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We present a new estimator for computing free energy differences and thermodynamic expectations
as well as their uncertainties from samples obtained from multiple equilibrium states via either
simulation or experiment. The estimator, which we call the multistate Bennett acceptance ratio
estimator �MBAR� because it reduces to the Bennett acceptance ratio estimator �BAR� when only
two states are considered, has significant advantages over multiple histogram reweighting methods
for combining data from multiple states. It does not require the sampled energy range to be
discretized to produce histograms, eliminating bias due to energy binning and significantly reducing
the time complexity of computing a solution to the estimating equations in many cases. Additionally,
an estimate of the statistical uncertainty is provided for all estimated quantities. In the large sample
limit, MBAR is unbiased and has the lowest variance of any known estimator for making use of
equilibrium data collected from multiple states. We illustrate this method by producing a highly
precise estimate of the potential of mean force for a DNA hairpin system, combining data from
multiple optical tweezer measurements under constant force bias. © 2008 American Institute of
Physics. �DOI: 10.1063/1.2978177�

I. INTRODUCTION

A recurring challenge in statistical physics, computa-
tional chemistry, and single-molecule experiments is the col-
lection of a sufficient amount of data to estimate physical
quantities of interest to adequate precision. In computer
simulations of physical or chemical models, such quantities
include potentials of mean force, phase coexistence curves,
fluctuation or temperature-dependent properties, and free en-
ergy differences. In single-molecule experiments, these
quantities might include potentials of mean force along a
pulling coordinate or the distance between fluorescence
probes during resonant energy transfer. For all of these prob-
lems, collection of sufficient statistics for a reliable estimate
often requires multiple simulations at different thermody-
namic states1 or measurements performed under different ap-
plied biasing potentials. In computer simulations, multistate
techniques such as umbrella sampling,2 simulated3 and
parallel tempering,4 and the use of alchemical intermediates
in free energy calculations can greatly aid convergence;
in experiments, data collected under constant applied force
can help provide adequate sampling of conformations of
interest.5

Even with these methods, it may require a large quantity
of data to produce estimates with the desired precision. Com-
puting the most precise estimate possible from the available
data can therefore be critical in allowing these quantities to
be estimated with reasonable computational or experimental
effort. While the choice of thermodynamic states to sample

can also greatly affect efficiency, we focus here on only the
problem of statistically efficient estimation given samples
from predetermined states.

Early methods for computing free energy differences6,7

or equilibrium expectations2 relied on one-sided exponential
averaging �EXP�, which is formally exact but does not make
the most efficient use of data when samples from more than
one state are available.8 Subsequently, the Bennett accep-
tance ratio method �BAR�9,10 greatly improved upon EXP for
the computation of free energy differences, producing statis-
tically optimal estimates of free energy differences when two
states are sampled10 and yielding estimates that can be more
than an order of magnitude more precise.8 More recently,
multiple histogram reweighting methods11,12 were proposed
as a way to incorporate data from multiple states to produce
superior estimates of free energy differences and equilibrium
expectations for arbitrary thermodynamic states, including
states not sampled.

While multiple histogram techniques—most notably, the
weighted histogram analysis method12 �WHAM�—can pro-
duce statistically optimal estimates of the discretized densi-
ties of states11 or histogram occupation probabilities,13 they
have several limitations for the treatment of continuous sys-
tems. First, the reliance on energy histograms of width suf-
ficient to contain many samples—often larger than many
times the thermal energy—introduces a bias that can be sub-
stantial and often difficult to assess.14 Second, unlike BAR,
there are no direct expressions to estimate the statistical un-
certainty in free energy differences or expectations obtained
from WHAM. Third, application of WHAM to samples col-
lected with a biasing potential which is not trivially scaled by
a linear field parameter such the temperature or an applied
electric field requires a number of bins that grows exponen-
tially in the number of states, making it computationally in-
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tractable for even modest numbers of states. While more
recent maximum likelihood13 and Bayesian formulations15

mitigate the memory requirements, they do not remove
the histogram bias effects, and introduce a costly Markov
chain Monte Carlo sampling procedure to estimate
uncertainties.15,16

Here, we use recent results from the field of statistical
inference17–20 to construct a statistically optimal estimator
for computing free energy differences and equilibrium ex-
pectations at arbitrary thermodynamic states using equilib-
rium samples from multiple thermodynamic states. The re-
sulting estimator, termed the multistate Bennett acceptance
ratio estimator �MBAR� as it reduces to BAR when only two
states are considered and shares several steps in its deriva-
tion, is equivalent to WHAM in the limit that histogram bin
widths are shrunk to zero but is derived without the need to
invoke histograms. Unlike WHAM, this estimator provides a
direct assessment of uncertainties, critical in making com-
parison between experiment and theory, and the computa-
tional expense of computing the estimator remains modest
across a wider variety of applications. Furthermore, it can
easily be applied to data sampled from non-Boltzmann sam-
pling schemes or to the analysis of single-molecule experi-
ments in cases where an external bias potential is applied.

This paper is organized as follows. Section II recapitu-
lates the literature on extended bridge sampling estimators
used here as the basis for the MBAR estimator. Expressions
for computing estimates of free energy differences �Sec. III�
and equilibrium expectations �Sec. IV� are then provided.
Finally, we illustrate the method in Sec. V by applying it to
the estimation of the potential of mean force �PMF� for a
DNA hairpin system by combining data from multiple
equilibrium optical force clamp experiments under different
external biasing potentials.

II. EXTENDED BRIDGE SAMPLING ESTIMATORS

Suppose we obtain Ni uncorrelated equilibrium samples
from each of K thermodynamic states within the same en-
semble, such as NVT, NPT, or �VT �see Appendix A for
more information on subsampling correlated time series data
to produce uncorrelated samples�. Each state is characterized
by a specified combination of inverse temperature, potential
energy function, pressure, and/or chemical potential�s�, de-
pending on the ensemble. We define the reduced potential
function ui�x� for state i to be

ui�x� = �i�Ui�x� + piV�x� + �i
Tn�x�� , �1�

where x�� denotes the configuration of the system within a
configuration space �, with V�x� as volume �in the case of a
constant pressure ensemble� and n�x� as the number of mol-
ecules of each of M components of the system �in the case of
a �semi�grand ensemble�. For each state i, �i denotes the
inverse temperature, Ui�x� the potential energy function
�which may include biasing weights�, pi the external
pressure, and �i the vector of chemical potentials of the M
system components.

Configurations �xin�n=1
Ni from state i are sampled from the

probability distribution

pi�x� = ci
−1qi�x�, ci = �

�

dx qi�x� , �2�

where qi�x� here is non-negative and represents an un-
normalized density function, and ci is the �generally
unknown� normalization constant �known in statistical me-
chanics as the partition function�. In samples obtained from
standard Metropolis Monte Carlo or thermostatted molecular
dynamics simulations or from experiment, this un-
normalized density is simply the Boltzmann weight qi�x�
=exp�−ui�x�� but may, in general, differ in simulations em-
ploying non-Boltzmann weights, such as multicanonical
simulations21 and those using Tsallis statistics.22

We wish to produce an estimator for the difference in
dimensionless free energies

�f ij � f j − f i = − ln
cj

ci
= − ln

	� dx qj�x�
	� dx qi�x�

, �3�

�where the f i are related to the dimensional free energies Fi

by f i=�iFi� and the equilibrium expectations


A�i � �
�

dx pi�x�A�x� =
	� dx A�x�qi�x�

	� dx qi�x�
. �4�

These expectations can be computed as ratios of the normal-
ization constants if we define new functions q�x�
=A�x�qi�x�, where the q�x� no longer need be non-negative
for states from which no samples are collected.23

To construct an estimator for these ratios of normaliza-
tion constants, we first note the identity

ci
�ijqj�i = ��
�

dx qi�x� ·
	� dx qi�x��ij�x�qj�x�

	� dx qi�x�

= �
�

dx qi�x��ij�x�qj�x�

= ��
�

dx qj�x� ·
	� dx qj�x��ij�x�qi�x�

	� dx qj�x�

= cj
�ijqi� j , �5�

which holds for arbitrary choice of functions �ij�x�, provided
all ci are nonzero.

Using this relation, summing over the index j, and sub-
stituting the empirical estimator Ni

−1�n=1
Ni g�xin� for the expec-

tations 
g�i, we obtain a set of K estimating equations

�
j=1

K
ĉi

Ni
�
n=1

Ni

�ijqj�xin� = �
j=1

K
ĉj

Nj
�
n=1

Nj

�ijqi�x jn� �6�

for i=1,2 , . . . ,K, where solution of the set of equations for
all ĉi yields estimates of ci from the sampled data determined
up to a scalar multiplier.

Equation �6� defines a family of asymptotically unbiased
estimators parametrized by the choice of functions �ij�x�,
known in the statistics literature as extended bridge sampling
estimators.20 By making the choice
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�ij�x� = Njĉj
−1��

k=1

K

Nkĉk
−1qk�x� , �7�

we obtain an estimator that has been proven to be optimal in
the sense that it has the lowest variance for a large class of
choices of �ij�x� which includes all reweighting estimators in
common use.20 This estimator is also asymptotically unbi-
ased and guaranteed to have a unique solution �up to a mul-
tiplicative constant�20 and can also be derived from
maximum-likelihood methods19,24 or cast as a reverse logis-
tic regression problem.19,25

While a closed-form expression for the set of ĉi cannot
be obtained from Eqs. �6� and �7�, numeric values can nev-
ertheless be easily computed by any suitable method for
solving systems of coupled nonlinear equations. A simple
self-consistent iteration method and an efficient Newton–
Raphson solver are described in Appendix C.

In the large sample limit, the error in the ratios ĉi / ĉj will
be normally distributed,20 and the asymptotic covariance ma-
trix, �ij =cov��i ,� j�, where �i� ln ci, can be estimated by19

�̂ = WT�IN − WNWT�+W , �8�

where IN is the N�N identity matrix �with N=�i=1
K Ni as the

total number of samples�, and N=diag�N1 ,N2 , . . . ,NK�. The
superscript + denotes a suitable generalized inverse, such as
the standard Moore–Penrose pseudoinverse, since the quan-
tity in parentheses will be rank-deficient. W denotes the
N�K matrix of weights

Wni = ĉi
−1 qi�xn�

�k=1
K Nk ĉk

−1 qk�xn�
. �9�

The samples are now indexed by a single index n=1, . . . ,N,
as the association of which samples xn came from which
distribution pi�x� is no longer relevant. We note that this
definition ensures �n=1

N Wni=1 for all i=1, . . . ,K and
�i=1

K NiWni=1 for all n=1, . . . ,N. The computational cost of
evaluating the pseudoinverse of an N�N matrix in comput-

ing �̂ can be reduced to that of computing the eigenvalue
decomposition of a K�K matrix, and in many cases the
covariance matrix can even be produced by operations only
on K�K matrices �see Appendix D�.

The covariance of estimates of arbitrary functions
	��1 , . . . ,�K� and 
��1 , . . . ,�K� of the log normalization con-

stants �i can be estimated from �̂ by the expansion

cov�	̂,
̂� = �
i,j=1

K
�	

��i
�̂ij

�


�� j
. �10�

III. FREE ENERGIES

When configurations are sampled with Boltzmann statis-
tics, where qi�x��exp�−ui�x��, Eqs. �6� and �7� produce the
following estimating equations for the dimensionless free
energies

f̂ i = − ln �
j=1

K

�
n=1

Nj exp�− ui�x jn��

�k=1
K Nk exp� f̂ k − uk�x jn��

, �11�

which must be solved self-consistently for f̂ i. Again, because
the normalization constants are only determined up to a mul-

tiplicative constant, the estimated free energies f̂ i are deter-
mined uniquely only up to an additive constant, so only

differences � f̂ i j = f̂ j − f̂ i will be meaningful.
The uncertainty in the estimated free energy difference

can be computed from Eqs. �8� and �10� as

�2� f̂ i j � cov�− ln ĉj/ĉi,− ln ĉj/ĉi� = �̂ii − 2�̂ij + �̂ j j . �12�

Free energy differences and uncertainties between states not
sampled are easily estimated by augmenting the set of states
with additional reduced potentials ui�x� with the number of
samples Ni=0. For these unsampled states, no additional
self-consistent estimation is required, so free energy differ-
ences involving many such states can be estimated very ef-
ficiently.

IV. EQUILIBRIUM EXPECTATIONS

The equilibrium expectation of some mechanical observ-
able A�x� that depends only on configuration x �and not mo-
mentum� is given by Eq. �4� and can be computed as a ratio
of normalization constants cA /ca by defining two additional
“states” characterized by the functions23

qA�x� = A�x�q�x�, qa�x� = q�x� ,

where again q�x��exp�−u�x�� if the expectation with re-
spect to the Boltzmann weight is desired. Even though qA�x�
may no longer be strictly non-negative, we can still make use
of the extended bridge sampling estimator �Eq. �6�� to esti-
mate the expectation 
A� since NA=Na=0.

Similarly, we augment the matrix W �Eq. �9�� with col-
umns WnA and Wna corresponding to qA�x� and qa�x�, respec-
tively:

WnA = ĉA
−1 A�xn�exp�− u�xn��

�k=1
K Nk exp� f̂ k − uk�xn��

,

�13�

Wna = ĉa
−1 exp�− u�xn��

�k=1
K Nk exp� f̂ k − uk�xn��

,

where normalization constants ĉA and ĉa are defined in terms
of self-consistent estimating equations as
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ĉA = �
n=1

N
A�xn�exp�− u�xn��

�k=1
K Nk exp� f̂ k − uk�xn��

,

�14�

ĉa = �
n=1

N
exp�− u�xn��

�k=1
K Nk exp� f̂ k − uk�xn��

.

We can then write the estimator of the expectation as

Â =
ĉA

ĉa

= �
n=1

N

Wna A�xn� , �15�

and an estimator for the uncertainty as

�2Â � cov�ĉA/ĉa, ĉA/ĉa� = Â2��̂AA + �̂aa − 2�̂Aa� , �16�

where the covariance matrix �̂ is now computed from the
augmented W. Covariances between estimates of 
A� at dif-
ferent thermodynamic states, or between two observables 
A�
and 
B�, can also be constructed by adding the appropriate
columns to the covariance matrix and applying Eq. �10� to
estimate the desired uncertainty. If the dimensionless free

energies f̂ i have already been determined, computation of Â
for any A�x� and any q�x� does not require additional itera-
tive solution of the self-consistent estimating equations.

V. APPLICATION TO LABORATORY
EXPERIMENTS

The MBAR estimator is not limited in application to
data produced from simulation—it can also be applied to
combine data from multiple equilibrium experiments in the
presence of externally applied fields. To illustrate, we esti-
mate the potential of mean force �PMF� of a DNA hairpin
attached by double-stranded DNA �dsDNA� linkers to glass
beads along the distance between the beads. The collection
of equilibrium trajectories under a variety of constant force
loads �corresponding to a linear external potential along the
extension coordinate� for the DNA hairpin system 20R55/4T
collected by an optical double trap experiment5 was reported
earlier.26 The complete dataset was obtained from Michael
Woodside �National Institute for Nanotechnology, NRC and
Department of Physics, University of Alberta� and consists
of 16 trajectories at 296.15 K, each 5 s in duration and
sampled with a period of 0.1 ms, totaling 50 000 samples
each. Each trajectory was collected under a different constant
force load with force loads ranging from 12.35 to 14.41 pN,
with an estimated 10% relative error in the measurement of
this force value.

The data were analyzed to produce an optimal estimate
of the PMF under a force load of 14.19 pN, a force load at
which it is difficult to determine the entire PMF to high
precision from the equilibrium trajectory collected at this
force load alone �Fig. 1�. The sampled extension range was
divided into 50 unequally sized bins such that the number of
samples per bin was equal in order to avoid regions with zero
histogram counts, as would occur with equally spaced bins.
Analysis with the MBAR estimator took 18 s on a standard
2.16 GHz Intel Core 2 Duo MacBook Pro, and the resulting
error bars are more than an order of magnitude smaller than

those derived from the single trajectory at this force load in
the poorly sampled region of the PMF. Below, we describe
how both types of analysis were performed.

To estimate the PMF from the 14.19 pN trajectory alone
�black filled squares in Fig. 1�, the total number of counts Ni

per histogram bin was determined, and the reduced PMF �in
units of kT� f i computed up to an irrelevant additive constant
from

f i = − ln�Ni/wi� , �17�

where wi is the relative width of bin i necessary to correct for
the nonuniform bin sizes. The statistical uncertainty in the
histogram count was estimated by standard methods �see Eq.
�26� in Ref. 27�,

� 2Ni = gNi�1 − Ni/N� ,

�18�

� 2f i =
� 2Ni

Ni
2 ,

where g is the statistical inefficiency of the extension time
series, estimated from the extension autocorrelation function
�see Sec. 5.2 of Ref. 27�.

To estimate the PMF using the MBAR estimator, the
dataset was first subsampled with an interval equal to the
statistical inefficiency of each trajectory at constant force to
produce a set of uncorrelated samples. The reduced potential
energy for each state k under the experimental conditions
corresponds to

uk�x� = ��U0�x� + Uk
ext�x�� , �19�

where U0�x� is the �unknown� potential energy function of
the system in the absence of an externally applied biasing
potential and Uk

ext�x� is the �known� externally applied bias-
ing potential, given by
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FIG. 1. PMF of the DNA hairpin and dsDNA handles system 20R55/4T
under 14.19 pN external force. The PMF is computed directly from the data
collected with that external force using the observed occupancy as described
in the text �black filled squares� and also using the MBAR estimate with
data from experiments from a range of external forces �unfilled gray dia-
monds�, with error bars in the corresponding color. Note that in most cases,
the MBAR error bars are less than the height of the corresponding symbol.
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Uk
ext�x� = − Fkz�x� + ak, �20�

where z�x� is the extension coordinate, Fk is the constant
applied force along the positive z direction, and ak is a con-
stant offset.

Because only differences ui�x�−uj�x� appear in the esti-
mating equations �Eq. �11��, the unknown components of the
reduced potential energy cancel out and need not be consid-
ered

ui�x� − uj�x� = − ��Fi − Fj�z�x� + ��ai − aj� . �21�

While the constant term ��ai−aj� involving the unknown
zero potential intercepts will appear in the estimated state
free energies, these do not influence computed expectations
in Eq. �15�, and are hence irrelevant.

The probability of finding the system in bin i under the
conditions of interest is given by the expectation

pi = 
�i�z�� , �22�

where �i�z� is an indicator function that assumes the value of
1 if the system is in bin i and zero otherwise. The PMF �in
units of thermal energy kT� can then be computed from pi up
to an irrelevant additive constant as

f i = − ln�pi/wi� �23�

and the uncertainties propagated by Eq. �10�.
Because each PMF is only determined up to an arbitrary

additive constant, the mean value of each PMF was sub-
tracted before plotting. This is equivalent to choosing the
additive constants so as to obtain an optimal least-squares
rms fit between the two PMFs.

It should be noted that this result corresponds to the
PMF for the entire system connected to the glass beads,
which includes not only the DNA hairpin but the two dsDNA
linkers and their attachments to the glass beads. In other
work, deconvolution or related methods have been applied to
correct for the stretching of the linkers to estimate the PMF
for the DNA hairpin alone.28

VI. DISCUSSION

The MBAR estimator presented here provides a rapid
and robust way to extract estimates of free energy differences
and equilibrium expectations from multiple equilibrium
samples of different thermodynamic states in a statistically
optimal way. As the estimator is asymptotically efficient
among a wide class of “bridge sampling” estimators,20 which
includes EXP and BAR as members, the resulting estimates
from MBAR will have the lowest �or equal� variance in the
large sample limit.

While multiple histogram techniques11–13,15 have been
widely used for combining data from multistate simulations,
the MBAR estimator supplants these methods in the majority
of cases. Most importantly, it provides a reliable and inex-
pensive method for estimating the uncertainties in the result-
ing estimates and their correlations, which are critical for
propagating uncertainties to quantities of interest. Addition-
ally, the elimination of histograms avoids both the bias aris-

ing from discretization of continuous energies, as well as the
computational overhead of constructing and storing high
dimensional histograms.

In this framework, multiple histogram reweighting meth-
ods such as WHAM can be understood as a histogram kernel
density estimator approximation to MBAR. In some applica-
tions, histograms can reduce the computational expense re-
quired for solving the estimating equations �Eq. �6�� at the
expense of introducing bias. When samples are distributed
according to the Boltzmann weight, the estimator for the free
energies �Eq. �11�� is precisely Eq. �21� of Ref. 12 or Eq.
�15� of Ref. 29, in both cases presented as a reduction of the
histogram bin width to zero in the standard WHAM equa-
tions �Eqs. �19� and �20� of Ref. 12�. While the validity of
this limit is dubious—the derivations in these references rely
upon an estimate of the uncertainty in each histogram count
which cannot be correct when the bins are nearly empty—the
derivation of this equation from the extended bridge sam-
pling estimator demonstrates for the first time that these
equations are, in fact, asymptotically unbiased estimators of
the true free energy differences.

The MBAR estimator also can be considered a multistate
generalization of the BAR estimator.9 In deriving BAR, Ben-
nett constructed an estimator from Eq. �5� directly, determin-
ing the single ��x� which minimized the variance in the es-
timator of the free energy difference between only two states.
In deriving MBAR, summing over all states j and determin-
ing the functions �ij�x� that minimizes the covariance matrix
of the estimator for ratios of normalization constants pro-
duces an optimal estimator for the multistate case. A proof of
the equivalence of MBAR and BAR for two states can be
found in Appendix E.

BAR and a recent pairwise multistate generalization to
Bennett’s acceptance ratio method �which we shall refer to as
PBAR� �Ref. 30� differ from MBAR in that they can also be
applied to nonequilibrium work measurements between pairs
of states, in addition to equilibrium reduced potential differ-
ences �instantaneous work measurements�. However, PBAR
constructs a total likelihood function from products of like-
lihood functions connecting pairs of states, assuming inde-
pendence of all work measurements. For equilibrium
samples, this means that a sampled configuration xn from a
state i can only be used to provide information about the
instantaneous work required to switch to a single other state
j for use in the PBAR estimator, whereas in MBAR, each
sampled xn can be used to provide information about all
states. As a result, MBAR should require significant fewer
samples from each state to produce an estimate of equivalent
precision with equilibrium data.

A Python implementation of the MBAR estimator
described here is available under the GNU General Public
License �GPL�, and is provided online, along with several
example applications, at https://simtk.org/home/pymbar.
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APPENDIX A: CORRELATED TIME SERIES
DATA

While estimating equations based on Eq. �6� can be ap-
plied to correlated or uncorrelated datasets, provided that the
empirical estimator


A�i �
1

Ni
�
n=1

Ni

A�xin� �A1�

remains asymptotically unbiased, the asymptotic covariance
matrix estimator �Eq. �8�� only produces sensible estimates
when applied to uncorrelated datasets. Application to corre-
lated datasets may produce severe underestimates of the true
statistical uncertainty and should be avoided.

A set of uncorrelated configurations can be obtained
from a correlated time series, such as is generated by a mo-
lecular dynamics or Metropolis Monte Carlo simulation, by
subsampling the time series with an interval approximately
equal to the equilibrium relaxation time for the system. Be-
cause the equilibrium relaxation time is difficult to compute
for all but the simplest systems, we find the maximum of the
statistical inefficiency g computed for several relevant ob-
servables �such as the reduced potential uk�x� in Boltzmann-
weighted sampling, structural observables A�x� in the com-
putation of potentials of mean force, etc.� provides a
practical estimate useful for subsampling.

The statistical inefficiency gA of the observable A�x� of a
time series �xt�t=1

T is formally defined as �see Janke31 for a
detailed exposition�,

gA � 1 + 2A,

A � �
t=1

T

�1 − t/T�CAA�t� , �A2�

CAA�t� �

A�xt0

�A�xt0+t�� − 
A�2


A2� − 
A�2 ,

where A denotes the integrated autocorrelation time and
CAA�t� the normalized fluctuation autocorrelation function of
the observable A.

Direct application of these equations substituting the em-
pirical estimator for the expectation can be problematic due
to statistical noise. As a result, there exist a number of stan-
dard procedures27,31–33 to improve the quality and stability of
this estimate for physical systems, making use of properties
such as stationarity. The fast method for estimating the inte-

grated autocorrelation time described in Sec. 5.2 of Chodera
et al.27 is implemented in the Python implementation of
MBAR available online.

APPENDIX B: RECOMPUTATION OF REDUCED
ENERGIES AT MULTIPLE STATES

Application of MBAR to simulation data requires uk�xn�
to be evaluated for all K reduced potential functions uk�x�
and all N uncorrected sampled configuration xn, a total of KN
reduced potential evaluations. In practice, this is not overly
burdensome; the samples xn are generally produced by
schemes that generate chains of highly correlated samples,
such as thermostatted molecular dynamics or Monte Carlo
simulations. Once the stored configurations are subsampled
to eliminate correlations and produce an effectively uncorre-
lated sample �as described above�, the number of remaining
samples N�T /g is generally smaller than the number of
samples T produced during the simulation by one or more
orders of magnitude.

In cases where uk�x� differ only by a linear scaling pa-
rameter of one or more components �such as temperature or
an external field parameter�, computation of uk�xn� for all K
states is a trivial operation. For other cases, such as when all
samples are collected from thermodynamic states that only
differ in the external biasing potential �e.g., linear or har-
monic�, we note that the reduced energy differences uk�x�
−ui�x� involve only differences in the external biasing poten-
tial, which can often be rapidly computed. Section V con-
tains an illustration of this in application to single-molecule
pulling experiments.

APPENDIX C: EFFICIENT SOLUTION OF THE
ESTIMATING EQUATIONS

A number of methods can be used to obtain a self-
consistent solution to the free energy estimating equations
obtained from combining Eqs. �6� and �7�

ĉi = �
j=1

K

�
n=1

Nj qi�x jn�
�k=1

K Nk ĉk
−1 qk�x jn�

, �C1�

or in terms of the dimensionless free energies f i=−ln ci,

f̂ i = − ln �
j=1

K

�
n=1

Nj qi�x jn�

�k=1
K Nk ef̂k qk�x jn�

. �C2�

While any method capable of solving a coupled set of non-
linear equations may be employed, we describe two ap-
proaches to their solution: A straightforward yet reliable self-
consistent iteration method and an efficient yet slightly less
reliable Newton–Raphson method. Both methods are imple-
mented in the Python implementation of the estimator avail-
able online.

1. Self-consistent iteration

As in Ref. 12, the f̂ i could be obtained by self-consistent

iteration of Eq. �11� using the last set of iterates � f̂ i
�n��i=1

K to

produce a new estimated set of iterates � f̂ i
�n+1��i=1

K ,
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f̂ i
�n+1� = − ln �

j=1

K

�
n=1

Nj qi�x jn�

�k=1
K Nk ef̂k

�n�
qk�x jn�

. �C3�

Convergence is assured regardless of the initial choice of f i
�0�,

so it is sufficient to initialize the iteration by setting all f i
�0�

=0. Alternative initial choices of the initial reduced free en-
ergies f i

�0� may speed convergence. For example, we have
found the choice

fk
�0� =

1

Nk
�
n=1

Nk

ln q�xkn� , �C4�

which, for Boltzmann weighting �qk�x�=exp�−uk�x��� corre-
sponds to the average reduced potential energy, usually
works well. Additional inexpensive choices are possible,
such as fixing f1

�0�=0 and estimating consecutive differences
�fk+1

�0� − fk
�0��, k=1,2 , . . . ,K−1 using BAR.9,10

a. Cautions

For numerical reasons, it is convenient to constrain f1

=0 during the course of iteration by subtracting f1 from the
updated values in order to obtain a unique solution and pre-
vent uncontrolled growth in the magnitude of the estimates.
Iteration is terminated when the quantities of interest change
by a fraction of the desired precision with additional itera-
tions, but a convenient rule of thumb is to terminate when
maxi=2,. . .,K�f i

�n+1�− f i
�n�� / �f i

�n���10−7. Because the quantities of
interest and the relative free energies can converge at differ-
ent rates, it is advised that the former be monitored when
possible.

It is also critical to avoid overflow in the computation of
exponentials ea. To compute log sums of the form ln �n=1

N ean,
we can use the equivalent form

ln �
n=1

N

exp�an� = c + ln �
n=1

N

exp�an − c� , �C5�

where c�maxnan. To minimize underflow, the terms
exp�an−c� can be summed in order from smallest to largest.

2. Newton–Raphson

A more efficient approach to determine f̂ i is to employ a
Newton–Raphson solver, which has the advantage of qua-
dratic convergence �a near doubling of the number of digits
of precision� with each iteration when sufficiently near the
solution. Because each iteration requires inversion of a �K
−1�� �K−1� matrix, this approach is only efficient if K is
small, say K�100, but this will be satisfied in a wide num-
ber of cases.

First, we write the estimating equations in terms of a set
of functions gi��� such that the solution of the estimating

equations �Eq. �C2�� corresponds to g��̂�=0. Several such
choices of both the function g��� and the parametrization
�the normalization constants ci or their logarithms �i� are
possible, and the efficiencies of approaches based on differ-
ent choices may differ substantially, but we find it convenient
to choose

gi��� = Ni − Ni �
n=1

N

Wni��� , �C6�

where Wni is defined in Eq. �9�. It can easily be seen that

g��̂�=0 is equivalent to the estimating equations:

gi��̂� = 0

⇔ Ni − Ni �
n=1

N

Wni��̂� = 0

⇔ Ni − Ni

ĉi
−1qi�xn�

�k=1
K Nk ĉk

−1 qk�xn�
= 0

⇔ ĉi =
qi�xn�

�k=1
K Nk ĉk

−1 qk�xn�
. �C7�

In Newton–Raphson, the function g��� is expanded
about the current iterate ��n� to first order

g���n+1�� � g���n�� + H�� �n���� �n+1� − � �n�� , �C8�

where

Hij��� =
�gi���

�� j
= �− �

n=1

N

Ni Wni�1 − Ni Wni� , if i = j

�
n=1

N

Ni Wni Nj Wnj , if i � j .�
�C9�

We seek the next iterate � �n+1� such that g�� �n+1��=0, which
yields the update equation

� �n+1� = � �H�� �n���+g�� �n�� , �C10�

where + denotes the pseudoinverse. If all the qi�x� are
unique and Ni�0 for all states, the standard matrix inverse
may be substituted for the pseudoinverse.

a. Cautions

We only need to iterate over states for which Ni�0; the
relative free energies of states where Ni=0, and expectation
values at all states, can be determined after the self-
consistent equations are solved to determine the relative free
energies of states where Ni�0. Since we must constrain f1

=0 to avoid drift during the process of free energy determi-
nation, we can simply use a modified form of Eq. �C10�
where rows and columns corresponding to the first state are
omitted,

� �2:K,2:K�
�n+1� = � �H�� �n���2:K,2:K��+g�� �n���2:K,2:K�, �C11�

where �� �0,1� is a scalar multiplier that controls the rate of
convergence. Since the initial iterate � �1� may be far from
the realm of quadratic convergence �i.e., outside the range at
which the Taylor expansion in Eq. �C8� holds�, it is often
safer to choose an initial ��1. We have found �=0.1 works
well for the first step, with �=1 used thereafter.

Even then, there are times when with reduced � does not
prevent numerical instability. The instability may be due to
the initial guess iterate ��0� being too far from the region of
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quadratic convergence, such that the first-order Taylor ex-
pansion above is a poor approximation to g��� in Eq. �C8�.
In this case, a better procedure for choosing the initial iterate
may aid convergence. Starting with one or more iterations of
the self-consistent method �Sec. C1�, or using an initial esti-
mate from application of BAR �Ref. 10� to sequential states
may be sufficient. Less commonly, failure to converge may
be result from numerical precision limiting the accurate cal-
culation of the pseudoinverse �H���n���2:K,2:K��+. In all cases,
we find that self-consistent iteration still works reliably to
recover the estimator and can be used as a fallback proce-
dure.

APPENDIX D: EFFICIENT COMPUTATION OF THE
ASYMPTOTIC COVARIANCE MATRIX

1. Singular value decomposition

The N�K matrix W �Eq. �9� in the main paper� can be
written in terms of its singular value decomposition

W = U�VT, �D1�

where U is an N�N unitary matrix of left singular vectors
�such that UUT=IN�, � is an N�K matrix containing
L�K singular values along the diagonal, and V is a K�K
unitary matrix of right singular vectors.

The estimator for the asymptotic covariance matrix �̂
�Eq. �8�� can then be expanded to

�̂ = WT�IN − WNWT�+W

= �U�VT�T�IN − �U�VT�N�U�VT�T�+�U�VT�

= V�TUT�IN − U�VTNV�TUT�+U�VT

= V�TUT�UUT − U�VTNV�TUT�+U�VT

= V�TUT�U�IN − �VTNV�T�UT�+U�VT

= V�TUTU�IN − �VTNV�T�+UTU�VT

= V�T�IN − �VTNV�T�+�VT. �D2�

We partition the matrix of singular values � into a K�K
diagonal region �K �of which only the first L�K diagonal
entries will be nonzero� and an �N−K��K zero matrix 0,

� = ��K

0
 . �D3�

We can then rewrite the above expression as

�̂ = V��K 0���IK 0

0 I�N−K�


− ��K

0
VTNV��K 0��+��K

0
VT

= V�K�IK − �KVTNV�K�+�KVT. �D4�

We note that pseudoinversion of the quantity in brackets now
only requires O�K3� work, though this can be further reduced
to O�L3� work if the reduced SVD is used.

The singular values �K and matrix of right singular vec-
tors V can easily be computed from the eigenvalue decom-
position of WTW,

WTW = �U�VT�T�U�VT� = V�TUTU�VT = V��T��VT

�D5�

2. When W has full column rank

In the case that W has full column rank �because all
qk�x�, k=1, . . . ,K are unique� we can make further progress.
Using Eq. �D4�, we can write

�̂ = �V�K
−1�IK − �KVTNV�K��K

−1VT�−1

= �V��K
−2�VT − N�+

= ��WTW�−1 − N�+. �D6�

We note that WT1N=1K, and WN1K=1N, and so WTWN1N

=1K, and observe that ��WTW�−1−N� has rank K−1 with
kernel 1K

��WTW�−1 − N�1K = �WTW�−11K − N1K

= �WTW�−1WTWN1K − N1K

= N1K − N1K = 0 .

We can supplement the quantity in brackets with b1K1K
T ,

where b is some nonzero scalar, without changing the cova-
riance values computed from it, and make it invertible:

�̂ = ��WTW�−1 − N + b1K1K�−1. �D7�

We choose b=N−1 to ensure the inversion is well-conditioned
�as in Ref. 19�, producing

�̂ = ��WTW�−1 − N + 1K1K
T /N�−1. �D8�

APPENDIX E: EQUIVALENCE OF MBAR AND BAR
FOR TWO STATES

We start with Eq. �11�. For ease of use, we define � f̂

= f̂2− f̂1 and �u�x�=u2�x�−u1�x� and M =ln N1 /N2. Without
loss of generalization, since the equations are symmetric, we

examine the self-consistent equation for f̂1,

f̂1 = − ln �
j=1

2

�
n=1

Nj exp�− u1�x jn��

�k=1
2 Nk exp� f̂ k − uk�x jn��

,

1 = �
n=1

N1 exp� f̂1 − u1�x1n��

N1 exp� f̂1 − u1�x1n�� + N2 exp� f̂2 − u2�x1n��

+ �
n=1

N2 exp� f̂1 − u1�x2n��

N1 exp� f̂1 − u1�x2n�� + N2 exp� f̂2 − u2�x2n��
,

1 = �
n=1

N1 1

N1 + N2 exp�� f̂ − �u�x1n��

+ �
n=1

N2 1

N1 + N2 exp�� f̂ − �u�x2n��
, �E1�
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N1 = �
n=1

N1 1

1 +
N2

N1
exp�� f̂ − �u�x1n��

+ �
n=1

N2 1

1 +
N2

N1
exp�� f̂ − �u�x2n��

N1 = �
n=1

N1 1

1 + exp�� f̂ − �u�x1n� − M�

+ �
n=1

N2 1

1 + exp�� f̂ − �u�x2n� − M�
.

We make the additional observation that

1

1 + exp�x�
− 1 = −

1

1 + exp�− x�
,

which allows us to write Eq. �E1� as

0 = �
n=1

N1 � 1

1 + exp�� f̂ − �u�x1n� − M�
− 1

+ �
n=1

N2 1

1 + exp�� f̂ − �u�x2n� − M�

= �
n=1

N1 1

1 + exp�M + �u�x1n� − � f̂�

− �
n=1

N2 1

1 + exp�− �M + �u�x2n� − � f̂��
, �E2�

which is precisely the equation for BAR presented in Shirts
et al.10 with N1=nF, N2=nR, and the reduced potential differ-
ence in place of the work.

We now examine the expression for the variance limited
to two states. When the two thermodynamic states are not
identical, W will have full rank, and the asymptotic covari-
ance matrix can be written as �see Eq. �D7� above�

� = ��WTW�−1 − N + 1K1K
T /N�−1,

where we have from Eq. �9�

Wni =
exp� f̂ i − ui�xn��

�k=1
K Nk exp� f̂ k − uk�xn��

.

Defining F as the Fermi function, and Xn=� f̂ −�u�xn�−M,
then in the case of two states Wn1=N1

−1F�Xn� and Wn2

=N2
−1F�−Xn�.
The matrix WTW can then be written as

WTW = �
n=1

N � N1
−2F�Xn�2 N1

−1N2
−1F�Xn�F�− Xn�

N1
−1N2

−1F�Xn�F�− Xn� N2
−2F�− Xn�2 � .

�E3�

If we represent the matrix �WTW�ij =aij, the determinant
�WTW� will be D=a11a22−a21a12. The variance in ratios is

actually independent of multiplicative factor used in front of
1K1K, as we will show below, so we will use b in place of
1 /N for generality. The inverse of the covariance matrix is
then

�−1 = �WTW�−1 − N + b1N1N
T

=�
a22

D
− N1 + b −

a21

D
+ b

−
a12

D
+ b

a11

D
− N2 + b� . �E4�

The determinant will then be

��−1� =
1

D
−

N2a22 − N1a11

D
+ N1N2 − b�N1 + N2�

+ b
a11 + a22 + a12 + a21

D
. �E5�

However, we note that �WTW�−1−N is singular, and thus the
sum of the first three terms in Eq. �E5� equals zero. Addi-
tionally, because it has kernel 1K, it must also satisfy a22

−a21−N1D=0 and a11−a12−N2D=0. Because we know by
symmetry that a12=a21, which we denote by simply a, this
determinant then becomes

��−1� =
b

D
�a11 + a22 + a12 + a21 − �N1 + N2�D� =

4ab

D
.

�E6�

We then obtain

� = ��WTW�−1 − N + b1N1N
T�−1

=
D

4ab�
a11

D
− N2 + b

a

D
− b

a

D
− b

a22

D
− N1 + b� . �E7�

The variance in f1− f2 will be �11+�22−2�12, which
reduces to

Var�f1 − f2�

=
D

4ab
�a11 − N1D + bD + a22 − N2D + bD − 2a + 2bD

D


=
1

4ba
��a11 − a − N2D� + �a22 − a − N1D� + 4bD� =

D

a
,

�E8�

which is indeed independent of b�0. Since a22=N1+a and
a11=N2+a, given D=a11a22−a2 �as noted above�, we can
find that D=N1

−1N2
−1�1−Na�. We then obtain

Var� f̂1 − f̂2� =
a11a22 − a2

a

=
1 − Na

N1N2a

=
1

N1N2a
−

N

N1N2
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=
1

�i=1
N F�Xn� F�− Xn�

−
N

N1N2

= ��
i=1

N
1

2 + 2 cosh�Xn�−1

−
N

N1N2

=
1

N�� 1

2 + 2 cosh�� f̂ − �u�x� − M�
�−1

− � N

N2
+

N

N1
� . �E9�

This is the equation for the asymptotic covariance of free
energies given for the BAR method in Shirts et al.10

1 Here, a thermodynamic state is defined by a combination of potential
energy function �including any biasing potentials� and external thermo-
dynamic parameters, such as temperature, pressure, and chemical poten-
tial, all within the same thermodynamic ensemble �e.g., canonical,
isothermal-isobaric and �semi�grand canonical�.
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