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Problems involving causal inference have dogged at the heels of statistics 

since its earliest days. Correlation does not imply causation, and yet causal 

conclusions drawn from a carefully designed experiment are often valid. 

What can a statistical model say about causation? This question is ad­

dressed by using a particular model for causal inference (Holland and 

Rubin 1983; Rubin 1974) to critique the discussions of other writers on 

causation and causal inference. These include selected philosophers, med­

ical researchers, statisticians, econometricians, and proponents of causal 

modeling. 
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1. INTRODUCTION 

The reaction of many statisticians when confronted with 
the possibility that their profession might contribute to a 

discussion of causation is immediately to deny that there 
is any such possibility. "That correlation is not causation 
is perhaps the first thing that must be said" (Barnard 1982, 
p. 387). Possibly this evasive action is in response to all of 
those needling little headlines that pop up in the most 
unexpected places, for example, "If the statistics cannot 
relate cause and effect, they can certainly add to the rhet­
oric" (Smith 1980, p. 998). 

One need only recall that a well-designed randomized 
experiment can be a powerful aid in investigating causal 
relations to question the need for such a defensive posture 
by statisticians. Randomized experiments have trans­
formed many branches of science, and the early proponents 
of such studies were the same statisticians who founded 
the modern era of our field. 

This article takes the view that statistics has a great deal 
to say about certain problems of causal inference and ought 
to play a more significant role in philosophical analyses of 
causation than it has heretofore. In addition, I will try to 
show why the statistical models used to draw causal infer­
ences are distinctly different from those used to draw as­
sociational inferences. 

The article is organized as follows. First, statistical models 
appropriate for associational and causal inferences will be 
discussed and compared. Then they will be applied to vari­
ous ideas about causation that have been expressed by 
several writers on this subject. One difficulty that arises in 
talking about causation is the variety of questions that are 
subsumed under the heading. Some authors focus on the 
ultimate meaningfulness of the notion of causation. Others 
are concerned with deducing the causes of a given effect. 
Still others are interested in understanding the details of 
causal mechanisms. The emphasis here will be on measur­

ing the effects of causes because this seems to be a place 

• Paul W. Holland is Director, Research Statistics Group, Educational 
Testing Service, Princeton, NJ 08541. A preliminary draft of this article 
was the basis of an invited General Methodology Lecture for the Amer­
ican Statistical Association, August 1985. The comments by Glymour and 
Granger included here were given at that session in response to that draft 
of this article. 

where statistics, which is concerned with measurement, has 
contributions to make. It is my opinion that an emphasis 
on the effects of causes rather than on the causes of effects 
is, in itself, an important consequence of bringing statistical 
reasoning to bear on the analysis of causation and directly 
opposes more traditional analyses of causation. 

2. MODEL FOR ASSOCIATIONAL INFERENCE 

The model appropriate for associational inference is sim­
ply the standard statistical model that relates two vari­

ables over a population. For clarity and for comparison 
with the model for causal inference described in the next 
section, however, I will briefly review association here. If 
I seem overly explicit in describing the model it is only 
because I wish to be absolutely clear on the fundamental 
elements of the theory presented here. 

The model begins with a population or universe U of 
"units." A unit in U will be denoted by u. Units are the 
basic objects of study in an investigation. Examples of units 
are human subjects, laboratory equipment, households, 
and plots of land. A variable is simply a real-valued func­
tion 1:hat is defined on every unit in U. The value of a 
variable for a given unit u is the number assigned by some 
measurement process to u. A population of units and vari­
ables defined on these units are the basic elements of the 
models for both association and causation presented here. 
They correspond to the mathematical concepts of a set and 
real-valued functions defined on the elements of the set. 
They are the primitives of the theory and will not be further 
defined. 

Suppose that for each unit u in U there is associated a 
value Y( u) of a variable Y. Suppose further that Y is a 
variable of scientific interest in the sense that one wishes 
to understand why the values of Y vary over the units in 
U. Y is the response variable because of its status as a 
"variable to be explained." In making associational infer­
ences one is satisfied with discovering how the values of 

Y are associated with the values of other variables defined 
on the units of U. Let A be a second variable defined on 
U. Distinguish A from Y by calling A an attribute of the 
units in u. Logically, however, A and Y are on an equal 
footing, since they are both simply variables defined on U. 

All probabilities, distributions, and expected values in­
volving variables are computed over U. A probability will 
mean nothing more nor less than a proportion of units in 
U. The expected value of a variable is merely its average 

value over all of U. Conditional expected values are av­
erages over subsets of units where the subsets are defined 

by conditioning in the values of variables. It is in this sense 
that the models described here are population models. 
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The role of time needs to be mentioned here. Popula-

© 1986 American Statistical Association 
Journal of the American Statistical Association 

December 1986, Vol. 81, No. 396, Theory and Methods 



946 

tions of units exist within a time frame of some sort, and 
the measurements of characteristics of units that variables 
represent must also be made at particular times. For as­

sociational inference, however, the role of time is simply 

to affect the definition of the population of units or to 
specify the operational meaning of a particular variable. 

As we will see, in causal inference the role of time has a 

greater significance. 

The most detailed information one can have in the model 

just described is the values of Y(u) and A(u) are all u in 

U. The joint distribution of YandA over U is specified by 

Pr(Y = y, A =a) =proportion of u in Ufor which Y(u) 

= y andA(u) =a. 

The associational parameters are determined by this 

joint distribution. For example, the conditional distribu­

tion of y given A is specified by Pr(Y = y I A = a) = 

Pr(Y = y, A = a)/Pr(A = a). This conditional distribu­

tion describes how the distribution of Y values changes 

over U as A varies. A typical associational parameter is the 

regression of Yon A, that is, the conditional expectation 

E(YIA =a). 

Associational inference consists of making statistical in­
ferences (estimates, tests, posterior distributions, etc.) about 

the associational parameters relating Y and A on the basis 

of data gathered about Y and A from units in U. In this 

sense, associational inference is simply descriptive statis­
tics. 

3. RUBIN'S MODEL FOR CAUSAL INFERENCE 

Because experimentation is such a powerful scientific 
and statistical tool and one that often introduces clarity 

into discussions of specific cases of causation, I una­

bashedly draw on the language and framework of experi­

ments for the model for causal inference. It is not that I 

believe an experiment is the only proper setting for dis­

cussing causality, but I do feel that an experiment is the 

simplest such setting. The purpose is to construct a model 

that is complex enough to allow us to formalize basic in­
tuitions concerning cause and effect. The point of depar­

ture is the analysis of causal effects given in Rubin (1974, 

1977, 1978, 1980). It will be sufficient for our purposes, 

however, to deal with a simplified, population-level version 

of Rubin's model. This simplified model was used in Hol­

land and Rubin (1980) to analyze causal inference in retro­

spective, case-control studies used in medical research and 

in Holland and Rubin (1983) to analyze Lord's "analysis 

of covariance" paradox. I refer to this as "Rubin's model" 

even though Rubin would argue that the ideas behind the 

model have been around since Fisher. I think that Rubin 

(1974) was the place where these ideas were first applied 

to the study of causation. 

This model also begins with a population of units, U. 
Units in the model for causal inference are the objects of 

study on which causes or treatments may act. The terms 
cause and treatment will be used interchangeably, and the 
notion that these terms convey is an important part of the 

model. It is important to realize that by using the terms 

cause and treatment interchangeably I do not intend to 

limit the discussion to the activities within a controlled 
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randomized study. I do it to emphasize an idea that I be­

lieve receives insufficient attention in general discussions 
of causation. This is the fact that the effect of a cause is 

always relative to another cause. For example, the phrase 

"A causes B" almost always means that A causes B relative 
to some other cause that includes the condition "not 

A." The terminology becomes rather tortured if we try to 

stick with the usual causal language, but it is straightfor­

ward if we use the language of experiments-treatment 

(i.e., one cause) versus control (i.e., another cause). In Sec­

tion 7 I will discuss the fundamental question of what kinds 
of things can be causes. The key notion, however, is the 

potential (regardless of whether it can be achieved in prac­

tice or not) for exposing or not exposing each unit to the 

action of a cause. For causal inference, it is critical that each 

unit be potentially exposable to any one of the causes. 

As an example, the schooling a student receives can be a 

cause, in our sense, of the student's performance on a test, 

whereas the student's race or gender cannot. 

For simplicity it shall be assumed in this article that there 

are just two causes or levels of treatment, denoted by t 

(the treatment) and c (the control). Let S be a variable 

that indicates the cause to which each unit in U is exposed; 

that is, S = t indicates that the unit is exposed to t and S 

= c indicates exposure to c. In a controlled study, S is 

constructed by the experimenter. In an uncontrolled study, 

Sis determined to some extent by factors beyond the ex­

perimenter's control. In either case, the critical feature of 
the notion of cause in this model is that the value of S(u) 

for each unit could have been different. 

The variable S is analogous to the variable A in Section 

2, but with the essential diff~rence that S(u) indicates ex­

posure of u to a specific cause, whereas A(u) can indicate 

a property or characteristic of u. In this case the value of 

A(u) could not have been different. 

The role of time now becomes important because of the 
fact that when a unit is exposed to a cause this must occur 

at some specific time or within a specific time period. Vari­

ables now divide into two classes: pre-exposure-those 

whose values are determined prior to exposure to the cause; 

post-exposure-those whose values are determined after 

exposure to the cause. 

The role of a response variable Y is to measure the effect 

of the cause, and thus response variables must fall into the 

post-exposure class. This gives rise to another critical ele­
ment of the model. The values of post-exposure variables 

are potentially affected by the particular cause, tor c, to 

which the unit is exposed. This is nothing less than the 

statement that causes have effects, which is the very heart 

of the notion of causation. For the model to represent 

faithfully this state of affairs we need not a single variable, 

Y, to represent a response but two variables, Y, and Yeo 

to represent two potential responses. The interpretation 

of these two values, Y,(u) and Yc(u) for a given unit u, is 
that Y,( u) is the value of the response that would be ob­

served if the unit were exposed to t and Yc( u) is the value 

that would be observed on the same unit if it were exposed 

to c. 

The notation Y,( u) and Yc( u) is sometimes confusing 
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because a variable usually represents a measurement of 
some sort and a measurement is usually thought of as the 
result of a process that is applied to a unit. This is not really 
correct. For post-exposure variables the measurement is 
applied to the pairing (u, t) (i.e., u after exposure tot) or 
to (u, c) (i.e., u after exposure to c). A notation that more 
nearly expresses this joint dependence of Y on u and the 

exposed cause is Y1(u) = Y(u, t)"and Yc(u) = Y(u, c). I 
shall use the ¥ 1, Yc notation, however, since it leads to 

simpler expressions. 
The effect of the cause t on u as measured by Y and 

relative to cause c is the difference between Y1( u) and 
Yc(u). In the model this will be represented by the algebraic 

difference 

Y1(U) - Yc(u). (1) 

I shall call the difference (1) the causal effect oft (relative 

to c) on u (as measured by Y). Expression (1) is the way 
that the model for causal inference expresses the most basic 
of all causal statements. It says that treatment t causes the 
effect Y1(u) - Yc(u) on unit U (relative to treatment c) 
or more simply that 

t causes the effect Y1(u) - Yc(u). (2) 

Causal inference is ultimately concerned with the effects 
of causes on specific units, that is, with ascertaining the 
value of the causal effect in (1). It is frustrated by an 
inherent fact of observational life that I call the Funda­
mental Problem of Causal Inference. 

Fundamental Problem of Causal Inference. It is im­
possible to observe the value of YtC u) and Yc( u) on the 
same unit and, therefore, it is impossible to observe the 
effect of t on u. 

The emphasis is on the word observe. The impossibility 
of observing both Y1(u) and Yc(u) is self-evident in some 
examples and less clear in others. For example, if the unit 
u is a specific fourth grader, t represents a novel year-long 
program of study of arithmetic, c represents a standard 
arithmetic program, and Y is a score on a test at the end 
of the year, then it is evident that we could observe either 
Yt(u) or Yc(u) but not both. We will never observe what 
the effect of twas on u. On the other hand, if u is a room 
in a house, t means that I flick on the light switch in that 
room, c means that I do not, andY indicates whether the 
light is on or not a short time after applying either tor c, 

then I might be inclined to believe that I can know the 
values of both Y1( u) and Yc( u) by simply flicking the switch. 
It is clear, however, that it is only because of the plausibility 
of certain assumptions about the situation that this belief 

of mine can be shared by anyone else. If, for example, the 
light has been flicking off and on for no apparent reason 
while I am contemplating beginning this experiment, I might 
doubt that I would know the values of Yt( u) and Yc( u) 
after flicking on the switch-at least until I was clever 
enough to figure out a new experiment! 

The implicit threat of the Fundamental Problem of Causal 

Inference is that causal inference is impossible. But we 
should not jump to that conclusion too quickly. By assert-
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ing that the simultaneous observation of Yt(u) and Yc(u) 

is impossible I do not mean that knowledge relevant to 
these values is completely absent. It will depend on the 
situation considered. There are two general solutions to 
the Fundamental Problem, which for the sake of conven­
ience I will label the scientific solution and the statistical 

solution. 

The scientific solution is to exploit various homogeneity 
or invariance assumptions. For example, by studying the 

behavior of a piece of laboratory equipment carefully a 
scientist may come to believe that the value of Yc( u) mea­
sured at an earlier time is equal to the value of Yc( u) for 
the current experiment. All he needs to do now is to expose 
u to t and measure Yl u) and he has overcome the Fun­
damental Problem of Causal Inference. Note, however, 

that this hypothetical scientist has made an untestable hom­
ogeneity assumption. By careful work he may convince 
himself and others that this assumption is right, but he can 
never be absolutely certain. Science has progressed very 
far by using this approach. The scientific solution is a com­
monplace aspect of our everyday life as well. We all use 
it to make the causal inferences that arise in our lives. 
These ideas are amplified in Sections 4.1 and 4.2. 

The statistical solution is different and makes use of the 
population U in a typically statistical way. The average 

causal effect, T, oft (relative to c) over U is the expected 
value of the difference Y1(u) - Yc(u) over the u's in U; 

that is, 

(3) 

T defined in (3) is the average causal effect. By the usual 
rules of probability (3) may also be expressed as 

(4) 

Although this does not look like much, (4) reveals that 

information on different units that can be observed can be 
used to gain knowledge about T. For example, if some 
units are exposed to t they may be used to give information 
about E(Y1) (because this is the mean value of Y1 over U), 

and if other units are exposed to c they may be used to 
give information about E(Yc)· Formula (4) is then used to 
gain knowledge about T. The exact way that units would 
be selected for exposure to t or c is very important and 
involves all of the usual considerations of good statistical 
design of experiments. The important point is that the 
statistical solution replaces the impossible-to-observe causal 
effect oft on a specific unit with the possible-to-estimate 
average causal effect oft over a population of units. These 

ideas will be developed further in Sections 4.3 and 4.4. 
The usefulness of either the scientific or the statistical 

solution to the Fundamental Problem of Causal Inference 
depends on the truth of different sets of untestable as­
sumptions. In Section 4 I will discuss some of the typical 
assumptions that are often used to overcome the Funda­
mental Problem of Causal Inference. 

It is useful to have a notation· to express the fact that 
the causal indicator variable S determines which value, Y 1 

or Yeo is observed for a given unit. If S(u) = t, then Y1(u) 

is observed, and if S(u) = c, then Yc(u) is observed. Thus 
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the observed response on unit u is Ys(u)(u). The observed 

response variable is, therefore, Y5• Hence, even though the 
model contains three variables, S, Y,, and Yc, the process 
of observation involves only two, that is, S, Ys. The dis­
tinction between (a) the measurement process, Y, that pro­
duces the response variable; (b) the two versions of the 
response variable Y, and Yc that corresponds to which cause 
the unit is exposed (and in terms of which causal effects 

are defined); and (c) the observed response variable Ys, is 
very important and, often, is not made in discussions of 
causation. These distinctions never arise in the study of 
simple association, but they are crucial to the analysis of 
causation. 

It is useful to review the model for associational infer­
ence and Rubin's model side by side to emphasize their 
differences. Both involve a population of units, U, and 

both involve two observable variables: (A, Y) for associ­
ation and (S, Ys) for causation. This is all, however, that 
they have in common. Whereas A and Y are simply vari- _ 

abies defined on the units of U, S and Ys presuppose a 
more complicated structure in order for them to apply to 
real situations. Two or more causes (or treatments) must 
be exposable to all of the units, and the response Y must 
be a post-exposure variable in order for the observed re­
sponse Ys to be defined. Associational inference involves 
the joint or conditional distributions of values of YandA, 

and causal inference concerns the values Y,(u) - Yc(u) on 
individual units. Causal inferences proceed from the ob­
served values of S and Ys and from assumptions that ad­
dress the Fundamental Problem of Causal Inference but 
that are usually untestable. Causal inferences do not nec­
essarily involve statistical inferences, but associational in­

ferences almost always do. 

4. SOME SPECIAL CASES OF CAUSAL INFERENCE 

This section considers some simple special cases of Rub­
in's m~del for causal inference. The purpose is to show 
how specific assumptions added to the model allow causal 
inferences of particular types. 

4.1 Temporal Stability and Causal Transience 

One way of applying the scientific solution to the Fun­
damental Problem of Causal Inference is to assume that 
(a) the value of Yc(u) does not depend on when the se­
quence "apply c to u then measure Yon u". occurs and (b) 
the value of Y,( u) is not affecteq by the pnor exposure of 
u to the sequence in (a). When these two assumptions are 
plausible it is a simple matter to measure Y,(u) and Yc(u) 

by sequential exposure of u to c then t, measuring Y after 
each exposure. The first assumption is temporal stability, 

because it asserts the constancy of response over time. The 
second assumption is causal transience, because it asserts 
that the effect of the cause c and the measurement process 

that results in Yc( u) is transient and does not change u 

enough to affect Y,( u) measured later. These two assump­
tions often apply to physical devices and are routinely made 
by all of us in everyday life-for example, in the "light 

switch" example mentioned earlier. 
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4.2 Unit Homogeneity 

A second way of applying the scientific solution to the 
Fundamental Problem is to assume that Y,( Ut) = Y,( Uz) 
and Yc(u1) = Yc(u2) for two units u1 and Uz. This !s the 
assumption of unit homogeneity. It, too, is often applicable 
to work done in scientific laboratories and is also a causal 
workhorse of everyday life. The causal effect of t is taken 
to be the value of Y,(u1) - Yc(Uz). One way that laboratory 

· scientists convince themselves that the units are homoge­
neous is to prepare them carefully so that they "look" 
identical in all relevant aspects. This, of course, cannot 
prove that the unit homogeneity assumption is valid, but 
it can make this assumption plausible. 

4.3 Independence 

In my discussion of the statistical solution to the Fun­
damental Problem, I did not give any specification to the 
way that units might be selected for observation of Y, or 

Yc. I only indicated that it was very impon:ant. Of .course, 
the most well-known way that this occurs m expenmental 
work is by randomization, and this section is concerned 
with that topic. 

The supposition in using the statistical solution is that 
the population U does not consist of one or two units b~t 
is "large" in some sense. The observed data for each umt 
are values of the pair of variables (S, Ys). 

The average causal effect T is the difference between 
the two expected values E(Y,) and E(Yc)· The observed 
data (S, Y5), however, can only give us information about 

E(Ys I S = t) = E(Y, I S = t) (5) 

and 

E(Ys I S = c) = E(Yc I S = c). (6) 

It is important to recognize that E(Y,) and E(Y, I S = t) 

are not the same thing and need not have the same values 
in general [similarly for E(Yc) and E(Yc I S = c)). To state 
this difference in words, E(Y,) is the average value of Y,(u) 

over all u in U, where E(Y, IS = t) is the average value 

of Y,( u) over only those in u in U that were exposed to t. 
There is no reason why, in general, these two averages 
should be equal. For example, if S(u) = t for all units for 
which Y,(u) is small, then E(Y, IS = t) will be smaller 
than E(Y,). 

There is, however, an assumption that, if plausible, makes 
these two expected values equal. It is the assumption of 

independence. When units are assigne~ at random. ei~er 
to cause tor to· cause c, certain physical randolDlZatton 

processes are carried out so that the determination ~f ~hich 

cause (t or c) u is exposed to is regarded as statistically 

independent of all other variables, incl~di~g Y! and !c· 
This means that if the physical randolDlZation IS earned 
out correctly, then it is plausible that S is independent of 
Y, and Yc and all other variables over U. This is the in­

dependence assumption. If this assumption holds, then we 
have the basic equations 

E(Y,) = E(Y, I s = t) (7) 
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and 

E(Yc) = E(Yc I s = c). (8) 

Hence under the independence assumption the average 

causal effect T satisfies the equation 

T = E(Ys I S = t) - E(Ys I S = c). (9) 

The data (S, Ys) can now be used to estimate T by taking 

the difference between the average value of the observed 

response Ys for the units with S = t and for the units with 

S = c. Hence, if randomization is possible, the average 

causal effect T can always be estimated. If U is large, T 
can be estimated with high accuracy. 

It is useful to have a name for the right side of Equation 

(9) even when the assumption of independence does not 

hold. I will call it the prima facie causal effect oft (relative 

to c) and denote it by 

TPF = E(Y1 IS = t) - E(Yc IS = c), (10) 

which is algebraically equal to the following function of the 

regression of Ys on S: 

TPF = E(Ys I S = t) - E(Ys I S = c). (11) 

The term prima facie causal effect is adapted from Suppes 

(see Sec. 5) and used here to distinguish (11) from the true 

average causal effect, T, defined in Equation (3). The prima 

facie causal effect is an associational parameter for the joint 

distribution of the observable pair (Ys, S). In general, the 

average causal effect T does not equal the prima facie 

causal effect TPF· The assumption of independence, how­

ever, does allow the conclusion that T = TPF, that is, 

Equation (9). 

4.4 Constant Effect 

The value of the average causal effect Tis of potential 

interest for its own sake in certain types of studies. It would 

be of interest to a state education director who wanted to 

know what reading program would be the best to give to 

all of the first graders in his state. The average causal effect 

of the best program would be reflected in increases in 

statewide average reading scores. 

The average causal effect T is an average and as such 

enjoys all of the advantages and disadvantages of averages. 

For example, if the variability in the causal effects 

Y,(u) - Yc(u) is large over U, then T may not represent 

the causal effect of a specific unit, u0 , very well. If u0 is the 

unit of interest, then T may be irrelevant, no matter how 

carefully we estimate it! 

The assumption of constant effect is that the effect of t 

on every unit is the same, and under this assumption we 

have the equation 

T = Y,(u) - Yc(u), for all u in U. (12) 

Hence under the assumption of constant effect T is the 

causal effect for every unit in U. This assumption is also 

called additivity in statistical models for experiments be­

cause the treatment t adds a constant amount T to the 

control response for each unit. 
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The assumption of constant effect makes the value of 

the average causal effect relevant to every unit and, there­

fore, allows T to be used to draw causal inferences at the 

unit level. 

The assumption of constant effect can be partially checked 

in the same way that the additivity assumption is usually 

investigated. For example, U can be divided into subpop­

ulations U17 U2 , ••• , and on each Ui the average causal 

effect can be estimated, T17 T2 , •••• If the T/s vary, the 

constant effect assumption cannot hold. If the T/s do not 

vary, then the constant effect assumption may be plausible. 

The constant effect assumption is implied by the unit 

homogeneity assumption; that is, if Y,(u1) = Y1(Uz) and 

Yc(Ut) = Yc(Uz), then clearly Y,(ut) - Yc(Ut) = Y1(Uz) -
Yc(Uz). Hence we may view the constant effect assumption 

as a weakening of the assumption of unit homogeneity. 

If we make only the constant effect assumption we may 

not conclude that the prima facie causal effect, TPF, in (10) 

equals the average causal effect, T, in (3). To see this 

observe that under constant effect we have 

Y,(u) = Yc(u) + T 

for all units, u. Hence 

(13) 

E(Y, I S = t) = T + E(Yc I S = t), (14) 

so 

TPF = T + {E(Yc I s = t) - E(Yc I s = c)}. (15) 

The term in braces in (15) is not 0 in general, that is, if 

the independence assumption is not true. 

It is easy to show that the stronger assumption of unit 

homogeneity does imply equality between T and TPF· 

4.5 Causal Inference In Nonrandomized 
Observational Studies 

It is beyond the scope of this article to apply the model 

for causal inference to nonrandomized studies. This has 

been done extensively, and the reader is referred to Rubin 

(1974, 1977, 1978), Rosenbaum (1984a,b,c), Rosenbaum 

and Rubin (1983a,b, 1984a,b, 198Sa,b ), and Holland and 

Rubin (1980, 1983). An important emphasis in these papers 

is on the ways that pre-exposure variables can be used to 

replace the independence assumption with less stringent 

conditional independence assumptions that are useful in 

observational studies. Rosenbaum and Rubin referred to 

one such assumption as "strong ignorability." 

5. COMMENTS ON SELECTED PHILOSOPHERS 

So much has been written about causality by philoso­

phers that it is impossible to give an adequate coverage of 

the ideas that they have expressed in a short article. This 

section views some of these ideas in the context of Rubin's 

model for causal inference given in Sections 3 and 4. It 

makes no attempt to be exhaustive or even representative. 

Aristotle distinguished four "causes" of a thing in his 

Physics: The material cause (that out of which the thing is 

made), the formal cause (that into which the thing is made), 

the efficient cause (that which makes the thing), and the 
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final cause (that for which the thing is made). It is his notion 
of efficient cause that is relevant to our discussion and to 

most discussions of causation that grow out of inquiries 
into the methods of science. Locke (1690) proposed these 

definitions: "That which produces any simple or complex 

idea, we denote by the general name 'cause', and that which 

is produced, 'effect'." Although it is evident that these 

definitions refer to the same kinds of things that concern 
the model in Section 3, they do little more than suggest 

that the model is not out of line with an ancient philo­

sophical tradition. It should be noted, however, that 

Aristotle emphasized the causes of a thing rather than the 

effects of causes. Locke seems a little more even-handed. 
Bunge (1959) gave a very accessible discussion of the his­

tory of many ideas about the essential meaning of causa­

tion. 

5.1 Hume 

When we tum to the analysis of causation given by Hume 
(1740, 1748) we find a critical basis for examining Rubin's 

model. Hume's analysis of causality is generally regarded 

to be an important contribution to the literature of this 

subject. Hume emphasized that causation is a relation be­

tween experiences rather than one between facts. He ar­

gued that it is not empirically verifiable that the cause 

produces the effect, but only that the experienced event 

called the cause is invariably followed by the experienced 

event called the effect. Hume's empirical stance can be 
regarded as sympathetic with the classical statistical view 

that the role of statistics is to draw inferences about unob­

served quantities on the basis of observed facts. He was 

also very clear about the role of untestable assumptions in 

drawing causal conclusions. 

Hume's analysis recognized three basic criteria for cau­

sation: (a) spatial/temporal contiguity, (b) temporal 

succession, and (c) constant conjunction. In the analysis 

of the idea that A causes B this means that (a) A and B 
are contiguous in space and time, (b) A precedes Bin time, 

and (c) A and B always occur (or do not occur) together. 

In terms of Rubin's model the first two ofHume's criteria 

are easily accommodated. The criterion of spatial/tem­

poral contiguity is expressed in the model by the action of 

the cause and the measurement of the effect all taking place 

on a common entity, the unit. Since real entities must exist 

in space and time the contiguity criterion is satisfied and 

possibly clarified by the model. Temporal contiguity is rel­

evant to the degree that the time period involved affects 

the unit. Spatial contiguity is often defined by the unit itself 
and may not involve simple "nearness." 

The issue of temporal succession is shamelessly em­

braced by the model as one of the defining characteristics 

of a response variable. The idea that an effect might precede 

a cause in time is regarded as meaningless in the model, 

and apparently also by Hume. 
Hume's notion of constant conjunction is more difficult 

simply because it might not hold for many reasons. In terms 

of the model there are two types of reasons why it might 

not hold. One of these involves "measurement error," and 

the other is more fundamental and involves the structure 
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of the model. Measurement error often creates violations 

of constant conjunction in real scientific investigations. We 
may think we have a case of "A and not B" but we really 

have a case of "A' and not B" for some A' that we mistook 

for A (similarly for examples of "not A and B"). In the 
model these "errors of measurement" can involve both the 

causes and the response variable that determines the effect. 

The other, more fundamental way that constant conjunc­
tion can fail in the model is for the constant effect as­

sumption to fail to hold, that is, for the causal effects 

Y1(u) - Yc(u) to vary with the unit u. Hence, if we dis­
regard those cases of nonconstant conjunction that are due 
to measurement error, we see that Hume's third criterion 

requires the constant effect assumption to hold in our model. 
Hume would probably argue that any weakening of this 

assumption would allow cases that he would not call "cau­

sation" into the model. We will have to be satisfied that at 

least Hume's analysis fits into the model and let others 

judge the utility of the constant effect assumption. I should 

point out that the distinction between constant and variable 
causal effects (a) is often not easy to prove one way or the 

other in a particular case and (b) has been at the heart of 

at least one important controversy in the history of statistics 

(see Sec. 6). 

What I see that is missing from Hume's analysis is any 

notion that the effect of cause is always relative to another 

cause. The notion that a cause could have been different 

from what it was and that it is this difference that defines 
the effect is completely missing from Hume. InHume's 

analysis causes are not delineated in any way. Anything 

can be a cause. The importance of this point will be em­

phasized in Section 7. Finally, Hume does not identify the 

idea of an experiment as related to or important for cau­
sation. 

5.2 Mill 

John Stuart Mill is rather different in this regard. Mill 

(1843) was positively disposed toward experiments. 

Observation, in short, without experimentation (supposing no aid from 
deduction) can ascertain sequences and co-existences, but cannot prove 
causation. (p. 253) 

. . . we have not yet proved that antecedent to be the cause until we have 
reversed the process and produced the effect by means of that antecedent 
artificially, and if, when we do so, the effect follows, the induction is 
complete .... (p. 252) 

Mill is credited with codifying and elaborating on several 

methods of experimental inquiry that had been put forth 

by Sir Francis Bacon 250 years earlier. Mill identified four 

general methods, which I now discuss. 

The Method of Concomitant Variation. This method 

flies in the face of the distinctions that I have drawn be­

tween association and causation. 

Whatever phenomenon varies in any manner, whenever another phe­
nomenon varies in some particular manner, is either a cause or an effect 
of that phenomenon, or is connected with it through some fact of caus­
ation. (p. 464) 

I think that as a method of science the widespread use 

of this method is indisputable. Most scientists would agree 
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that where there is correlational smoke there is likely to 

be causational fire. Most would not, however, go as far as 
Mill's statement of the method. 

Of course, even if Rubin's model does apply, the cpr­

relation between the observed variables S and Ys does not 
say much about the causal effects or even the average causal 

effect, because the correlation of Ys and Sis simply another 

way of expressing the prima facie causal effect, Tpp. 
More generally, not everything can be a "cause" in the 

sense used in the model, but Mill's method of concomitant 

variation can be applied to cases for which only association 

is appropriate. That this can result in nonsense discussions 
of causation is well known. 

Method of Difference. This method is almost an exact 

statement of what we mean by a causal effect, even though 

it is couched in a more general language and its proposed 

use is to identify causes and effects. 

If an instance in which the phenomenon under investigation occurs, and 
an instance in which it does not occur, have every circumstance in common 
save one, that one occurring in the former; the circumstances in which 
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cussed first because it is so clearly a part of scientific in­

vestigations. I have left it to the end because it requires 
the introduction of the notion of a "null effect." The method 
is stated as follows: 

If two or more instances of a phenomenon under investigation have only 
one circumstance in common, the circumstance in which alone all the 
instances agree, is the cause (or effect) of the given phenomenon. (p. 
451) 

Although it looks like a method for identifying the cause 
of a phenomenon, it is clear to anyone who has ever used 

the method of agreement that all that the method really 

does is to rule out possible causes. It is this aspect of the 
method of agreement that fits into the model. 

If, as in the discussion of the method of difference, we 

let Y = 1 (or 0) denote the occurrence (or not) of "the 

phenomenon under investigation," and then if the phe­

nomenon occurs when the cause t occurs and also when 

the cause t does not occur, that is, c, we have 

Yt(u) = 1 and Yc(u) = 1, 

alone the two instances differ, is the effect, or the cause, or an indispen- SO 

sable part of the cause of the phenomenon. (p. 452) 

If we restrict our attention to the following interpretation 

of the elements of this quotation we see a fairly straight­

forward definition of causal effect: "phenomenon under 

investigation" occurs-Y = 1; "phenomenon under in­

vestigation" does not occur-Y = 0; "the circumstance in 

which the instances differ"-when present = t, when ab­

sent = c. Then Y1( u) = 1 denotes the fact that when the 
circumstance was present the phenomenon occurs, and 

Yc( u) = 0 denotes the fact that when the circumstance was 

absent the phenomenon did not occur. The equality of all 

other circumstances is modeled by considering the same 

unit. Thus Y1(u) - Yc(u) = 1, so the causal effect of the 

circumstance on the unit is 1 and corresponds to Mill's 

statement that the circumstance is "the cause or an indis­

pensable part of the cause of the phenomenon." 

Mill also considered reversing the process to look for 

causes of given effects. This is a well-known scientific tech­

nique-for example, it occurs often in epidemiological 

studies of public health problems. It is beyond the scope 

of this article to apply the model to such a case, but some 

work along this line can be found in Hamilton (1979) and 

Holland and Rubin (1980). 

The Method of Residues. This method also applies fairly 

simply to the model. Its statement is 

Subduct from any phenomenon such part as is known by previous induc­
tions to be the effect of certain antecedents, and the residue of the phe­
nomenon is the effect of the remaining antecedents. (p. 460) 

To place this into the context of the model let the an­

tecedents (i.e., causes) be denoted by a = those whose 

effect is known and b = the remaining antecedents. 

The causal effect of ab relative to a is simply Yab(u) -

Ya( u ), which is the residue Mill tells us to compute. I regard 

Mill's method of residues to be a nearly explicit, early 

statement of the definition of causal effect. 

The Method of Agreement. Usually this method is dis-

Y1(u) - Yc(u) = 0. 

Hence the causal effect of tis 0; that is, t is a cause with a 

null effect. The principle of causality states that every phe­

nomenon has a cause; that is, every effect has a cause. 

Every practicing experimentalist can attest to the fact that 

the reverse is not true-experiments fail. Causes do not 

necessarily have effects. Null effects are the stuff from 
which null hypotheses are made! 

My conclusion is that Mill's thinking, being driven by an 

experimental model, is in reasonably close agreement with 

the model of Section 3. He is close to the idea that the 
effect of a cause is always relative to another cause, unlike 

Hume. Like Hume, however, he does not restrict the no­

tion of cause in any way. For Hume and Mill any phenom­

enon can be a cause. Finally, like Hume, Mill does not 

consider variation (i.e., either unit inhomogeneity or vari­

able causal effects) in any serious way. 

5.3 Suppes 

Variation is an explicit consideration in Patrick Suppes's 

(1970) probabilistic theory of causality. Suppes's goal was 

to improve upon Hume's analysis, specifically the constant 

conjunction criterion, because 

... in restricting himself to the concept of constant conjunction, Hume 
was not fair to the use of causal notions in ordinary language and expe­
rience. (p. 10) 

Like Hume, Suppes puts no restriction on what causes 

and effects are save only that they be expressible as events 

that occur in time. Thus Suppes uses the language of sto­
chastic processes to formalize his theory. He explained the 

intuitive idea of his theory as follows: 

Roughly speaking, the modification of Hume's analysis I propose is to 
say that one event is the cause of another if the appearance of the first 
event is followed with a high probability by the appearance of the second, 
and there is no third event that we can use to factor out the probability 
relationship between the first and second events. (p. 10) 

Suppes expressly adopted the temporal succession cri-
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terion that all causes precede their effects in time. He first 

defined a prima facie cause of an event as an event that 

temporally precedes it and that is positively associated with 

it. He then defined a spurious cause of an effect (i.e., an 

event) as a prima facie cause of the effect that is, in fact, 

conditionally independent of the effect given a second event 

that is temporally prior to the prima facie cause and that 

is conditionally positively associated with the effect given 

the prima facie cause. This is what he meant by "factoring 

out" a probability relationship. A genuine cause is a prima 

facie cause that is not spurious. 

More precisely Suppes's definitions are as follows: 

(S1) If r < s denote two time values, the event C, is a 

prima facie cause of the event E, if 

Pr(E. I C,) > Pr(E,). (16) 

(S2) C, is a spurious cause of E, if C, is a prima facie 

cause of E, and for some q < r < s there is an event Dq 

such that 

Pr(E. I C, Dq) = Pr(E. I Dq) (17) 

and 

Pr(E, I C, Dq) ~ Pr(E, I C,). (18) 

(S3) C, is a genuine cause of E, if C, is a prima facie cause 

of E, but C, is not a spurious cause of E,. 

In all of these definitions the probabilities of the events 

used in the conditioning statements are assumed to be pos­

itive. Suppes also considered other issues, such as direct 

and indirect causes, but (S1)-(S3) are the main elements 

of his theory. 

It is clear that Suppes's analysis is quite different from 

that given in Section 3. He defined the cause of an effect 

rather than the effect of a cause. Like Hume and Mill he 

placed no general restriction on the nature of a cause other 

than that it be expressible as an event that occurs prior in 

time to the effect. There is no explicit place for units in 

Suppes's stochastic process model-they are buried in the 

probability space on which the events he considered are 

defined. Hence Suppes does not have the machinery to 

express the effect of a cause in a particular case. His model 

describes average behavior, not individual behavior. 

At bottom, Suppes's notion of a genuine cause is simply 

a correlation between a cause and effect that will not go 

away by "partialling out" legitimate competing causes. In 

a sense then for Suppes all genuine causes are only tem­

porarily so as they await the cleverness of the analyst to 

identify the proper conditioning event that will render null 

their association with the effect. Although this may, in­

deed, describe much informal scientific practice, it does 

not appear to me to get to the heart of the notion of cau­

sation, which, I believe, Rubin's model does. 

Suppes's theory, however, does capture some useful ideas, 

and because it is stated with precision it is a fairly easy task 

to relate these ideas to Rubin's model. 

In what follows, all probabilities and expectations are 

computed over the population U of units. 

Earlier, his notion of a prima facie cause was translated 
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into the prima facie causal effect as follows. The association 

between the observed response Ys and the causal indicator 

S can be measured by the difference in the average value 

of the response between the units exposed to t and those 

exposed to c. We have called this the prima facie causal 
effect oft (relative to c), that is, 

TPF = E(Ys I S = t) - E(Ys I S = c). (19) 

We have seen that the association between cause and 

effect that defines a prima facie cause is a causal effect 

under certain conditions that have wide use in science, but 

TPFis not always a causal effect. This is why Suppes defined 

prima facie causes. 

I will finish this section by showing what happens when 

we apply Suppes's notion of a spurious cause to the context 

of a randomized experiment. This will shed some light on 

the relation of his theory to Rubin's model. 

If the response variable Y is a 0/1 indicator, then we 

may keep the discussion in terms of the event terminology 

that Suppes used. Thus {Ys = 1} corresponds to E, and 

{S = t} corresponds to C, and I will discuss the meaning 

of the event D q subsequently. 

Consider Equation (17) from (S2). For a randomized 

experiment it is 

Pr(Ys = 1 I S = t, Dq) = Pr(Ys = 1 I Dq)· (20) 

By using the usual rules for handling conditional proba­

bilities we may express (20) as follows: 

{Pr(Y, = 1 I S = t, Dq) - Pr(Yc = 1 I S = c, Dq)} 

X Pr(S = c I Dq) = 0. (21) 

Hence the only way that Equation (20) can hold is for 

either 

Pr(S = t I Dq) = 1 (22) 

or 

Pr(Y, = 1 I S = t, Dq) = Pr(Yc = 1 I S = c, Dq)· (23) 

If D q is an event that occurs prior in time to the exposure 

ofthe units tot or c, then I will assume that D q is determined 

by the values of pre-exposure variables defined on the units 

in U. Now suppose that the assumption of independence 

holds so that Sis statistically independent of Y,, Yc and of 

the pre-exposure variables that define Dq. Furthermore, 

suppose that 

0 < Pr(S = t) < 1, (24) 

so each unit has positive probability of being exposed to 

either cause. The independence assumption and (24) then 

imply that (22) cannot hold and that Equation (17), there­

fore, reduces to 

Pr(Y, = 1 I Dq) = Pr(Yc = 1 I Dq)· (25) 

Because Y is an indicator variable we can rewrite (25) in 

terms of an average causal effect; that is, 

T(Dq) = E(Y, - Yc I Dq) = 0. (26) 

The average causal effect T(Dq) in (26) is the average 



Holland: Statistics and Causal Inference 

causal effect over all units in U for which the event Dq 
occurs. Hence we see that Suppes's condition (17) for a 
spurious cause reduces to the condition 

(27) 

in a randomized experiment. The other condition that Suppes 
required in (S2) is inequality (18), which is, in the present 
context, equivalent to 

Pr(Ys = 1 I S = t, Dq) ~ Pr(Ys = 1 I S = t). (28) 

Under randomization this becomes 

Pr(Y1 = 1 I Dq) ~ Pr(Y1 = 1). (29) 

If we put (29) and (27) together with the condition that t 
be a prima facie cause we find that the treatment in a 

randomized experiment is a spurious cause of the effect if 
and only if it has a positive average causal effect, but a 
subpopulation of units can be identified on the basis of 
pre-exposure variables (a) on which the average causal 
effect is 0 and (b) for which the response under t is more 
likely to occur than it is for all of U. I think that part (a) 
is more accurately described as a null effect in the sub­
population and part (b) is unrelated to the notion of cause. 
The existence of a subpopulation on which the effect is 
null while the overall effect is positive is an example of 

nonconstant conjunction in Hume's sense. It would be called 
an interaction by most statisticians. 

6. COMMENTS FROM A FEW STATISTICIANS 

This section is devoted to a brief examination of the 

writings of a few statisticians to see in what way the idea 
of multiple versions of the response, that is, Y1 and Yo has 
appeared before. I find that many people have difficulty 
with the idea of distinguishing Y 1 and Yc from Y or Ys and 
perhaps this look at earlier work may help clarify this as­
sumption. Unfortunately, the exact idea is never stated 
explicitly, so there is a need for a certain amount of de­
tective work to find it. I hope I will not be held guilty of 
wrongly reinterpreting the work of others. 

A fairly clear statement of this idea was given by 

Kempthorne (1952) in a discussion of the analysis of ran­
domized block designs. (A randomized block design is a 
typical agricultural experimental plan in which larger tracts 
of land, called blocks, are each subdivided into p plots and 
then one of the experimental treatments is applied at ran­
dom to each of the p plots within each block.) For example, 
Kempthorne (1952, p. 136) first defined yields as follows: 
"We shall denote the yield with treatment k ... on plot j 

... of block i ... by Yijk·" He then wrote: 

In fact we do not observe the yield of treatment k on plot j but merely 
the yield of treatment k on a randomly chosen plot in the block. . . . we 
denote the observed yield of treatment k in block i by Y•k· (p. 137) 

It seems evident from the two quotations that the Yijk in 
the first refers to different versions of the response-one 
for each k-on each combination (i, j) of plot within block. 

The Yik in the second quotation is the value of Yijk for that 
plot to which treatment k is actually applied in block i. 

It is not difficult to make the following translation of 
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Kempthorne's notation. The units are the "plots," so the 
units need two subscripts for identification; that is, U;j is 
the jth plot within block i. The yield of treatment k on the 
unit u;j is Yijk = Yk(u;j), where Yk(u) is the value of the 
response that is observed if u is exposed to treatment k. 
The randomization process picks one of the treatments to 
apply to unit U;j, and this can be indicated by S(u;J; that 
is, if treatment k is applied to unit U;j then S(u;j) = k. The 
observed yield on u;j is 

YijS(u,i) = Ys(uq){U;j). 

The plot in block i to which treatment k is applied can be 
denoted by h so that the observed yield of treatment k on 
block i is 

Yik = Yk(u;jJ 

In D. R. Cox's (1958) book on the planning of experi­
ments he defined true treatment effects in an experiment in 
almost exactly the same way that we have defined causal 
effects. In an experiment with treatments T1, T2 , he defined 
the true treatment effects as the difference between "the 
observation obtained on any unit when, say, T1 is applied" 
and "the observation that would have been observed had, 
say, T2 been applied" (p. 15). Hence Cox appears to have 
accepted the idea that the response of a unit could be one 
value, Ylu), if the unit were exposed to t and another, 
possibly different value, Yc( u), if the unit were exposed to 
c. Cox also made the assumption of constant effect in de­
fining true treatment effects. His reasons for this are not 
clear but appear to be primarily technical rather than con­
ceptual. He did not reject the idea of variable causal effects, 
however, and discussed ways in which causal effects might 

depend "on the value of some supplementary measure­
ment that can be made on each unit" (p. 18). 

Curiously, R. A. Fisher, who founded the modern the­
ory of experimental design, never dealt directly with the 
idea of multiple versions of the response. Instead, he gave 
examples that are so laced with specific details that it is 
not always clear what level of generality he meant to con­
vey. For example, in the first article in which Fisher (1926) 
attempted to set out the principles of the design of field 
experiments in agriculture we find this question in a dis­
cussion of a hypothetical experiment to evaluate the ap­
parent productive value of treating a given acre of ground 
with a manurial treatment: 

What reason is there to think that, even if no manure had been applied, 
the acre which actually received it would not still have given the higher 
yield? (p. 504) 

It is fairly clear in this quotation that he could consider 
the possibility that had a different treatment (i.e., no man­
ure) been applied to the field the resulting yield might have 
been the same. This clearly concerns the null hypothesis 
of no treatment effect and, more generally, Fisher came 
closest to the idea of multiple versions of the response in 

his discussions of the relationship between the null hy­
pothesis and randomization. 

The earliest explicit reference that I have found to mul­

tiple versions of the response is Neyman (1935). In his 
paper (read before the Industrial and Agricultural Re-
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search Section of the Royal Statistical Society in March of 

1935) Neyman gave an explicit statement of the idea of 

multiple versions of the response (which is for Neyman the 

yield from an experimental plot of land in an agricultural 

experiment). Unfortunately, Neyman's discussion also in­

troduced the notion of a stochastic element that is added 

to Y to allow for "technical errors" that are due to inac­

curacies of experimental technique. If we ignore this prob­

lem of measurement error and assume zero "technical er­

rors," then Neyman's definition of a "true yield" explicitly 

refers to multiple versions of the response. "Thus X;i(k) 

will mean the 'true' yield of the kth object obtainable from 

the plot (i, j)" (p. 110; by "object" Neyman means treat­

ment). His notation is very similar to that used by Kemp­

thorne. To put it into the notation of Section 3, the units 

are the plots, u;i, and X;i(k) = Yk(u;i), where Yk(u) is de­

fined as in the previous discussion of Kempthorne. 

Neyman also had an explicit expression for the average 

value of X;i(k) over all of the units, uii· It is X..(k). In the 

notation of Section 3 this is X..(k) = E(Yk)· Hence it is 

clear that by the time Neyman was writing the idea of 

multiple versions of the response, one for each treatment, 

was established. It seems to have been used by writers 

concerned about the details of the effects of randomization 

in specific experimental plans (e.g., Cox 1958; Kemp­

thorne 1952) but is generally not a part of the standard 

statistical notation of many other writers [an exception is 

Hamilton (1979)]. 

The Neyman (1935) reference is also relevant to the 

model in Section 3 because of the controversy between 

Fisher and Neyman that it engendered. The controversy 

revolves around the choice of null hypothesis in experi­

ments such as randomized block designs. Fisher was quite 

clear that the null hypothesis that he proposed is that the 

causal effect (as we have defined it) is 0 for each unit. For 

example, in the famous discussion at the end of Neyman 

(1935) Fisher first quoted Neyman, as follows: 

. . . this bias vanishes when . . . the objects compared are reacting to 
differences in soil fertility in exactly the same manner .... This is not 
always true. (p. 153) 

Then Fisher wrote: 

However, it was always true in the case for which it was required, namely, 
when the hypothesis to be tested was true, that differences of treatment 
made no difference to the yields. (p. 157) 

Then Neyman, in responding to Fisher's remarks, empha­

sized his interest in what I would call the average causal 

effect. 

'Our purpose in the field experiment consists in comparing numbers such 
as X..(k), or the average true yields whiclj, our objects are able to give 
when applied to the whole field.' It is seen that this problem is essentially 
different from what Professor Fisher suggested. So long as the average 
yields of any treatments are identical, the question as to whether these 
treatments affect separate yields on single plots seems to be uninteresting 
and academic. (p. 173) 

Fisher's sardonic reply indicates that, at least, he agreed 

that Neyman stated their differences clearly. "It may be 

foolish, but that is what the z test was designed for, and 

the only purpose for which it has been used" (p. 173). 

Evidently, I would conclude that Neyman's null hypoth-
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esis is one of zero average causal effect, that is, E(Y, -

Yc) = 0, whereas Fisher's is one of zero causal effect for 

all units, that is, Y,(u) - Yc(u) = 0 for all u E U. 

7. WHAT CAN BE A CAUSE? 

It may seem very extreme to some to limit the notion 

of cause to the sense used in Section 3. Aristotle set the 

stage for this, however, by distinguishing more than one 

meaning to the word cause. It might be better to ask, what 

can be an "efficient cause" in his sense? Evidently even 

this restriction did not limit the notion of cause for such 

thinkers as Hume and Mill. Anything can be a cause for 

them-or, at least, a potential cause. 

Put as bluntly and as contentiously as possible, in this 

article I take the position that causes are only those things 

that could, in principle, be treatments in experiments. The 

qualification "in principle" is important because practical, 

ethical, and other considerations might make some exper­

iments infeasible, that is, limit us to contemplating hypo­
thetical experiments. For example, in the medical and social 

world we might be able to conceive of an experiment, but 

no one would ever try to carry it out. Instead, we might 

have to wait for a "natural experiment" to occur. "Ob­

servational study" is the term used by statisticians (e.g., 

Cochran 1983) to refer to studies for which "The objective 

is to study the causal effects of certain agents" but "For 

one reason or another the investigator can not . . . impose 

on . . . or withhold from the subject, a treatment whose 

effects he desires to discover" (p. 1). 

I believe that the notion of cause that operates in an 

experiment and in an observational study is the same. The 

difference is in the degree of control an experimenter has 

over the phenomena under investigation compared with 

that which an observer has. In Rubin's model this is ex­

pressed by the joint distribution of S with Y, and Yc. Total 

control can makeS independent of Y, and Yc. 

It may bother some readers that I have been using the 

term "experiment" in a very restricted sense-though one 

that is common in the study of the design of experiments. 

For example, experiments in chemistry in which a sub­

stance is analyzed into its component ingredients or in 

which ingredients are combined with each other to syn­

thesize a new substance often may not have clearly iden­

tifiable units, treatments, and response variables. My view 

is that in such experiments the Aristotelian notion of ma­
terial cause is often more relevant than that of efficient 
cause, and hence such experiments are not concerned with 

the notion of cause that is discussed in this article. 

To return to the question of what can be a cause let me 

consider three examples of statements that involve the word 

cause but that vary in its exact usage. 

(A) She did well on the exam because she is a woman. 

(B) She did well on the exam because she studied for 

it. 
(C) She did well on the exam because she was coached 

by her teacher. 

I think that these statements, even though they are per­

fectly understandable English sentences, vary in the mean-
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ing of the "because" in each. In each, the effect, using the 

term loosely, is the same-doing well on an exam. The 
causes, again using the term loosely, are different. In (A) 

the "cause" is ascribed to an attribute she possesses. In 

(B) the "cause" is ascribed to some voluntary activity she 
performed, and in (C) it is ascribed to an activity that was 

imposed on her. 

An attribute cannot be a cause in an experiment, because 
the notion of potential exposability does not apply to it. 

The only way for an attribute to change its value is for the 

unit to change in some way and no longer be the same 

unit. Statements of "causation" that involve attributes as 

"causes" are always statements of association between the 

values of an attribute and a response variable across the 
units in a population. In (A) all that is meant is that the 

performance of women on the exam exceeds, in some sense, 
that of men. 

Examples of the confusion between attributes and causes 

fill the social science literature. Saris and Stronkhorst (1984) 

gave the following example of a causal hypothesis: "Scho­
lastic achievement affects the choice of secondary school" 

(p. 13). These authors clearly intended for this hypothesis 

to state that an attribute of a student (i.e., scores on tests, 

performance in primary school) can cause (i.e., affect) the 

student's choice of a particular type of secondary school. 

It is difficult to conceive of how scholastic achievement 

could be a treatment in an experiment and, therefore, be 

a "cause" in the sense used in this article. A somewhat 
stronger statement of my point was given by Kempthorne 

(1978, p. 15): "It is epistemological nonsense to talk about 

one trait of an individual causing or determining another 

trait of the individual." 
At the other extreme is Example (C). This is easily in­

terpreted in terms of the model. The interpretation is that 

had she not been coached by her teacher she would not 

have done as well as she did. It implies a comparison be­

tween the responses to two causes, even though this com­

parison is not explicitly stated. 
Example (B) is just one of many types of examples in 

which the applicability of the model is not absolutely clear, 

and it shows one reason why arguments over what consti­

tutes a proper causal inference can rage without any defin­

itive resolution. 

In (B) the problem arises because ofthe voluntary aspect 
of the supposed cause-studying for the exam. It is not 

clear that we could expose a person to studying or not in 

any verifiable sense. We might be able to prevent her from 

studying, but that would change the sense of (B) to some­

thing much more like (C). We could operationally define 

studying as so many hours of "nose in book," but that just 

defines an attribute we could measure on a subject. In my 

opinion the application of the model to statement (B) is 

problematical and not easily resolved. The voluntary na­

ture of much of human activity makes causal statements 
about these activities difficult in many cases. 

The voluntary aspect of the "cause" in (B) is not the 
only source of difficulty in deciding on the applicability of 

Rubin's model to specific problems. It is, however, a com­

mon source of difficulty. 
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The general problem, I think, is in deciding when some­
thing is an attribute of units and when it is a cause that can 

act on units. In the former case all that can be discussed 

is association, whereas in the latter case it is possible, at 
least, to contemplate measuring causal effects. 

One may view Fisher's (1957) attack on those who used 

the association between smoking and lung cancer as evi­

dence of a "causal link" between them as an example of 
the difficulty in deciding whether or not smoking is an 

attribute or a cause. Certainly the data that began this 

debate are purely associational. Doll and Hill's studies (1950, 
1952, 1956) ascertained only smoking status and lung can­

cer status on sets of subjects. Fisher argued that smoking 

might only be indicative of certain genetic differences be­

tween smokers and nonsmokers and that these genetic dif­

ferences could be related to the development or not of lung 

cancer. Fisher (1957) did feel that "a good prima facie case 

had been made for further investigation." 

The response to Fisher's criticism can also be viewed as 

attempting to show that smoking should be thought of in 

causal terms rather than as indicative of a genetic attribute 
of subjects. For example, among his responses to Fisher, 

McCurdy (1957) pointed out that lung cancer rates increase 

with the amou,nt of smoking and that subjects who stopped 

smoking had lower lung cancer rates than those who did 
not. Both of these arguments can be viewed as emphasizing 

the causal aspects of smoking-one can do more or less of 

it and one might stop doing it. A discussion of the entire 
debate was given by Cook (1980). 

8. COMMENTS ON CAUSAL INFERENCES IN 
VARIOUS DISCIPLINES 

This section will briefly consider discussions of causation 

in three disciplines-medicine, economics, and "causal 

modeling." In each case an attempt will be made to relate 

the discussion to Rubin's model for causal inference, but 
no attempt is made to be exhaustive or even representative 

in the selection of topics considered. 

8.1 Causation and Medicine 

We begin with a simple, yet basic, example from medi­

cine-the establishment of specific bacteria as the cause of 

specific infectious diseases. Yerushalmy and Palmer (1959) 

described the situation in the following terms: 

Almost from the very beginning, when bacteria were first found to cause 
disease, bacteriologists felt the need for a set of rules to act as guideposts 
in investigation of ba~teria as possible causal agents in disease. (p. 28) 

These two authors described three postulates formulated 

by the great bacteriologist, Robert Koch, who discovered, 

among other things, the tuberculosis bacillus in 1882. Koch's 

postulates [also called the Koch-Henle postulates, Evans 

(1978)] are simple, no-nonsense criteria for deciding when 

a microscopic organism is implicated in a disease. Accord­
ing to Yerushalmy and Palmer (1959), "while there is no 

single formulation of Koch's postulates-they can be stated 

as consisting essentially of the following: 

I. The organism must be found in all cases of the dis­

ease in question. 
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II. It must be isolated from patients and grown in pure 

culture. 

III. When the pure culture is inoculated into susceptible 

animals or man, it must reproduce the disease." (p. 

30) 

Rubin's model applies rather clearly to Postulates I and 

III. Postulate I is simply Mill's method of agreement ap­

plied to this problem. It ensures that there are no data to 

support a null causal effect in this case-that is, if there 

were bona fide cases of the disease in which the organism 

was not present, along with other cases of the disease in 

which it was, then assuming unit homogeneity we would 

have an estimate of zero causal effect for the presence of 

the organism relative to its absence. Postulate III is like 

the light switch example-put in the organism and the 

disease occurs. The validity of this postulate stems from 

the unstated assumption that had the animal or human not 

been inoculated with the culture the disease would not have 

been expected to occur. Note that the word "susceptible" 

has crept in, presumably to deal with the inevitable "non­

constant conjunction" of real laboratory work-in this case, 

the immune system. 
Koch's second postulate relates more to good experi­

mental techniques than to causal inference. If the organism 

is isolated from patients and grown in pure culture, then 

when it comes time to inoculate animals or people with it 

the experimenter knows what the inoculant is in fairly exact 

terms. In a sense, Postulate II is a way of minimizing mea­

surement error in the treatment (t) that is exposed to the 

units. 

Medicine is more difficult when the biological theory is 

less well developed. As an example I now consider several 

suggestions made by Sir Austin Bradford Hill to those who 

might wish to separate association from causation in the 

study of the environment and disease. He had spent a 

lifetime in public health and was among the first to a:rgue, 

quantitatively, for the causal link between smoking and 

lung cancer (Doll and Hill1950, 1952, 1956). Hill (1965) 

named nine factors that he felt were useful in such work 

for deciding that the most likely interpretation of an ob­

served association is causation. I will consider these in an 

order that differs from Hill's. 

Temporality. "Which is the cart and which the horse?" 

(Hill1965, p. 297). Hill felt that while the time sequence 

of events, cause preceding effect, might not be difficult to 

establish in many cases, "it certainly needs to be remem­

bered, particularly with selective factors at work in indus­

try" (p. 298). Clearly, temporal succession is a given for 

Hill. 

Experiment. In this category Hill placed the occasional 

"natural experiment" that gives strong evidence for caus­

ation. He had in mind the effect of preventative actions 

taken to reduce the incidence of the disease. Do they work? 

If a person stops smoking does he lower his risk of lung 

cancer? Hill clearly views such "experiments" in the same 

way Mill viewed the production of an effect by artificially 

introducing the presumed causal agent--strong causal evi­

dence when you can find it. 
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Biological Gradient. By this Hill referred to evidence 

that showed an increasing disease rate as exposure to the 

agent in question intensified. Both experiment and biolog­

ical gradient may be viewed as emphasizing the causal na­

ture of the proposed causal agent, as discussed in the pre­

vious section. 

Plausibility, Coherence, Analogy. I have grouped these 

three together because they all refer to the prior knowledge 

that the epidemiologist would need to consider. Is the sus­

pected causation biologically plausible? Is it coherent in the 

sense of not being seriously in conflict with known facts? 

Is it analogous to known causal relations for similar agents 

and diseases? These factors, although important in some 

cases, all reflect the state of relevant scientific knowledge 

and do not directly translate into aspects of the model of 

Section 3. In particular Hill felt that it was unwise to place 

undue emphasis on these because of the relatively poor 

state of relevant biological knowledge in many cases of 

interest. 

Although Hill felt that the six factors listed above were 

important from time to time, they were the six least sig­

nificant factors on his list. He felt that the three most 

important factors are the strength, consistency, and speci­
ficity of the association in question. 

Strength. This is Hill's first factor-"First upon my list 

I would put the strength of the association" (p. 295). This 

may be viewed as simple acceptance of Mill's method of 

concomitant variation in practical terms or of the scientific 

utility of the prima facie causal effect. Although there is 

no guarantee for this, it is often more likely that a larger 

prima facie causal effect will hold up when a controlled 

study is performed than will a smaller prima facie causal 

effect. A relevant result in this regard is the inequality 

given in Cornfield et al. (1959) that bounds the influence 

of unmeasured factors on the relative risk (a form of prima 

facie causal effect). 

Consistency. Hill's second significant factor concerns 

the generality of the association across populations of units. 

This might be viewed as a weakened form of constant 

conjunction. At the very least, an association that is present 

in one population and absent in another suggests variable 

causal effects. I think that there is a clear bias against calling 

variable causal effects "causal" by scientists, even though 

those who must deal with heterogeneous units, such as 

humans, will generally agree that it is usually too much to 

expect constant effects in the real world. 

Specificity. Hill's third factor refers to specific causes 

having specific effects. 

If . . . the association is limited to specific workers and to particular sites 
and types of disease and there is no association between the work and 
other modes of dying, then clearly that is a strong argument in favor of 
causation. (p. 297) 

I think that specificity is related to the believability of 

the independence assumption. The lack of an association 

between the exposure of a person to a particular work place 

and the causes of that person's death supports the inde­

pendence assumption in a relevant way (but does not prove 
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the assumption is valid). Since the independence assump­

tion implies that the prima facie causal effect equals the 
average causal effect, specificity, in conjunction with the 

strong association, may well be convincing evidence of a 

strong causal connection. Lack of specificity, however, does 
not disprove the independence assumption in many cases, 

and this explains why lack of specificity is not regarded as 

a serious problem by Hill. 

In short, if specificity exists we may be able to draw conclusions without 
hesitation; if it is not apparent, we are not thereby necessarily left sitting 
on the fence. (p. 297) 

Of course, specificity does not guarantee that the inde­

pendence assumption is valid, but it does not directly con­

tradict this assumption in the way that a lack of specificity 

does. 

8.2 Granger Causation In Economics 

The primary source of data that is available to econo­

mists is so-called "time series" data in which measurements 
of a variable or set of variables are made repeatedly on an 

economic entity over time. For such data, Granger (1969) 

developed a particular notion of causality that some econ­

omists have found useful in their analyses. 

In my opinion, however, Granger's essential ideas in­

volving causation do not require the time-series setting he 

adopted. I will try to restate his theory in terms of the types 

of models used in Sections 2 and 3-that is, variables de­
fined on a population of units. Granger formulated his 

theory around the idea of prediction-a "cause" ought to 

improve our ability to predict an effect in a probabilistic 

system. In Granger's theory a variable causes another vari­

able; that is, the values of one variable improve one's ability 

to predict the future values of another variable. The only 

important way that his theory used the time-series setting 

was to separate variables into those whose values are de­

termined prior to, at, or after a given point in time. I will 

simply adopt these temporal distinctions in the definitions 

of the variables that arise. Granger (1969, p. 430) clearly 

accepted the idea of temporal succession in his analysis: 

"In the author's opinion there is little use in the practice 

of attempting to discuss causality without introducing time." 

It is the past values of a variable that cause, in Granger's 

sense, the future values of another variable. 

Although Granger originally formulated his theory in 
terms of one variable causing another, later writers (e.g., 

Florens and Mouchart 1985) restated it in terms of non­

causality and I will follow that approach. In reformulating 

his theory I will also shift from his emphasis on a particular 

type of predictor, that is, "the optimum, unbiased, least­

squares predictor" (p. 428), to the more generally appli­

cable notion of conditional statistical independence. This 

means that instead of limiting attention to the inability of 

a specific predictor to predict the values of a variable, I 
will use the stronger condition that no predictor can predict 
the desired values. Although this is a stronger type of non­

causality than Granger defined I do not believe that this 

unduly distorts Granger's theory and it certainly general­

izes its applicability-indeed, see Granger (1980). 
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If X, Y, and Z denote three (possibly vector-valued) 

variables defined on a population, then X and Yare con­

ditionally independent given Z if 

Pr(Y = y I X= x, Z = z) = Pr(Y = y I Z = z). (30) 

Conditional independence is a strong form of the idea that 
the values of X are unable to predict the values of Y, given 

the values of Z. 
In Granger's time-series setting, the value of Y is de­

termined at some time point s, and the values of X and Z 

are determined at or prior to some other time point r < 
s. I will say that X is not a Granger cause of Y (relative to 

the information in Z) if X and Y are conditionally inde­

pendent given Z. Thus X is a Granger cause of Y if different 

values of X lead to different predictive distributions of Y 

given both X and the information in Z, that is, if X helps 

predict Y even when Z is taken into consideration. 

Viewed in this way, Granger noncausality is very much 

like Suppes's notion of a spurious cause. Both involve the 

inability of the spurious cause to predict a future event or 

value given certain other information. 
How might Granger's ideas be applied to the setting in 

Section 3? It is natural to make the following identification 

of Granger's setting with elements of Rubin's model. 

Granger Rubin's Model 

Y Ys 
X S 

Z A set of pre-exposure 

variables also called Z. 

The conditional independence condition is 

Pr(Ys = y I S = t, Z) = Pr(Ys = y I Z), 

and this reduces to 

0 = {Pr(Y1 = y I S = t, Z) - Pr(Yc = y I S = c, Z)} 

x Pr(S = c I Z). (31) 

In a randomized experiment 

Pr(S = c I Z) = Pr(S = c), 

which we assume lies strictly in (0, 1). Hence Equation 

(31) reduces to 

Pr(Y1 = Y I S = t, Z) = Pr(Yc = y I S = c, Z). (32) 

But under randomization S is independent of ¥ 1, Yc, and 
Z, so Equation (31) becomes 

Pr(Y1 = y I Z) = Pr(Yc = y I Z), (33) 

which, in turn, implies that 

E(Yt I Z) = E(Yc I Z) (34) 

for all values of Z. If we define the average causal effect 

on the subpopulation specified by Z = z as 

T(z) = E(Y1 - Yc I Z = z), (35) 

then Equation (34) says that if Sis not a Granger cause of 

Ys relative to Z, then T(z) = 0 for all values of z. Hence 

in a randomized experiment Granger noncausality implies 
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zero average causal effect on all subpopulations defined 
by the values of Z. Conversely, it is easy to see that if t 

has a null effect on all units, then in a randomized exper­

iment S will not be a Granger cause of Ys relative to any 

Z that is a pre-exposure variable. 
Although Granger causality has some intuitively satis­

fying properties with respect to Rubin's model, it fails, in 

my opinion, to get to the heart of the notion of causality 

in the same way that Suppes's theory of causality fails. 
Granger's "causes" are always only temporarily in that 

category. If an analyst simply gathers more information, 
that is, changes Z, an X that was once a Granger cause of 

Y might be shown to be only a spurious cause in exactly 

the same spirit as in Suppes's theory. 

8.3 Causal Models In Social Science 

No discussion of causal inference would be complete 

without some reference to the expanding literature on causal 

modeling, that is, Blalock (1971), Goldberger and Duncan 

(1973), Duncan (1975), and Saris and Stronkhorst (1984). 

Little work has been done to relate Rubin's model to those 
used in the causal modeling literature-an exception is 

Rosenbaum (1984b), in which the average causal effect in 

a population is related to coefficients that arise in certajn 

linear path models. The relationship between these two 

types of models is a natural research topic, since both causal 

models and Rubin's model were developed to deal with 
the same problem-causal inference in nonexperimental 

research. 

In this section I will hint at some possible points of con­

tact between the path diagrams that are used in causal 

modeling and the model used in this article. I think that 

this is a large topic, and I can only scratch its surface here. 

Path diagrams are used to represent visually causal re­

lationships among a set of variables. For example, if X 

causes Y this is expressed by the diagram 

x~Y. (36) 

From the point of view adopted in this article some dia­

grams like (36) are meaningful and some are not. For ex­

ample, if A is an attribute of units and Y is a response 

variable, then 

A~Y (37) 

is meaningless. On the other hand, if S indicates exposure 

to causes and Ys is an observed response variable, then 

s~ Ys (38) 

is a meaningful diagram. 

What happens when we add a third variable to this sys­

tem? There are several possibilities. If A is an attribute, 

then it is either a pre- or post-exposure variable. In the 

first case we might denote this as 

A s~ Ys (39) 

to indicate the time flow but without any arrow from A to 

S or Ys. In the second case the value of A might be affected 

by exposure to the cause and we would need to indicate 
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that by subscripting A, A 10 and Ac. This suggests the dia­
gram 

s~ (As, Ys). (40) 

It indicates that S changes the values of both A and Y. This 

is the situation analyzed by Rosenbaum (1984b). 
The other possibility is that the third variable is an in­

dicator, R, of a second set of causes, say t' and c'. If the 

R causes act on the units at the same time that the S causes 

do, then we can combine R and S into a single causal 

indicator (R, S). Y must then be doubly subscripted to 

indicate the responses to the various (R, S) combinations, 

that is, YRs· This can be denoted by the diagram 

(R, S) ~ YRs· (41) 

The fact that the R causes and the S causes act at the same 

time is not really important for Diagram ( 41). It really says 

that the R causes do not affect exposure to the S causes, 

and vice versa. We get an essentially new case, however, 

when, for example, the R causes act temporally prior to 

the S causes and they affect the exposure of units to the S 

causes. This requires that S be subscripted by t' or c', that 

is, 

and (42) 

Although it is a mouthful, here is what St'( u) denotes: S1•( u) 
is the S cause that u is exposed to if u was earlier exposed 

to the R cause t'. The following path diagram expresses 

this situation: 

(43) 

R----+ YRsR 

Diagram (43) indicates that R changes the values of Sand 

Y and that S changes the value of Y. R has, potentially, 

both a direct and an indirect (i.e., through S) effect on Y. 

An example may help clarify the meaning of (43). Sup­
pose that we wish to measure the effect of studying certain 

material on the performance on a particular test. We might 

be able to encourage or not encourage students to study 

the material-these are the R causes, t' and c'. We might 

then be able to ascertain whether the students did or did 

not study the material-these are the S causes, t and c. 

The response variable is the score Y on the test given 

subsequent to these events. Diagram (43) indicates that 
encouragement can affect studying and possibly the test 

scores and that studying can affect the scores. For example, 
one might hypothesize that encouragement really does not 

affect test scores directly. This would be expressed in the 

model by 

(44) 

for all u in U and s = tor c. For more on "encouragement 
designs" see Powers and Swinton (1984). 

The essential point I wish to make about these diagrams 
is that they are easily interpreted in terms of Rubin's model 

when they are not causally meaningless. The causal model 

literature has not been careful in separating meaningful 

and meaningless causal statements and path diagrams, in 
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my opinion. For a similar view see Kempthorne (1978}. 
One expects that the application of Rubin's model will help 

clarify the meaning of complex causal models and their 

path diagrams. 

9. SUMMARY 

This article has covered a variety of topics that involve 

causation, but there are a few general points that, I think, 

are important enough to emphasize in summary. 

First of all, I believe it is very helpful to try to see what 

experiments (as the term is used by statisticians) tell us 

about causation. I have emphasized three ideas about cau­

sation on which statistical experiments focus our attention. 

1. The analysis of causation should begin with studying 

the effects of causes rather than the traditional approach 

of trying to define what the cause of a given effect is. 

2. Effects of causes are always relative to other causes 

(i.e., it takes two causes to define an effect). 

3. Not everything can be a cause; in particular, attributes 

of units are never causes. 

Let me make a few brief comments on each of these 

important ideas. 

Traditional analyses of causation start by looking for the 

cause of an effect. I think that looking for causes of effects 

is a worthwhile scientific endeavor, but it is not the proper 

perspective in a theoretical analysis of causatiqn. More­

over, I would hold that the "cause" of a given effect is 

always subject to revision as our knowledge about the phe­

nomenon increases. For example, do bacteria cause dis­

ease? Well, yes ... until we dig deeper and find that it is 

the toxins the bacteria produce that really cause the dis­

ease; and this is really not it either. Certain chemical re­

actions are the real causes ... and so on, ad infinitum. 

The effect of a cause may be difficult to measure in some 

circumstances, but it is, at least, precisely definable-as 

done in Section 3. It is for this reason that I believe that 

formal theories of causation must begin with the effects of 

given causes rather than vice versa. 

That an effect requires two causes for its definition is 

obvious in the context of an experiment but never seems 

to get much recognition by those who discuss causation in 

general terms. This is probably an important contribution 

of statistical thinking to discussions of causation. Experi­

ments without control comparisons are simply not exper­

iments. Those who think in terms of physical science ex­

periments may have some difficulty with this idea, but I 

believe that it is true of any experiment. 

That everything has a cause is sometimes called the law 

of causality, but it does not imply that everything can be a 

cause. The experimental model eliminates many things 

from being causes, and this is probably very good, since it 

gives more specificity to the meaning of the word cause. 
Donald Rubin and I once made up the motto 

NO CAUSATION WITHOUT MANIPULATION 

to emphasize the importance of this restriction. Although 

many people balk at the idea that causes might be limited 

in some way, this idea is a simple consequence of the struc-
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ture of the model in Section 3. Unless both YtC u) and Yc( u) 

can be defined, in principle, it is impossible to define the 

causal effect Y1(u) - Yc(u). For an attribute A(u) we can 

define Ya(u) for all u for which A(u) = a, and we can 

define Yb(u) for all u for which A(u) = b. Attributes are 

functions, however, and A(u) is either a orb (or neither) 

but not both a and b for any unit, u. Hence Ya(u) - Yb(u) 
cannot be defined for any unit, u, and attributes are not 

causes in the sense that causal effects cannot be defined 

for them. 

The second set of important general points I wish to 

summarize concern the immediate consequences of Rub­

in's model. There are two consequences I wish to empha­

size. 

1. The difference between the model (S, Y, Yc) and the 

process of observation (S, Ys). 

2. The Fundamental Problem of Causal Inference-only 

Y, or Yc but not both can be observed on any unit u. 

These two consequences are really the same thing said 

in different ways. It is a great mistake to confuse Y, or Yc 
with Ys, and yet this is done all the time.lt is also a mistake 

to conclude from the Fundamental Problem of Causal In­

ference that causal inference is impossible. What is im­

possible is causal inference without making untested as­

sumptions. This does not render causal inference impossible, 

but it does give it an air of uncertainty. It is the same 

uncertainty discussed by Hume. The strength of a model 

like Rubin's is that it allows us to make these assumptions 

more explicit than they usually are. When they are explic­

itly stated the analyst can then begin to look for ways to 

evaluate or to partially test them. 
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