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Abstract

Consider the following problem: a sender S and a receiver R are part of a di-
rected synchronous network and connected through intermediate nodes. Specif-
ically, there exists n node disjoint paths, also called as wires, which are directed
from S to R and u wires, which are directed from R to S. Moreover, the wires
from S to R are disjoint from the wires directed from R to S. There exists a
centralized, static adversary Astatic

t , who has unbounded computing power and
who can control at most t wires between S and R in Byzantine fashion. S has a
message mS, which we wants to send to R. The challenge is to design a protocol,
such that after interacting in phases 5 as per the protocol, R should correctly
output mR = mS, except with error probability 2−Ω(κ), where κ is the error
parameter. This problem is called as statistically reliable message transmission
(SRMT). The problem of statistically secure message transmission (SSMT) has
an additional requirement that at the end of the protocol, mS should be infor-
mation theoretically secure from Astatic

t .
Desmedt et.al [14, 55] have given the necessary and sufficient condition for

the existence of SRMT and SSMT protocols in the above settings. They also
presented an SSMT protocol, satisfying their characterization. The authors in
[14, 55] claimed that their protocol is efficient and has polynomial computational
and communication complexity. However, we show that it is not so. That
is, we specify an adversary strategy, which may cause the protocol to have
exponential computational and communication complexity 6. We then present
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new and efficient SRMT and SSMT protocols, satisfying the characterization of
[14, 55]. Finally we show that the our proposed protocols are communication
optimal by deriving lower bound on the communication complexity of SRMT
and SSMT protocols. As far our knowledge is concerned, our protocols are the
first communication optimal SRMT and SSMT protocols in directed networks.

Key words: Information Theoretic Security, Error Probability, Optimality,
Directed Networks.

1. Introduction

Achieving reliable and secure communication is a fundamental problem in
the theory of communication. In modern applied network security, there is a
lot of emphasis on the use of virtual private networks (using cryptography),
firewalls, virus scanners, etc. However, routers too are vulnerable. Two prob-
lems have been identified if a router node is hacked. The hacker can shut down
the node or forward incorrect information to the adjacent nodes in the network
[17, 24]. Hence there is a need for considering an adversary who can disrupt
the network in variety of ways. The problem of reliable message transmission
(RMT) and secure message transmission (SMT) perfectly captures the scenario
when a specific node in the network intends to send a message to another non-
adjacent node with the help of other nodes and edges in the network, some of
which may be hacked (corrupted) by an adversary.

Let a sender S and a receiver R are part of an unreliable connected network,
where S is connected to R through intermediate nodes. To study the cumulative
or combined effect of the faults in the network, we assume the existence of an
abstract entity called centralized adversary, who can disrupt the communication
and computation of some of the intermediate nodes in variety of ways. Moreover,
we assume that the adversary has unbounded computing power.

In the problem of reliable message transmission (RMT), S has a message
mS, which he wants to reliably send to R. The goal is to design a protocol, such
that after interacting with S as per the protocol, R should correctly output
m. Moreover, this should happen, even if some of the intermediate nodes are
under the control of the centralized adversary. The problem of secure message
transmission (SMT) has an additional constraint that the adversary should get
no information about m what so ever, in information theoretic sense. Security
against such a powerful adversary is called information theoretic security or non-
cryptographic security or Shannon Security, which is also the strongest notion
of security. Notice that if S and R are connected by a direct edge, then RMT
and SMT is straight forward: S simply sends the message to R. Thus the goal
of RMT (SMT) protocol is to simulate a direct, virtual, reliable (secure) link
between S and R, who are connected through intermediate nodes, even in the
presence of a computationally unbounded centralized adversary.

RMT and SMT are well-motivated problems, for it being one of the funda-
mental primitives used by all fault-tolerant distributed algorithms like Byzantine

2



agreement [29, 16, 28, 18, 19, 9, 30], multiparty computation [57, 23, 10, 8, 42,
13, 6, 7] etc. All these popular fault-tolerant distributed algorithms assume that
the underlying network is a complete graph. When the graph is not complete, we
can simulate the effect of the missing links using RMT/SMT protocols. There
is another motivation to study SMT problem. Currently, all existing public key
cryptosystems, digital signature schemes are based on the hardness assump-
tions of certain number theoretic problems. With the advent of new computing
paradigms, such as quantum computing [47] and increase in computing speed,
may render these assumptions ineffective. Hence it is worthwhile to look for
information theoretically secure message transmission schemes.

There are various settings in which RMT and SMT problem has been studied
extensively in the past. For example, the underlying network model may be
undirected graph [17, 45, 44, 49, 4, 38, 20, 52, 26], directed graph [41, 14, 33,
39, 55, 34, 36, 35, 56] or hypergraph [22, 14, 43, 50]. The communication in the
network could be synchronous [17, 45] or asynchronous [44, 48, 12]. The faults
could be passive, fail-stop, Byzantine or sometimes mixed/hybrid faults [11].
The number of faulty nodes may be bounded by a fixed constant (threshold
adversary) [17, 45, 46] or the potential sets of faulty nodes may be described by
a collection of subsets of nodes (non-threshold adversary) [25, 41, 48, 50, 54, 15],
while the adversary may be mobile [37, 53, 11] or static [17, 45]. The protocols
can be perfect, having no error [17, 26] or may be statistical, having negligible
error probability [22, 14, 43, 34, 51]. In general, we may use the following
parameters to categorize the different settings in which RMT and SMT problem
can be studied:

1. Underlying network;
2. Type of communication;
3. Adversary Capacity;
4. Type of faults; and
5. Type of security.

Irrespective of the settings in which RMT and SMT are studied, the following
issues are common:

(i) Possibility: What is the necessary and sufficient condition for the exis-
tence of a protocol in a given network?

(ii) Feasibility: Once the existence of a protocol is ensured then does there
exist a polynomial time efficient protocol on the given network?

(iii) Optimality: Given a message of specific length, what is the minimum
communication complexity (lower bound) needed by any protocol to trans-
mit the message and how to design a protocol whose total communication
complexity matches the lower bound on the communication complexity?

In this paper, we study the above issues in the context of statistical RMT
and SMT in directed synchronous network. We call statistical RMT and SMT as
SRMT and SSMT respectively. We now define SRMT and SSMT. More formal
and rigorous definition will appear in section 2.
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1. An RMT protocol is called δ-reliable, for any δ = 2−Ω(κ), where κ is
the error parameter, if at the end of the protocol, R correctly outputs
S’s message, except with error probability δ. Moreover, this should hold,
irrespective of the behavior of the adversary.

2. An SMT protocol is called ǫ-secure, for any ǫ = 2−Ω(κ), where ǫ is the
error parameter, if at the end of the protocol, the adversary does not get
any any information about S’s message, except with probability ǫ.

3. A message transmission protocol is called (ǫ, δ)-secure, if it is ǫ-secure and
δ-reliable.

4. An RMT protocol is called perfectly reliable, also called as PRMT, if it is
0-reliable.

5. An RMT protocol is called statistically reliable, also called as SRMT, if it
is δ-reliable.

6. A message transmission protocol is called perfectly secure, also called as
PSMT, if it is (0, 0)-secure.

7. A message transmission protocol is called statistically secure, also called
as SSMT, if it is (0, δ)-secure.

1.1. Motivation of Our Work

The PRMT and PSMT problem has been studied extensively over the past
three decades in undirected synchronous network model tolerating threshold
static Byzantine adversary and the issues related to possibility, feasibility

and optimality have been completely resolved (see [17, 45, 49, 32, 4, 38, 52,
20, 5, 26]). Also, the issues related to the possibility, feasibility and op-

timality have been completely resolved for SRMT and SSMT in undirected
synchronous network model tolerating threshold static Byzantine adversary (see
[21, 27, 40]). However, all the above results are in undirected network model,
where the communication link between any two nodes in the network is bi-
directional. However, in practice not every communication channel may admit
bi-directional communication. For instance, a base-station may communicate to
even a far-off hand-held device but the other way round communication may not
be possible. In such a scenario, it is more appropriate to model the underlying
network as a directed graph. Motivated by this, Desmedt et.al [14, 55] intro-
duced the problem of PRMT, PSMT, SRMT and SSMT in directed network and
resolved the issue of possibility. Recently, [36, 35, 41, 56] resolved the issue
related to feasibility and optimality of PRMT and PSMT in synchronous
directed networks, tolerating static adversary. However, nothing is known re-
lated to the feasibility and optimality of SRMT and SSMT protocols in
directed networks. So in this work, we try to completely resolve these issues.

Remark 1 (A Note on the Terminology SRMT and SSMT). In [34], we
have used the terms URMT and USMT for SRMT and SSMT respectively. The
reason for the change of terminology in this paper is as follows: In the literature
of secure multiparty computation (MPC), protocols with negligible error proba-
bility are usually referred as statistical MPC. Since SRMT and SSMT protocols
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will be used as a black box in statistical MPC to simulate a virtual complete net-
work, we prefer to change the terminology from URMT and USMT to SRMT
and SSMT respectively.

2. Network Model and Definitions

The underlying network is a connected, synchronous network represented by
a directed graph where S and R are two non-adjacent nodes of the graph. All
the arcs in the network are reliable and secure but the nodes can be corrupted.
The intermediate nodes between S and R are oblivious, message passing nodes
and they do no computation of their own. Their only task is to pass information
from their predecessor node to their successor node.

We assume the presence of a static, threshold adversary Astatic
t , having un-

bounded computing power, who can corrupt any disjoint set of t nodes in the
graph (excluding S and R) in Byzantine fashion. We now formally define Byzan-
tine corruption.

Definition 1 (Byzantine Corruption). A node P is said to be Byzantine
corrupted if the adversary fully control the actions of P. The adversary will
have full access to the computation and communication of P and can force P to
deviate from the protocol and behave arbitrarily.

We assume that the adversary is a centralized adversary and can collectively
pool the data from the nodes under its control and use it according to his
own choice in any manner. The adversary is static and corrupts t nodes at
the beginning of the protocol. Moreover, a node which is under the control of
the adversary will remain so throughout the protocol. Following the approach
of [14], we abstract away the network and concentrate on solving SRMT and
SSMT problem for a single pair of processors, the sender S and the receiver
R, connected by node disjoint paths, also called as wires, which are directed
either from S to R or vice-versa. More specifically, we assume that there are
n wires from S to R, denoted by f1, . . . , fn and u wires from R to S, denoted
by b1, . . . , bu. Moreover, the wires from S to R are node disjoint from the wires
which are directed from R to S. The n wires from S to R are also called as top
band, while the u wires from R to S are called as bottom band. In our protocols,
we work with the specific values of n and u. That is, we assume that 0 ≤ u ≤ t
and n = max (2t − u + 1, t + 1). This implies that n = Θ(t). From [14], these
many wires in the top band and bottom band are necessary for any SRMT or
SSMT protocol.

The reason for the above abstraction is as follows: suppose some interme-
diate node between S and R is under the control of the adversary. Then all
the paths between S and R which passes through that node are also compro-
mised. Hence, all the paths between S and R passing through that node can
be modelled by a single wire between S and R. In the worst case, the adversary
can compromise an entire wire by controlling a single node on the wire. Hence,
Astatic

t having unbounded computing power can corrupt up to t wires between S
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and R (including top and bottom band) in Byzantine fashion. Any protocol in
the network operates as a sequence of phases, where a phase is a communication
from S to R or vice-versa.

Throughout this paper, we use mS to denote the message that S wishes to
send to R. The message is assumed to be a sequence of ℓ elements from the finite
field F with ℓ ≥ 1. Without loss of generality, we assume that mS is selected
uniformly and randomly from F. The size of F is a function of κ which is the
error probability of the SRMT and SSMT protocol. Specifically, F = GF (2κ)
and thus each field element can be represented by O(κ) bits. Moreover, without
loss of generality, we assume that n = poly(κ). In our protocols, we assume that
the messages sent over any wire are from the right domain. Thus if S (R) is
expecting some message in a specific form and if no message arrives then S (R)
assumes some pre-defined message in the specified form. Thus we separately
do not consider the case when no message or syntactically incorrect message is
received along a wire.

The phase complexity of any SRMT/SSMT protocol is the total number of
phases taken by the protocol. The communication complexity of any SRMT/SSMT
protocol is the total number of field elements communicated by S and R in the
protocol. The computational complexity of any SRMT/SSMT protocol is the to-
tal amount of computation done by S and R in the protocol. Any SRMT/SSMT
protocol is called efficient if the phase complexity, computational complexity and
communication complexity of the protocol is polynomial in n. Since we measure
the size of the message in terms of the number of field elements, we also measure
the communication complexity in units of field elements.

Let the message to be transmitted be drawn uniformly and randomly from
F. We define the View of a node Pj , at any point of the execution of a protocol
Π to be the information that Pj can get from its local input to the protocol (if
any), all the messages that Pj had earlier sent or received, the protocol code
executed by Pj and random coins of Pj . The View of Astatic

t at any point of
the execution of Π is defined as all the information that Astatic

t can get from
the Views of all the nodes corrupted by Astatic

t (i.e. all the information that
these nodes can commonly compute from their Views). For a message mS ∈ F,
any t-active threshold adversary characterized by Astatic

t and any protocol Π,

let Γ̂(Astatic
t , mS, Π) denote the probability distribution on the View of the

adversary Astatic
t at the end of the execution of Π. We now give the following

definition

Definition 2 (SSMT). A protocol Π is said to facilitate statistically secure
message transmission (SSMT) between S and R if for any message mS drawn
from F and for every adversary Astatic

t , the following conditions are satisfied:

1. Perfect Secrecy: Γ̂(Astatic
t , mS, Π) = Γ̂(Astatic

t , m
′S, Π). That is, the two

distributions are identical irrespective of the message transmitted.

2. Statistical Reliability: R should receive mS correctly, except with error
probability 2−Ω(κ), where κ is the error parameter.
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Definition 3 (SRMT). A protocol Π is said to facilitate statistically reliable
message transmission (SRMT) between S and R if it satisfies statistical relia-
bility condition of SSMT.

Definition 4 (Communication Optimal SRMT/SSMT Protocol). Let Π
be an r (r ≥ 1) phase SRMT (SSMT) protocol which reliably (securely) sends
a message mS containing ℓ (ℓ ≥ 1) field elements by communicating O(b) field
elements, over a directed network. If the lower bound on the communication
complexity of any r phase SRMT (SSMT) protocol to send mS over such a
network is Ω(b) field elements, then Π is said to be a communication optimal
SRMT (SSMT) protocol to reliably (securely) send m.

3. Existing Literature and Our Contribution

As mentioned earlier, SRMT and SSMT in directed network was first studied
by Desmedt et.al. Specifically, they gave the following characterization:

Theorem 1 ([14, 55]). Suppose there exists u ≤ t wires in the bottom band
and n wires in the top band, such that the wires in the top band are disjoint
from the wires in the bottom band. Then any SRMT/SSMT protocol tolerating
Astatic

t is possible iff n = max (2t − u + 1, t + 1).

In [55], the authors presented an SSMT protocol, satisfying the above char-
acterization. Moreover, the authors claimed that their protocol is efficient (see
Theorem 3.4 of [55]). As far our knowledge is concerned, these are the only
results for SRMT and SSMT in directed networks.

3.1. Our Contributions

We now summarize the contributions of this article:

1. We first show that the SSMT protocol presented in [14, 55] is inefficient.
We do this by specifying an adversary strategy, which may cause the pro-
tocol to have exponential computational and communication complexity.
In fact, we show that the same adversary strategy is applicable for the
SRMT and SSMT protocols presented in the preliminary version of this
paper [34], thus making the SRMT and SSMT protocols of [34] to have
exponential computational and communication complexity.

2. We then present new and efficient SRMT and SSMT protocols. These
protocols are achieved by making several modifications to the SRMT and
SSMT protocols presented in the preliminary version of this paper [34].
In fact, these modifications when applied to the SSMT protocol of [14, 55]
will make it efficient. In short, our SRMT and SSMT protocols have the
following properties:

(a) Our SRMT protocol takes O(u) phases and reliably sends a message
containing Θ(n3κ) bits by overall communicating O(n3κ) bits. Thus,
our SRMT protocol achieves reliability with constant factor overhead.
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(b) Our SSMT protocol takes O(u) phases and has a communication
complexity of O(n3κ) bits. If the entire bottom band is corrupted,
then the protocol securely sends a message containing Θ(n2uκ) bits.
Otherwise, the protocol securely sends a message containing Θ(n2κ)
bits.

3. Finally, we show that our SRMT and SSMT protocols are asymptotically
communication optimal. For this, we derive the lower bound on the com-
munication complexity of SRMT and SSMT protocols. Specifically, we
show the following:

(a) Any SRMT protocol must communicate Ω(ℓκ) bits to reliably send
a a message containing ℓκ bits.

(b) If the entire bottom band is corrupted then any SSMT protocol must
communicate Ω(nℓ

u κ) bits to securely send a message containing ℓκ
bits. On the other hand, if the entire bottom band is not corrupted
then any SSMT protocol must communicate Ω(nℓκ) bits to securely
send a message containing ℓκ bits.

3.2. Overview of Our Protocols

We first design a three phase SSMT protocol called 3-SSMT, which sends a
message containing Θ(n

3 ) field elements by communicating O(n3) field elements.
Then using this protocol as a black-box, we design a six phase protocol called
6-Pad, which securely establishes a random, one time pad between S and R.
Then using protocol 6-Pad as a black-box, we design our communication optimal
SRMT protocol called SRMT-Optimal, which takes O(u) phases. Finally, using
protocol 6-Pad and protocol SRMT-Optimal as a black-box, we design our O(u)
phase communication optimal SSMT protocol called SSMT-Optimal. The idea
behind SSMT-Optimal is as follows: we first execute protocol 6-Pad to securely
establish a one time pad between S and R. Then using this pad, S masks
the secret message and reliably sends the masked message by using the protocol
SRMT-Optimal. After receiving the masked message, R can unmask the message
by using the pad.

3.3. Comparison of Our Protocols with the Protocols of [54, 46, 51]

The characterization given in Theorem 1 and the protocols proposed by us
in this paper considers ”wired” network model, where it is assumed that the
intermediary nodes are just message forwarding nodes. Under this assumption,
we abstract the network in the form of directed wires, directed either from S
to R or R to S. However, in an arbitrary directed network, if the intermediate
nodes (other than S and R) are allowed to carry out computation and commu-
nication (beyond just acting as a message forwarding node), as in the case of
a virtual private network (VPN), then the wired abstraction results in loss of
generality. The insufficiency of wired abstraction in such a network model is
pointed out in [54, 46, 51] where characterizations for SRMT/SSMT over the
arbitrary network, treating entire graph in its full form are also reported. While
authors in [54, 51] have considered threshold adversary, the authors of [46] have
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considered non-threshold 5 adversary for their characterization. However, it
is likely to take exponential time to verify whether a given arbitrary directed
network satisfies the characterization given in [54, 46, 51] for the possibility of
SRMT/SSMT. Moreover, the protocols given in [54, 46, 51] require exponential
computational and communication complexity and are highly non-intuitive.

It should be noted that abstracting the underlying network to a bunch of
wires is incomparable to treating the network in its full form. Both are sensible
and practical. We need to decide which model to follow based on the charac-
teristic of given underlying network. In this paper, we consider the wire model,
as it is relatively simple. Moreover, it is relatively easy to design protocols in
wire model, in comparison to design protocols by considering the graph in its
entirety.

3.4. The Roadmap

The paper is organized as follows: in the next section, we present the tools
that are used in our protocols. In Section 5, we present our three phase SSMT
protocol called 3-SSMT. In Section 5.4, we show the inefficiency of the SRMT
and SSMT protocols of [14, 34, 55]. Section 6 presents our six phase pad es-
tablishment protocol 6-Pad. Our communication optimal SRMT protocol is
presented in Section 7. In Section 8, we present our communication optimal
SSMT protocol. The lower bounds on the communication complexity of SRMT
and SSMT protocols are presented in Section 9. The paper ends with a conclu-
sion and directions for further research.

4. Tools Used in Our Protocols

We now present the tools which are used in this paper.

Definition 5 (Unconditionally Reliable Authentication [42, 14, 21]). It
is used to send a message M over a wire such that if the wire is uncorrupted,
then the receiver correctly gets M . On the other hand, if the wire is corrupted,
then the receiver does not get M but is able to detect the corruption with very
high probability. Though there are several implementations for this well known
primitive, we use the following implementation in this paper: Let a random,
non-zero (a, b) ∈ F

2 be securely established between the sender and the receiver
in advance. The sender computes x = URauth(M ; a, b) = aM + b and sends
(M, x) to the receiver over the wire. Let the receiver receive (M ′, x′) along the

wire. Receiver verifies x′ ?
= URauth(M ′; a, b). If the test fails then the receiver

concludes that M ′ 6= M , otherwise M ′ = M . The tuple (a, b) is called authenti-
cation key. The probability that M ′ 6= M , but still the receiver fails to detect it is
at most 1

|F| , which is negligible in our context. Note that a remains information

theoretically secure, even if the adversary knows (M, x) by listening the wire.

5A non-threshold adversary is a generalized form of the threshold adversary.
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Definition 6 (Unconditionally Secure Authentication [42, 14, 21]). The
goal here is similar to unconditionally reliable authentication. However, we now
require an additional requirement that M should be information theoretically se-
cure, even if the wire is under the control of the adversary. Again there are
several implementations for this well known primitive. In this paper, we use the
following implementation: Let a random, non-zero (a, b, c) ∈ F

3 − {(0, 0, 0)} be
securely established between the sender and the receive in advance. The sender
computes (x, y) = USauth(M ; a, b, c) = (M + a, b(M + a) + c) and sends (x, y)
to the receiver over the wire. Let the receiver receive (x′, y′) along the wire. The

receiver verifies y′ ?
= bx′ + c. If the test fails then the receiver concludes that the

wire is corrupted, else the receiver recovers x′ − a. It is easy to see that even
if the adversary knows (x, y), then also M is information theoretically secure.
Moreover, if (x′, y′) 6= (x, y), then except with error probability 1

|F| (which is

negligible), the receiver will be able to detect it.

Definition 7 (Unconditional Hashing [6]). Let (v1, v2, . . . , vℓ) be a random
vector from F

ℓ, where ℓ > 1 and k ∈ F−{0}. Then we define hash(k; v1, v2, . . . , vℓ)
= v1 + v2k + v3k

2 + . . . + vℓk
ℓ−1. Here k is called the hash key. The proba-

bility that two different vectors map to the same hash value for a uniformly
chosen hash key is at most ℓ

|F| ≈ 2−Ω(κ). If the adversary knows only k and

hash(k; v1, v2, . . . , vℓ), then ℓ− 1 elements in the vector will be information the-
oretically secure.

Definition 8 (Extracting Randomness [49]). Suppose S and R by some
means agree on a sequence of n random elements x = [x1 x2 . . . xn] ∈ F

n

such that Astatic
t knows n − f components of x, but has no information about

the other f components of x. However S and R does not know which values are
known to Astatic

t . The goal of S and R is to agree on a sequence of f elements
[y1 y2 . . . yf ] ∈ F

f , such that Astatic
t has no information about [y1 y2 . . . yf ].

This is done as follows:

Algorithm EXTRANDn,f (x): Let V be a n × f Vandermonde matrix with
elements in F. This matrix is published as a part of the algorithm specification.
S and R both locally compute the product [y1 y2 . . . yf ] = [x1 x2 . . . xn]V .

5. A Three Phase SSMT Protocol

We now present a three phase SSMT protocol called 3-SSMT. The proto-
col securely sends a message mS containing n

3 field elements by communicating
O(n3) field elements. The protocol will be later used in our communication
optimal SRMT and SSMT protocol. The protocol uses certain ideas from the
SSMT protocol of [14]. In addition, the protocol also uses certain new ideas
proposed by us. Before presenting protocol 3-SSMT, we present another three
phase SSMT protocol called 3-SSMT-Exponential, which requires exponential
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communication and computational complexity. The main reason for present-
ing 3-SSMT-Exponential is to present the underlying principle, which we try to
simulate in protocol 3-SSMT, while maintaining polynomial computation and
communication complexity. A protocol some what similar to protocol 3-SSMT-

Exponential is also presented in [14]. So in the next section, we first present
protocol 3-SSMT-Exponential.

5.1. A Three Phase Exponential SSMT Protocol

Let P1, . . . ,Pk denote the enumeration of all possible t + 1-sized subset of
the wire set {f1, . . . , fn, b1, . . . , bu}. Thus k =

(
2t+1
t+1

)
. Since there are at least

t+1 honest wires including top and bottom band, there exists at least one path
set, say Pi, where Pi contains all t+1 honest wires. Moreover, each path set Pj

will have at least one wire from top band, as there can be at most t wires in the
bottom band. If some how S and R comes to know the identity of the honest
path set Pi, which consists of only honest wires, then S and R can share an
n-tuple over each wire in Pi. Then adding all such n-tuples, S and R can agree
on an n-tuple, about which adversary will have no information. Finally, using
the elements of the resultant n-tuple as encryption and authentication keys, S
can reliably and securely send mS over all the wires in the top band, which are
present in Pi.

Since, neither S nor R will know the exact identity of honest path set Pi

in advance, they have to parallely do the above procedure for all paths sets
P1, . . . ,Pk. During this process, if the adversary tries to change the information
over the wires in any path set then with very high probability, R will detect
this and will neglect the information which is exchanged over the wires in that
path set. The protocol is formally given in Fig. 1.

We now prove the properties of protocol 3-SSMT-Exponential.

Lemma 1. In protocol 3-SSMT-Exponential, adversary will have no informa-
tion about mS.

Proof: Every path set Pm will have at least one honest wire, either in the top
band or in the bottom band. So the adversary will have no information about
the n-tuple which is exchanged between S and R over that wire. As a result,
the adversary will have no information about the keys used by S, corresponding
to the path set Pm. The rest now follows from the properties of USauth. 2

Lemma 2. In protocol 3-SSMT-Exponential, R will always terminate.

Proof: The proof follows from the fact that there exists at least one path set
Pm, which will contain only honest wires. 2

Lemma 3. In protocol 3-SSMT-Exponential, if R outputs mR then with very
high probability, mR = mS.
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Figure 1: Protocol 3-SSMT-Exponential: A Three Phase Exponential SSMT Protocol

Phase I: S to R: S parallely does the following computation and communica-
tion corresponding to each path set Pm, for m = 1, . . . , k:

1. Corresponding to each fi ∈ Pm, S selects a random non-zero n-tuple
(xS

1,i,m, . . . , xS
n,i,m).

2. S sends (xS
1,i,m, . . . , xS

n,i,m) to R over wire fi.

Phase II: R to S: R parallely does the following computation and communi-
cation, corresponding to each path set Pm, for m = 1, . . . , k:

1. Let R receive non-zero n-tuple (xR
1,i,m, . . . , xR

n,i,m) from S, over wire fi,
corresponding to each fi ∈ Pm.

2. Corresponding to each bi ∈ Pm, R selects a random non-zero n-tuple
(yR

1,i,m, . . . , yR
n,i,m).

3. R sends (yR
1,i,m, . . . , yR

n,i,m) to S over wire bi.

Phase III: S to R: S parallely does the following computation and communi-
cation corresponding to each path set Pm, for m = 1, . . . , k:

1. Let S receive non-zero n-tuple (yS
1,i,m, . . . , yS

n,i,m) from R, over wire bi,
corresponding to each bi ∈ Pm.

2. For i = 1, . . . , n, S computes his version of n keys CS
i,m =

∑
fj∈Pm

xS
i,j,m +

∑
bj∈Pm

yS
i,j,m.

3. For each element of mS (recall that |mS| = n
3 ), S takes three el-

ements from the keys computed in the previous step and computes
the set SS

m = {(cSi,m, dS
i,m) : i = 1, . . . , n

3 } where (cSi,m, dS
i,m) =

USauth(mS
i ; CS

3i−2,m, CS
3i−1,m, CS

3i,m), for i = 1, . . . , n
3 .

4. S sends the set SS
m to R over all the top band wires in the set Pm and

terminates the protocol.

Message Recovery by R: If R receives SR
m = {(cRi,m, dR

i,m) : i = 1, . . . , n
3 }

over all fj’s in path set Pm, then corresponding to path set Pm, R does the
following computation:

1. For i = 1, . . . , n, R computes his version of n keys CR
i,m =

∑
fj∈Pm

xR
i,j,m +

∑
bj∈Pm

yR
i,j,m.

2. For i = 1, . . . , n
3 , R checks whether dR

i,m
?
= CR

3i−1,mcRi,m + CR
3i,m.

3. If the above test passes for all i = 1, . . . , n
3 , then R computes mR

i = cRi,m−

CR
3i−2,m. R then concatenates mR

1 , . . . , mR
n
3

to recover mR and terminates

the protocol.
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Proof: Suppose R outputs mR from SR
m , corresponding to path set Pm. Since

there is at least one honest wire in Pm and the adversary has no information
about the n-tuple which is exchanged between S and R over that wire, it implies
that the adversary has no information about the keys computed by S and R,
corresponding to path set Pm. If the path set Pm is completely honest or if
the adversary is passively controlling the wires under its control in Pm, then
S and R will have the same keys and hence mR = mS. On the other hand,
if the adversary has modified the tuples which are exchanged over the wires
under its control in Pm, then S and R will have different keys. But still, as
explained above, the adversary will have no information about the keys. So
from the properties of USauth, the adversary can make the verification process
successful at R’s end with very negligible probability. Thus mR = mS with
very high probability. 2

Lemma 4. Protocol 3-SSMT-Exponential requires exponential computation and
communication complexity.

We now proceed to the discussion of protocol 3-SSMT, which is an efficient
three phase SSMT protocol. The principle used in 3-SSMT is similar to protocol
3-SSMT-Exponential. However, instead of working with all possible t + 1-sized
subset of wires, S and R uses certain mechanism, which allows them to work
with at most u path sets, thus making the communication and computation
complexity of the protocol polynomial.

5.2. Protocol 3-SSMT: A Three Phase Efficient SSMT Protocol

In protocol 3-SSMT, R first tries to find whether there exists t + 1 honest
wires in the top band. In order to facilitate R to do so, S tries to send mS

using two different methods. If there exists t + 1 honest wires in the top band
then the first method would be successful. However, if there are less that t + 1
honest wires in the top band, then with very high probability R will detect this
and will conclude that at least one honest wire is present in the bottom band.
So S and R interacts for two more phases and S tries to again send mS using
the second method in the third phase. The second method tries to follow the
principle used in protocol 3-SSMT, however ensuring that the communication
and computation complexity is polynomial in n.

We now begin with the description of protocol 3-SSMT, phase by phase.
However, instead of describing the entire protocol in a single shot, we prefer to
discuss each phase individually. This would help the reader to understand the
nuances and ideas used in each phase. So we begin with the description of first
phase of protocol 3-SSMT, which is given in the next subsection.

5.2.1. Phase I of Protocol 3-SSMT

During the first phase of the protocol, S tries to send mS using the first
method. S also sends some additional information, which might be useful during
second phase, if at all it is executed. Phase I of protocol 3-SSMT is formally
given in Fig. 2.

We now prove the properties of Phase I.
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Figure 2: Phase I of Protocol 3-SSMT

Phase I: S to R: S does the following computation and communication:

1. S selects a random polynomial MS(x) over F of degree n− 1 + t such that
the lower order n

3 coefficients of MS(x) are elements of mS.

2. S computes MS(1), . . . , MS(n + t).

3. S then selects n + t random polynomials fS
1 (x), . . . , fS

n+t(x) over F, each
of degree t, such that for i = 1, . . . , n + t, fS

i (0) = MS(i).

4. S evaluates each fS
i (x) at x = 1, . . . , n to form an n-tuple fS

i =
[fS

i (1), . . . , fS
i (n)].

5. S constructs an (n)× (n + t) matrix T where ith column of T contains the
n-tuple fS

i , for i = 1, . . . , n+ t. The matrix T is pictorially shown in Table
1. Let FS

i = [fS
1 (i), . . . , fS

n+t(i)] denote the ith row of T , for i = 1, . . . , n.

6. For i = 1, . . . , n, S sends the following to R along wire fi:

(a) The vector FS
i ;

(b) A random non-zero hash key αS
i and

(c) The n-tuple [vS
1i, . . . , v

S
ni], where for j = 1, . . . , n, vS

ji = hash(αS
i ; FS

j ).

7. In addition to all above computation and communication, S also selects
a random non-zero (n + 1)-tuple (xS

1,i, . . . , x
S
n+1,i), which is independent

of FS
i , corresponding to every wire fi, for i = 1, . . . , n. S then sends

(xS
1,i, . . . , x

S
n+1,i) to R over wire fi.

Computation by R at the end of Phase I:

1. Let R receive the following over wire fi, for i = 1, . . . , n:

(a) The vector FR
i ;

(b) The hash key αR
i ;

(c) The n tuple [vR
1i, . . . , v

R
ni] and

(d) The (n + 1)-tuple (xR
1,i, . . . , x

R
n+1,i).

2. For i = 1, . . . , n, R computes Supporti = |{fj : vR
ij = hash(αR

j ; FR
i )}|. If

Supporti ≥ t+1, then R concludes that FR
i is a valid row of T . Otherwise,

R concludes that FR
i is an invalid row of T .

3. If R has received t + 1 valid rows, then R reconstructs the secret mR

from them and terminates the protocol. Otherwise, R proceeds to execute
Phase II.
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Table 1: Matrix T as Computed by S During Phase I of 3-SSMT

.

MS(x), Lower order n
3 coefficients of MS(x) are elements of mS

MS(1) MS(2) . . . MS(n + t)
fS
1 (x) fS

2 (x) . . . fS
n+t(x)

fS
1 (0) = MS(1) fS

2 (0) = MS(2) . . . fS
n+t(0) = MS(n + t)

fS
1 (1) fS

2 (1) . . . fS
n+t(1)

fS
1 (2) fS

2 (2) . . . fS
n+t(2)

. . . . . . . . . . . .
fS
1 (i) fS

2 (i) . . . fS
n+t(i)

. . . . . . . . . . . .
fS
1 (n) fS

2 (n) . . . fS
n+t(n)

Claim 1. If R concludes that FR
i is a valid row of T , then with overwhelming

probability FR
i = FS

i .

Proof: The lemma is true without any error if wire fi is uncorrupted. So
let wire fi be a corrupted wire, who delivers FR

i 6= FS
i . In this case, if FR

i is
considered as a valid row of T , then it implies that Supporti ≥ t+1. Since there
can be at most t corrupted wires in the top band, this implies that there exists at
least one honest wire, say fj , which correctly and securely delivered the hash key
αR

j = αS
j and hash value vR

ij = vS
ij = hash(αS

j ; FS
i ) = hash(αR

j ; FS
i ), such that

fj ∈ Supporti. Since fj ∈ Supporti, it implies that vR
ij = hash(αR

j ; FR
i ). Since

adversary does not know αR
j and vR

ij , he can ensure that vR
ij = hash(αR

j ; FS
i ), as

well as vR
ij = hash(αR

j ; FR
i ), where FR

i 6= FS
i , with probability at most n−1+t

|F| ≈

2−Ω(κ), which is negligible in our context. So with very high probability, fj

will not belong to Supporti, which is a contradiction. So with overwhelming
probability FR

i = FS
i . 2

Claim 2. During Phase I, at least n coefficients of MS(x) are information
theoretically secure.

Proof: We consider the worst case, when At controls at most t wires in the top
band. Without loss of generality, let these be the first t wires. So At will know
the vectors FS

1 , FS
2 , . . . , FS

t , from which it will come to know t distinct points on
the polynomials fS

1 (x), . . . , fS
n+t(x). But each fS

i (x) is of degree t and so At will
lack by one point to uniquely reconstruct each fS

i (x). However, At will also know
t hash values corresponding to each FS

1 , . . . , FS
n . Since the vectors FS

1 , . . . , FS
t

are already known to At, the t hash values corresponding to them does not
add anything new to At’s view. Moreover, the vectors FS

t+2, . . . , F
S
n can be

expressed as a linear combination of vectors FS
1 , . . . , FS

t+1. So the t hash values
corresponding to FS

t+2, . . . , F
S
n can always be expressed as a linear combination

of the t hash values corresponding to FS
1 , . . . , FS

t+1, which are known to the
adversary. So, out of the t hash values corresponding to each FS

i (x), 1 ≤ i ≤ n,
which are known to At, only the t hash values corresponding to FS

t+1(x) add
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to At’s view. But FS
t+1 is of length n + t. So from the properties of hashing,

(n+ t)− t = n coefficients of FS
t+1 will be information theoretically secure. This

further implies that n coefficients of MS(x) are information theoretically secure.
2

Claim 3. If R gets t + 1 valid rows of T then R can recover mS.

Proof: If R gets t + 1 valid rows, then from them, R gets t + 1 distinct points
on each fS

i (x). Since each fS
i (x) is of degree t, using the t + 1 valid rows, R

can reconstruct each fS
i (x) and hence fS

i (0) = MS(i). Now using the MS(i)’s,
R can interpolate MS(x) and recover mS. 2

Lemma 5. In protocol 3-SSMT if R recovers mR at the end of Phase I, then
with very high probability mR = mS. Moreover, At will have no information
about mR.

Proof: If R recovers mR at the end of Phase I, then it implies that R has
received t + 1 valid rows. From Claim 1, all these rows are indeed the rows
of T sent by S with very high probability. So from Claim 3, with very high
probability mR = mS. Moreover, from Claim 2, At will have no information
about mR. 2

Lemma 6. If there exists t+1 honest wires in the top band then R will always
be able to recover mS. Otherwise, with very high probability, R will detect this.
During Phase I, S communicates O(n2κ) bits.

Proof: If there exists t + 1 honest wires in the top band then R will receive
t+1 valid rows of T over them and hence from Claim 3, R will correctly recover
mR = mS. On the other hand if there exists less than t + 1 honest wires in the
top band then from the proof of Claim 1, R will receive less than t + 1 valid
rows with very high probability. So with very high probability, R will detect
that there are at most t honest wires in the top band.

During Phase I, S sends Θ(n) elements from F over each wire. So Phase
I requires a communication complexity of O(n2) bits. 2

If R is unable to recover mR at the end of Phase I, then R concludes that
there are at most t honest wires in the top band. This further implies that there
exists at least one honest wire in the bottom band. So R interacts with S so as
to enable S to re-send mS using the second method. We now describe second
phase of protocol 3-SSMT, which is explained in the next subsection.

5.2.2. Phase II of Protocol 3-SSMT

If the first method to deliver mS fails at the end of Phase I, then in the
second method, S and R interacts to securely establish an n length vector during
Phase II. Once this is done, S can use the elements of the vector as encryption
and authentication keys (as in protocol 3-SSMT-Exponential) and using them,
S reliably and securely sends mS during Phase III.

16



Securely establishing the n length vector is not easy, considering the fact
that S and R do not know the identity of corrupted wires. Also it is very
difficult for R (S) to reliably send any information to S (R). In the case of
undirected graphs, there exists at least 2t + 1 bi-directional wires between S
and R (which are necessary and sufficient for the existence of any SRMT/SSMT
protocol tolerating Astatic

t ) and so it is very easy to do reliable communication
by simply sending the information through all the wires. However here, in the
worst case, we may have t + 1 and t wires in top and bottom band respectively.
In protocol 3-SSMT-Exponential, S and R could easily establish the vector, as
they tried all possible subsets of size t+1 and there exists one subset consisting
of all honest wires. However, we cannot use the same approach here, as we
want to keep the computation and communication complexity polynomial. So
we require completely different techniques to reliably and securely establish the
keys.

Recall that during Phase I, S has sent an (n + 1)-tuple over each wire in
the top band. These tuples were not used in the first method (during Phase I)
to send mS. So R now use these tuples in the second phase. R does not know
which wires in the top band correctly delivered the (n + 1)-tuples. In order
to facilitate S to find out which tuples were delivered properly, R hashes each
received (n + 1)-tuple with a random hash key and sends back the hash values
and hash keys to S through the entire bottom band. Since there exists at least
one honest wire in the bottom band, it will correctly deliver the hash keys and
hash values. In addition to this, R also sends a random (n + u)-tuple over each
wire. Furthermore, each (n + u)-tuple is hashed by u random hash keys, one
corresponding to each wire in the bottom band.

Till now, this part of the computation and communication is some what
similar to what is done during protocol 3-SSMT-Exponential. However, there
are certain additional steps which are incorporated here. First of all, S and R
have exchanged tuples over all the wires in top band and bottom band, rather
than considering (t + 1)-sized subsets of wires. In addition to this, R sends the
hash value of each tuple received over the top band and each tuple sent over the
bottom band. Finally, the size of the tuples which are exchanged over the top
and bottom band are different. They are so to maintain the secrecy property
of mS, which will be delivered during third phase. More specifically, each tuple
received over the top band is hashed by only one key. So keeping the length of
the tuples which are exchanged over top band as n + 1 maintains the secrecy of
its first n elements. On the other hand, each tuple in the bottom band is hashed
by u random keys. So keeping the length of the tuples which are exchanged over
bottom band as n + u maintains the secrecy of its first n elements.

Now as mentioned above, the information sent by R may not reach reliably
to S. In the worst case, there can be only one honest wire in the bottom band
but S will not know its identity. Now according to the information received from
R, S divides the bottom band into acceptable sets B1, . . . ,Bk, where 1 ≤ k ≤ u.
The division is at the heart of the protocol. Informally, the division is done as
follows: S considers a wire bi in the bottom band and adds wire bj from the
bottom band in the set Bi if bj and bi are pairwise consistent. Here, by pair
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wise consistency we mean that that the hash key and hash value received by
S over wire bj is consistent with the (n + u)-tuple received by S over wire bi

and vice-versa. Notice that if bj is an honest wire and if bi and bj are pairwise
consistent, then with very high probability, the (n+u)-tuple received by S over
wire bi is not modified. This is because the adversary does not know the hash
key and hash value sent by R over wire bj , corresponding to the original ith

(n + u)-tuple.
Now after computing the set Bi, S computes the corresponding set Fi. Recall

that R has sent the hash value of each (n+1)-tuple received over the top band,
through the entire bottom band. So S considers the hash values (corresponding
to the top band tuples), received over wire bi and adds all such fj ’s in Fi, such
that the (n + 1)-tuple sent over wire fj during Phase I is consistent with the
jth hash value, received over wire bi. Notice that if fj is a corrupted wire and if
the (n + 1)-tuple sent over wire fj is modified during Phase I, then with very
high probability, fj will not be added to Fi, provided bi is an honest wire. This
is because if bi is an honest wire then adversary will not know the jth hash key
and hash value, which is sent by R over wire bi.

Finally, S considers the set Bi as acceptable, if there are at least t + 1 wires
in total in Fi and Bi. It is easy to see that there will be at most u acceptable
sets, one corresponding to each wire in the bottom band. Moreover, if bi is
an honest wire in the bottom band, then Bi will always be an acceptable set,
as all honest wires in top band and bottom band will be present in Fi and Bi

respectively. It is this division of the bottom band, which makes S now to work
with u path sets, instead of

(
2t+1
t+1

)
path sets. The formal details of Phase II of

protocol 3-SSMT are given in Fig. 3.

Remark 2. The three phase efficient SSMT protocol of [14] as well as [34] also
divides the bottom band into subsets during second phase, according to some
what different criteria. In [14], as well as in [34], the authors claimed that
their criteria will create at most u subsets of the bottom band. However, in
the subsequent section, we will show that it is not so. In the worst case, there
can be O(3u) subsets of the bottom band, thus making the communication and
computational complexity of their protocol exponential. On the other hand, our
criteria for division of bottom band always result in at most u subsets of the bot-
tom band. It is this difference in the criteria of the division of the bottom band,
which makes the communication and computational complexity of our protocol
3-SSMT polynomial.

We now prove the properties of Phase II of 3-SSMT.

Claim 4. If bi is an honest wire in the bottom band and bi ∈ Bj, corresponding
to some wire bj in the bottom band, then with very high probability, the random
(n + u)-tuple that S has received along wire bj is not modified.

Proof: The claim holds without any error if wire bj is honest. We now show
that the claim even holds for a corrupted wire bj with very high probability. So
let bj be a corrupted wire, such that the (n + u)-tuple received by S over wire
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Figure 3: Phase II of Protocol 3-SSMT

Phase II: R to S: R does the following computation and communication:

1. For i = 1, . . . , n, R chooses a random non-zero hash key rR
i ∈ F, corre-

sponding to wire fi.

2. R computes the set βR = {(rR
i , γR

i ) : i = 1, . . . , n}, where γR
i =

hash(rR
i ; xR

1,i, . . . , x
R
n+1,i). Recall that (xR

1,i, . . . , x
R
n+1,i) denotes the (n+1)-

tuple which R has received during Phase I over wire fi, for i = 1, . . . , n.

3. For i = 1, . . . , u, R selects a random non-zero (n + u)-tuple
(yR

1,i, . . . , y
R
n+u,i) ∈ F

n+u.

4. Corresponding to the (n + u)-tuple (yR
1,i, . . . , y

R
n+u,i), R selects u random

non-zero hash keys {keyR
i,j : j = 1, . . . , u} from F.

5. For i = 1, . . . , u, R sends the following to S through wire bi:

(a) βR;
(b) The (n + u)-tuple (yR

1,i, . . . , y
R
n+u,i);

(c) The 2-tuple (keyR
j,i, α

R
j,i), where αR

j,i = hash(keyR
j,i; y

R
1,j, . . . , y

R
n+u,j),

for j = 1, . . . , u.

Computation by S at the end of Phase II:

1. Let S receive the following over wire bi, for i = 1, . . . , u:

(a) βS
i = {(rR

i,j , γ
R
i,j) : j = 1, . . . , n};

(b) The (n + u)-tuple (yS
1,i, . . . , y

S
n+u,i);

(c) The 2-tuple (keyS
j,i, α

S
j,i), for j = 1, . . . , u.

2. For i = 1, . . . , u, corresponding to wire bi, S computes Bi and Fi as follows:

(a) S adds wire bj ∈ {b1, . . . , bu} to Bi (which is initially ∅) if bi, bj

are found to be pair-wise consistent by satisfying both the following
conditions:

i. αS
i,j = hash(keyS

i,j; y
S
1,i, . . . , y

S
n+u,i);

ii. αS
j,i = hash(keyS

j,i; y
S
1,j, . . . , y

S
n+u,j).

(b) S adds wire fj to Fi (which is initially ∅), if γS
i,j =

hash(rS
i,j ; x

S
1,j , . . . , x

S
n+1,j).

(c) If |Fi| + |Bi| ≤ t then S concludes that Bi is an unacceptable set,
otherwise Bi is an acceptable set.
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bj is modified; i.e., (yS
1,j, . . . , y

S
n+u,j) 6= (yR

1,j, . . . , y
R
n+u,j). Since bi ∈ Bj is an

honest wire, it implies that keyS
j,i = keyR

j,i and αS
j,i = αR

j,i = hash(keyR
j,i; y

S
1,j,

. . . , yR
n+u,j). Moreover, Astatic

t will have no information about (keyS
j,i, α

S
j,i).

Furthermore, since bi ∈ Bj , it implies that αS
j,i = hash(keyS

j,i; y
S
1,j, . . . , y

S
n+u,j).

However, from the properties of hashing, without knowing keyS
j,i, the adversary

can ensure that hash(keyS
j,i; y

S
1,j, . . . , y

S
n+u,j) = hash(keyS

j,i; y
R
1,j, . . . , y

R
n+u,j),

even if (yS
1,j , . . . , y

S
n+u,j) 6= (yR

1,j , . . . , y
R
n+u,j) with probability at most n+u

|F|−1 ≈

2−Ω(κ), which is negligible in our context. 2

Claim 5. If bi is an honest wire in the bottom band then Bi will be always
considered as an acceptable set.

Proof: Let fi1 , . . . , fiT
and bi1 , . . . , biB

denote the honest wires in the top
and bottom band respectively. Now |{fi1 , . . . , fiT

}| + |{bi1 , . . . , biB
}| ≥ t + 1.

Moreover |{fi1 , . . . , fiT
}| ≥ 1. Furthermore according to the condition given

in the claim, |{bi1 , . . . , biB
}| ≥ 1. To prove the claim we show that the wires

bi1 , . . . , biB
will be present in Bi and the wires fi1 , . . . , fiT

will be present in the
corresponding Fi. So |Fi| + |Bi| = |{fi1 , . . . , fiT

}|+ |{bi1 , . . . , biB
}| ≥ t + 1 and

thus Bi will be an acceptable set.
First of all notice that all the wires bi1 , . . . , biB

(including bi) will be present
in Bi. This is because any two wires bj , bk in the set {bi1 , . . . , biB

} will be
pairwise consistent because the following conditions are satisfied (as both these
wires are honest):

1. αS
j,k = hash(keyS

j,k; yS
1,j, . . . , y

S
n+u,j);

2. αS
k,j = hash(keyS

k,j ; y
S
1,k, . . . , yS

n+u,k).

So the wires bi1 , . . . , biB
will be present in some Bi. Since the wires fi1 , . . . , fiT

are honest, the (n+1)-tuple received by R over these wires are the same as sent
by S. That is, (xR

1,j , . . . , x
R
n+1,j) = (xS

1,j , . . . , x
S
n+1,j), for every j ∈ {i1, . . . , iT}.

This implies that γR
j = hash(rR

j ; xR
1,j , . . . , x

R
n+1,j) = hash(rR

j ; xS
1,j , . . . , x

S
n+1,j),

for every j ∈ {i1, . . . , iT }. Since the wires bi1 , . . . , biB
are honest, they will cor-

rectly deliver βR and hence βS
i = βR, as wire bi is honest. This implies that

(γS
i,j , r

S
i,j) = (γR

j , rR
j ) for every j ∈ {i1, . . . , iT}. So when S executes step 2(b)

of the local computation with respect to βS
i , all the wires fi1 , . . . , fiT

will be
added in Fi. 2

Claim 6. Let bi be an honest wire in the bottom band. Then with very high
probability, the (n+1)-tuple received by R at the end of Phase I over the wires
in Fi are not modified.

Proof: Let bi be an honest wire in the bottom band. Then |Fi| ≥ 1. This
is because from the proof of the previous claim, |Bi| + |Fi| ≥ t + 1 and there
can be at most t wires in Bi. Now let fj be an honest wire from the top
band, which is present in Fi. Since fj is honest, it implies that it will correctly
deliver the (n + 1)-tuple to R. On the other hand, let fj be a corrupted wire
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in the top band, such that fj has modified the (n + 1)-tuple sent by S over fj .
That is (xR

1,j , . . . , x
R
n+1,j) 6= (xS

1,j , . . . , x
S
n+1,j). We now show that except with

probability 2−Ω(κ), fj will not be present in Fi.
Notice that when modifying the (n+1)-tuple over wire fj , the adversary has

no idea about the random hash key rR
j , corresponding to wire fj, which is going

to be selected by R during Phase II. Now γR
j = hash(rR

j ; xR
1,j , . . . , x

R
n+1,j).

Since wire bi is honest, it will correctly deliver βR and hence (rR
j , γR

j ). So βS
i =

βR and hence (rS
ij , γ

S
ij) = (rR

j , γR
j ). Since (xR

1,j , . . . , x
R
n+1,j) 6= (xS

1,j , . . . , x
S
n+1,j)

and adversary has no information about rR
j , from the properties of hashing,

except with probability n
|F| ≈ 2−Ω(κ), γS

ij 6= hash(rS
ij ; x

S
1,j , . . . , x

S
n+1,j). Thus

except with probability 2−Ω(κ), fj will not be present in Fi. 2

Claim 7. Let Bi be an acceptable set. If bj is an honest wire in Bi, then the
adversary will have no information about the first n values from the (n + u)-
tuple which is sent by R over wire bj. Similarly, if fj is an honest wire in Fi,
then the adversary will have no information about the first n values from the
(n + 1)-tuple which is sent by S over wire fj.

Proof: Let Bi be an acceptable set and let bj be an honest wire in Bi. Since
bj is an honest wire, the adversary will not know the (n+u)-tuple which R will
send over wire bj . Now notice that during Phase II, R hashes the (n+u)-tuple
which is going to be sent over wire bj, by u random hash keys and sends one
(hash key, hash value) pair through each wire in the bottom band. In the worst
case, the entire bottom band, except wire bj may be under the control of the
adversary. So in the worst case, adversary will know u− 1 distinct hash values,
corresponding to the (n + u)-tuple sent over wire bj . So from the properties of
hashing, the adversary will have no information about the first n values from
the (n + u)-tuple which is sent by R over wire bj .

Now suppose there exists an honest wire, say fj , in Fi. So the adversary
will not know the (n + 1)-tuple which S has sent over wire fj. Now notice that
during Phase II, R hashes the (n+1)-tuple received over wire fj by a random
hash key rR

j , adds the pair (rR
j , γR

j ) to βR and sends βR over all the wires in
the bottom band. So even if the entire bottom band is under the control of
the adversary, the adversary will know only one hash value corresponding to
the (n + 1)-tuple which was sent by S over wire fj . So from the properties of
hashing, the adversary will have no information about the first n values from
the (n + 1)-tuple which is sent by S over wire fj . 2

We now summarize the properties of set Bi,Fi, corresponding to an honest wire
bi in the bottom band.

Lemma 7. Let bi be an honest wire in the bottom band. Then Bi and corre-
sponding Fi will have the following properties:

1. Bi will be an acceptable set.
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2. All honest wires in the bottom band will be present in Bi, while all the
honest wires in the top band will be present in Fi.

3. With very high probability, the (n + u)-tuple received by S at the end of
Phase II over the wires in Bi are not modified.

4. With very high probability, the (n + 1)-tuple received by R at the end of
Phase I over the wires in Fi are not modified.

5. The adversary will have no information about the first n values from the
(n + u)-tuples which are exchanged over the honest wire(s) in Bi. The
adversary will also have no information about the first n values from the
(n + 1)-tuples which are exchanged over the honest wires in Fi.

Proof: Follows from the proof of Claim 4, Claim 5, Claim 6 and Claim 7. 2

We now prove the properties of set Bi,Fi, corresponding to a wire bi in the
bottom band, such that bi is under the control of the adversary.

Claim 8. Let bi be a corrupted wire in the bottom band, such that there exists
an honest wire in Bi. Then the adversary can modify the (n + u)-tuple which
are exchanged over the corrupted wires in Bi, other than bi, without letting S
know about it.

Proof: Let bj be an honest wire present in Bi. Then from the proof of Claim 4,
the (n+u)-tuple is correctly exchanged between S and R over wire bi with very
high probability. However, it does not imply that the (n+u)-tuple are correctly
exchanged over other corrupted wires (if any) in Bi. More specifically, let bk be a
corrupted wire in the bottom band, other than bi, such that (yS

1,k, . . . , yS
n+u,k) 6=

(yR
1,k, . . . , yR

n+u,k). Since bi is also under the control of the adversary, the ad-

versary will know (keyR
k,i, α

R
k,i). Moreover, the adversary can modify the pair

such that (keyS
k,i, α

S
k,i) 6= (keyR

k,i, α
R
k,i) and αS

k,i = hash(keyS
k,i; y

S
1,k, . . . , yS

n+u,k).

Furthermore, adversary does not modify (keyR
i,k, αR

i,k) and thus (keyS
i,k, αS

i,k) =

(keyR
i,k, αR

i,k), where αS
i,k = hash(keyS

i,k; yS
1,i, . . . , y

S
n+u,i). If the adversary be-

haves in this manner, then bi and bk will be pairwise consistent, while bk and bj

will not be pair-wise consistent. But still bk will be included in Bi and neither S
nor R will know that the (n+u)-tuple exchanged over wire bk ∈ Bi is corrupted.
2

Claim 9. Let bi be a corrupted wire in the bottom band and let fj be a corrupted
wire in the top band, which is present in Fi. Then the adversary can modify the
(n + 1)-tuple which is exchanged over corrupted wire fj, without letting S and
R know about it.

Proof: Let fj be a corrupted wire in the top band, such that (xR
1,j , . . . , x

R
n+1,j) 6=

(xS
1,j , . . . , x

S
n+1,j). Since bi is also under the control of the adversary, it implies

that βR and hence (rR
j , γR

j ) is also known to the adversary. Now notice that

γR
j = hash(rR

j ; xR
1,j , . . . , x

R
n+1,j). During the transmission of βR over bi, the

adversary can simply change the jth pair in βR, such that (rS
i,j , γ

S
i,j) 6= (rR

j , γR
j )
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and γS
i,j = hash(rS

i,j ; x
S
1,j , . . . , x

S
n+1,j). The adversary can do so because he

knows (xS
1,j , . . . , x

S
n+1,j) and rR

j and bi is under his control. So even though the
(n + 1)-tuple is not correctly exchanged over fj , still fj can be present in Bi. 2

We now summarize the properties of set Bi,Fi, corresponding to a wire bi in
the bottom band, such that bi is under the control of the adversary.

Lemma 8. Let bi be a wire in the bottom band such that bi is under the control
of the adversary. Moreover, let Bi be an acceptable set. Then Bi and corre-
sponding Fi will have the following properties:

1. There will exist at least one honest wire, either from the top band or bottom
band, which will be present in Fi or Bi respectively.

2. If there exists an honest wire in Fi, then the (n + 1)-tuple is correctly
exchanged between S and R over that wire. Moreover, adversary will have
no information about the first n values of the (n + 1)-tuple.

3. If there exists an honest wire in Bi, then the (n + u)-tuple is correctly
exchanged between S and R over that wire. Moreover, adversary will have
no information about the first n values of the (n + u)-tuple.

4. If there exists an honest wire in Bi, then with very high probability the (n+
u)-tuple is correctly exchanged between S and R over wire bi. However,
the adversary can modify the (n + u)-tuple which are exchanged over the
corrupted wires in Bi, other than bi, without letting S know about it.

5. If there is no honest wire in Bi, then the adversary can always modify the
(n + u)-tuple which are exchanged over the corrupted wires in Bi, without
letting S know about it.

6. Irrespective of the number of honest wires in the top band, the adversary
can always modify the (n + 1)-tuple which is exchanged over a corrupted
wire (if any) in Fi, without letting S and R know about it.

Proof: Since Bi is an acceptable set, it implies that |Bi| + |Fi| ≥ t + 1. In
the worst case there can t corrupted wires including top and bottom band. This
implies that there exists at least one honest wire, which is present either in Fi

or Bi. This proves the first property.
Let fj be an honest wire present in Fi. It implies that the (n + 1)-tuple is

correctly exchanged between S and R over wire fj . Moreover, from the proof
of Claim 7, adversary will have no information about the first n values of the
(n + 1)-tuple. This proves the second property.

Let bj be an honest wire present in Bi. It implies that the (n + u)-tuple is
correctly exchanged between S and R over wire bj . Moreover, from the proof
of Claim 7, adversary will have no information about the first n values of the
(n + u)-tuple. This proves the third property.

The fourth property follows from the proof of Claim 8.
We now prove the fifth property. The corrupted wires in the bottom band

can behave in such a way that even though there does not exist any honest wire
in Bi, still Bi becomes an acceptable set. We consider a possible setting and
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adversarial behavior in which it is possible. The setting can be easily generalized.
More specifically, suppose u = t and there exists t − 1 corrupted wires in the
bottom band, who modify the (n + u)-tuple exchanged over them. Moreover,
as explained in the proof of Claim 8, the adversary can control these t− 1 wires
in such a way that from S’s point of view, all the t − 1 corrupted wires are
pairwise consistent. Furthermore, adversary can ensure that none of these t− 1
corrupted wires are pair wise consistent with the single honest wire which is
present in the bottom band. That is, if bj is an honest wire in the bottom band,
then the adversary can simply modify (keyR

j,k, αR
j,k), over all t−1 corrupted bk’s,

thus making bj not pair-wise consistent with any of the t − 1 corrupted wires.
Now as a result of such adversarial behavior, only corrupted wires (t−1) will be
present in Bi. In order that Bi becomes acceptable, there should be at least two
wires in Fi. Notice that in the scenario we are considering, there are t honest
wires in the top band, who will correctly deliver the (n+1)-tuples to R. So if bi

correctly delivers βR without doing any modification, then βS
i = βR and hence

S will include all the t honest wires in the top band in Fi and hence Bi will
become acceptable. This proves the fifth property.

The last property follows from the proof of Claim 9. 2

Remark 3 (Difference Between Corrupted and Honest Acceptable Set).
Comparing Lemma 7 and Lemma 8, we find that in case of honest bi, the (n+1)-
tuples and (n + u)-tuples are exchanged correctly between S and R over all the
wires in Fi and Bi respectively with very high probability. Moreover, there will
be at least t+1 (honest) wires distributed in Fi and Bi, such that adversary will
have no information about the first n values of the tuples that are exchanged over
those wires. On the other hand, in the case of corrupted bi, the (n + 1)-tuples
and (n+u)-tuples are exchanged correctly between S and R only over the honest
wires in Fi and Bi respectively. Moreover, there will be at least one (honest)
wire either in Fi or Bi, such that the adversary will have no information about
the first n values of the tuple that is exchanged over that wire.

Lemma 9. In protocol 3-SSMT, there can be at most u acceptable sets.

Proof: The proof follows from the fact corresponding to each wire bi in the
bottom band, there is only one Bi and Fi. 2

Lemma 10. In protocol 3-SSMT, R communicates O(n2κ) bits during Phase
II.

Proof: During Phase II, R sends O(n) field elements over each wire. This
requires a communication complexity of O(nuκ) = O(n2κ) bits, as u = O(n). 2

Finally before proceeding further to the description of third phase of the proto-
col, we note that R executes Phase II only if he could not recover mS at the end
of Phase I. However, even if R recovers mS at the end of Phase I, he has no
way to signal this to S. This is because there are at most t wires in the bottom
band and in the worst case, entire bottom band may be under the control of the
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adversary. So even if R does not execute Phase II and does no communication
to S, in the worst case the adversary may simply control some wire(s) in the
bottom band and passes some information to S, which may lead S to construct
some valid acceptable set(s), corresponding to those wire(s)!! Fortunately the
properties of hashing ensures that this happens with very negligible probability,
as shown in the next lemma.

Lemma 11. Suppose in protocol 3-SSMT, R recovers mS at the end of Phase
I and does no communication over the bottom band. Then the probability that
the adversary corrupts bottom band and sends some arbitrary information to S
which leads to the construction of acceptable set is at most 2−Ω(κ).

Proof: Consider the following settings: there are t + 2 wires in the top band
and t − 1 wires in the bottom band, such that the entire bottom band and
one wire from the top band are under the control of the adversary. Suppose
R recovers mS at the end of Phase I itself and so does not execute Phase
II. However, the adversary may do the following: the adversary selects t − 1
arbitrary (n + u)-tuples and (t − 1)2 random hash keys and put these values
over the wires in the bottom band in such a way, as if R has executed Phase
II using the (n + u)-tuples and (t − 1)2 random hash keys. So it is easy to
see that all the wires in the bottom band will be pairwise consistent and thus
|Bi| = t− 1, for i = 1, . . . , t− 1. However, in order that any of these Bi becomes
an acceptable set, the adversary has to ensure that the corresponding |Fi| ≥ 2.

Now notice that the adversary will know the (n+1)-tuple which is exchanged
over the single wire in the top band which is under the control of the adversary.
So the adversary can always produce the hash value of this tuple, corresponding
to any hash key. However, the adversary will have no information about the
(n + 1)-tuples which are exchanged over the t + 1 honest wires in the top band.
The probability that the adversary will be able to produce the hash value of the
(n + 1)-tuple, corresponding to any of these t + 1 honest wires, for a given hash
key is same as the probability of correctly guessing the corresponding (n + 1)-
tuple, which is n+1

|F|n+1 ≈ 2−Ω(κ).

Now the adversary may do the following: he selects t + 2 hash keys, one
corresponding to each wire in the top band. The adversary also guesses the
(n + 1)-tuple which S would have sent over each honest wire in the top band
and computes the hash value of those tuples, as if the tuples are received by
R. The adversary also computes the hash value of the (n + 1)-tuple, which S
has sent over the wire under its control in the top band. Thus the adversary
computes βR, as if βR is computed by R. The adversary is sure that at least one
(hash-key, hash-value) pair in the computed βR, namely the one correspond-
ing to the corrupted wire in the top band is correct. The remaining (hash-key,
hash-value) pair in the computed βR (corresponding to the honest wires in the
top band) may be correct, depending upon the guess of the adversary. The
adversary then sends the computed βR to S over the entire bottom band. On
receiving βS

i = βR, S will add the corrupted wire in the top band to the set Fi.
Moreover, if the adversary has successfully guessed the (n + 1)-tuple which was
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sent over some honest wire fj , then the jth (hash-key, hash-value) pair in βS
i

would be correct and hence fj will be added in Fi, thus making |Fi| = 2 and
hence Bi as an acceptable set. However, this happens with probability 2−Ω(κ). 2

We now proceed towards the discussion of third phase, which is given in the
next subsection.

5.3. Phase III of Protocol 3-SSMT

Notice that at the end of second phase, S could have u acceptable sets. S
will not know which of these acceptable sets contains only honest wires. From
S’s view point, all acceptable set may look valid. So S assumes that all the
acceptable sets are valid and tries to compute separate encryption key and
authentication key from each acceptable set. Specifically, S considers the wires
in each acceptable Bi and corresponding Fi as a valid path set and using them,
S does the same computation and communication as in Phase III of protocol
3-SSMT-Exponential. However, instead of dealing with

(
2t+1
t+1

)
path sets, S has

to only consider u path sets. In the same way, R recovers the message at the
end of third phase by performing similar computation, as it does at the end of
Phase III of 3-SSMT-Exponential.

The secrecy of the protocol follows from the fact that corresponding to every
acceptable Bi, there exists at least one honest wire, either in Bi or corresponding
Fi, such that the adversary will have no information about the first n values of
the tuple which is exchanged correctly between S and R over the honest wire.
So adversary will have no information about the n-tuple (whose elements are
considered as the authentication and encryption keys), computed by S from the
tuples, which are exchanged over the wires in Bi and Fi. Moreover, if the tuples
are not correctly exchanged between S and R over the wires in Bi and Fi, then
S and R will end up with different version of authentication and encryption
keys. So except with negligible error probability, the verification at R’s end will
fail. This ensures reliability. The Phase III of protocol 3-SSMT is formally
presented in Fig. 4.

We now prove the properties of Phase III of protocol 3-SSMT.

Lemma 12. In protocol 3-SSMT, mS will be information theoretically secure
at the end of Phase III.

Proof: In protocol 3-SSMT, during Phase III, S encrypts and authenticates
mS by using the tuples, which are exchanged between S and R over the wires
in Bl and Fl, if Bl is an acceptable set. Now as stated in Remark 3, irrespective
of whether wire bl is honest or corrupted, there exists at least one honest wire,
either in Bl or Fl, such that the adversary will have no information about the
first n elements of the tuple which is exchanged between S and R over that
honest wire. Since the keys CS

1,l, . . . , C
S
n,l are computed by adding the first n

elements of the all the tuples which are exchanged between S and R over the
wires in Bl or Fl, it implies that CS

1,l, . . . , C
S
n,l will be information theoretically

secure. Since CS
1,l, . . . , C

S
n,l are used as encryption and authentication keys, by
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Figure 4: Phase III of Protocol 3-SSMT

Phase III: S to R: For each acceptable set Bl and corresponding set Fl, S
does the following computation and communication:

1. S considers the first n elements from the (n+1)-tuples which it had sent
over the wires in Fl during Phase I and the first n elements from the
(n + u)- tuples which S has received over the wires in Bl during Phase
II. By using them, S computes his version of n keys CS

1,l =
∑

fj∈Fl
xS

1,j +
∑

bj∈Bl
yS
1,j, C

S
2,l =

∑
fj∈Fl

xS
2,j +

∑
bj∈Bl

yS
2,j , . . ., CS

n,l =
∑

fj∈Fl
xS

n,j +
∑

bj∈Bl
yS

n,j.

2. For each element of mS (recall that |mS| = n
3 ), S takes three

elements from the keys computed in the previous step and com-
putes the set SS

l = {(cSi,l, d
S
i,l) : i = 1, . . . , n

3 } where (cSi,l, d
S
i,l) =

USauth(mS
i ; CS

3i−2,l, C
S
3i−1,l, C

S
3i,l), for i = 1, . . . , n

3 .

3. S sends the set Fl,Bl and SS
l to R over all the wires in the set Fl and

terminates the protocol.

Message Recovery by R:

1. Let R receive the sets FR
j,l,B

R
j,l and SR

j,l along wire fj , for j = 1, . . . , n.
In the worst case, l = 1, . . . , u. R then executes the following steps.

2. If for some j ∈ {1, 2, . . . , n} and some l ∈ {1, 2, . . . , u}, |FR
j,l|+ |BR

j,l| ≤ t,
then R concludes that wire fj is corrupted and neglects all the values
received along fj .

3. If fj is not neglected, then for each FR
j,l,B

R
j,l and SR

j,l received along wire
fj , R does the following:

(a) Let SR
j,l = {(cRj,i,l, d

R
j,i,l) : i = 1, . . . , n

3 }.

(b) By using the index of the wires in FR
j,l and BR

j,l, R computes his

version of n keys CR
j,1,l, . . . , C

R
j,n,l.

(c) For i = 1, . . . , n
3 , R applies the verification process of USauth on

cRj,i,l, d
R
j,i,l, C

R
j,3i−2,l, C

R
j,3i−1,l and CR

j,3i,l.
(d) If the verification is successful for all i = 1, . . . , n

3 , then R recovers
mR

j,i,l from cRj,i,l, for i = 1, . . . , n
3 .

(e) Finally, R concatenates mR
j,1,l, . . . , m

R
j, n

3
,l to reconstruct the secret

mR and terminates the protocol.
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the properties of USauth, it follows that mS will be information theoretically
secure at the end of Phase III. 2

Lemma 13. In protocol 3-SSMT, mR = mS with very high probability.

Proof: Let FR
j,l,B

R
j,l and SR

j,l denote the sets, which passes the verification test

in step 3 of message recovery. This implies that R has recovered mR from SR
j,l

after computing his keys from the tuples which are exchanged between S and R
over the wires in FR

j,l and BR
j,l. Now notice that there exists at least one honest

wire, which is present in either FR
j,l or BR

j,l, such that adversary will have no
information about the first n elements of the tuple exchanged over that wire.
So the keys computed by R from FR

j,l and BR
j,l will be information theoretically

secure. Moreover, as explained in the previous lemma, the keys which are used
by S for encrypting and authenticating mS will also be information theoretically
secure. Now irrespective of whether the tuples are correctly exchanged between
S and R over all the wires in FR

j,l and BR
j,l, the adversary will have no information

about the keys used by S and the keys used by R. So from the properties of
USauth, if at all R outputs mR from SR

j,l, then except with probability 2−Ω(κ),

mR = mS. 2

Lemma 14. In protocol 3-SSMT, there always exist a wire fj in the top band,
such that FR

j,l,B
R
j,l and SR

j,l received by R over wire fj will satisfy the verification
process.

Proof: The proof simply follows from the fact that there exists at least t + 1
honest wires including top and bottom band and these t + 1 honest wires will
form some acceptable set Bl and corresponding Fl. The rest now follows from
the protocol code for Phase III. 2

Lemma 15. During Phase III, S communicates O(n3κ) bits.

Proof: During Phase III, corresponding to an acceptable set Bl, S sends the
identity of Bl,Fl and the encryption, authentication of mS along all the wires
in Fl. This requires a communication complexity of O(n2) field elements and
hence O(n2κ) bits. Now there can be u = O(n) acceptable sets. So the worst
case communication complexity of Phase III is O(n3κ) bits. 2

We now summarize the properties of protocol 3-SSMT by the following theorem.

Theorem 2. Protocol 3-SSMT is valid SSMT protocol, which sends a mes-
sage containing n

3 κ bits by communicating O(n3κ) bits and takes at most three
phases.

Finally, before ending our discussion on three phase SSMT, we discuss about
the three phase SSMT protocol of [14] and [34] and show that the computa-
tional and communication complexity of both the protocols are exponential, as
opposed to polynomial, as claimed in [14] and [34].
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5.4. Inefficiency of the Three Phase SSMT of [14, 34, 55]

In [34], the authors presented a three phase SSMT protocol called ΠExisting
modified

(see Page 314 of [34]). The protocol securely sends a message containing n
3 field

elements. The idea of the protocol is similar to the three phase SSMT protocol
of [14, 55] 6 except that the SSMT protocol of [14, 55] sends a single message.
The authors in [34] called the three phase SSMT protocol of [14, 55] as ΠExisting .
The authors in [34], as well as in [14, 55] claimed that their three phase SSMT
protocol requires polynomial computational and communication complexity 7.
However, we now show that the computational and communication complexity
of the SSMT protocols of [14, 34, 55] are exponential.

We specifically consider protocol ΠExisting
modified and show an adversarial behavior,

which may result S to communicate exponential number of bits during third
phase. The behavior also causes S and R to perform exponential computation
during Phase III and at the end of Phase III respectively. A similar behavior
can cause the same result for the SSMT protocol ΠExisting.

The three phase SSMT protocol ΠExisting
modified of [34] is same as protocol 3-SSMT

presented in the previous section, except for the computation which is done by S
at the end of Phase II. Specifically, in protocol ΠExisting

modified, S divides the bottom
band at the end of Phase II, using some what different criteria, as shown in
Fig. 5.

In [34], the authors claimed that there can be at most u acceptable sets, one
corresponding to each wire in the bottom band. However, we now show that this
is not true. In fact, we show that in the worst case there can be O(3t) acceptable
sets. Before doing so, we first present few concepts from graph theory.

Definition 9 (Maximal Clique and Maximal Independent Set [1, 2]).
A maximal clique in a graph is a clique that cannot be extended by adding one
more vertex to the clique. Complimentarily a maximal independent set is an
independent set which cannot be extended by adding one more vertex to the in-
dependent set. If S is a maximal independent set in some graph, then it is a
maximal clique in the complementary graph.

Definition 10 (Tuŕan Graph[3]). The Tuŕan Graph T (n, r) is a graph formed
by partitioning a set of n vertices into r subsets, with sizes as equal as possible,
and connecting two vertices by an edge whenever they belong to different subsets.
That is, it is a complete r-partite graph

K⌈n/r⌉,⌈n/r⌉,...,⌊n/r⌋,⌊n/r⌋

The following result from [31] states the upper bound on the number of
maximal cliques that can be possible in any graph.

6The three phase SSMT protocol presented in [14] and [55] are same.
7[34] claimed that their three phase SSMT protocol requires a communication complexity

of O(n3κ) bits, where as [14, 55] claimed that their SSMT protocol is efficient, requiring
polynomial computational and communication complexity.
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Figure 5: Computation by S at the End of Phase II of Protocol ΠExisting
modified

[34]

S does the Following Computation at the End of Phase II:

1. Let S receive the following over wire bi, for i = 1, . . . , u:

(a) βS
i = {(rR

i,j , γ
R
i,j) : j = 1, . . . , n};

(b) The (n + u)-tuple (yS
1,i, . . . , y

S
n+u,i);

(c) The 2-tuple (keyS
j,i, α

S
j,i), for j = 1, . . . , u.

2. S divides the bottom band {b1, . . . , bu} into subsets B1, . . . ,Bk, such that
for l = 1, . . . , k, every two wires bi, bj ∈ Bl are pair-wise consistent by
satisfying the following conditions:

(a) βS
i = βS

j ;

(b) αS
i,j = hash(keyS

i,j; y
S
1,i, . . . , y

S
n+u,i);

(c) αS
j,i = hash(keyS

j,i; y
S
1,j, . . . , y

S
n+u,j).

3. For l = 1, . . . , k, S computes the set Fl, corresponding to Bl as follows:

(a) Let bi ∈ Bl.
(b) S adds wire fj in Fl if γS

i,j = hash(rS
i,j ; x

S
1,j , . . . , x

S
n+1,j).

4. For l = 1, . . . , k, if |Fl| + Bl ≥ t + 1 then S considers Bl as an acceptable
set, otherwise S considers Bl as unacceptable.
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Theorem 3 ([31, 1, 2]). Any graph with n vertices can have at most 3
n
3 max-

imal cliques.

The Tuŕan graph T (n, ⌈n/3⌉), also called as Moon-Moser graph satisfies
the bound given in the above theorem, as shown in the following example:

Example 1 (Largest Number of Maximal Cliques Possible in a Graph).
Let G be a graph with n vertices, which is a disjoint union of n/3 triangle graphs.
Any maximal independent set in this graph is formed by choosing one vertex from
each triangle. It is easy to see that there will be 3n/3 maximal independent sets
in G. Moreover, these maximal independent sets will be maximal clique in the
complementary graph G. Thus G will have exactly 3n/3 maximal cliques. The
graph G is nothing, but the Tuŕan graph T (n, ⌈n/3⌉), which is also called as
Moon-Moser graph.

Now we return back to the computation done by S at the end of Phase II
in protocol ΠExisting

modified, as given in Fig. 5. We define the following graph:

Definition 11 (Consistency Graph). Let G = (V, E) be an undirected graph
where V = {b1, . . . , bu} and (bi, bj) ∈ E iff bi, bj are pairwise consistent and
satisfies the following conditions:

1. βS
i = βS

j ;

2. αS
i,j = hash(keyS

i,j; y
S
1,i, . . . , y

S
n+u,i);

3. αS
j,i = hash(keyS

j,i; y
S
1,j , . . . , y

S
n+u,j).

Then the graph G is called the consistency graph.

We next claim that each Bl computed by S in ΠExisting
modified is a maximal clique

in the consistency graph G.

Claim 10. Each Bl computed by S in Fig. 5 is a maximal clique in consistency
graph G.

Proof: Follows from the definition of maximal clique, consistency graph and
the steps executed to compute Bl. 2

Claim 11. Let bi be a wire in the bottom band which is under the control of
the adversary and let bj be another wire in the bottom band (other than bi).
Then irrespective of whether bj is under the control of the adversary or not,

the adversary can control the behavior of bi during Phase II of ΠExisting
modified and

decide whether bi is consistent with bj or not.

Proof: First of all, in order that bi, bj are pair-wise consistent, the following
must hold:

1. βS
i = βS

j ;

2. αS
i,j = hash(keyS

i,j; y
S
1,i, . . . , y

S
n+u,i);
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3. αS
j,i = hash(keyS

j,i; y
S
1,j , . . . , y

S
n+u,j).

Since bi is under the control of the adversary, the following information is
completely under his control:

1. βS
i ;

2. The (n + u)-tuple (yS
1,i, . . . , y

S
n+u,i);

3. The pairs (keyS
j,i; α

S
j,i), for all j = 1, . . . , u.

Now let bj be a specific wire in the bottom band (other than bi). If bj is
also under the control of the adversary, then the adversary can always control
bi, bj and decide whether bi, bj are consistent or inconsistent. On the other
hand, even if bj is honest, the adversary can control bi and decide whether
bi are bj are consistent or inconsistent. Specifically, if adversary wants that
bi and bj are consistent, then the adversary does not modify the information
passed over wire bi. That is, βS

i = βR
i , (yS

1,i, . . . , y
S
n+u,i) = (yR

1,i, . . . , y
R
n+u,i) and

(keyS
j,i; α

S
j,i) = (keyR

j,i; α
R
j,i). Since bj is anyway honest, this implies that bi, bj

will be pairwise consistent.
On the other hand, suppose adversary wants bi, bj to be inconsistent. The ad-

versary can do so by arbitrarily changing (keyS
j,i; α

S
j,i), such that (keyS

j,i; α
S
j,i) 6=

(keyR
j,i; α

R
j,i). In this case, bi, bj will not not be consistent. 2

Lemma 16. The adversary can behave during Phase II of protocol ΠExisting
modified

in such a way that it results in O(3t) acceptable sets.

Proof: To prove the lemma, we consider the following specific network settings
and adversarial behavior. However, the settings and the behavior can be easily
generalized. Suppose n = t + 1 and u = t. Moreover, without loss of generality,
let f1, . . . , ft and bt be the honest wires in the top band and bottom band
respectively. Furthermore, let ft+1 and b1, . . . , bt−1 be the wires under the
control of the adversary in top band and bottom band respectively.

Now suppose that the adversary controls b1, . . . , bt−1 in such a way that none
of these wires are pairwise consistent with the honest wire bt. That is, vertex bt

becomes an isolated vertex in the consistency graph. As explained in Claim 11,
the adversary can always control b1, . . . , bt−1 in such a way which causes this
situation. Moreover, let the adversary controls b1, . . . , bt−1 in such a way that
the consistency graph induced by the vertex set {b1, . . . , bt−1} results in a Tuŕan
graph T (t − 1, ⌈(t − 1)/3⌉). Again, since the wires b1, . . . , bt−1 are under the
control of the adversary, the adversary can control these wires so as to create
the above situation. Now as stated in Theorem 3 and shown in Example 1, the
graph T (t − 1, ⌈(t − 1)/3⌉) will have 3t−1 = O(3t) maximal cliques. Moreover,
from Claim 10, each of these maximal cliques will be considered as a distinct
Bl by S. Thus, S will get O(3t) distinct Bl’s at the end of Phase II. Next we
show that the adversary can control b1, . . . , bt−1 in such a way that each of these
O(3t) distinct Bl’s become valid acceptable sets.

Recall that during Phase II, R sends βR over the entire bottom band. Sup-
pose that the adversary does not modify βR during its transmission over wires
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b1, . . . , bt−1. In this case, all the honest wires in the top band, namely f1, . . . , ft

will be added in each Fl. Since each Bl contains at least one wire, it implies
that |Fl|+ |Bl| ≥ t + 1 will hold for all Bl’s. Thus each Bl will be considered as
acceptable. Thus there will be O(3t) acceptable sets. 2

Since Phase III of protocol ΠExisting
modified is same as Phase III of protocol 3-

SSMT, where S tried to send mS using all possible acceptable sets, we have the
following theorem:

Theorem 4. In protocol ΠExisting
modified, S and R may have to do exponential com-

putation. Moreover, S may do exponential communication.

Proof: As explained in previous lemma, S and R may end up with exponential
number of acceptable sets in protocol ΠExisting

modified. Thus they have to do expo-
nential computation. It is easy to see that in this case, S has to do exponential
communication during Phase III, as S has to send mS, corresponding to each
acceptable set by using the keys computed from it. 2

Now as in protocol ΠExisting
modified, the adversary may control the bottom band in

such a way that S may end up with exponential number of acceptable sets at
the end of Phase II of the three phase efficient SSMT protocol ΠExisting of
[14, 55]. We capture this by the following theorem statement.

Theorem 5. In protocol ΠExisting, S and R may have to do exponential com-
putation. Moreover, S may do exponential communication.

Since protocol ΠExisting
modified is used as a black-box in other SRMT and SSMT

protocols of [34], it will make the computational and communication complexity
of all the SRMT and SSMT protocols of [34] exponential.

Remark 4 (Difference Between Phase II of Protocol 3-SSMT and ΠExisting
modified).

The main difference between Phase II of protocol 3-SSMT and ΠExisting
modified is the

way S divides the bottom band. In ΠExisting
modified, it is required that all the wires

in a Bl should be pairwise consistent, thus making Bl a maximal clique. On
the other hand, in 3-SSMT, it is required that all the wires in a Bl should be
pairwise consistent only with wire bl. It is this subtle difference which results in
at most u acceptable sets (one corresponding to each wire in the bottom band)
in protocol 3-SSMT.

Though protocol 3-SSMT is an efficient SSMT protocol, it is not a communi-
cation optimal protocol. We can further reduce the communication complexity
of SSMT protocols by increasing the number of phases in the protocol, which
will further lead us to the design of a communication optimal SSMT protocol. In
order to design the protocol, we require few more black box, which we describe
in the subsequent sections.
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Table 2: Matrix BS as computed by S in Protocol 1-Pad

kS
1,1 . . . kS

1,c

. . . . . . . . .
kS

i,1 . . . kS
i,c

. . . . . . . . .
kS

t+1,1 . . . kS
t+1,c

yS
t+2,1 . . . yS

t+2,c

. . . . . . . . .
yS

n,1 . . . yS
n,c

6. Six Phase Statistically Secure Pad Establishment Protocol

We now propose a six phase protocol called 6-Pad, which correctly establishes
a random non-zero one time pad between S and R with very high probability
by communicating O(n3) field elements. Moreover, the pad will be information
theoretically secure. If the entire bottom band is corrupted, then the size of
the pad is Θ(n2u) field elements. Otherwise the size of the pad is Θ(n2) field
elements. Before presenting protocol 6-Pad, we present another protocol called
1-Pad, which will be used as a black-box in protocol 6-Pad.

6.1. Single Phase Pad Establishment Protocol

Suppose S and R somehow in advance knows that full bottom band is cor-
rupted. This implies that at most t − u wires in the top band are corrupted.
This further implies that there exists at least t + 1 honest wires in the top
band. Under this assumption, we design a single phase protocol called 1-Pad

which allows S and R to correctly establish a non-zero random one time pad of
size Θ(n2u) with very high probability by communicating O(n3) field elements.
Moreover, the pad will be information theoretically secure. The idea of the
protocol is similar to the one used in Phase I of protocol 3-SSMT. Recall that
Phase I of protocol 3-SSMT would be successful if there exists at least t + 1
honest wires in the top band (see Lemma 6). Now in 1-Pad we have t+1 honest
wires in the top band. So if we execute Phase I of 3-SSMT then it would be
successful. Protocol 1-Pad is based on this principle. The protocol is formally
given in Fig. 6.

We now prove the properties of protocol 1-Pad.

Claim 12. In protocol 1-Pad if R concludes that FR
i is a valid row of BS then

with very high probability FR
i = FS

i .

Proof: The proof follows using similar argument as in Claim 1. 2

Claim 13. In protocol 1-Pad, PS will be information theoretically secure.
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Figure 6: Single Phase Protocol 1-Pad

Computation and Communication by S:

1. Let c = n2 + t − u. S selects (t + 1) × c random non-zero elements from
F, denoted by kS

1,1, k
S
1,2, . . . , k

S
1,c, . . . , k

S
t+1,1, k

S
t+1,2, . . . , k

S
t+1,c.

2. S constructs an (t + 1) × c matrix AS, where the ith row of AS is
[kS

i,1, . . . , k
S
i,c], for i = 1, . . . , t + 1.

3. Considering the elements of ith column [kS
1,i, . . . , k

S
t+1,i]

T , S forms
a t degree polynomial qi(x) passing through the t + 1 points
[(1, kS

1,i), (2, kS
2,i), . . . , (t + 1, kS

t+1,i)], for i = 1, . . . , c.

4. For i = 1, . . . , c, S evaluates qi(x) at x = t + 2, . . . , n to obtain
yS

t+2,i, . . . , y
S
n,i respectively.

5. Finally, S constructs the matrix BS of size n×c, where the ith column of
BS is [kS

1,i, . . . , k
S
t+1,i, y

S
t+2,i, . . . , y

S
n,i]

T , for i = 1, . . . , c. The matrix BS

is pictorially shown in Table 2.

6. For i = 1, . . . , n, S selects a random non-zero hash key αS
i , corresponding

to wire fi.

7. For i = 1, . . . , n, S sends the following to R over wire fi:

(a) The ith row of BS, denoted by FS
i ;

(b) The hash key αS
i and

(c) The hash values vS
ji, where vS

ji = hash(αS
i ; FS

j ), for j = 1, . . . , n.

8. Let VS denote the concatenation of the elements of the first t + 1 rows
of BS. S computes

PS = EXTRAND|VS|,(u+1)n2(VS).

9. The vector PS denotes the information theoretically secure random pad
of size Θ(n2u) which will be correctly established with R with very high
probability.

Computation by R:

1. For i = 1, . . . , n, let R receive the following over wire fi:

(a) The c-tuple, denoted by FR
i ;

(b) The hash key αR
i and

(c) The hash values vR
ji , for j = 1, . . . , n.

2. For i = 1, . . . , n, R computes

Supporti = |{j : hash(αR
j ; FR

i ) = vR
ij }|.

3. If Supporti ≥ t + 1, then R concludes that FR
i is a valid row of BS.

Otherwise, R concludes that FR
i is an invalid row.

4. Using t + 1 valid rows, R constructs the n × c array BR. From BR, R
computes VR, from which it finally computes PR and terminates..
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Proof: Recall that in protocol 1-Pad, there are at most t − u wires in the
top band which can be under the control of the adversary. Now using similar
argument as in Claim 2, it follows that [(t+1)− (t−u)]n2 = (u+1)n2 elements
of VS will be information theoretically secure. The rest now follows from the
properties of EXTRAND. 2

Claim 14. If R gets t + 1 valid rows of BS then R can recover PS.

Proof: Follows using similar argument as in Claim 3. 2

Claim 15. If R outputs PR then with very high probability PR = PS.

Proof: If R outputs PR, then it implies that R has received t + 1 valid rows.
From Claim 12, all these rows are indeed the rows of BS sent by S with very
high probability. So from Claim 14, with very high probability, PR = PS. 2

Theorem 6. If the entire bottom band is corrupted, then protocol 1-Pad se-
curely establishes a random non-zero pad of size Θ(n2uκ) bits by communicating
O(n3κ) bits.

Proof: Over each wire, S sends O(n2) field elements. This incurs a communi-
cation complexity of O(n3) field elements and hence O(n3κ) bits. The rest of
the properties of protocol 1-Pad follows from Claim 12, Claim 13, Claim 14 and
Claim 15. 2

6.2. A Six Phase Pad Establishment Protocol

We now present out six phase pad establishment protocol 6-Pad. The main
idea of the protocol is as follows: S and R interacts to find whether there the
entire bottom band is corrupted or not. If they find that the entire bottom
band is corrupted then S and R executes the single phase protocol 1-Pad to
establish a pad of size Θ(n2u) field elements. On the other hand if S and R
finds that the entire bottom band is not corrupted then they apply EXTRAND
on the information exchanged between them to establish a pad of size Θ(n2)
field elements.

Now as in the case of protocol 3-SSMT, we present protocol 6-Pad phase by
phase. This will help the reader to understand the protocol conceptually. We
begin with the description of the first two phases.

6.2.1. First Two Phases of Protocol 6-Pad

The first two phases of protocol 6-Pad are similar as in protocol 3-SSMT,
except that now the first phase is initiated by R. During first phase, R sends
a random (n2 + 1)-tuple to S over each wire. During second phase, S sends a
random (n2 + t)-tuple to R over each wire. In addition to this, S and R also
exchanges the hash values of the exchanged tuples, as in protocol 3-SSMT. The
formal details of first two phases of 6-Pad are given in Fig. 7.

At the end of Phase II of protocol 6-Pad, R divides the top band using
similar principle as used by S to divide the bottom band during protocol 3-

SSMT. We now state the following lemmas, whose proofs are similar to the one
given for protocol 3-SSMT.
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Figure 7: First Two Phases of Protocol 6-Pad

Phase I: R to S:

1. For i = 1, . . . , u, R selects a random non-zero (n2 + 1)-tuple
(yR

1,i, . . . , y
R
n2+1,i), corresponding to wire bi.

2. For i = 1, . . . , u, R sends (yR
1,i, . . . , y

R
n2+1,i) to S over wire bi.

Phase II: S to R:

1. Let S receive (yS
1,i, . . . , y

S
n2+1,i) along wire bi, for i = 1, . . . , u.

2. For i = 1, . . . , u, S selects a random non-zero hash key rS
i , corresponding

to wire bi.

3. S computes the set βS = {(rS
i , γS

i ) : i = 1, . . . , u}, where γS
i =

hash(rS
i ; yS

1,i, . . . , y
S
n2+1,i).

4. S associates a random non-zero (n2+t)-tuple (xS
1,i, . . . , x

S
n2+t,i) with wire

fi, for i = 1, . . . , n.

5. For i = 1, . . . , n, corresponding to wire fi, S chooses n random, non-zero
hash key keyS

i,j , for j = 1, . . . , n.

6. For i = 1, . . . , n, S sends the following to R over wire fi:

(a) βS;
(b) The (n2 + t)-tuple (xS

1,i, . . . , x
S
n2+t,i);

(c) The pairs {(keyS
j,i, α

S
j,i) : j = 1, . . . , n}, where αS

j,i =

hash(keyS
j,i; x

S
1,j , . . . , x

S
n2+t,j).

Computation by R at the end of Phase II:

1. Let R receive the following over wire fi, for i = 1, . . . , n:

(a) βS
i = {(rR

i,j , γ
R
i,j) : j = 1, . . . , u};

(b) The (n2 + t)-tuple (xR
1,i, . . . , x

R
n2+t,i);

(c) The pairs {(keyR
j,i, α

R
j,i) : j = 1, . . . , n}

2. For i = 1, . . . , n, corresponding to wire fi, S computes the set Fi and Bi

as follows:

(a) R adds wire fj ∈ {f1, . . . , fn} to Fi (which is initially ∅) if fi, fj

are found to be pairwise consistent by satisfying the following con-
ditions:

i. αR
i,j = hash(keyR

i,j; x
R
1,i, . . . , x

R
n2+t,i) and

ii. αR
j,i = hash(keyR

j,i; x
R
1,j , . . . , x

R
n2+t,j).

(b) R adds wire bj to Bi (which is initially ∅) if γR
i,j =

hash(rR
i,j ; y

R
1,j , . . . , y

R
n2+1,j).

(c) If |Fi| + |Bi| ≥ t + 1 then R considers Fi as an acceptable set.
Otherwise R considers Fi as unacceptable.
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Lemma 17. Let fi be an honest wire in the top band. Then Fi and correspond-
ing Bi will have the following properties:

1. Fi will be an acceptable set.

2. All honest wires in the bottom band will be present in Bi, while all the
honest wires in the top band will be present in Fi.

3. With very high probability, the (n2 + t)-tuple received by R at the end of
Phase II over the wires in Fi are not modified.

4. With very high probability, the (n2 + 1)-tuple received by S at the end of
Phase I over the wires in Bi are not modified.

5. The adversary will have no information about the first n2 values of the
(n2 + t)-tuples which are exchanged over the honest wire(s) in Fi. The
adversary will also have no information about the first n2 values of the
(n2 + 1)-tuples which are exchanged over the honest wires in Bi.

Lemma 18. Let fi be a wire in the top band such that fi is under the control of
the adversary. Moreover, let Fi be an acceptable set. Then Fi and corresponding
Bi will have the following properties:

1. There will exist at least one honest wire, either from the top band or bottom
band, which will be present in Fi or Bi respectively.

2. If there exists an honest wire in Fi, then the (n2 + t)-tuple is correctly
exchanged between S and R over that wire. Moreover, adversary will have
no information about the first n2 values of the (n2 + t)-tuple.

3. If there exists an honest wire in Bi, then the (n2 + 1)-tuple is correctly
exchanged between S and R over that wire. Moreover, adversary will have
no information about the first n2 values of the (n2 + 1)-tuple.

4. If there exists an honest wire in Fi, then with very high probability the (n2+
t)-tuple is correctly exchanged between S and R over wire fi. However,
the adversary can modify the (n2 + t)-tuples which are exchanged over the
corrupted wires in Fi, other than fi, without letting S and R know about
it.

5. If there is no honest wire in Fi, then the adversary can always modify the
(n2+t)-tuples which are exchanged over the corrupted wires in Fi, without
letting S and R know about it.

6. Irrespective of the number of honest wires in the bottom band, the ad-
versary can always modify the (n2 + 1)-tuple which is exchanged over a
corrupted wire (if any) in Bi, without letting S and R know about it.

Lemma 19. In protocol 6-Pad, there can be at most n acceptable sets.

Lemma 20. In protocol 6-Pad, R communicates O(n2u) field elements during
Phase I and S communicates O(n3) field elements during Phase II.

We now proceed to the description of the remaining phases of the protocol
6-Pad which are given in the next subsection.
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6.2.2. Remaining Phases of Protocol 6-Pad

Corresponding to each acceptable set Fl, R concatenates the tuples which
are exchanged over the wires in Fl and Bl. R then hashes the resultant tuple
and sends the hash value, along with the identity of Fl and Bl to S through all
the wires in Bl. If the entire bottom band is corrupted, then S will not receive
the correct hash value and with very high probability, S will come to know this.
This is because there will exist at least one honest wire, either in Fl and Bl,
such that adversary will have no information about the first n2 element of the
tuple exchanged over the honest wire. In this case, S notifies about his finding
to R and then executes protocol 1-Pad to establish a pad of size Θ(n2u).

On the other hand, if there exists at least one honest wire in the bottom
band, then S will correctly receive a valid hash value, along with the identity
of corresponding Fl and Bl. S then notifies R about the identity of Fl and
Bl. S also applies EXTRAND on the tuples which are exchanged along the
wires in Fl and Bl to extract an information theoretically secure pad of size n2.
Application of EXTRAND is required because it may happen that Fl and Bl

contains t+1 wires in total, out of which t are under the control of the adversary.
So there will be only one honest wire and the adversary will not know the first
n2 elements of the tuple which is exchanged over that honest wire. Since S and
R will not know the exact identity of the honest wire, they apply EXTRAND.

Notice that it is not easy for S to notify R about its finding. This is because
there can be only t + 1 wires in the top band and in the worst case, t of them
can be corrupted. To deal with this problem, S notifies R about its finding
using protocol 3-SSMT. Since 3-SSMT is an SSMT protocol, it will securely and
hence correctly deliver the notification to R. The formal details of the remaining
phases of protocol 6-Pad are given in Fig. 8.

We now prove the properties of remaining phases of protocol 6-Pad, as given
in Fig. 8.

Claim 16. Let Fl be an acceptable set. Then adversary will have no informa-
tion about n2 − 1 elements of VR

l .

Proof: Since Fl is an acceptable set, it implies that there exists at least one
honest wire, either in Fl or corresponding set Bl. Moreover, from Lemma 17
and Lemma 18, adversary will have no information about the first n2 elements
of the tuple which is exchanged over that honest wire. So VR

l , which is the
concatenation of the first n2 elements from the tuples which are exchanged
between S and R along the wires in Fl and Bl will have n2 elements which will
be unknown to the adversary. Now during Phase III, R sends one hash value
of VR

l along the wires in Bl. So from the properties of hashing, it still holds
that n2 − 1 elements of VR

l are information theoretically secure. 2

Claim 17. If at all S computes a pad PS
1 of size n2 − 1 field elements, then R

will correctly output PR
1 = PS

1 , except with probability 2−Ω(κ).

Proof: Suppose S computes PS
1 from FS

i,l, B
S
i,l and the tuple (KS

i,l, δ
S
i,l). This

implies that VS
i,l computed from the tuples exchanged over the wires in FS

i,l
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Figure 8: Remaining Phases of Protocol 6-Pad

Phase III: R to S: For each acceptable set Fl and the corresponding set Bl, R does the
following:

1. Let VR

l
denote the concatenation of the first n2 elements from (n2 + 1)-tuples and

(n2+t)-tuples, which R has sent and received over the wires in Bl and Fl respectively.

2. Corresponding to vector VR

l
, R selects a random non-zero hash key KR

l
.

3. R computes δR
l

= hash(KR

l
;VR

l
) and sends Bl,Fl and the 2-tuple (KR

l
, δR

l
) to S

through all the wires in Bl.

Computation by S at the end of Phase III: Now using the hash value(s) received from
R, S tries to find whether there exists at least one uncorrupted wire in the bottom band.
For this, S does the following:

1. Let S receive the index set FS

i,l
and BS

i,l
and the 2-tuple (KS

i,l
, δS

i,l
) along wire bi, for

i = 1, . . . , u. Here l ≤ t + 1.

2. If for some i ∈ {1, . . . , u} and some l ≤ t + 1, |FS

i,l
|+ |BS

i,l
| ≤ t, then S concludes that

wire bi is corrupted and neglects all the values received along bi.

3. If bi is not neglected during previous step then for each FS

i,l
, BS

i,l
and the tuple

(KS

i,l
, δS

i,l
) received along wire bi, S does the following:

(a) Let VS

i,l
denote the concatenation of first n2 values of the (n2 + 1)-tuples and

(n2 + t)-tuples, which S has received and sent over the wires in BS

i,l
and FS

i,l

respectively.

(b) S now checks δS
i,l

?
= hash(KS

i,l
;VS

i,l
).

(c) If the test fails for all received FS

i,l
, BS

i,l
and the tuple (KS

i,l
, δS

i,l
) then S concludes

that wire bi is corrupted and neglects all the values received along bi.
(d) If the test succeeds for some FS

i,l
, BS

i,l
and the tuple (KS

i,l
, δS

i,l
) then then S does

the following:

i. S concludes that the tuples are correctly exchanged between S and R along
the wires in BS

i,l
and FS

i,l
.

ii. S applies EXTRAND on VS

i,l
to generate a vector PS

1
of size n2 − 1.

iii. Finally S terminates 6-Pad by sending a special predefined ”success” signal,
along with the index of the wires in the set BS

i,l
and FS

i,l
to R by executing

the protocol 3-SSMT.
iv. At the end of 3-SSMT, R securely (and hence correctly) receives the set

BS

i,l
and FS

i,l
, computes PR

1
and terminates 6-Pad. Since 3-SSMT takes

three phases, R will terminate 6-Pad at the end of Phase VI.

4. If all the wires in the bottom band get discarded, then S concludes that entire bottom
band is corrupted. In this case, S does the following:

(a) S sends a special predefined ”failure” signal to R by executing the three phase
protocol 3-SSMT.

(b) Parallely, S establishes a secure pad PS
2

of size Θ(n2u) field elements with R

by executing single phase Protocol 1-Pad.
(c) At the end of 3-SSMT, R will know that the entire bottom band is corrupted.
(d) Parallely at the end of 1-Pad, R will output the pad PR

2
of size Θ(n2u) field

elements. Since 3-SSMT takes three phases, R will terminate 6-Pad at the end
of Phase VI.
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and BS
i,l satisfies δS

i,l = hash(KS
i,l;V

S
i,l). Now from the proof of the previous

claim, n2 − 1 elements of VS
i,l are information theoretically secure. So from the

properties of hashing, it implies that the tuples are exchanged correctly between
S and R along the wires in FS

i,l and BS
i,l, except with probability 2−Ω(κ). Now S

communicates the identity of the wires in FS
i,l and BS

i,l to R by executing protocol
3-SSMT. From the properties of 3-SSMT, R will correctly receive the identity of
the wires in FS

i,l and BS
i,l except with probability 2−Ω(κ). So PR

1 = PS
1 , except

with probability 2−Ω(κ). 2

Claim 18. If at all S computes a pad PS
2 of size Θ(n2u) field elements, then

R will correctly output PR
2 = PS

2 , except with probability 2−Ω(κ).

Proof: The reason that S computes a pad PS
2 of size Θ(n2u) field elements is

that all the wires in bottom band get rejected by S at the end of Phase III. This
implies that S finds the entire bottom band to be corrupted, which S notifies
to R by sending ”failure” signal to R by executing protocol 3-SSMT. From the
properties of 3-SSMT, R will correctly receive the ”failure” signal and concludes
that the entire bottom band is corrupted, except with error probability 2−Ω(κ).
Now to establish the pad PS

2 , S executes the single phase protocol protocol 1-

Pad. So from the properties of 1-Pad, R will correctly output PR
2 = PS

2 at the
end of 1-Pad, except with probability 2−Ω(κ). 2

Claim 19. Irrespective of whether S and R agrees on a pad of size n2 − 1 or
Θ(n2u), the pad will be information theoretically secure.

Proof: If S and R agrees on a pad of size n2 − 1, it implies that the pad is
computed by applying EXTRAND on some VS

i,l. From the proof of Claim

17 and Claim 16, at least n2 − 1 elements of VS
i,l are information theoretically

secure. So from the properties of EXTRAND, the computed pad of size n2−1
will be information theoretically secure.

On the other hand if the agreed pad is of size Θ(n2u) then it implies that
the pad is established by executing the protocol 1-Pad. In this case, security of
the pad follows from the security of protocol 1-Pad. 2

Claim 20. In the steps given in Fig. 8, S and R has to communicate O(n3)
field elements.

Proof: During Phase III, corresponding to an acceptable set Fl, R has to
send the index of the wires in Fl,Bl and the tuple (KR

l , δR
l ) through all the

wires in Bl. This requires a communication complexity of O(nu) field elements.
Since there can be n acceptable sets, it implies that R has to communicate
O(n2u) = O(n3) field elements during Phase III. During Phase IV, S will
execute protocol 3-SSMT to notify either ”success” or ”failure” signal to R. From
Theorem 2, this requires a communication complexity of O(n3) field elements.
Thus S and R has to communicate O(n3) field elements in the steps given in
Fig. 8. 2
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Claim 21. Protocol 6-Pad terminates in six phases.

Proof: Follows from the steps given in Fig. 7 and Fig. 8. 2

Theorem 7 (Properties of Protocol 6-Pad). Protocol 6-Pad has the follow-
ing properties:

1. If the entire bottom band is corrupted, then S and R correctly establishes
a pad of size Θ(n2uκ) bits in six phases by communicating O(n3κ) bits,
except with error probability 2−Ω(κ). Moreover, the pad will be information
theoretically secure.

2. If there exists at least one honest wire in the bottom band, then S and R
correctly establishes a pad of size Θ(n2κ) bits in six phases by commu-
nicating O(n3κ) bits, except with error probability 2−Ω(κ). Moreover, the
pad will be information theoretically secure.

Proof: Follows from Claim 16, Claim 17, Claim 18, Claim 19, Claim 20
and Claim 21. 2

7. SRMT with Constant Factor Overhead

We now present an SRMT protocol called SRMT-Optimal which sends a
message mS containing ℓ field elements by communicating O(ℓ) field elements
with very high probability, where ℓ = (t − u

2 + 1)n2 = Θ(n3). The total com-
munication complexity of the protocol is O(n3) field elements and the protocol
terminates in O(u) phases. Thus the protocol achieves reliability with constant
factor overhead.

The idea behind the protocol is to create a win-win situation with the ad-
versary as follows: if the adversary corrupts at most t− u

2 wires in the top band,
then majority of the wires in the top band will be honest and R recovers the
message from the information which it receives from the honest wires in the top
band. On the other hand, if more than t − u

2 wires are corrupted in the top
band, then majority wires in the bottom band will be honest and so both S and
R comes to know about the identity of corrupted wires in the top band by using
the honest wires in the bottom band. After knowing the identity of corrupted
wires in the top band, S re-sends mS so that R can recover it correctly.

As a part of pre-processing step, S and R securely establishes Θ(n2) random
non-zero elements from F with each other in advance with very high probability
by executing the six phase protocol 6-Pad. This will require a communication
complexity of O(n3) field elements. Let the set of elements in the established
pad be denoted by K, which we call as global key set. The elements in K will
be used by S and R as authentication and hash keys to reliably exchange the
outcome of certain steps during the execution of the protocol SRMT-Optimal.
Note that the elements in K need not be distinct, but they are randomly se-
lected from F. We assume that initially all the elements in K are marked as
”unused”. Each time S (R) needs a key(s) for hashing or authentication, then
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the first ”unused” element(s) from K is/are selected as key(s). In order to do
the verification, R (S) also uses the same element(s) from K as keys. Once the
verification is done, the element(s) is/are marked as ”used” Thus we can view K
as a global set, which is parallely used and updated by both S and R. We now
describe protocol SRMT-Optimal phase by phase. We begin with the description
of first two phases, which is is given in the next section.

7.1. First Two Phases of Protocol SRMT-Optimal

Let mS = [mS
1,1, . . . , m

S
1,n2 , mS

2,1, . . . , m
S
2,n2 , . . . , mS

t−u
2
+1,1, . . . , m

S
t−u

2
+1,n2 ] The

first two phases of protocol SRMT-Optimal are given in Fig. 9.
We now prove the properties of first two phases of protocol SRMT-Optimal.

Claim 22. Let fi be a corrupted wire which has delivered FR
i 6= FS

i to R and
let fj be an honest wire. Then with very high probability arc (fi, fj) ∈ ER.

Proof: Since fj is honest, it correctly and hence securely delivers αR
j = αS

j and

vR
ij = vS

ij = hash(αS
j ; FS

i ) to R. If FR
i 6= FS

i , then in order that (fi, fj) 6∈ ER,

hash(αS
j ; FS

i ) = hash(αS
j ; FR

i ) should hold, even if FR
i 6= FS

i . But from the

property of hashing, this can happen with probability at most n2−1
|F| ≈ 2−Ω(κ),

which is negligible. 2

Claim 23. Let fi be a corrupted wire which has delivered FR
i 6= FS

i to R. Then
except with probability 2−Ω(κ), there will exist at least one arc (fi, fj) ∈ ER, such
that wire fj is honest.

Proof: The proof follows from the previous claim and the fact there exists at
least one honest wire in the top band. 2

Claim 24. In protocol SRMT-Optimal, S communicates O(n3) field elements
during Phase I, while R communicates O(n3) field elements during Phase II.

Proof: During Phase I, S communicates O(n2) field elements over each wire.
This incurs a total communication complexity of O(n3) field elements. During
Phase II, R sends the conflict list over the entire bottom band. In the worst
case, the size of the conflict list may be O(n2) field elements. So sending it over
entire bottom band requires a communication cost of O(n2u) = O(n3) field
elements, as u = O(n). 2

Claim 25. In protocol SRMT-Optimal, if there exists at most t − u
2 corrupted

wires in the top band, then each wire fi ∈ PR will deliver correct FR
i = FS

i to
R, except with probability 2−Ω(κ).

Proof: Suppose there exists t−u
2 corrupted wires in the top band. Let fi ∈ PR.

If fi is honest then it implies that FR
i = FS

i . On the other hand let fi be a
corrupted wire, who has delivered FR

i 6= FS
i . Since fi ∈ PR, it implies that

|Supporti| ≥ (t − u
2 + 1), which further implies that there exists at least one

honest wire, say fj, such that j ∈ Supporti. This further implies that vR
ij =
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Figure 9: First Two Phases of Protocol SRMT-Optimal

Phase I: S to R: S does the following computation and communication:

1. Using the elements of mS, S constructs an (t − u
2 + 1) × n2 matrix AS,

where the ith row of AS is [mS
i,1, . . . , m

S
i,n2 ], for i = 1, . . . , (t − u

2 + 1).

2. S now constructs an n × n2 matrix BS from AS in same way as in
protocol 1-Pad except that now S fits a polynomial of degree (t − u

2 )
passing through each column of AS.

3. For i = 1, . . . , n, let FS
i denote the ith row of matrix BS.

4. For i = 1, . . . , n, S selects a random, non-zero hash key αS
i corresponding

to wire fi.

5. For i = 1, . . . , n, S sends the following to R over wire fi:

(a) The n2-tuple FS
i ;

(b) The hash key αS
i and

(c) The hash values vS
ji, where vS

ji = hash(αS
i ; FS

j ), for j = 1, . . . , n.

Phase II: R to S: R does the following computation and communication:

1. For i = 1, . . . , n, let R receive the following from S over wire fi:

(a) The n2-tuple FR
i ;

(b) The hash key αR
i and

(c) The hash values vR
ji , for j = 1, . . . , n.

2. For i = 1, . . . , n, R computes Supporti = |{j : vR
ij = hash(αR

j ; FR
i )}|.

3. Let PR denote the set of wires fi, such that Supporti ≥ (t − u
2 + 1).

4. R constructs a directed graph GR = (VR, ER), called conflict graph,
where VR = {f1, f2, . . . , fn} and arc (fi, fj) ∈ ER if vR

ij 6= hash(αR
j ; FR

i ).

5. Corresponding to graph GR, R constructs a conflict list YR of five
tuples where for each arc (fi, fj) ∈ ER, there exists a five tuple
(fi, fj, α

R
j , hash(αR

j ; FR
i ), vR

ij ) in YR.

6. R sends YR to S through all the wires in the bottom band.
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hash(αR
j ; FR

i ). However, since fj is an honest wire, it implies that αR
j = αS

j

and vR
ij = vS

ij , where vS
ij = hash(αS

j ; FS
i ). Since the adversary does not know

αS
j , it follows from the properties of hashing that the adversary can ensure

that hash(αS
j ; FS

i ) = hash(αS
j ; FR

i ), even if FR
i = FS

i , except with probability
n2−1
|F| ≈ 2−Ω(κ). Thus except with probability 2−Ω(κ), fi 6∈ PR. 2

Lemma 21. In protocol SRMT-Optimal, if there exists at most t− u
2 corrupted

wires in the top band, then except with error probability 2−Ω(κ), R can correctly
recover mR = mS by using the FR

i ’s delivered by fi’s in PR.

Proof: If there exists at most t− u
2 corrupted wires in the top band then from

the proof of Claim 25, each fi ∈ PR has delivered correct FR
i = FS

i , except
with error probability 2−Ω(κ). Moreover, there will be at least t − u

2 + 1 wires
in PR, as all honest wires in the top band will be present in PR. Now each FS

i

is a valid row of BS and t− u
2 + 1 valid rows are enough to construct the entire

BS, as elements of each column of BS are points on a (t− u
2 ) degree polynomial.

So using the n2-tuples delivered by the wires in PR, R can reconstruct BS and
hence AS. Now the elements of AS are nothing but the elements of mS. 2

Lemma 21 shows that if some how R can find out whether there are at most
t − u

2 corrupted wires in the top band, then R can recover mS by using the
n2-tuples delivered by the wires in PR. In order to find the status of the top
band, R constructs the conflict list and sends it to S. We now proceed to the
description of Phase III of protocol SRMT-Optimal which is given in the next
section.

7.2. Phase III and Phase IV of Protocol SRMT-Optimal

S waits for a conflict list, which is received identically through at least u
2 +1

wires. If S does not receive any conflict list identically through at least u
2 + 1

wires, then S concludes that at least u
2 + 1 wires are corrupted in the bottom

band. This further implies that at most t− u
2 −1 wires are corrupted in the top

band. In this case, the protocol proceeds as shown in Fig. 10.
The correctness of the protocol in this execution sequence is proved in

Lemma 22.

Lemma 22. If S does not receive the same conflict list through at least u
2 + 1

wires in the bottom band then except with error probability 2−Ω(κ), R correctly
recovers mS from the n2-tuples delivered by the wires in PR. Moreover, in this
case, SRMT-Optimal terminates in three phases. Furthermore, S will communi-
cate O(n) field elements during Phase III.

Proof: If S does not receive the same conflict list through at least u
2 + 1 wires

in the bottom band, then it implies that at least u
2 +1 wires in the bottom band

are corrupted which further implies that at most t− u
2 −1 wires in the top band

are corrupted. This further implies that each wire fi ∈ PR has delivered correct
FR

i = FS
i to R during Phase I, except with probability 2−Ω(κ) (see Claim 25).

45



Figure 10: Execution of SRMT-Optimal If S Does Not Receive u
2

+ 1 Identical Conflict Lists
Through the Bottom Band

Phase III: S to R:

1. By selecting two elements from the global key set K as authentication
keys, S authenticates an unique special predetermined signal ”termi-
nate1” and sends to R over the entire top band. Moreover, S terminates
SRMT-Optimal.

Computation by R at the End of Phase III:

1. R correctly receives the ”terminate1” signal with very high probability
and concludes that at most t − u

2 wires have delivered incorrect values
during Phase I.

2. By using the n2-tuples received along the wires in PR during Phase I,
R constructs the array BR. From BR, R recovers mR and terminates
SRMT-Optimal.

Moreover, from the proof of Lemma of 21, R can correctly recover mR = mS

by using the FR
i ’s delivered by fi’s in PR, except with error probability 2−Ω(κ).

Since S authenticates the ”terminate1” signal by using the keys from global
key set K, the keys will be unknown to the adversary. So except with error
probability 2−Ω(κ), R will receive the ”terminate1” signal and will conclude
that at most t − u

2 − 1 wires in the top band are corrupted. Now as explained
above, R will correctly recover mS from the n2-tuples delivered by the wires in
PR.

It is easy to see that in this case, protocol SRMT-Optimal terminates in three
phases. Since S only sends the authentication of ”terminate” signal over each
wire during Phase III, it will require a communication cost of O(n) field ele-
ments. 2

If S receives a unique conflict list YS through at least u
2 +1 wires in the bottom

band then S cannot conclude anything about the status of the top band and
bottom band. That is, S cannot determine whether the received conflict list is a
genuine conflict list or not. S considers the received conflict list as genuine and
from it, after doing local comparison, S tries to find the number of corrupted
wires, which delivered incorrect FS

i ’s to R during Phase I. S saves the identity
of such wires in a list LS

fault. The steps performed by S to compute LS
fault from

YS is shown in Fig. 11.
Before proceeding further, we make the following claims:

Claim 26. Let majority of the wires in the bottom band are honest and let fi

be a corrupted wire in the top band who has delivered FR
i 6= FS

i to R during
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Figure 11: Local Computation by S at the End of Phase II if S Receives u
2

+ 1 Identical
Conflict Lists Through the Bottom Band

Local Computation by S at the End of Phase II:

1. Let S receive the conflict list YS through at least u
2 + 1 wires in

the bottom band, where YS is a collection of five-tuple of the form
(fi, fj, α

′S
j , γ′S

ij , v′Sij ).

2. S creates a list LS
fault, which is initialized to ∅.

3. For each five-tuple (fi, fj, α
′S
j , γ′S

ij , v′Sij ) in YS, S does the following com-
putation:

(a) S checks α′S
j

?
= αS

j and v′Sij
?
= vS

ij .
(b) If any of the above test fails then S concludes that wire fj has

delivered incorrect values to R during Phase I and adds fj to a
list LS

fault

(c) If fj is not added to LS
fault then S checks γ′S

ij
?
= hash(αS

j ; FS
i ).

(d) If the above test fails then S concludes that wire fi has delivered
incorrect FR

i 6= FS
i to R during Phase I and adds fi to LS

fault.

Phase I. Then except with error probability 2−Ω(κ), S will include fi in LS
fault

at the end of Phase II.

Proof: Let fi be a corrupted wire in the top band who has delivered FR
i 6= FS

i

to R during Phase I. Then from Claim 23, except with error probability 2−Ω(κ),
there will exist at least one arc (fi, fj) in the conflict graph, such that fj is an
honest wire. This further implies that the five tuple (fi, fj , α

R
j , hash(αR

j ; FR
i ), vR

ij )

will be present in the conflict list YR, except with error probability 2−Ω(κ), such
that αR

j = αS
j , vR

ij = vS
ij , but hash(αR

j ; FR
i ) 6= vR

ij . Now if the majority of the

wires in the bottom band are honest then S will correctly receive YS = YR

through the majority wires in the bottom band. This implies that S will cor-
rectly receive (fi, fj , α

′S
j , γ′S

ij , v′Sij ) = (fi, fj , α
R
j , hash(αR

j ; FR
i ), vR

ij ). So after

doing the local comparison, S will find that α′S
j = αS

j and v′Sij = vS
ij and hence

fj will not be added in LS
fault. But S will find that γ′S

ij 6= hash(αS
j ; FS

j ). So S

will add wire fi in LS
fault. 2

Claim 27. Let majority of the wires in the bottom band are honest. Then S
will not include any honest fi in LS

fault at the end of Phase II.

Proof: First of all notice that if at all a five tuple (fi, fj , α
R
j , hash(αR

j ; FR
i ), vR

ij )

is present in the conflict list YR, then at least one of the wires fi or fj is cor-
rupted. This is because no two honest wires will conflict each other. Now
suppose fi is the corrupted wire. If majority of the wires in the bottom band
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are honest then S will correctly receive YS = YR through the majority wires in
the bottom band. Now as shown in the previous claim, after doing local com-
parison, S will find out that wire fi is corrupted and includes only fi in LS

fault. 2

After finding LS
fault, S proceeds as follows: If LS

fault contains at most t− u
2 wires

then S can conclude that R has received sufficient information during Phase
I to recover mS. This is because if at all YS is a valid conflict list, which was
indeed sent by R then the wires in LS

fault are indeed genuinely corrupted, who

delivered incorrect FS
i ’s to R during Phase I (see Claim 26) and there are at

most t − u
2 such FS

i ’s. This implies that the remaining t − u
2 + 1 wires have

delivered correct FS
i ’s, which are sufficient to reconstruct the matrix BS and

hence the message mS.
On the other hand, if YS is not a valid conflict list, then it implies that

majority wires in the bottom band are corrupted, which further implies that
majority wires in the top band are honest. So the wires in PR have delivered
correct FS

i ’s during Phase I with very high probability. So the main goal
of S will be to some how reliably send back the received conflict list YS and
the corresponding list LS

fault, so that R can find out whether S has correctly

received the original conflict list YR through the majority wires in the bottom
band. This is what S does during Phase III, as shown in Fig. 12. Notice that
Fig. 12 represents the execution sequence when S finds that there are at most
t− u

2 wires in the list LS
fault. The execution sequence when LS

fault contains more
than t − u

2 wires will be discussed after wards.
We now prove the properties of protocol SRMT-Optimal, if the protocol fol-

lows the steps given in Fig. 12.

Lemma 23. If S receives the same conflict list through at least u
2 + 1 wires in

the bottom band and if the size of resultant LS
fault is at most (t− u

2 ) then except

with error probability 2−Ω(κ), R will correctly output mR = mS at the end of
Phase III. In this case, protocol SRMT-Optimal will terminate in three phases
and S will communicate O(n3) field elements during Phase III.

Proof: Let S receive the conflict graph YS through at least u
2 + 1 wires in the

bottom band and let LS
fault be the corresponding list computed by S from YS.

Moreover, let |LS
fault| ≤ (t − u

2 ). Now there are two possibilities:

1. YS = YR: In this case, except with probability 2−Ω(κ), S will find out
all corrupted fi’s, who have delivered FR

i 6= FS
i during Phase I and

includes them in LS
fault (see Claim 26). Moreover, from Claim 27, only

corrupted fi’s will be included in LS
fault. Since |LS

fault| ≤ (t − u
2 ), it

implies that at least (t − u
2 ) + 1 fi’s delivered correct FS

i ’s during Phase
I. Now during Phase III, S sends the received YS, corresponding LS

fault,

authentication of YS and the authentication of LS
fault through the entire

top band. Notice that the authentication keys used to authenticate YS

and LS
fault belong to K and so adversary does not have any information
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Figure 12: Execution of SRMT-Optimal If S Receives u
2

+ 1 Identical Conflict Lists and

|LS

fault
| ≤ (t − u

2
)

Phase III: S to R:

1. By selecting two keys from the global key set K, S authenticates special
”terminate2” signal using URauth function and sends it to R through
the top band.

2. By selecting 2|LS
fault| keys and 10|YS| keys from global key set K, S

authenticates each element of LS
fault and YS respectively using URauth

function. Let LS
faultauth

and YS
auth denote the set of corresponding au-

thenticated values.

3. S then sends (YS, LS
fault,Y

S
auth, LS

faultauth
) to R through the top band

and terminates the protocol SRMT-Optimal.

Computation by R at the End of Phase III:

1. With very high probability, R correctly receives ”terminate2” signal.

2. Let R receive (YR
i , LR

faulti
,YR

i,auth, LR
faulti,auth

) from S along wire fi, for
i = 1, . . . , n. From these values, R now tries to find out whether S has
correctly received the original YR over more that u

2 + 1 wires during
Phase I, and if yes, then the corresponding LS

fault. For this, R does the
following computation:

(a) For each i = 1, . . . , n, R checks YR
i

?
= YR and |LR

faulti
| ≤ (t − u

2 ).
If any of these test fails, then R neglects all the values received
along fi. Otherwise, R applies the URauth function to each ele-
ment of YR

i by using the same keys from K, which were used by

S to authenticate YS and computes the set Y
′R
i,auth. Similarly, R

applies URauth function to each element of LR
faulti

by using the

same keys from K, which were used by S to authenticate LS
fault

and computes the set L
′R
faulti,auth

. R then checks Y
′R
i,auth

?
= YR

i,auth

and L
′R
faulti,auth

?
= LR

faulti,auth
. If the test fails then R discards the

values received along fi.
(b) If all the wires in the top band are discarded by R during previous

step, then R concludes that S has not received original YR over
more that u

2 + 1 wires during Phase II, which further implies that
at most t− u

2 −1 wires were corrupted in the top band during Phase
I. So R recovers mR by using the FR

i ’s received over the wires in
PR during Phase I and terminates SRMT-Optimal.

(c) If there exists an i ∈ {1, 2, . . . , n} such that YR
i = YR, |LR

faulti
| ≤

(t − u
2 ), Y

′R
i,auth = YR

i,auth and L
′R
faulti,auth

= LR
faulti,auth

, then R

concludes that S has correctly received original YR over more that
u
2 +1 wires during Phase II and LR

faulti
is the corresponding Lfault

sent by S. Now by using the FR
i ’s received over the wires not in

LR
faulti

, R recovers mR and terminates SRMT-Optimal.49



about them. Moreover, there exists at least one honest wire in the top
band. So from the properties of URauth, R will correctly receive LS

fault

with very high probability. By neglecting the wires in LS
fault, R will be

left with at least (t − u
2 + 1) wires in the top band and each of them has

delivered correct FS
i with very high probability. Now it is easy to see that

using these FS
i ’s, R will correctly recover BS and hence mS. It is easy

to see that in this case protocol SRMT-Optimal terminates at the end of
Phase III.

2. YS 6= YR: This implies that at least u
2 + 1 wires in the bottom band are

corrupted, which further implies that at most t− u
2 −1 wires are corrupted

in the top band. So from Claim 25, all wires in PR have delivered correct
FR

i ’s during Phase I with very high probability. Moreover, if somehow R
comes to know that there are at most t− u

2 − 1 corrupted wires in the top
band, then from the proof of Lemma 21, R can recover mS correctly with
very high probability by using the FR

i ’s delivered by the wires in PR. We
now show that at the end of Phase III, with very high probability, R will
come to know that at most t− u

2 − 1 wires are corrupted in the top band.
Note that S compute LS

fault by doing local comparisons on the values in

YS. Also YS
auth and LS

faultauth
are obtained by applying URauth function

to the elements of YS and LS
fault respectively, where the keys for authen-

tication are selected from secret, global key set K. So adversary will have
no information about the authentication keys used for authenticating YS

and LS
fault. During Phase III, S sends (YS, LS

fault,Y
S
auth, LS

faultauth
) to

R through the top band.
Now suppose some wire fi delivers (YR

i , LR
faulti

,YR
i,auth, LR

faulti,auth
). If

fi is honest, then YR
i = YS 6= YR. So R will neglect wire fi. On the other

hand if fi is corrupted, then the adversary can ensure that YR
i 6= YS but

YR
i = YR. However, from the properties of URauth, without knowing

the authentication keys used by S for authenticating YS, the adversary
cannot produce the authentication of YR

i = YR, except with probability
2−Ω(κ). So except with error probability 2−Ω(κ), wire fi will be caught and
hence will be discarded by R. This further implies that except with error
probability all wires in top band will be discarded by R and hence R will
conclude that S has not received YR through at least u

2 + 1 wires in the
bottom band. Now as explained above, R can recover mS correctly with
very high probability by using the FR

i ’s delivered by the wires in PR. It
is easy to see that in this case protocol SRMT-Optimal terminates at the
end of Phase III.

Notice that if S executes Phase III as given in Fig. 12, then S sends
(YS, LS

fault,Y
S
auth, LS

faultauth
) through entire top band. It is easy to see that this

requires a communication complexity of O(n3) field elements, as |YS| = O(n2).
2

Now we draw our attention to the execution of SRMT-Optimal when S receive
YS through u

2 + 1 wires in the bottom band and the resultant LS
fault has more
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than (t − u
2 ) wires. In this case, S cannot say anything about the status of

top band. To find whether indeed YS = YR, S authenticates YS and LS
fault,

sends it to R and wait for the feedback. If indeed YS = YR then the wires in
LS

fault are indeed corrupted and so S and R ignores them and further continue
with the protocol. The steps for further computation and communication will
be discusses later. However, if YS 6= YR then with very high probability, R will
detect this. In this case, R can easily recover mS by using the FR

i ’s delivered
by the wires in PR during Phase I. So R recovers mS and asks S to terminate
the protocol. The formal details are presented in Fig. 13.

We now prove the properties of protocol SRMT-Optimal, if the protocol fol-
lows the steps given in Fig. 13.

Lemma 24. If S receives the same conflict list YS through at least u
2 + 1 wires

in the bottom band and if the size of resultant LS
fault is more than (t − u

2 + 1)
then:

1. If YS = YR then both R and S will come to know about this at the end
of Phase III and Phase IV respectively. Moreover, both S and R will
come to know the identity of |LS

fault| ≥ (t − u
2 + 1) corrupted wires in the

top band. Furthermore, both S and R will know that the majority of the
wires in the bottom band are honest.

2. If YS 6= YR then except with probability 2−Ω(κ), R will come to know
this at the end of Phase III. Moreover, R will recover mR at the end of
Phase III by using the FR

i ’s delivered by the wires in PR. Furthermore,
S will terminate the protocol at the end of Phase IV.

3. During Phase III, S will communicate O(n3) field elements while during
Phase IV, R will communicate O(u) field elements.

Proof: Let S receive the same conflict list YS through at least u
2 + 1 wires

in the bottom band at the end of Phase II. Moreover, let the resultant LS
fault

computed from YS be of size more than (t− u
2 +1). Now there are two possible

cases:

1. YS = YR: This case is similar to the case YS = YR in the proof of
Lemma 23. Specifically, at the end of Phase III, R will conclude that
S has correctly received YR over the majority wires in the bottom band
during Phase II. Moreover, except with error probability 2−Ω(κ), R will
correctly receive LS

fault. Furthermore, each wire in LS
fault will be indeed

corrupted. So R will remove the wires in LS
fault from his consideration for

all future computation and communication. Since |Lfault| ≥ (t − u
2 + 1),

this implies that in the bottom band, there will be at most u
2 −1 corrupted

wires and hence R concludes that the majority of the wires in the bottom
band are honest. Since in this case R authenticates ”continue” signal
and sends to S, at the end of end of Phase IV, S will correctly receive
the signal over at least u

2 + 1 wires in the bottom band and thus will
conclude that YS = YR. So S will also remove the wires in LS

fault from
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Figure 13: Execution of SRMT-Optimal If S Receives u
2

+ 1 Identical Conflict Lists and

|LS

fault
| ≥ (t − u

2
) + 1

Phase III: S to R: Same as in Fig. 12, except that S does not send
”terminate2” signal. Moreover, here |LS

fault| ≥ (t − u
2 ) + 1.

Phase IV: R to S:

1. Let R receive (YR
i , LR

faulti
,YR

i,auth, LR
faulti,auth

) from S along wire fi, for
i = 1, . . . , n. From these values, R tries to find out whether S has
correctly received the original YR over more that u

2 + 1 wires during
Phase I, and if yes, then the corresponding LS

fault. For this, R does
the same computation as done by R at the end of Phase III in Fig.
12. However, now instead of checking |LR

faulti
| ≤ (t − u

2 ), R checks

|LR
faulti

| ≥ (t − u
2 + 1).

2. If all the wires in the top band are discarded by R then R concludes
that S has not received original YR over more that u

2 + 1 wires during
Phase II, which further implies that at most t − u

2 − 1 wires were cor-
rupted in the top band during Phase I. So R recovers mR by using
the FR

i ’s received over the wires in PR during Phase I. Moreover, R
computes response1 = URauth(”terminate”; k1, k2), where k1, k2 are se-
lected from K. Finally R asks S to terminate SRMT-Optimal by sending
(”terminate”, response1) over the bottom band and terminates SRMT-

Optimal.

3. If R finds an i ∈ {1, 2, . . . , n} such that YR
i = YR, |LR

faulti
| ≥ (t− u

2 +1),

Y
′R
i,auth = YR

i,auth and L
′R
faulti,auth

= LR
faulti,auth

, then R concludes that

S has correctly received original YR over more that u
2 + 1 wires dur-

ing Phase II and LR
faulti

is the corresponding Lfault sent by S. So

R removes the wires in LR
faulti

from his view for further computation
and communication. Now by selecting k1, k2 from K as authentication
keys, R computes response2 = URauth(”continue”; k1, k2) where ”con-
tinue” is a unique pre-defined special signal. R then send the tuple
(”continue”, response2) to S through the bottom band.

Computation by S at the end of Phase IV:

1. S checks whether it is getting any 2-tuple identically over at least u
2 + 1

wires. If not, then S concludes that R has recovered mR at the end of
Phase III and terminates SRMT-Optimal.

2. If S receives a 2-tuple say (xS
1 , yS

1 ) over u
2 + 1 wires, then S verifies

yS
1

?
= URauth(xS

1 ; k1, k2), where k1 and k2 are the keys from K. If the
test fails, then S again concludes that R has recovered mR at the end of
Phase III and terminates SRMT-Optimal.

3. If the test in the previous step succeeds then S further checks xS
1

?
=

”terminate”. If yes, then S again concludes that R has recovered mR

at the end of Phase III and terminates SRMT-Optimal. On the other

hand, if xS
1

?
= ”continue” then S concludes that YS was indeed sent by

R and further continues the protocol.
52



his consideration for all future computation and communication and will
conclude that majority of the wires in the bottom band are honest. This
proves the first part of the lemma.

2. YS 6= YR: This case is similar to the case YS 6= YR in the proof of Lemma

23. Specifically, at the end of Phase III, except with probability 2−Ω(κ),
R will conclude that S has not correctly received YR over the majority
wires in the bottom band during Phase II. This further implies that there
are at most t− u

2 −1 corrupted wires in the top band, which further implies
that the FR

i ’s delivered by the wires in PR during Phase I are correct,
except with error probability 2−Ω(κ). So using these FR

i ’s, R will correctly
recover mS, except with error probability 2−Ω(κ). Moreover, in this case,
R asks S to terminate the protocol by authenticating ”terminate” signal
and sending it through the bottom band. Since the keys used for authen-
ticating ”terminate” signal are selected from K, they will be unknown to
the adversary. So from the properties of URauth, the adversary cannot
generate authentication of any signal, other than ”terminate” and put
into the bottom band. So if at all S receives a valid authenticated signal
from at least u

2 + 1 wires in the bottom band, it has to be ”terminate”

signal, except with error probability 2−Ω(κ). On receiving the signal, S
also comes to know that YS 6= YR and terminates the protocol. On the
other hand if S does not receive a valid authenticated signal from at least
u
2 +1 wires in the bottom band, then also S comes to know that YS 6= YR

and terminates the protocol. This proves the second part of the lemma.

The fact that S communicates O(n3) field elements during Phase III follows
from the proof of Lemma 24. During Phase IV, R authenticates either ”ter-
minate” and ”continue” signal and sends through the entire bottom band. This
will require a communication complexity of O(u) field elements. This proves
the third part of the lemma. 2

Finally, we move towards the discussion of protocol SRMT-Optimal when S
receives YS over majority wires in the bottom band during Phase II, such that
the resultant LS

fault is of size more than t− u
2 +1 and S has received ”continue”

signal from R through the majority wires in the bottom band during Phase
IV. If this is the case, then from the proof of Lemma 24, except with error
probability 2−Ω(κ), both S and R knows the identity of |LS

fault| ≥ t − u
2 + 1

corrupted wires in the top band. This implies that at most u
2 − 1 wires in the

bottom band are corrupted and hence majority wires in the bottom band are
honest. This further implies that the information received by R during Phase I
is insufficient to reconstruct BS. This is because in this case more than t− u

2 +1
wires have delivered incorrect FR

i ’s during Phase I. But to reconstruct BS, R
must have the knowledge of t − u

2 + 1 correct FR
i ’s.

So S again starts re-sending mS. Notice that both S and R knows that at
most u

2 − 1 wires in the top band are corrupted. Moreover, majority of the
wires in the bottom band are honest. To resend mS, S considers only the first
u
2 wires in the top band. Both S and R knows that at least one wire among
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these u
2 wires are honest. Notice that in order to re-send mS, S should not

communicate more than O(|mS|) field elements. This is because the overall
goal of SRMT-Optimal is to achieve reliability with constant factor overhead. It
seems that there is no way S can re-send mS by communicating O(|mS|) field
elements, as he does not know the identity of the u

2 − 1 corrupted wires in the
top band. However, the fact that at least one wire among the first u

2 wires in
the top band is honest and majority wires in the bottom band are honest comes
to our rescue!!

S divides mS into u
2 blocks and tries to sequentially send each block, one

by one. Specifically, S considers the first block of mS and sends it only over
wire f1 and waits for the authenticated feedback from R. If f1 has correctly
delivered the block then S will come to know this and will continue with the
second block. Otherwise with very high probability, S will come to know that f1

has not delivered the first block correctly. So S tells about this to R by sending
an authenticated signal and then again send the first block of mS through the
second wire. This process will continue till either all the blocks of mS have been
delivered or S and R has tried the first u

2 −1 wires. In the later case, both S and
R knows that wire fu

2
is honest and so S sends all the remaining blocks of mS

to R through wire fu
2
. It is easy to see that this entire process will take O(u)

phases and will require a communication complexity of O(|mS|) field elements.
The formal details of the protocol steps are given in Fig. 14.

We now prove the properties of protocol SRMT-Optimal if the protocol fol-
lows the steps given in Fig. 14.

Lemma 25. Suppose S receives the same conflict list YS during Phase II
through at least u

2 + 1 wires in the bottom band, such that the size of resultant
LS

fault is more than (t− u
2 +1). Moreover let S receive ”continue” signal during

Phase IV through majority wires in the bottom band. Then except with error
probability 2−Ω(κ), S will be able to correctly re-send mS to R in O(u) phases by
following the steps given in Fig. 14. Moreover, this requires a communication
complexity of O(|mS|) = O(n3) field elements.

Proof: Suppose S has received the same conflict list YS during Phase II
through at least u

2 + 1 wires in the bottom band, such that the size of resultant
LS

fault is more than (t − u
2 + 1). Moreover let S has received ”continue” signal

during Phase IV through majority wires in the bottom band. Then from the
proof of first part of Lemma 24, except with error probability 2−Ω(κ), at most
u
2 − 1 wires in the top band and at most u

2 − 1 wires in the bottom band are
corrupted. Moreover, S and R will know this.

In Fig. 14, S resends mS by using only the first u
2 wires. At a time, S tries

to send only one block of mS. Suppose S sends the block BS
bcS to R over the

wire fwcS . If wire fwcS is honest then the block will be delivered correctly and
S will come to know about this through the feedback paths. S then asks R to
increment the block count by authenticating a special signal, where the keys for
authentication are selected from K and hence will be unknown to the adversary.
So except with error probability 2−Ω(κ), R will correctly receive the signal and
will increment the block count.
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Figure 14: Execution of SRMT-Optimal If S Receives ”continue” Signal Through the Majority
Wires in the Bottom Band at the End of Phase IV

1. S divides mS into blocks BS
1 , . . . , BS

u
2

, each of size |mS|
u
2

field elements.

2. S and R initializes variables wcS = 1, bcS = 1 and wcR = 1, bcR = 1
respectively. Here wc stands for wire count and bc stands for block count.

3. S and R now executes the following steps:

(a) While (wcS ≤ u
2 − 1) and (all the blocks of mS are not delivered to

R) do the following:

i. S sends the block BS
bcS to R only over the wire fwcS in the top

band.
ii. Let R receive BR

bcR along wire fwcR . Now by selecting a hash
key kbc from the set K, R computes xR

bc = hash(kbc; B
R
bcR) and

sends xR
bc to S through the entire bottom band.

iii. S correctly receives xR
bc through at least u

2 +1 wires (recall that
in this case majority wires in bottom band are honest) and

verifies xR
bc

?
= hash(kbc; B

S
bcS).

iv. If the test fails then S concludes that wire fwcS has delivered
incorrect BS

bcS to R. So S does the following:

A. S increments wcS by one.
B. S authenticates an unique, special, pre-defined signal

”increment-wire” by using two keys from the set K and
sends the authenticated signal to R through the top band.

C. R correctly receives the signal with very high probability
and accordingly increments wcR by one.

v. If the test succeeds then S concludes that wire fwcS has deliv-
ered correct BS

bcS to R. So S does the following:

A. S increments bcS by one.
B. S authenticates an unique, pre-defined, special ”increment-

block” signal by using keys from the set K and sends it to
R through the top band.

C. R correctly receives the signal with very high probability
and accordingly increments bcR by one.

(b) If all the blocks of mS are delivered then both S and R terminates.
Otherwise S concatenates all the remaining blocks of mS and sends
it to R through wire fu

2
and terminates. R correctly receives these

blocks and terminates.
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On the other hand, if fwcS is corrupted and delivers incorrect block, then
except with error probability 2−Ω(κ), S will come to know about this. This is
because, R sends the hash value of the received block where the hash key is
selected from K and hence will be unknown to the adversary (but will be known
to S). In this case, S asks R to increment the the wire count by authenticating a
special signal, where the keys for authentication are selected from K and hence
will be unknown to the adversary. So except with error probability 2−Ω(κ), R
will correctly receive the signal and will increment the wire count.

It is now easy to see that it will take O(u) phases, at the end of which either
all the blocks of mS would be delivered or both S, R will come to know that
first u

2 − 1 wires in the top band are corrupted. In the later case, S will re-send
the remaining blocks of mS in a single phase through wire fu

2
, which is bound

to be honest. It is easy to see that the overall communication complexity for
resending mS is O(|mS|) = O(n3) field elements. 2

Since there are so many execution sequence possible in protocol SRMT-

Optimal, we summarize the steps of protocol SRMT-Optimal in Fig. 15.
We now finally state the following theorem:

Theorem 8. Suppose there exists 0 ≤ u ≤ t wires in the bottom band and n =
max (2t − u + 1, t + 1) wires in the top band. Then there exists an O(u) SRMT
protocol which reliably sends a message containing ℓ = (t − u

2 + 1)n2 = Θ(n3)
field elements by communicating O(ℓ) = O(n3) field elements. In terms of bits,
the protocol sends Θ(n3κ) bits by communicating O(n3κ) bits. Thus the protocol
achieves reliability with constant factor overhead.

Proof: Follows from the protocol steps summarized in Fig. 15. 2

Once we have an SRMT protocol, which achieves reliability with constant factor
overhead, we can easily design a communication optimal SSMT protocol, which
we do in the next section.

8. An O(u) Phase Communication Optimal SSMT Protocol

We now design an O(u) phase SSMT protocol called SSMT-Optimal, which
sends a message mS containing ℓ field elements by communicating O(n3) field
elements. If the full bottom band is corrupted then ℓ = Θ(n2u), otherwise
ℓ = Θ(n2). The protocol uses protocols 6-Pad and SRMT-Optimal as black box.
The protocol is given in Fig. 16.

We now state the properties of protocol SSMT-Optimal.

Theorem 9. Protocol SSMT-Optimal is an O(u) phase SSMT protocol with a
communication complexity of O(n3) field elements. If the entire bottom band
is corrupted then the protocol securely sends Θ(n2u) field elements. Otherwise,
the protocol securely sends Θ(n2) field elements. In terms of bits, the protocol
sends either Θ(n2uκ) or Θ(n3κ) bits by communicating O(n3κ) bits, depending
upon whether the entire bottom band is corrupted or not.
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Figure 15: Summary of the Steps Executed in Protocol SRMT-Optimal

1. S and R executes first two phases as shown in Fig. 9. This requires a
communication complexity of O(n3) field elements (see Claim 24).

2. If a unique conflict list is not received by S at the end of Phase II
through at least u

2 + 1 wires in the bottom band then S and R executes
the steps given in Fig. 10. In this case, protocol terminates at the end
of Phase III and the overall communication complexity of the protocol
is O(n3) field elements (see Lemma 22).

3. If a unique conflict list YS is received by S at the end of Phase II
through at least u

2 +1 wires in the bottom band then S computes LS
fault

from YS by following the steps given in Fig. 11.

4. If |LS
fault| ≤ (t − u

2 ) then S and R executes the steps given in Fig. 12.
In this case, protocol terminates at the end of Phase III and the overall
communication complexity of the protocol is O(n3) field elements (see
Lemma 23).

5. If |LS
fault| ≥ (t − u

2 + 1) then S and R executes the steps given in Fig.
13. Now there are two possible cases:

(a) If R terminates the protocol at the end of Phase III then S will
also terminate the protocol at the end of Phase IV. In this case,
the communication complexity of the protocol will be O(n3) field
elements (see Lemma 24).

(b) If R decides to continue the protocol then at the end of Phase IV,
S will also come to know this. In this case, S and R executes the
steps given in Fig. 14. The protocol will require O(u) phases and a
communication complexity of O(n3) field elements (see Lemma 25).
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Figure 16: An O(u) Phase Communication Optimal SSMT Protocol SSMT-Optimal

1. S and R securely establishes a random, non-zero one time pad Pad by
executing the six phase protocol 6-Pad. If the entire bottom band is
corrupted then the size of the pad is Θ(n2u) field elements, otherwise
the size of the pad is Θ(n2) field elements.

2. If Pad is of size Θ(n2u) field elements, then S selects a secret message mS

containing Θ(n2u) field elements. S then computes C = mS ⊕ Pad. S
then appends some extra field elements to C from F, such that C contains
Θ(n3) field elements. The appended elements are randomly selected from
F. Finally, S reliably sends C to R by executing the protocol SRMT-

Optimal (the random elements are appended to C so that C contains
Θ(n3) field elements. This is because protocol SRMT-Optimal requires
the minimum message size to be Θ(n3) field elements). R correctly
receives C with very high probability. R then remove the last elements
from C, such that C contains Θ(n2u) field elements. Finally R computes
mS = C ⊕ Pad and terminates the protocol.

3. If Pad contains Θ(n2) field elements, then S and R does the same com-
putation as above, except that mS and original C will be of size Θ(n2)
field elements.
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Proof: The proof is straightforward and follows from the protocol steps and
the properties of protocol 6-Pad and SRMT-Optimal. 2

We next show that the communication complexity of protocol SRMT-Optimal

and SSMT-Optimal is asymptotically optimal. For this, we derive the lower
bound on the communication complexity of SRMT and SSMT protocol in the
next section.

9. Lower Bound on Communication Complexity of SRMT and SSMT
Protocols

We now derive the lower bound on the communication complexity of SRMT
and SSMT protocols. We will then show that our protocols SRMT-Optimal and
SSMT-Optimal satisfy these bounds asymptotically. We first begin with the
lower bound for SRMT protocols.

9.1. Lower Bound for SRMT Protocols

The lower bound on the communication complexity of SRMT protocols is
given by the following theorem:

Theorem 10. Any SRMT protocol has to communicate Ω(ℓ) field elements to
reliably send a message containing ℓ field elements.

Proof: The proof simply follows from the fact that any SRMT protocol has to
at least communicate the message. 2

In the light of the above theorem, we state the following theorem:

Theorem 11. Protocol SRMT-Optimal is a communication optimal SRMT pro-
tocol.

Proof: Follows from Theorem 10 and the fact that SRMT-Optimal reliably
sends a message containing Θ(n3) field elements by communicating O(n3) field
elements. 2

In the next section, we derive the lower bound for SSMT protocols.

9.2. Lower Bound for SSMT Protocols

The derivation of the lower bound on the communication complexity of
SSMT protocol is divided into two parts: (a) if the entire bottom band is cor-
rupted and (b) if the entire bottom band is not corrupted. We first consider the
case when the entire bottom band is corrupted.
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Theorem 12. Suppose there exists u ≤ t wires in the bottom band and n =
2t − u + 1 wires in the top band. Moreover, suppose the entire bottom band is
corrupted (S and R may or may not know about this). Then any multiphase
SSMT protocol to securely send a message m containing ℓ field elements from F,
needs to communicate Ω(nℓ

u ) field elements. In terms of bits, the protocol needs

to communicate Ω(nℓ
u κ) bits to securely send ℓκ bits.

Proof: Suppose both S and R in advance knows that the entire bottom band
is corrupted. Under this condition, any multiphase SSMT protocol Π to se-
curely send m, is virtually reduced to a single phase SSMT protocol, where S
is connected to R by n = 2t−u+1 wires, of which at most t−u are corrupted.
Since perfect secrecy is required in SSMT, the data sent along the top band
in Π must be such that data along any set of (t − u) wires has no information
about the secret message m. Otherwise the adversary will also know the secret
message by passively listening the contents of these wires. Similarly, the data
sent over any set of (n− (t− u)) wires over the top band should have full infor-
mation about the secret message m. The latter requirement ensures that even
if the adversary simply blocks all the data that he can, the secret message is not
lost and therefore the receiver’s ability to recover the message is not completely
ruled out. We now define the following notations:

1. M denotes the message space from where the message m is selected. In
our context, M = F

ℓ.

2. For i = 1, . . . , n, Xm
i denotes the set of all possible transmission in protocol

Π, that could occur over wire fi, corresponding to message m ∈ M.

3. For j ≥ i, Mm
i,j ⊆ Xm

i × Xm
i+1 × . . . × Xm

j denotes the set of all possible
transmission that could occur over wire fi, fi+1, . . . , fj during protocol Π,
corresponding to message m ∈ M.

4. Mi,j =
⋃

m∈M Mm
i,j and Xi =

⋃
m∈M Xm

i . We call Xi as the capacity of
wire fi and Mi,j as the capacity of the set of wires {fi, . . . , fj}.

Now in protocol Π, one element from the set Xi is transmitted over wire fi,
for i = 1, . . . , n. Moreover, each element of the set Xi can be represented by
log |Xi| bits. Thus, if we can find out each Xi, then the lower bound on the
communication complexity of Π will be Σn

i=1 log |Xi| bits. In the sequel, we try
to estimate Xi.

From the properties of data sent over the top band in protocol Π, the data
sent over any set of t − u wires is independent of the message. Thus, for any
two messages m1, m2 ∈ M, it must hold that

Mm1

t−u+1,2(t−u) = Mm2

t−u+1,2(t−u).

Notice that the above relation must hold for any selection of t−u wires in the top
band. We focussed on the set of wires {ft−u+1, . . . , f2(t−u)} just for simplicity.

Also, from the properties of data transmitted over the top band in Π, the
data transmitted over any set of n − (t − u) wires should have full information
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about the message m and hence uniquely determine m. Thus it must also hold
that

Mm1

t−u+1,n ∩Mm2

t−u+1,n = ∅.

We again stress that the above relation must hold for any set of n − (t − u)
wires in the top band. We focussed on the set of wires {ft−u+1, . . . , fn} just for
simplicity.

As mentioned earlier, Mm
t−u+1,2(t−u) will be same for all messages m. Thus,

in order that Mm1

t−u+1,n∩Mm2

t−u+1,n = ∅ holds, it must be the case that Mm
2(t−u)+1,n

is unique for every message m. This implies that

|M2(t−u)+1,n| = |M|.

From the definition of Xi and Mi,j , we get

Πn
i=2(t−u)+1|Xi| ≥ |M2(t−u)+1,n| ≥ |M|.

Let g = n− 2(t− u). The above inequality holds for any set of g wires D in the
top band, where |D| = g; i.e., Πfi∈D|Xi| ≥ |M|. In particular, it holds for every
selection Dk of set of wires {f(kg+1) mod n, f(kg+2) mod n, . . . , f(kg+g) mod n},

with k ∈ {0, . . . , n − 1}.
If we consider all above Dk sets, then each wire is counted for exactly g

times. Thus, the product of the capacities of all Dk yields the capacity of the
full top band to the g-th power, and since each Dk has capacity at least |M|,
we get

|M|n ≤ Πn−1
k=0Πfj∈Dk

|Xj | = (Πn
i=1|Xi|)

g
,

and therefore
n log(|M|) ≤ gΣn

i=1 log(|Xi|).

As log(|M|) = ℓ log(|F|), from the above inequality, we get

Σn
i=1 log(|Xi|) ≥

(
nℓ log(|F|)

g

)
≥

(
nℓ log(|F|)

n − 2(t − u)

)
.

As mentioned earlier, Σn
i=1 log(|Xi|) denotes the lower bound on the communi-

cation complexity of protocol Π. From the above inequality, we find that the

lower bound on the communication complexity of protocol Π is Ω
(

nℓ log(|F|)
n−2(t−u)

)
=

Ω
(

nℓ
n−2(t−u)κ

)
bits. Now each field element from F can be preprsented by κ

bits. Thus the lower bound on the communication complexity of protocol Π is

Ω
(

nℓ
n−2(t−u)

)
= Ω(nℓ

u ) field elements, as n = 2t − u + 1. 2

We now proceed to the second case when the entire bottom band is not cor-
rupted. The lower bound on the communication complexity of SSMT protocol
for this case is given by the following theorem:
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Theorem 13. Suppose there exists u ≤ t wires in the bottom band and n =
2t − u + 1 wires in the top band. Moreover, suppose that the entire bottom
band is not corrupted. Then any multiphase SSMT protocol to securely send
a message m containing ℓ field elements from F, needs to communicate Ω(nℓ)
field elements. In terms of bits, the protocol needs to communicate Ω(nℓκ) bits
to securely send ℓκ bits.

Proof: Suppose there exists u ≤ t wires in the bottom band and n = 2t−u+1
wires in the top band. Let N = (n + u) = 2t + 1. Now n = Θ(t), as there exists
at least t + 1 wires in the top band. Also N = Θ(t). Let Π be a multiphase
SSMT protocol over the N wires to securely transmit a message m containing
ℓ field elements from F. Then in any execution of Π, the data exchanged along
any set of t wires (including top and bottom band) must be independent of m.
Otherwise, adversary can passively listen these wires and will know m, which
violates perfect secrecy condition of Π. On the other hand, data exchanged along
any set of N − t wires (including top and bottom band) should have complete
information about the message. The latter requirement ensures that even if
the adversary simply blocks all the data that he can, the secret message is not
lost and therefore the receiver’s ability to recover the message is not completely
ruled out. Let the N wires between S and R be denoted by w1, . . . , wN . Out
of these N wires, the first n wires are the wires from the top band, which are
directed from S to R. On the other hand, remaining N − n = u wires are from
the bottom band, which are directed from R to S.

We now define the following notations:

1. M denotes the message space from where the message m is selected. In
our context, M = F

ℓ.
2. For i = 1, . . . , N , Xm

i denotes the set of all possible transmission in pro-
tocol Π, that could occur over wire wi, corresponding to message m ∈ M.

3. For j ≥ i, Mm
i,j ⊆ Xm

i × Xm
i+1 × . . . × Xm

j denotes the set of all possible
transmission that could occur over wire wi, wi+1, . . . , wj during protocol
Π, corresponding to message m ∈ M.

4. Mi,j =
⋃

m∈M Mm
i,j and Xi =

⋃
m∈M Xm

i . We call Xi as the capacity of
wire wi and Mi,j as the capacity of the set of wires {wi, . . . , wj}.

Now in protocol Π, one element from the set Xi is transmitted over wire wi,
for i = 1, . . . , N . Moreover, each element of the set Xi can be represented by
log |Xi| bits. Thus, if we can find out each Xi, then the lower bound on the
communication complexity of Π will be ΣN

i=1 log |Xi| bits. In the sequel, we try
to estimate Xi.

From the properties of protocol Π, the data sent over any set of t wires is
independent of the message. Thus, for any two messages m1, m2 ∈ M, it must
hold that

Mm1

t+1,2t = Mm2

t+1,2t.

Notice that the relation above must hold for any selection of t wires out of the
N wires between S and R. We focussed on the set of wires {wt+1, . . . , w2t} just
for simplicity.
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Also, from the properties of protocol Π, the data transmitted over any set
of N − t wires should have full information about the message m and hence
uniquely determine m. Thus it must also hold that

Mm1

t+1,N ∩Mm2

t+1,N = ∅.

We again stress that the above relation must hold for any set of N − t wires out
of the N wires between S and R. We focussed on the set of wires {wt+1, . . . , wN}
just for simplicity.

As mentioned earlier, Mm
t+1,2t will be same for all messages m. Thus, in

order that Mm1

t+1,N ∩ Mm2

t+1,N = ∅ holds, it must be the case that Mm
2t+1,N is

unique for every message m. This implies that

|M2t+1,N | = |M|.

From the definition of Xi and Mi,j , we get

ΠN
i=2t+1|Xi| ≥ |M2t+1,N | ≥ |M|.

Let g = N − 2t. The above inequality holds for any set of g wires D, where
|D| = g; i.e., Πwi∈D|Xi| ≥ |M|. In particular, it holds for every selection
Dk of set of wires {w(kg+1) mod N , w(kg+2) mod N , . . . , w(kg+g) mod N}, with

k ∈ {0, . . . , N − 1}.
If we consider all above Dk sets, then each wire is counted exactly g times.

Thus, the product of the capacities of all Dk yields the capacity of the full top
band and bottom band to the g-th power, and since each Dk has capacity at
least |M|, we get

|M|N ≤ ΠN−1
k=0 Πwj∈Dk

|Xj | =
(
ΠN

i=1|Xi|
)g

,

and therefore
N log(|M|) ≤ gΣN

i=1 log(|Xi|).

As log(|M|) = ℓ log(|F|), from the above inequality, we get

ΣN
i=1 log(|Xi|) ≥

(
Nℓ log(|F|)

g

)
≥

(
Nℓ log(|F|)

N − 2t

)
.

As mentioned earlier, ΣN
i=1 log(|Xi|) denotes the lower bound on the communi-

cation complexity of protocol Π. From the above inequality, we find that the

lower bound on the communication complexity of protocol Π is Ω
(

Nℓ log(|F|)
N−2t

)
=

Ω (Nℓκ) bits, as N = 2t +1. Now each field element from F can be preprsented
by κ bits. Thus the lower bound on the communication complexity of protocol
Π is Ω(Nℓ) = Ω(nℓ) field elements, as N = Θ(t) = Θ(n). 2

Now in the light of previous two theorems, we can state the following theorem:

Theorem 14. Protocol SSMT-Optimal is a communication optimal SSMT pro-
tocol.
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Proof: From Theorem 9, if the entire bottom band is corrupted then proto-
col SSMT-Optimal securely sends ℓ = Θ(n2u) field elements by communicating
O(n3) field elements. From Theorem 12, if the entire bottom band is corrupted,
then any multiphase SSMT protocol has to communicate Ω(nℓ

u ) = Ω(n3) field el-
ements to securely send ℓ = Θ(n2u) field elements. So if the entire bottom band
is corrupted then protocol SSMT-Optimal is a communication optimal SSMT
protocol.

If the entire bottom band is not corrupted then protocol SSMT-Optimal se-
curely sends ℓ = Θ(n2) field elements by communicating O(n3) field elements.
From Theorem 13, if the entire bottom band is not corrupted, then any mul-
tiphase SSMT protocol has to communicate Ω(nℓ) = Ω(n3) field elements to
securely send ℓ = Θ(n2) field elements. So if the entire bottom band is not
corrupted then also protocol SSMT-Optimal is a communication optimal SSMT
protocol. 2

10. Conclusion

In this paper, we have resolved the issues related to the feasibility and
optimality of SRMT and SSMT protocols in directed networks, which is done
for the first time in the literature of RMT and SMT protocols. This paper leaves
certain open problems. Our communication optimal SRMT and SSMT protocol
require O(u) phases. It would be interesting to come up with communication
optimal SRMT and SSMT protocols with less phase complexity. Our SRMT and
SSMT protocol is communication optimal only for messages of some minimum
specific length. It would be interesting to design SRMT and SSMT protocols
which are communication optimal for messages of any length.
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[3] Tuŕan graph. Wikipedia article.

[4] S. Agarwal, R. Cramer, and R. de Haan. Asymptotically Optimal Two-
Round Perfectly Secure Message Transmission. In C. Dwork, editor, Ad-
vances in Cryptology - CRYPTO 2006, 26th Annual International Cryp-
tology Conference, Santa Barbara, California, USA, August 20-24, 2006,
Proceedings, volume 4117 of Lecture Notes in Computer Science, pages
394–408. Springer-Verlag, 2006.

[5] B. V. Ashwinkumar, A. Patra, A. Choudhary, K. Srinathan, and C. Pandu
Rangan. On tradeoff between network connectivity, phase complexity and
communication complexity of reliable communication tolerarting mixed
adversary. In R. A. Bazzi and B. Patt-Shamir, editors, Proceedings of
the Twenty-Seventh Annual ACM Symposium on Principles of Distributed

64



Computing, PODC 2008, Toronto, Canada, August 18-21, 2008, pages
115–124. ACM, 2008.
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