysis, through which the auditor can assess the weight

of sample evidence by noting the extent to which the conclusion or decision

prompted by that evidence depends on the assumed prior. In cases of

sufficiently informative data, the prior is practically irrelevant. Conversely, if the

prior chosen makes a great difference, the data have relatively little

information content.
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Footnotes

1. By adding an arbitrarily small number 0 to X =X c : the resulting confidence

interval, (X c + o ) ± z ~ / 2 c r N n , would lie partly outside [-m,m] and hence Ho

would be rejected unambiguously. However, the results which follow,

including particularly Bayesian posterior probabilities, would be

unchanged to any required number of decimal places. For this reason,
-- -

we can think of Xc as practically X c+o, and hence of X c+z~/2crNn as

marginally greater than tn: therefore rejecting Ho.

2. An 'uniuckv" random sample might include only or mostly very small

accounts, or accounts which have not been transacted for a long period,

therefore probably misrepresentating the broader population. A

commonly overlooked advantage of stratification is that, with selection of

appropriate strata, such samples cannot occur, and hence not only is

there generally a reduction in sampling variation, and hence an increase

in power, but also the practitioner goes some way towards avoiding what

logicians (e.g., Seidenfeld (1979) pp.15, 55) have called "problems of the

backward look": see Johnstone (1988; 1989) for further explanation and

references.

3. Note that the largest of the particular results considered has n of only 90.

This test has minimum type I (less important) error probability, 13(8=0)=.026,

greater than its maximum type II (more important) error probability,

13( I8 I =m)=.025, hence satisfying the error probability priority requirement

discussed above (the complete power function, 1-13(8), of this test is shown

in Figure 4).

4. The Lindley paradox requires increasing n: but the limit of p(HoIXc) == 1-13/2

found in this paper holds for uniform priors whatever the value of n, and

depends on increasing n only in that it then becomes "objective", or, in

other words, independent of the chosen prior (cf. Johnstone (1993».

5. That is, p(X=14.1 18, n=30) > p(X=39.877618, n=90).

6. The adage that it is hard to tell good fish but easy to tell bad fish applies

also to prior probability distributions. Interestingly, although of little

practical relevance, the prior which maximizes (3) is that with two spikes:

PC8=1.49)=p(Ho)=·324 and p(8=75+o)=p(H j ) =.676. This leads to p(HoIX)
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equal to .752 (n=30) and .248 (n=90), and hence (3) equals .504. Use of

such a prior entails a test of two point hypotheses. Also of "theoretical"

interest only, the minimum value of (3) is -,997, arising with 1.1= -19436 and

v=316.819. Equally large negative differences arise for large positive 1.1.

7. What else implied by the power functions could rationalize the auditor's

decisions? In the smaller test p(Ho) might be relatively low, in which case a

relatively high probability of type I error could be allowed. But a low prior

on Howould reduce rather than increase p(HoIX), thus not reconciling the

two results. Or, looking at the larger test, its low type I error probability

might be explained by a high prior p(Ho), which would increase its p(HoIX),

therefore similarly accentuating the apparent inconsistency.

8. A prior is called "locally uninformative" or "locally uniform" if it is both

(a) fairly flat in the s-lntervol where the likelihood function is high, and (b)

not large outside this lntervol (Box and Tiao (1973) p.23). Edwards et ol.

(1963, p.201) discuss reliance on such priors under the heading "Stable

Estimation",

9. The following comments of Edwards et ol, based in part on Lindley's finding

(i.e., that for a point null hypothesis with non-zero prior probability, marginal

rejection at any given significance level, no matter how small, tends to

support that hypothesis strongly as n becomes sufficiently large) applies

equally to the hypothesis tests used in auditing: "",evidence that leads to

classical rejection of the null hypothesis will often leave a Bayesian more confident of that

same null hypothesis than he was to start with." (Edwards et a!. (1963) p.240)

10. In papers by Berger and Sellke (1987, pp.135-6) and Berger and

Delampady (1987, pp.317-8), this difficulty is discussed as one of

"calibration". The problem in these terms is to calibrate the statistical

significance scale onto an evidence scale, or, in other words, to transform

significance levels into measures of evidence. This transformation involves

n, but other factors are relevant also, particularly the population variance

cr2, and, as revealed by Casella and Berger (1987a), the broad class of

procedure in question (e.q. whether Ho is a point, or interval such as 8~m.).

The general conclusion of the Berger et al. studies is that evidential

calibration of significance levels presents such difficulties that even with

the intuition developed with experience users cannot easily "learn to

interpret" these conventional measures in terms of evidence. On the

assumption that an evidential interpretation of tests is that which most users
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require, Berger and Sellke (p.136) conclude in regard to statistical

significance tests that lithe future of the concept statistics is highly

questionable".

11. Many users of statistical tests believe that because the sample size is taken

into account in the "standardization" of the observed sample result - e.g., in

the calculation of z(X)=(X-8o)..Jn/ cr - the resultant decision to either

"accept" or "reject" Hohas meaning independent of that subsumed n.

12. Kempthorne (1976, p.765) contends that virtually all statistical texts adopt

Neyman's mathematical and philosophical framework. Also recognizing

Neyman's profound influence on the theory and practice of statistics, his

colleagues Lecam and Lehmann (1974, p.vii) make the following

comments: "Neyman's publications span a period of fifty years. His early work has

become so thoroughly part of the common statistical consciousness that it is now only

rarely referenced and isno longer conceived as an individual contribution."
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Table 1

Posterior Probabilities Given Marginal Rejection of Ho

Assumed Sample Result

n=20, n=50, n=90,

Prior p(Hn) - - -
X=·4942 X=27.8784 X=39·8776

(i) N(O, 1002) ·547 ·965 ·981 ·980

(ii) N(O, 50002) ·012 ·951 ·975 ·975

(iii) N( 1()4, 50002) ·002 -951 ·974 ·975

(iv) N(-1()4, 50002) ·002 -952 ·974 ·975

(v) N(90, 152) ·159 ·417 .575 ·688

(vi) N(120, 25 2) ·036 ·335 .566 ·707

(vii) N(-90, 152) ·159 ·420 .922 1·000

(viii) N(-120, 25 2) ·036 ·339 .967 1·000



Table 2

Comparison of Posterior Probabilities of H
o

Assumed Result

n=30 n=90Prior p(Hn) - -
X=14·1 X=39·8776

AcceptHn RejectHn

(i) N(O, 1002) ·547 ·980 -980

(ii) N(0,5OOC)2) ·012 ·973 ·975

(iii) N(l CJ4, 50002) {)()2 -972 ·975

(iv) N(- 1CJ4, 50002) ·002 ·974 ·975

(v) N(90, 152) ·159 ·482 ·688

(vi) N(120,252) ·036 '433 ·707

(vii) N(-90,152) ·159 '636 1{lOO

(viii) N(-120, 252) ·036 ·654 1·000
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Figure 1

Surface Plot of Difference Between Posteriors

p(HolX=14.1, n=30) - p(HolX=Xc=39.8776, n=90)
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Figure 2

Contour Plot of Difference Between Posteriors

p(H
olX=14.1,

n=30) - p(HolX=Xc=39.8776, n=90)
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Figure 5

Contour Plotof Difference Between Posteriors

p(Holk=l, n=30) - p(Holk=9, n=lOO)
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