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Statistically sound evaluation of trace element

depth profiles by ion beam analysis

K. Schmid ∗, U. von Toussaint

Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, D-85748 Garching b. München Germany

Abstract

This paper presents the underlying physics and statistical models that

are used in the newly developed program NRADC for fully automated

deconvolution of trace level impurity depth profiles from ion beam data.

The program applies Bayesian statistics to find the most probable depth

profile given ion beam data measured at different energies and angles for a

single sample. Limiting the analysis to % level amounts of material allows

one to linearize the forward calculation of ion beam data which greatly

improves the computation speed. This allows for the first time to apply

the maximum likelihood approach to both the fitting of the experimental

data and the determination of confidence intervals of the depth profiles

for real world applications. The different steps during the automated

deconvolution will be exemplified by applying the program to artificial

and real experimental data.

1 Introduction

The determination of trace element depth profiles (concentrations in the order

of 1%) from ion beam (IBA) methods is of importance in different areas of

material science. For instance in the field of plasma wall interaction in nuclear

fusion devices, measuring deuterium depth profiles in metals like tungsten is one

of the fundamental methods to investigate the retention of hydrogen in plasma

exposed first wall materials. Since the solubility of hydrogen in W is close to

zero, hydrogen is only located at natural defects and radiation damage sites at

concentrations ranging from ≈ 0.1 at. frac. near the surface to 10−7 at. frac.

throughout the bulk. We will show that at such low concentrations the forward
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calculation of the IBA data can be linearized with respect to the concentration

dependence, since the stopping power is essentially not modified by variations

in the concentrations of the trace element. This linearization greatly improves

the computation speed and allows one to perform an extensive Markov-Chain

Monte Carlo (MCMC) based search for the most probable (maximizing the like-

lihood) depth profile given all experimental data. This ability to use multiple

data sets makes it ideally suited for deconvoluting D depth profiles. Typically

these are determined from nuclear reaction analysis (NRA) data acquired at

different energies of the incident ion beam. In this approach each energy pre-

dominantly probes a certain depth region due to the peaked nature of the 3He(p,

�)D nuclear reaction used.

The determination of depth profiles by simultaneously fitting multiple data sets

determined from different IBA experiments is an ideal application of Bayesian

statistics. This approach has been applied to the deconvolution of IBA data

[1, 2, 3] and is summarized in the review by Jeynes [4]. There have been many

approaches to determining depth profiles by fitting experimental scattering data

starting with the early work by Doolittle [5] evolving into complete code pack-

ages like DataFurnace [6] or SimNRA [7]. A review and detailed comparison

of current codes can be found in [8]. The codes differ mainly in the figure

of merit function (e.g. minimizing �2 or maximizing the likelihood) and the

type of optimization algorithm used (e.g. Simplex Methods[7] or variations of

MCMC schemes[6, 2, 3]). Another important difference are the confidence in-

tervals of the determined depth profiles. Only very few codes yield statistically

sound confidence intervals. In [9] Bayesian statistics are used in combination

with an MCMC scheme to estimate the confidence intervals of depth profiles

determined from IBA measurements. Similarly DataFurnace uses an MCMC

scheme to assign confidence intervals using Bayesian statistics to the depth pro-

files previously determined by minimizing �2. An example of a �2 based fit to

experimental data using simulated annealing can be found in e.g. [10, 11].

Independently on how the confidence intervals are assigned, using a minimum

�2 as figure of merit to fit the depth profile introduces the ambiguity that �2

always (must) decrease with the number of free parameters i.e. layers. So in-

creasing the number of layers will yield a better fit which in the end can result

in fitting the noise of the experimental data. While this can be avoided in an

”ad-hoc fashion” by penalizing the addition of new layers in the calculation of

the �2 (e.g. [11]), this approach will not necessarily lead to the most probable

number of layers given the data. To avoid this ambiguity NRADC (Nuclear Re-
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action Analysis DeConvolution) uses Marginalization to find the most probable

number of layers given the experimental data. This procedure also uses a �2

base likelihood estimate but penalizes solutions with a large number of layers

following the concept of ”Ockham’s Razor” (see section 4.1). It is followed by

a maximum likelihood [2, 3] search for the concentrations in each layer. So the

important difference to previous approaches is that it chooses the number of free

parameters to fit based on a probabilistic argument. Both searches are based on

MCMC chains and require ≈ 106 forward calculations. In comparison only 3000

MCMC steps were performed in [9] to infer the confidence intervals. This shows

why the maximum likelihood approach has been generally considered too com-

putationally expensive due to the large number of forward calculations required

[4]. But due to the linearization of the forward calculation in NRADC, such

a large number of forward calculations become manageable and a full decon-

volution including confidence intervals both based on the maximum likelihood

approach takes less than ≈ 10 minutes on a normal office PC. In contrast a

Bayesian inference calculation is an over night task for codes that include the

full non linear forward calculation.

In the approach utilized in this paper generality is sacrificed for computational

efficiency. Despite the linearization our approach still is applicable to a large

number of problems where trace amounts of material are to be detected.

One reason why NRADC has been developed was that often NRA experiments

are evaluated ”manually”, only considering the proton spectrum peak integrals,

thereby completely neglecting the information in the individual proton spectra.

This issue of ambiguity during manual deconvolution of IBA data is of course

not new and has been discussed previously (e.g. [4] in 2003). However since then

still a large number (e.g. [12, 13, 14, 15, 16]) of publications based on a manual

fitting of the experimental data have been published. The depth profiles therein

have no statistically sound confidence intervals and thus numerous discussions

have arisen on whether or not certain features in the depth profiles are real or

just artifacts from the deconvolution. Due to the fact that manual evaluation

of data appears still to be common today, we will revisit the topic based on our

linearized forward calculation which allows to show the ambiguities based on

mathematical arguments.

The paper will present the underlying physics and statistical models that are

used in the newly developed program NRADC. The deconvolution of depth pro-

files using NRADC will be exemplified by applying it to real world and artifi-

cially generated data sets from D depth profiling by ion beam analysis. However
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it must be stressed that the program is not limited to the deconvolution of D

depth profiles, but can generally be applied to the evaluation of ion beam data,

as long as the conditions allowing one to linearize the forward calculation are

fulfilled.

The paper first outlines how D depth profiles are measured using NRA and

how the forward calculation of such IBA energy spectra can be linearized. Also

the limits of applicability of this approximation are discussed. Next based, on

the linear forward calculation, the deconvolution of the depth profile from the

measured data is described. In this section different approaches ranging from

direct inversion of the linear system to a Markov-Chain Monte Carlo search for

the most probably depth profile are compared. Also potential pitfalls of the

conventional, manual evaluation are pointed out in this section. Finally the ap-

plication of the NRADC program to artificial and real world examples is shown,

discussing the potential for improved depth profiling by applying a statistically

sound evaluation of the data.

2 NRA energy scan depth profiling of D in W

To determine the depth profile of D in W or other bulk materials typically the
3He(p, �)D nuclear reaction is used. The energy dependence of this nuclear

reaction is depicted in Fig. 1 with data taken from [17]. It exhibits a peak at

600keV 3He energy. Therefore varying the primary energy amounts to varying

the depth being predominantly probed for D, since the 3He ions lose energy as

they penetrate the target. Therefore for a given energy of the incident 3He,

the energy axis in Fig. 1 can also qualitatively be seen as a depth axis. This

allows one to compare the probing depth with a typical D depth profile also

shown in Fig. 1 whose depth axis (upper x-axis) is matched to the energy axis

of the cross section data. This D profile exhibits a sharp peak at the surface

and a long tail into the bulk. Comparing the two curves in Fig. 1 it becomes

evident that a certain 3He energy does not exclusively probe a certain depth:

Despite the low cross section at the surface, the high concentration of D there,

contributes essentially the same amount of counts to the NRA spectrum, as the

low concentration region at the depth where the cross section has its maximum.

This is best visualized by the plot of the product of the cross section with D

concentration shown in Fig. 1. Therefore the contributions of the D amount at

individual depths to an NRA spectrum are heavily convoluted, making a manual
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evaluation of the data measured at different energies by eye almost impossible.

Therefore typically the manual evaluation is limited to only matching the total

integral over the NRA energy spectra measured at different 3He energies [17].

This approach ignores the entire information available in the energy spectra of

the produced protons and alpha particles. Merely looking at the integrals is

prone to artifacts since it is an ill posed inversion problem (see section 4 and

5). Also, without further assumptions about the principal shape of the D depth

profile the thus determined profiles are not in general unique.

To determine the most probable depth profile given the NRA spectra measured

for a single sample under different experimental conditions (e.g. energies, angle)

a fast forward calculation model is needed. This forward calculation yields the

NRA spectra corresponding to an assumed input depth profile which can then

be compared to the experimental data.

3 Fast forward calculation of IBA data by lin-

earization

The general idea behind a forward calculation is that it yields a functional

relationship between the parameters to be estimated (e.g. the trace element

depth profile) and the ideal (noiseless) data which can then be compared to the

real noisy data resulting from an experiment. From this probabilistic comparison

between the ideal forward calculated data and the experimental data the most

probable choice of the trace element depth profile can be determined.

The forward calculation of IBA data is described in much detail for example in

[4, 18, 7]. Here only the general idea behind the forward calculation and how it

can be linearized for trace level concentrations will be described. The approach

is similar to that in [19] but finally uses SimNRA to determine the design matrix

(see below) for the linear system. However this is only performed once during

the entire deconvolution procedure. All the forward calculations are done based

on design matrices derived from this initial one! This is why NRADC is so much

faster than other optimization codes since it only performs the full nonlinear

calculation once. A complete deconvolution including confidence intervals takes

at most 10 minutes including the initial calculation of the design matrix by

SimNRA.

An IBA spectrum consists of M-channels each of which contain the number

particles entering the detector from the target in an energy window Ej +ΔEj
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with (j ∈ 1...M). The energy Ej of the the j-th channel and its width ΔEj are

given by the energy calibration which has to be determined experimentally. The

input depth profile into the forward calculation is given by N-layers of width

Δxi and concentration of the trace element cTi with (i ∈ 1...N). In addition

to the trace element depth profile concentrations, also the background target

element concentrations cBi,k are needed since they mainly define the stopping

power. The index k thereby runs over all background target elements. Given

the depth profiles, the primary 3He energy E, the differential reaction cross

section d�
dΩ

, the analysis dose Φ (i.e. # of 3He ions) and the solid angle ΔΩ of

the detector the number of counts Qj in spectrum channel j is given by Eq. 1.

Qj =
N
∑

i=1

cTi ∗ fj
(

S
(

E, cTi , c
B
i,k

)

,
d�

dΩ
(E),ΔΩ,Φ

)

(1)

S
(

E, cTi , c
B
i,k

)

= cTi ∗ ST
i (E) +

∑

k

cBi,k ∗ SB
k (E)

cTi = Concentration of trace element in layer i

cBi,k = Concentration of background element k in layer i

ST
i (E), SB

j (E) = Stopping power in pure elements

fj() = Complex non linear function

Basically Eq. 1 states that the counts in a spectrum channel is given by the sum

of the contributions from each layer in the input depth profile into the forward

calculation.

Following Bragg’s rule [20], the stopping power S
(

E, cTi , c
B
i,k

)

in Eq. 1 is a

linear combination of the energy loss in the individual elements weighed by the

concentrations of the elements. Therefore it becomes obvious that low con-

centrations elements only contribute a negligible amount to the total stopping

power. This fact allows to neglect the variations in Qj due to variations in

S
(

E, cTi , c
B
i,k

)

due to variations cTi in Eq. 1. In this approximation Eq. 1 be-

comes a linear equation since the cTi dependence is removed from fj which can

be written as Eq. 2

Qj =
N
∑

i=1

cTi ∗ fj
(

S
(

E, cBi,k
)

,
d�

dΩ
(E),ΔΩ,Φ

)

(2)

= Aj,i c
T
i
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Thus the forward calculation becomes a matrix multiplication which is very

fast compared to the full non linear forward calculation. The design matrix

Aj,i in Eq. 2 is constant under variations in cTi and can be precalculated for

different experimental conditions. Its elements Aj,i describe the contribution

of the trace element concentration in the i-th layer to counts detected in j-

th IBA spectrum channel. In NRADC the program SimNRA [7] is used to

produce Aj,i. SimNRA performs the full non linear forward calculation similar

to DataFurnace, including proper handling of energy loss straggling and finite

energy resolution of the detector. This fully automated procedure only needs the

depth discretization of the trace element (given by a vector of layer thicknesses

Δxi) and background target depth profile. The details on how to choose this

depth discretization will be discussed later. To determine the contribution of

layer i to each energy channel Qj a small amount of D is placed into layer i

and the resulting spectra are calculated using SimNRA for each spectrum type

(e.g. protons, alphas) and for each experimental condition ECk. Repeating this

for each layer, yields the contribution of each trace element depth profile layer i

to each forward calculation data channel j for each experimental condition (e.g.

Energy & Angle of incidence of the primary 3He beam). This results in a design
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matrix layout as in Eq. 3

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

PSpec (L0, EC0, Cℎan0) ... PSpec (LN , EC0, Cℎan0)
...

. . .
...

PSpec (L0, EC0, CℎanNC
) ... PSpec (LN , EC0, CℎanNC

)
...

. . .
...

PSpec (L0, ECNEC
, Cℎan0) ... PSpec (LN , ECNEC

, Cℎan0)
...

. . .
...

PSpec (L0, ECNEC
, CℎanNC

) ... PSpec (LN , ECNEC
, CℎanNC

)

�Spec (L0, EC0, Cℎan0) ... �Spec (LN , EC0, Cℎan0)
...

. . .
...

�Spec (L0, EC0, CℎanNC
) ... �Spec (LN , EC0, CℎanNC

)
...

. . .
...

�Spec (L0, ECNEC
, Cℎan0) ... �Spec (LN , ECNEC

, Cℎan0)
...

. . .
...

�Spec (L0, ECNEC
, CℎanNC

) ... �Spec (LN , ECNEC
, CℎanNC

)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(3)

Li = Contribution of layer i

ECj = Experimental condition j

N = Number of trace element depth profile layers

NC = Number of channels in spectrum

NEC = Number of experimental conditions

PInteg = Contribution to proton peak integrals

PSpec = Contribution to proton spectrum channels

�Spec = Contribution to � spectrum channels

Multiplying the matrix in Eq. 3 with the trace element depth profile concen-

tration vector cTi yields the complete forward calculation of all experimental

data types (Proton integrals, Proton energy spectra and alpha spectra) for all

experimental condition ECj and can be directly compared to an experimental

data vector DType,ECj

Of course this linearization of the forward calculation is only applicable for cases

where cTi ∗ ST
i (E) ≪∑

k c
B
i,k ∗ SB

k (E) is valid (see Eq. 1). The stopping power

for the pure elements scales as the nuclear charge squared. This means that

what can be considered to be a trace level amount depends on the type of ele-
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ment under consideration. Since the stopping power scales with nuclear charge

(Z) squared, this approximation is valid for hydrogen isotopes up the several %

while it is hardly applicable for determining depth profiles of high Z impurities

like W.

4 Deconvolution of IBA data

The steps in deconvoluting IBA data will be shown based on a mock data set

(proton and alpha spectra) created from a typical D in W depth profile. This

depth profile consists of a composition vector cTi and layer thickness vector

Δxi. The mock data set is generated by multiplying cTi with a design matrix

Aj,i generated for the following ”experimental” conditions: Perpendicular angle

of incidence and 3He energies of 600keV, 1200keV, 2400keV, 3200keV, 4500keV

and 6000keV. This yields the proton and alpha spectra to which Poisson noise

is added to mimic the counting statistics of an IBA measurement. The typical

depth profile is shown as open square symbols in Fig 2 and the corresponding

artificial data set is shown as open symbols in Fig 3. To deconvolute this artifi-

cial data set i.e to reproduce the underlying cTi different approaches are possible:

Since the forward calculation is linear, the simplest approach is to invert the

design matrix using singular value decomposition (SVD). To include the experi-

mental uncertainties i.e the Poisson noise in the counting statistics, the inversion

of the linear system can be written as a weighted least squares problem as in

Eq. 4. From now on all bold font variables in equations are vectors or matrices

while normal variables with indices correspond to vector or matrix elements.

�2 =

M
∑

j=1

(

Dj −
∑N

i=1 Aj,i c
T
i

�j

)2

→ Min (4)

�j =
√

Dj = Experimental variance (Poisson noise)

To solve Eq. 4 the SVD of the design matrix weighted with the experimental

variance is calculated first. This yields the left and right singular vectors stored

as column orthonormal matrices U and V and the singular values stored as

the diagonal elements of matrix W. From this SVD result the least squares
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composition vector result cLSQ of Eq. 4 is determined as shown in Eq. 5.

Bj,i =
Aj,i
√

Dj

(5)

B = U ⋅W ⋅VT = SVD result

Ej =
Dj
√

Dj

cLSQ = VT ⋅
(

UT ⋅E
Diag (W)

)

(6)

The division by the singular values Diag(W) in Eq. 5 is to occur per vector

component i.e
(

UT ⋅ E
)

i
/Diag (W)i.

In addition to the solution for the composition vector SVD also allows to calcu-

late the condition number of the desing matrix which qualitatively states how

sensitive cLSQ is to variations (e.g. noise) in the data vector D. The condition

number C is given by the ratios of the largest to the smallest singular value of

the design matrix i.e C = max (Diag (W)) /min (Diag (W)). For values of C

larger than ≈ 1000 the system is considered ill conditioned and the result for

cLSQ is affected by the counting statistics and is generally meaningless.

To assign confidence intervals ΔcLSQ to the components of the least squares

solution vector cLSQ the approach outlined in chapter 3.5 in [21] is used. Ac-

cording to the Bayes’s theorem the probability of the estimated parameters

cLSQ to be true given the experimental data D and further prior knowledge I

about cLSQ is given by Eq. 7

P
(

cLSQ∣D, I
)

∝ P
(

D∣cLSQ, I
)

∗ P
(

cLSQ∣I
)

(7)

P
(

D∣cLSQ, I
)

= Likelihood function

P
(

cLSQ∣I
)

= Prior function

The likelihood function thereby states how probable it would be to measure the

experimental data D given that the depth profile cLSQ and our linear forward

calculation model were true. In the case of forward calculation of IBA counting

spectra the likelihood function is given by a product of Poisson distributions in
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Eq. 8

f = A ⋅ cLSQ (8)

A = Design matrix

f = forward calculation result vector =

mean value of expected counts

P
(

D∣cLSQ, I
)

=

M
∏

j=1

f
Dj

j

Dj !
exp (−f)

The product in Eq. 8 runs over all proton and alpha spectrum channels and

compares the experimental data Dj to expected the data fj from the forward

calculation result.

The prior function contains additional information about the parameters to be

estimated (e.g that the components of cLSQ should lie between 0 and 1.) As

is shown in [21] the confidence intervals for the estimated parameters can be

calculated from the diagonal terms of the covariance matrix cov. The covariance

matrix describes correlations between estimated parameters (e.g. concentrations

in different layers of the trace element depth profile). The covariance matrix is

calculated according to Eq. 9.

L = ln
(

P
(

cLSQ∣D, I
))

(9)

Gj,i =
∂2L

∂cLSQ
j ∂cLSQ

i

cov = −Inverse [Gj,i]

(10)

The ”Inverse” in Eq. 9 stands for the matrix inverse of matrix elements enclosed

by the square brackets.

To calculate L in Eq. 9 a flat (i.e constant) prior function P
(

cLSQ∣I
)

is used

in Eq. 7 and the Likelihood function is approximated by P
(

D∣cLSQ, I
)

∝
exp

(

−�2/2
)

. This essentially amounts to approximating the Poisson noise of

the experimental IBA counting data with gaussian noise which is justified for

counts > 10. This finally yields the following expressions for L, cov and the
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least squares solution confidence intervals ΔcLSQ
i .

L = const.− �2

2
(11)

Gk,s =
∂2L

∂cLSQ
k ∂cLSQ

s

=

M
∑

j=1

Aj,kAj,s

�2
j

cov = −Inverse [G]

ΔcLSQ
i =

√
covi,i

In order to apply the least squares solution technique to the artificial data set in

Fig. 3 the design matrix A has to be calculated. Apart from the experimental

parameters used to measure the alpha and proton spectra one has to specify

a certain discretization Δxi of the depth profile. This choice of the depth

discretization is crucial for finding the most probable depth profile as shall be

demonstrated using by deconvoluting the mock data in Fig. 3 using different

assumptions about the depth discretization.

Since the depth discretization is known for the artificial data set it can be used

directly to produce the appropriate design matrix APerfect which of course is

then identical to that used to produce the artificial data. Using APerfect in

the least squares solution technique yields the depth profile cLSQ,Perfect (open

circles) overlaid to the true depth profile cTi in Fig. 2. Despite the Poisson

noise on the artificial data set the agreement between the two profiles is good as

was to be expected from the condition number of ≈ 10 of APerfect. In reality

of course the depth discretization is essentially unknown, only the maximum

information depth is given based on the stopping power of the 3He ions in the

target. For 6MeV 3He the maximum information depth in W is of the order

of 10 �m. Therefore one has to choose a depth discretization for these first 10

�m. For peaked cross sections as is the case for the 3He(p, �)D nuclear reaction

a ”reasonable” guess for the depth discretization can found using the following

scheme: In a first step for each 3He energy E3He
j used in the measurement

find the depth xcenter
j where the 3He has reduced its energy to where the cross

section has its peak. In the second step find the depth xMax where the 3He

with the highest E3He
j has reduced its energy to a minimum value e.g 100keV.
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Then the initial depth discretization is given by Eq. 12

Δx1 = xcenter
1 (12)

Δxi = xcenter
i − xcenter

i−1 with i ∈ (2,m− 1)

Δxm = xMax − xcenter
m−1

m = Number of different energies during measurements

This type of depth discretization centers the layers of the depth profile around

the regions where for a given E3He
j the measurement is most sensitive (i.e has the

highest cross section) for D. Based on this depth discretization and the rest of the

experimental parameters a new design matrix AGuess can be calculated which

then yields the new least squares solution cLSQ,Guess. cLSQ,Guess is compared

to the true depth profile cTi in Fig. 4. The first apparent difference is that the

number of layers in cLSQ,Guess is less than in cTi and while the average amount

of D in both profiles is similar the shape of both profiles is not very similar.

In particular the appearance of deep minima occurs. What this example shows

is that during the deconvolution of IBA data to obtain depth profiles it is not

sufficient to just optimize the composition c but also the depth discretization

Δx must be part of the optimization i.e the most probable composition and

layer thickness vector must be found.

4.1 Finding the most probable depth discretization

To find the optimum Δx a large number of different Δx have to be compared,

which requires a large number of forward calculations. Since the design matrix

depends on Δx one would have to recompute it for each choice of Δx. Since

this is a very expensive calculation a method of varying Δx without having

to recompute the whole matrix was developed: Based on an initial choice for

Δx from Eq. 12 a depth discretization was produced by splitting each of the

layers in Δx into n sub layers yielding ΔxOS. The OS thereby stands for ”over

sampling”. Based on ΔxOS a design matrix AOS is calculated. By restricting

the possible choices of Δx to those that can be generated by ”binning” together

sub layers in ΔxOS the full re-calculation of the design matrix can be avoided:

Binning two sub layers together in the current depth discretization corresponds

to adding the corresponding columns in AOS. Therefore for a certain binning

layout the appropriate design matrix can be derived quickly fromAOS by adding

the appropriate columns.
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Finding the most probable Δx actually consists of two problems: First find the

number N of layers in Δx and second their individual thicknesses Δxi. To find

the most probable NOPT number of layers one has a to assign a probability to a

certain choice of N . Following the approach in [21] chapter 4.2 the probability

for a choice of N is given in Eq. 13 using a similar approach as in Eq. 7

P (N ∣D, I) ∝ P (D∣N, I) P (N ∣I) (13)

D = Experimental data

P (N ∣I) = Flat prior i.e is constant

Since a flat, constant prior probability is used in Eq. 13, P (N ∣D, I) only de-

pends on P (D∣N, I) i.e the probability of the data D given the number of layers

N in the depth profile used in the forward calculation model. Since the model

in addition to N also takes Δx and c as input parameters P (D∣N, I) has to be

determined for any arbitrary choice of Δx and c. Therefore P (D∣N, I) has to

determined by marginalizing (see e.g. [21] p. 4) over Δx and c as in Eq. 14.

P (D∣N, I) ∝
∫

⋅ ⋅ ⋅
∫

P (D, c,Δx∣N, I) dCi dxi (14)

applying Bayes theorem

P (D, c,Δx∣N, I) ∝ P (D∣c,Δx, N, I) P (c∣N, I) P (Δx∣N, I)

assuming constant priors for Δx and c yields

P (c∣N, I) P (Δx∣N, I) =
1

(cmax − cmin)
N
(Δxmax −Δxmin)

N

and applying least squares likelihood function

P (D∣c,Δx, N, I) ∝ exp

(

−�2

2

)

finally yields

P (D∣N, I) ∝ 1

(cmax − cmin)
N
(Δxmax −Δxmin)

N

∫

⋅ ⋅ ⋅
∫

exp

(

−�2

2

)

dCi dxi

Marginalization means that the probability for a layer number is given by in-

tegrating over all possible choices, weighted by the respective probability. The

multidimensional integral in Eq. 14 can be solved by monte carlo integration

but this is rather time consuming. Therefore still following the approach in [21]

chapter 4.2, �2 is replaced by a taylor expansion around the �2
OPT correspond-

ing to the best least squares fit for parameter values cBEST and ΔxBEST . This

reduces the integral to a multivariate gauss integral and finally P (N ∣D, I) is
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given by Eq. 15

P (N ∣D, I) ∝ P (D∣N, I) (15)

∝ N !(4�)N

(cmax − cmin)
N
(Δxmax −Δxmin)

N
√

Det (∇∇�2)
exp

(

−�2
BEST

2

)

Det
(

∇∇�2
BEST

)

= Determinant of the hessian of �2 evaluated at

cBEST and ΔxBEST

The expression for P (N ∣D, I) contains two counteracting contributions: While

the exp
(

−�2

2

)

term penalizes large discrepancies between the data and the for-

ward calculation, the fraction in front of it (Ockham Factor) penalizes having a

large number of free parameters i.e it favors simple models.

While for a given Δx the best least squares cBEST can be found directly by

applying SVD as described above, finding the optimum Δx requires more ef-

fort. For a given number N the search for ΔxBEST occurs in two steps: First

different Δx are generated by randomly binning sub layers (see above) and the

the corresponding least squares result for cLSQ is calculated by SVD and from

it the corresponding �2 value is derived according to Eq. 4. As part of this first

random search a lot of Δx configurations are encountered that yield a cLSQ

which is outside the prior range (cMin = 0 ≤ ci ≤ cMax = 1). In this case the

Δx configurations is considered invalid and is discarded. If a Δx configurations

with a valid cLSQ is found it is stored together with its �2 value. Based on

the Δx with the lowest �2 value resulting from this first step, a Markov Chain

Monte Carlo (MCMC) optimization is started as the second optimization step.

In each MCMC step a layer k in Δx is chosen randomly and its thickness is

either increased or decreased by adding or removing dl sub layers from the se-

lected Δxk. For the so generated new configuration the least squares cLSQ

and �2 ≡ �2
BEST is determined. From �2

BEST the probability P (N ∣D, I) of

the current configuration is calculated according to Eq. 15. If P (N ∣D, I) is

smaller or equal than the previous probability or if P (N ∣D, I) is larger that a

some random number, the step is accepted otherwise the step is rejected and

the previous Δx configuration is restored. Accepting a given configuration with

a probability determined by some random is required to maintain the detailed

balance criterion for the MCMC chain. This entails that also steps have to be

taken which result in configurations with a lower probability.

For a given N this MCMC iteration converges to the optimal configuration

ΔxBEST,N with a corresponding cBEST,N and the lowest �2
BEST,N .
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This optimization procedure is repeated for different layer numbers N and fi-

nally NOPT is selected by comparing the probability P
(

NOPT ∣D, I
)

calculated

according to Eq. 15 from the individual results for cBEST,N and �2
BEST,N . Typ-

ically NOPT is of the order of the number of different experimental conditions

(e.g. 3He energies) that entered the evaluation.

Applying the search for NOPT to the artificial data in Fig. 3 yields parameter

estimates for cLSQ that can be compared to the true depth profile cTi in Fig.

5. Compared to the initial approach with non optimized depth discretization

Δx the optimized version yields a better resemblance with the true profile. A

perfect fit is not possible since the depth resolution of the NRA method does

not allow to resolve the near surface features without the detailed information

about the depth discretization which in reality is not available.

Once NOPT and the corresponding ΔxBEST are found, the result for c can

further refined by dropping the least squares likelihood approximation in its

determination via SVD. As already shown in Eq. 7 and 8 the probability for

a certain c is essentially given by the likelihood function when one assumes

flat constant prior functions. For NRA data the likelihood function is given by

the Poisson statistics as in Eq. 8. Using Eq. 8 to assign a probability to a

composition vector c and MCMC optimization can be applied to find the most

probable composition vector. The figure of merit in this MCMC optimization is

P (c∣D, I) from eqs. 7 and 8. Again as in the search for NOPT a new configu-

ration c from a single MCMC step is accepted if it improves the figure of merit

or is rejected otherwise and the configuration is restored to its previous state.

During the MCMC optimization of c three stages are distinguished ”Burn in”,

”Sample” and ”Measure” differing in the step width dc used to generate the

next trial configuration. During the ”Burn in” stage the components of the dc

vector are varied such as to achieve a step acceptance fraction of ≈ 50%. Next

during the ”Sample” stage dc is constant and a certain number of steps are

performed after which the chain is assumed to have converged. In a converged

MCMC run the composition configurations c are accepted with a probability

equal to P (c∣D, I). Therefore during the ”Measurement” stage the accepted

c configuration vectors are collected and stored in a histogram which finally

contains the probability densities for each component ci of c. These probabil-

ity densities are often well represented by normal distributions. In these cases

confidence intervals can be deduced which are then equal to the least squares

confidence intervals introduced above (see Eq. 11). However in some cases

multi modal probability densities occur for which no simple confidence intervals
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can be derived. For these cases no corresponding least squares approximation

characterized by a single number can be given.

Applying the MCMC optimzation of c to the artificial data in Fig. 3 using the

result from a previous NOPT search, yields parameter estimates for cMCMC

that can be compared to the true depth profile cTi in Fig. 6. Compared to

the result for c from the NOPT search there is further improvement in the re-

semblance of the true depth profile cTi . But the main advantage of the MCMC

optimization is determination of the probability densities for each component

ci which can detect cases where the least squares confidence intervals are not

applicable.

5 Possible pitfalls during manual deconvolution

When performing the deconvolution manually, directly following the approach in

[17] i.e. only taking into account the proton peak integrals the system becomes

badly conditioned as shall be shown here. Qualitatively the problem lies in the

highly convoluted nature of the proton peak integrals as was already explained

in section 2 based on Fig. 1: For high 3He energies the sensitivity for D (i.e the

cross section) is low in the near surface region and has its maximum at some

depth where the 3He has been slowed down to an energy were its sensitivity (i.e

its cross section) for D is at its maximum (see Fig. 1). Still the contribution

(∝ concentration ∗ crosssection) of the high near surface concentration of D to

the proton peak integral can be equal to that of the low concentration region at

the depth where the cross section has its maximum. Therefore the contributions

of the D amount at individual depths to the proton peak integrals are heavily

convoluted, making a manual evaluation very difficult and prone to artifacts.

This fact can also be illustrated in a more mathematical sense by investigating

the confidence intervals and condition numbers of a design matrix APartial cor-

responding to the typical information content used in a manual evaluation: the

proton peak integrals. Based on a reasonable guess for the depth discretization

according to Eq. 12 a design matrixAPartial was generated for the experimental

conditions (i.e. 3He energies) used for the artificial data shown in Fig. 3. This

procedure yielded a 10x10 APartial matrix (10 energies and 10 layers) with a

condition number of ≈ 4x104 and error bars of the order of 10−2. So for a typi-

cal depth profile with near surface concentrations of ≈ 10−2 and ≈ 10−4 in the

bulk this corresponds to a relative error of 100% near the surface and 10000% in
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the bulk. This shows that a manual evaluation can lead to statistically totally

insignificant results.

6 Real world example

In Fig. 7 the experimental data for an NRA measurement of a D implanted W

sample is shown. NRA proton spectra were collected at 600, 1200, 2400 and

4500keV, alpha spectra only at 600keV because the alpha spectra were overshad-

owed by backscattered 3He from the W substrate at higher energies. The data

was evaluated both manually and by applying NRADC. The manual evaluation

was limited to matching the proton peak and alpha spectra while NRDAC took

all the available information into account. The NRADC GUI greatly facilitates

energy calibration and entering all the experimental details and is usually quite

a bit faster than the manual evaluation. The results are compared in Fig. 7 and

Fig. 8. In Fig. 7 the experimental data is compared to the result of the forward

calculation resulting from a full (NOPT search + MCMC optimization of c)

NRADC run. The match with the experimental data is perfect. In Fig. 8 the

depth profiles obtained from NRADC are compared to the result from the man-

ual deconvolution. The first striking feature is that the manual deconvolution

used ≈ two times more layers despite the fact that it only took a fraction of the

available data into account. Based on Ockham’s razor the manual evaluation

result is much less likely than the NRADC result which with fewer free param-

eters produces an equally good (maybe even better) fit to the data. While both

results have a similar shape they differ at some locations by more than an order

of magnitude. Also the manual evaluation can not produce sound confidence

intervals for the composition. The confidence intervals attached to the manual

evaluation result have been calculated by NRADC according to Eq. 11 from a

design matrix which was based on the same depth discretization as the manual

evaluation and included all available experimental data.

Generally this kind of error estimation is usually omitted during a manual eval-

uation and it is therefore not possible to judge whether or not certain result

features (like the second maximum in the depth profile) are actually significant

or are just within the experimental uncertainties.

NRADC comes with a graphic user interface that simplifies the input of the

experimental conditions and data. It further facilitates the re-use of input data

(energy calibration, regions of interest etc.) for cases where measurements of
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different samples were performed under the same experimental conditions. The

typical run time for the actual deconvolution is in the order of 400 seconds on a

quad core PC. Most of the computational time is spent searching for the most

probably depth discretization which can be efficiently parallelized by probing a

certain layer number on each thread. This makes NRADC much faster than a

manual evaluation.

7 Conclusions

A program NRADC has been developed that utilizes the concepts of Bayesian

statistics to perform statistically sound deconvolution of trace element depth

profiles from IBA data. Based on the assumption that trace amounts of ele-

ments do not vary the stopping power significantly, the forward calculation of

IBA data, given the elemental depth profiles, was linearized. This results in

a very fast forward calculation allowing one to perform Markov Chain Monte

Carlo (MCMC) searches for the most probable (maximum likelihood) depth

profile, defined by its depth discretization and composition. This sets NRADC

apart from existing automated data evaluation tools in that it not just finds

the optimal values for the fit parameters (compositions) but also chooses their

numbers based on a statistically sound probabilistic argument.

The high speed and statistically sound confidence intervals make NRADC a

powerful tool for IBA data analysis.
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Figure captions

Fig. 1
Qualitative comparison of the energy dependence of the 3He(p, �)D nuclear
reaction cross section and a typical D depth profile. The depth axis matches
the energy axis according to the stopping power of a 4.5MeV 3He ion beam.

Fig. 2
Comparison of the true input depth profile (Typical D-profile) with the
deconvolution result using perfect depth discretization and SVD.

Fig. 3
Comparison of the artificial IBA data generated for the true input depth profile
from Fig. 2. Also shown is the best fit obtained by a MCMC optimization of
depth discretization and composition.

Fig. 4
Comparison of the true input depth profile (Typical D-profile) with the
deconvolution result using a ”reasonable guess” depth discretization and SVD.

Fig. 5
Comparison of the true input depth profile (Typical D-profile) with the
deconvolution result using MCMC optimized depth discretization and SVD.

Fig. 6
Comparison of the true input depth profile (Typical D-profile) with the decon-
volution result using MCMC optimization to determine the depth discretization
and the composition.

Fig. 7
Real experimental NRA data obtained from D implanted W. Also shown is a
comparison with the forward calculation result corresponding to the best fit
depth profile.

Fig. 8
Comparison of the D depth profile obtained both from manual fitting and from
MCMC optimization of the experimental data in Fig. 7. The error bars on the
manual fit have been derived by NRADC.
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