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ABSTRACT 
We describe a technique for statistically optimal interslice interpolation of scalar values for use in three- 
dimensional medical image rendering. The interpolation technique is based upon kriging. Knging is 
known to be the best linear unbiased estimation technique for spatially distributed data. This paper presents 
the results obtained using kriging in the object space pre-processing operation of slice interpolation by 
slice-value interpolation. As a byproduct of the technique, kriging calculates the estimation error for the 
interslice values. Th~s allows us to quantify the interpolation error in slices computed by the estimation 
technique. 

INTRODUCTION 
Three-dimensional (3D) medical imaging algorithms estimate values withn the 3D scalar field of data to 
enhance the image or to create a uniformly sampled scene. This estimation can be performed in the object 
space pre-processing operation of slice interpolation ([ 161, [ 171). Commonly used deterministic 
interpolation techniques, such as nearest neighbor, linear, trilinear, and tricubic interpolation (as described 
in [181), can inaccurately estimate these values. As a result, unquantified error is introduced into the 
rendered image. Our research has been aimed at both reducing and quantifying thir error. 
In this paper we describe a technique for statistically optimal interslice interpolation. The interpolation 
technique is based upon the geo-statistical process called kriging. Kriging is known to be the best linear 
unbiased estimation technique for spatially distributed data ([I], [5], [6], and 191). Because of this property 
of kriging, we theorized that it could be used to interpolate medical imaging modality data. We also 
expected that the images produced with kriging would have minimal error and would appear noticeably 
better than images produced with other interpolation techniques. As a byproduct of the technique, kriging 
calculates the estimation error for the interslice values. This error value allows us to quantify the 
interpolation error in each slice. 
The next section presents a background on kriging. The third section describes our implementation or 
kriging. The fourth section of the paper contains the results of using kriging and two deterministic 
methods, linear and mcubic interpolation, for estimating interslice values by slice-value interpolation. The 
last section of the paper presents our conclusions and recommendations for further work. 

KRIGING BACKGROUND 
Kriging is a statistical process that estimates a value at a point using the spatially dependent values in a 
neighborhood or zone near the point. Kriging was originally developed to estimate ore reserves and 
thicknesses or accumulations in mining deposits, [12], but is applicable to any spatially dependent data. 
The kriging process is based upon the concept of using regionalized variables to model spatially dependent 
data. Kriging makes the common assumption that there is a spatial, linear relationship between the 
unknown value at a point and the known values of neighboring points. Krigmg computes the value for the 
unknown data point using a weighted linear sum of known data values. The known data values represent 
instances of regionalized variables. The weights are chosen to minimize the estimation error variance and 
provide unbiasedness in the sampling, making kriging the best linear unbiased estimate for the data. The 
process is termed best because the weights are chosen to minimize the estimation error variance and to 
provide unbiasedness in the sampling. As a byproduct of the kriging process, an estimate of the error 
variance for each interpolated point value is produced, allowing us to quantify the error at each point in an 
interpolant slice and in the interpolant slice itself. 

t Address correspmdence to this author. 
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Kriging departs from other techniques for scalar value interpolation in two regards. First, it bases its 
estimates upon a large neighborhood of points and treats those points as regionalized variables instead of 
random variables. The use of regionalized variables recognizes the existence of regions or zones of 
influence in the data. In kriging, each region is analyzed to determine correlation or inter-dependence 
among the data in the region. Second, kriging computes both a local and a global statistical 
characterization of the data set, allowing it to account for drift and other anomalies in the data that can 
cause inaccuracies in the interpolated estimate of the value at a point. Additional details and background 
on W i n g  theory are presented in 111, [31,[41, [51, [61, [71, [81, [91, [121,1131, [MI, and 1151. 
Kriging Ls a modified linear regression technique that calculates a weighted linear sum of sample values to 
produce its estimates. There are two broad classes of kriging, ordinary kriging and universal knging. In 
ordinary kriging, the mean value for the data in a region is unknown and the mean is assumed to be 
stationary throughout the region. In universal kriging, the mean is again unknown. but the mean is not 
stationary throughout the region. Sample means that differ from place to place are called dritts (also trends 
or non-stationary means). Drift within the local neighborhood of sample values is a location dependent 
drift, as discussed in [9]. Global drifts are averages computed from a region of sample values that can 
extend beyond the support. Global drift is dealt with differently, see [5] .  We discuss ordinary kriging first 
and then describe universal kriging. 
Equation (1) is the kriging equation. In that equation the goal is to estimate 2 ,  the unknown value at the 
position p within the neighborhood of known points pi and known values Zi (pi). Z is the actual value at 
point p 

n 

The 2;s  are the regionalized variables with the parameter being an n-dimensional point and the q's the 
weights. Optimal weights are determined by enforcing the following two conditions. These conditions 
make kthe best linear unbiased estimator: 

Z(i- 2) = 0 (2) 

~ ( 2 -  t>2 is minimum (3) 

The estimation error, 5 - 2 ,  is a measure of the dissimilarity between the two variables 2 and 2. z( 2 - 
Z)2 Ls the mean square error and 
These two conditions are the base from which the kriging system of equations, used to find the wis, are 
derived. The constraints, and hence the system, change depending on the behavior of the sample means. 
For the moment, assume the sample means are unknown and no drifts exists in the data. In ordinary kriging 
the unbias constraint forces the weights to sum to 1 because the mean, dp), is constant, producing equation 
(5). These assumptions lead to the following system of equations for ordinary kriging. 

is the expected value or mean. 

C wi= I 
i 

(i= I ,  ..., n) (4) 

Here, ~ r i . . )  Ls the semivariogram approximating the covariance between sample points i and j a distance of 
ri apart. The semivariogram is a function that measures the degree of spatial dependence between sample 
values along a specitic orientation. The semivariogram is discussed in a later section. Solving the ordinary 
system of equations will yield optimal weights for the kriging equation, equation (I) above. 
Universal kriging relaxes the assumption that drift does not exist in the data. The kriging system of 
equations change because the presence of drift forces the unbias constraint to change. David [5] expresses 
the drift at apoint pas: 

Y 



278 Fifth Annual IEEE Symposium on Computer-Based Medical Systems 

Equation (6) is normally implemented as a finite order polynomial. T h e f f ( p ) ' s  are k+ 1 known functions, 
usually monomials, and the df's are the k + 1 unknown drift coefficients. Now that m(p) is no longer 
constant but takes into account drift, the unbias constraint results in a new set of equations: 

Z(i-Z)= 0 

Notice that the drift coefficients, 61, have dropped out of the constraint in equation (7). Thus the universal 
system is independent of the drift coefficients, but still insures unbiasedness. Since this condition insures 
unbiasedness regardless of the unknown drift coefficients d f ,  the term universal is used to denote the 
system of equations that result, as described in [9]. This constraint, equation (7). adds k+ I more equations 
to the minimum variance condition, thus k+ 1 additional Lagrange Multipliers, 11. are needed ([2j, [7 ] ) .  
After the partial derivatives of the equations are taken with respect to the n weights and the k +  1 
Lagrangian Multipliers and set to zero, the universal kriging system of equations is obtained. 

n k 

n 

( i = l ,  ..., n) 

(I = 0, I ,  ..., k )  (9) 

In (8). the requirement for minimum estimation variance is met, and (9) describes the non-biasedness 
constraint. Solving this system of equations yields the optimal weights for the kriging equation, (I). 
Before either the universal or the ordinary kriging system of equations can be solved, a model 
semivariogram must be determined to account for the interdependencies of the data. The semivariogram is 
used to approximate the covariance between sample points. The semivariogram also indicates the spatial 
dependence of regionalized variable instances (the known sample values). The theoretical semivariogram 
is defined as: 

2 f i h ) = u  a r ( z ( p i + h ) - Z ( p i ) )  Y X i ,  x i +  ti€ N (10) 

where f i  is a distance. Thus, the semivariance only depends on the two variable's relative positions in space. 
The two types of semivariograms used in kriging are the experimental and model seniivariograms. The 
experimental semivariogram is keyed directly to tbe data at hand and so produces an accurate description of 
the covariance. However, the experimental semivariogram only computes function values for a fixed value 
of f i  and this typically does not coincide with the spacing of the sample data. As a result, the experimental 
semivariogram can't be used directly to krige the data. To krige the data, a model semivariogram is used. 
Model semivariograms are generic templates that are used to describe broad classes of spatial dependence 
in data. A model semivariogram allows any distance, h, as a function parameter. Once the experimental 
semivariogram is calculated, its graph is compared to known model semivariograms. When a match is 
found, suitable parameters for the model semivariogram are determined. The model supplies the y ( h $  
needed to krige the data. 

IMPLEMENTATION 
To interpolate medical imaging modality slice data, we calculate the values along the edge of a 
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computational cell. A computational cell is a parallelepiped. Four vertices of the parallelpiped lie in one 
data slice and the other four lie in a single adjacent slice, as shown in Figure I .  
The slice interpolation algorithm has three basic steps. First, read in four medical data slices. Four slices 

Voxels at computational cell vertices 

Other voxels used for estimation 

Legend 

Figure 1: Computational cell in a neighborhood of 16 voxel values. 

are needed because tricubic interpolation needs 64 sample control values. When estimating, 16 values 
come from each of the two image planes the cell lies between (as shown in Figure I), and 16 values come 
from each of the planes immediately adjacent to these. Second, march the cell (cube) between the two 
inner data slices (as in “marching cubes”, [12]). Third, estimate values for new slice(s) along cell edges. 
One of three estimation techniques, either linear interpolation, tricubic interpolation, or kriging, is applied 
in step three. Our implementation of linear interpolation is standard. The technique we used for tricubic 
interpolation is similar to the one described in [ 181. The kriging implementation is dscussed next. 
Our implementation makes some assumptions about the data that make the kriging of medical imaging data 
practical.. We assume that the data is isotropic and that the model semivariognm is known, allowing us to 
forego the semivariogram analysis phase of kriging. We also assume that only local drift is present. We 
experimented with both quadratic and linear local drift, models and determined that the difference in the 
results was insignificant for the data. Therefore, we present only tbe computationally more efficient linear 
drift results. The three-dimensional linear drift expression in terms of geometric coordinates (4, yi, zi lis: 

m(pi )  = m ( q ,  yi , zi) = do+ dly + dzyi+ d3zi (11) 

This equation points out the location dependence of the drift. Our assumed model semivariogram, or drift 
model, is a cubic function ([IO]). That is: 

r(@=a6J(@ (12) 

This function was chosen to model the variation assumed by the tricubic function. We also experimented 
with li and h2 model semivariograms. In our experience, the assumed model does not greatly affect the 
accuracy of the estimation. The system of universal kriging equations is represented in matrix form a? 
AX=B, where the X column vector contain? the kriging weights. We tested kriging using neighborhood 
sizes of 8, 16,32, and 64 voxels. A neighborhood size of 8 is just the computational cell. The orientation 
and sampling geometry for 16 and 32 voxel neighboxhoods are depicted in Figure 2. 

RESULTS 
We present the results of two experiments that compare kriging with linear and tricubic interpolation. The 
photographs contain 18 images depicting 2D medical image slices. The top four images are the original 
contiguous slices. The 14 remaining images are estimated slices that lie between the two middle images in 
the top row. These 14 images were generated using different interpolation techniques. The second row 
from the top has two images, one computed by linear interpolation, the other by tricubic interpolation. All 
the images in the last two rows were derived using different forms of kriging. The image titles describe the 
operations and assumptions used to compute the image. For example, the image titled krigenh8linear was 
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computed with kriging using a neighborhood size of 8 voxels and assuming local linear drift. 

z-axis 
based, 16 
voxel 

Z-aXiS 
based, 32 
voxel 

X estimation 

Y-axis 
based, 3 
voxel 

X estimation 

X estimation 

Other voxels used for estimation 

Y-axis 
based, 16 
voxel 

X estimation 

Figure 2: Orientation and geometry of 16 and 32 voxel neighborhoods used in kriging estimation. 

In Tables I and 2, the entries in the Image and Image Compared With columns refer to image titles. The 
last column in each table indicates the percentage of the average difference in the gray scale range (0-255). 
The first study uses 202-pixel x 132-pixel CT slices of a dog's heart that have a I mm inter-slice distance. 
Figure 3 presents the photographic results for this study . The goal of this study was to estimate the values 
in a new slice that lies between original data slices 41 and 42. Table 1 presents results pertaining to these 
images. We observed that the image generated by tricubic interpolation was inaccurate. Also, the images 
produced by kriging with a neighborhood 64 voxels are inaccurate and its values are similar to the tricubic 
interpolation. Except for kriging with neighborhood of 16 'Z, kriging with smaller neighborhoods 
estimates values closer to trilinear than to tricubic, and most closely approximates trilinear with a 
neighborhood of 8 voxels, assuming local linear drift. Ordinary kriging with smaller neighborhood sizes of 
16 voxels and 8 voxels akso produces errors in the estimated values. Universal kriging (local drift assumed) 
corrects these errors and is the best choice for interpolating function. 
The second study uses 16.5pixel x 166-pixel MRI slices of a three month old baby's head. In this case, the 
interslice spacing is 4 mm. The goal for this study was to estimate the values in a new slice that lies 
between original data slices 31 and 32. The results for this study are shown in Figure 4 and Table 2. 
Again, universal kriging is the best choice for the interpolating function. 
The images produced using kriging are, in our opinion, visually comparable to images produced using 
trilinear and tricubic interpolation. While the images for the second study generally look similar, the values 
in Table 2 show that the estimations in this study are similar to those in the dog heart study, presented in 
Table 1. 
The erroneous images produced by tricubic interpolation and several of the kriging variations could be 
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caused by invalid assumptions about the data variation. By using a smaller neighborhood size for kriging, 
we modified our assumptions about data variation and our results show that better images were obtained. 

Figure 3: Slices computed from (3 data. Interpolation techniques were used to create a new slice 
between original slices 32 and 33. Window titles depict the type of interpolation used. 

Another cause of error might be anisotropy in the data. We believe that the data are ankotropic in the ' 2  
direction (relative to 'X aod 'Y). We believe that ' Z  direction anisotropy exists because kriging using a 
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krigenhalinear 
krigenh64linear 
krigenh32nodrift 
krigenh32linear 
krigenh32linear 
krigenhldxnodrift 
krigenhl6xlinear 
krigenhldxlinear 
krigenh 16ynodrift 
krigenh 16ylinear 
krigenhl6ylinear 
krigenh 16modrift 
krigenhl6zlinear 
krigenhl6zlinear 
krigenh8nodrift 

krigenh8linear 
krigenh8linear 

neighborhood of 16 'Z produces gross inaccuracies like tricubic (see krigenhl6zlinear results), whereas 
neighborhoods of 16 'Y' and 16 'X' do not. The inaccuracies corrected by assuming Local linear drift 
II 

tricubic 
linear 

krigenh32linear 
tricubic 
linear 
krigenhl6xlinear 
tricubic 
linear 
krigenhl6ylinear 
tricubic 
linear 
krigenh 16zlinear 
tricubic 
linear 
krigenhslinear 
tricub1c 
linear 

I Table 2: Comparison of Baby Head MRI Estimated Values. 
Image I Image Compared I Largest I Average I Percentage 

6.7329 
23.0072 
3.4845 
17.1510 
5.1335 
%.5233 
17.3192 
4.2738 
70.1153 
17.4163 
5.2594 
21.8722 
4.1201 
21.4664 
227.1227 
17.9036 
0.7859 

I Difference I I ~ With Estimated I DiEr;eeof 

0.3772 0.1473 
1.4960 0.5844 
,0932 0.0364 
1 . w 1  0.4094 
0.2807 0.1097 
3.4776 1.3580 
1.085 I 0.4239 
0.2252 0.0880 
2.5202 0.9845 
1.0853 0.4239 
0.2249 0.0878 
1.0342 0.4040 
0.2519 0.0984 
1.4106 0.5510 
16.3677 6.3940 
1.1631 0.4543 
0.0282 0.01 10 

I --.*.---- , . I--- 
krieen1i64nodrift I finenhalinear I 1.8551 I 0.0571 1 0.0223 1 

Figure 4: Slices computed from MRI data. Interpolation techniques were used to create a new slice 
between original slices 32 and 33. Window titles depict the type of interpolation used. 

indicate that the sample means are locally non-stationary. Our results also indicate that local drift 
assumptions have a greater effect on estimation accuracy lhan the assumed model semivariogram. 
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CONCLUSIONS AND FUTURE WORK 

We have shown that kriging produces images that are visually comparable or better than images produced 
using trilinear and tricubic interpolation. Kriging has a twofold appeal. First, the technique can quantify 
the interpolation error, via the estimation variance, in the rendered image. Second, because the 
interpolation error can be made low, there is a high degree of confidence associated with the interpolated 
values and the rendered images' accuracy. 
Our current work is centered around decreasing the time required to generate images. Our current 
implementation is slow. The time to generate one 2D slice using a neighborhood of 16 voxels is 
approximately an hour. One acceleration technique we are exploring is to dynamically determine when to 
invert the A matrix. In the current implementation, the A matrix is inverted for every new value estimated. 
However, since portions of the A matrix never change, it is probable not necessary to invert it for every 
value. Once the A matrix inversion issue is resolved, we intend to accelerate performance further by 
pardelizing the implementation. We plan to restructure the code so that the 3D data are partitioned among 
multiple processors. This data-parallel implementation would minimize inter-process communication since 
each portion of the data could be kriged independently. We are also exploring the use of kriging for 
volume visualization. 
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