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Abstract Orientation maps are a prominent feature of the

primary visual cortex of higher mammals. In macaques and

cats, for example, preferred orientations of neurons are orga-

nized in a specific pattern, where cells with similar selectivity

are clustered in iso-orientation domains. However, the map is

not always continuous, and there are pinwheel-like singular-

ities around which all orientations are arranged in an orderly

fashion. Although subject of intense investigation for half

a century now, it is still not entirely clear how these maps

emerge and what function they might serve. Here, we sug-

gest a new model of orientation selectivity that combines the

geometry and statistics of clustered thalamocortical afferents

to explain the emergence of orientation maps. We show that

the model can generate spatial patterns of orientation selec-

tivity closely resembling the maps found in cats or monkeys.

Without any additional assumptions, we further show that the

pattern of ocular dominance columns is inherently connected

to the spatial pattern of orientation.
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1 Introduction

1.1 Orientation selectivity

The function of cortex can be studied by looking at its func-

tional properties that first emerge at this level and that are

absent in more upstream brain structures. Orientation selec-

tivity (OS) is paradigmatic in this respect: Many neurons in

the primary visual cortex (V1) of mammals respond selec-

tively to oriented stimuli (Hubel and Wiesel 1962, 1968;

Niell and Stryker 2008) while they are receiving thalamic

input from neurons in the lateral geniculate nucleus (LGN),

with almost no selectivity for orientation. Being simple and

tractable, this sensory feature has provided a framework for

studying structure and function of sensory areas in the mam-

malian brain for many decades now (Ferster and Miller 2000;

Sompolinsky and Shapley 1997).

Hubel and Wiesel (1962) themselves provided the first

structural explanation for the emergence of OS in simple

cells. Their argument was based on a feedforward alignment

of receptive fields, where ON and OFF center LGN cells

were connected to the ON and OFF subregions of a simple

cell in V1, respectively, leading to an elongation of cortical

receptive fields (Fig. 1a). Later experimental studies, which

mapped the receptive field of neurons using the method of

reverse correlation, indeed confirmed that there actually is

such a feedforward match (Tanaka 1983; Reid and Alonso

1995).

However, the following general question still needs to be

answered: Which basic mechanism underlies the formation

of this structure? Is it an inborn property of the visual sys-

tem (“nature”), or is it acquired by experience (“nurture”)?

At one extreme, orientation selectivity might be genetically

encoded: Genetically encoded markers would guide thalam-

ocortical axons to wire up such that the appropriate receptive
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fields emerge. This would then provide the animal with opti-

mized feature detectors to survive in its natural environment.

At another extreme, orientation selectivity might be learned

through visual experience: Orientation selectivity would not

be hardwired, but a result of adaptation during brain devel-

opment, driven by the statistics of the natural sensory inputs.

Conceptually, a model of the latter sort would provide an

attractive scientific explanation: It suggests a general mech-

anism, which could readily be extended to other modalities;

the former scenario, in contrast, renders OS a unique fea-

ture of the visual system. Activity-dependent models that

exploit correlations are one specific example of such mod-

els. These models are also more amenable to experimental

tests, as they demand a specific pattern of activity and cor-

relations for the establishment of selectivity during develop-

ment. They rely on patterned visual input and may therefore

predict that OS would not develop in the absence of visual

stimulation. Developmental studies, however, have reported

OS in young animals that lack any visual experience (Hubel

and Wiesel 1963). Although the maturation of OS depends

on visual experience, its initial establishment appears not to

depend on the pattern of visual stimulation (Albus and Wolf

1984; Chapman and Stryker 1993; Löwel et al. 1998).

Theoretically, it is still possible, however, that the pattern

of correlations in spontaneous activity instructs the forma-

tion of oriented receptive fields (Miller et al. 1999). A model

based on this would, therefore, need a specific pattern of cor-

relations in the spontaneous activity during development. In

the model by Miller (1994), this is a Mexican hat-like pattern

of correlations, where nearby inputs of the same sign (ON

or OFF) are best correlated, while ON center inputs are best

correlated with OFF center inputs at larger distances. This

pattern, however, is not supported by experiments (Ohshiro

and Weliky 2006; Weliky and Katz 1999).

1.2 Statistical connectivity

Is there an alternative explanation? There is indeed a family

of models based on “statistical connectivity,” which resides in

the middle between the two extremes of “nature” and “nur-

ture.” These models take the statistical pattern of cortical

wiring as their premise and try to come up with an inter-

pretation of the function in terms of connectivity. Valentino

Braitenberg was indeed pioneering an approach where statis-

tics and geometry of neuronal connectivity is the only con-

straint of a model (Braitenberg and Schüz 1998). The idea is

that a generic pattern (like, for instance, random connectiv-

ity) would enable the system to serve its function.

The relevant connectivity in the case of OS is the pattern of

divergence and convergence between LGN and cortex (V1).

Here, divergence means that each individual LGN neuron

projects to many neurons in V1. This, in turn, implies a high

convergence of inputs from LGN to a V1 neuron, that is,

each individual V1 neuron receives input from many LGN

neurons (Peters and Payne 1993). In view of the lateral extent

of this divergence, a huge overlap of axonal arborizations is

also implied for LGN afferents (Peters and Payne 1993). This

type of connectivity has been considered in a more recent

model based on “haphazard wiring” (Ringach 2004, 2007).

It was shown that such a random pattern of convergence from

thalamus to cortex, in addition to the mosaic of ON and OFF

center retinal ganglion cells on the retina, could explain the

emergence of simple cell-like receptive fields.

There are, however, problems with this model. One prob-

lem is that the number of LGN neurons converging to a V1

cell in the model is smaller than the real values that were esti-

mated to be in the range 30–100 (Alonso et al. 2001; Peters

and Payne 1993). Also, the degree of elongation of recep-

tive fields in the model does not match that of V1 simple

cells (Ringach 2004). Moreover, it is not clear how the two

patterns of OS established by the two eyes can be brought

to match on the cortical surface, as each one is established

by a different retinal mosaic. It is possible to invoke some

sort of activity-dependent plasticity, which aligns the topog-

raphy of OS induced by the ipsilateral eye with the already

established contralateral map (Ringach 2004). But this raises

again the question to which extent a developmental mecha-

nism is involved in the establishment of OS, and why almost

the same structure is established when the animal is stimu-

lated by either eye (Gödecke and Bonhoeffer 1996).

All these problems seem to be related to the fundamental

assumption made in the model that OS is essentially a reti-

nal property. Indeed, simple cells in this model are generated

by sampling from a handful of ON and OFF center retinal

ganglion cells, reflecting the features relayed to them from

the periphery. As a result, the degree of convergence must

be limited in order not to distort the retinal seed of selectiv-

ity, the elongation is limited to the aspect ratio of ON–OFF

dipoles on the retina (Paik and Ringach 2011), and the struc-

ture of OS inherited from each eye can be totally different.

All together, the model deviates from the concept of OS as

an emergent property of the cortex. In fact, two radically dif-

ferent schemes might emerge from here: The first one argues

for OS as a feature that is already determined at the level of

retina, but manifests itself only in the cortex, where ON and

OFF center channels meet for the first time; the second one

argues that OS is due to an elongation of receptive fields,

which is a result of the convergence of many inputs with

non-elongated receptive fields, and which makes the recep-

tive fields of cortical neurons larger than those of their retinal

or thalamic afferents.

1.3 Orientation map

Hubel and Wiesel (1968) also described the topographic

organization of OS in the cortex. Penetrations perpendicular
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Fig. 1 Orientation selectivity and orientation map. a Feedforward

alignment of receptive fields underlying the elongation of cortical recep-

tive fields in simple cells as suggested by Hubel and Wiesel (1962).

Circular receptive fields of LGN neurons connected to a simple cell

in V1 are aligned with a specific orientation, which makes the cortical

receptive field elongated. b Orientation map in monkey striate cortex

revealed by voltage-sensitive dye imaging. Scale bar has length 1 mm.

Modified from Blasdel and Salama (1986) (Swindale 2008). c Hexag-

onal grid of columns in a model by Braitenberg (1985). At the center

of each white circle, an inhibitory population was conjectured, which

would inhibit the response of neurons at the orthogonal orientation.

Both orientation selectivity of neurons as a result of their position with

respect to columns (upper, indicated by bars) and their succession as

one moves horizontally on the surface of the cortex (lower), are implied

by the model (all figures reproduced with permission)

to the cortical surface revealed a “columnar” organization,

where all neurons encountered showed a similar preferred

orientation. The same was reported in the somatosensory

cortex (Mountcastle 1957), where all neurons in a column

shared similar features. The map of selectivity on the surface

of cortex was, however, different: Unlike the somatosensory

cortex, no discrete columns were found. Tangential pene-

trations encountered a smooth and continuous progression

of preferred orientations, although some sudden transitions

were also observed (Hubel and Wiesel 1974). Later, optical

imaging studies revealed a large-scale organization of these

maps (Blasdel and Salama 1986; Ts’o et al. 1990; Bonhoef-

fer and Grinvald 1991): They exhibit an orderly arrangement

of OS, where neurons with similar selectivity tend to cluster

in iso-orientation domains (Fig. 1b). The transition between

different domains can be smooth in linear zones, but there are

also discontinuities where different selectivities occur next

to each other (Obermayer and Blasdel 1993). One specific

form of discontinuities is the “pinwheel” centers, singulari-

ties around which all orientations are represented once, either

in clockwise or in counterclockwise fashion.

Explaining origin and function of this particular organi-

zation has indeed attracted much attention from both exper-

imenters and theoreticians (Swindale 1996). As in the case

of OS, there is evidence in favor of “nature” models: Exper-

imental findings suggest that the overall layout and geom-

etry of the orientation map is established very early during

development and remains unchanged during the rest of the

developmental period (Chapman et al. 1996; Gödecke et al.

1997; Löwel et al. 1998; Sengpiel et al. 1998). The orienta-

tion map is indeed present even in animals lacking any visual

experience (Wiesel and Hubel 1974).

The correlation-based model of OS mentioned above is

one of the models which has been suggested by theoreti-

cians (Miller 1994). As the model relies on the structure of

correlation among neighboring neurons, it cannot explain

the reported heterogeneity of nearby neurons in their spa-

tial phase (DeAngelis et al. 1999). An alternative explana-

tion is provided by a model based on statistical connectivity

(Ringach 2004, 2007; Paik and Ringach 2011). As in the

case of OS, the model suggests the retina as the origin of

the orientation map: The continuity of the map comes from

the fact that neighboring cortical neurons share input from

the same retinal cells (Ringach 2004), and the periodicity

arises from a Moiré interference pattern of the hexagonal

grid of ON and OFF retinal ganglion cells (Paik and Ringach

2011). Recent studies, however, have demonstrated that it is

unlikely that such retinal mosaics drive the formation of corti-

cal orientation maps (Hore et al. 2012; Schottdorf et al. 2013).

Also, as discussed above, the question of how two indepen-
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dent monocular maps are eventually brought to match on

the cortical surface is not answered by the model (Ringach

2004), unless it is complemented by a developmental mecha-

nism. Moreover, it would be difficult for the model to explain

how identical orientation maps would develop for both eyes

without common visual experience (Gödecke and Bonhoef-

fer 1996), since the mosaic of retinal ganglion cells for each

eye and the interference pattern between the ON and OFF

grids would be different. Again the model cannot account

for these observations, since it is based on the geometry of

retina. The constancy of maps, however, seems to favor an

explanation based on the geometry of cortex.

1.4 Geometry of cortex and organization of orientation

There is a theory of OS and its organization based on the

geometry of cortex (Braitenberg 1985, 1992; Braitenberg

and Braitenberg 1979; Braitenberg and Schüz 1998). In this

model, both the orientation specificity and the organization

of receptive fields are determined by the geometry of cortical

columns. The model is based on the experimental results by

Hubel and Wiesel (1974) and postulates that orientations are

organized in “hypercolumns,” each hypercolumn containing

a full set of all orientations, arranged around a center. It is

assumed that at the center of each hypercolumn exists a pop-

ulation of inhibitory neurons, which suppresses the activity

of cortical neurons at orthogonal orientations. Therefore, the

response would be the strongest, if an elongated visual stimu-

lus was properly located at an orientation such that the neuron

is optimally activated by the bar, but not inhibited by the cen-

tral inhibitory population. This geometric arrangement also

determines the OS maps on the cortical surface (Fig. 1c).

Braitenberg’s model is simple and appealing, and it can

potentially explain many properties of the spatial organiza-

tion of OS. However, there are several issues with the model

(Braitenberg and Schüz 1998). The first issue is concerned

with the size of receptive fields: Real receptive field sizes are

larger than what the model suggests, about two or three times

the size of a hypercolumn. To resolve this discrepancy, the

authors of the study invoke “composite receptive fields” of

cell assemblies. They argue that the receptive fields exper-

imentalists measure in real cortex are not those of a single

neuron; rather they belong to a cluster of pyramidal cells with

similar response properties. These clusters are responding as

a whole as if they were wired together by a Hebbian connec-

tivity rule; this, in turn, increases the size of their composite

receptive field. The problem with this suggestion is that it

would again raise the question if, and to which extent, devel-

opmental mechanisms contribute to the process of receptive

field formation and maturation. A more parsimonious model

would account for this fact without appealing to learning.

From an experimental point of view, however, the issue needs

further experimental investigation, particularly by reporting

the size of receptive fields during development.

Another issue with the model is the structure of pinwheels

it predicts. If pinwheels are located at the center of hyper-

columns, the model predicts that each orientation is repre-

sented twice when circling around each of these singularities.

This feature is not consistent with experimental pinwheels,

around which each orientation is only visited once. Brait-

enberg (1992) has made the point, however, that the actual

pinwheels are not located at the center of hypercolumns but,

instead, appear between hypercolumns (Valverde and Brait-

enberg 2007a,b).

There is, however, still an issue in interpreting hyper-

columns with respect to ocular dominance columns (ODCs).

If hypercolumns can be identified with ODCs (as we assume

later in our model, see Sect. 2), the appearance of pinwheel

centers between hypercolumns is incompatible with exper-

imental findings: In cats, for example, a strong correlation

between pinwheel centers and ODC centers has been reported

(Crair et al. 1997a,b). This problem seems even more serious

in monkeys, where the relationship between pinwheels and

ODCs is more pronounced: Orientation pinwheels appear to

be strictly avoiding the borders of ODCs and, in fact, tend to

lie on ODC midlines (Obermayer and Blasdel 1993). As in

Braitenberg’s model no relationship between hypercolumns

and ODCs is necessary, it is conceivable that some specific

configuration of hypercolumns with respect to the ODC pat-

tern beyond the model can explain it. It might, however, be

difficult for the model to account for some further constraints:

In Braitenberg’s model, it is assumed that the inhibitory popu-

lations are localized within cytochrome oxidase-rich regions

(CO blobs; see also below), and CO blobs indeed appear at

the center of ODCs (Horton and Hubel 1981).1

Last but not least, the existence of the presumed “lumped

inhibitory neurons” at the center of columns has not been cor-

roborated in experiments. It has been suggested that, out of

several kinds of GABAergic neurons that have been reported

to exist in cortex, one group might be found to have a higher

concentration in ODC centers and a group has indeed been

identified (Braitenberg and Schüz 1998; Jones et al. 1994),

which is preferentially localized within the CO blobs. Given

the role of inhibitory neurons in the model, a specific arrange-

ment of them is also needed, with their dendrites in the

hypercolumn centers, and their axons emanating radially

to reach the surrounding pyramidal cells (Braitenberg and

1 In general, one should be cautious about the co-localization of optical

imaging results (pinwheel centers) and anatomy (ODC), as it turns out

to be a difficult and not very precise procedure. Localization errors

in the range of up to a few hundred micrometers can easily happen

(see e.g. Valverde Salzmann et al. 2011). However, a strong correlation

between pinwheel centers and ODCs has also been reported when both

features were mapped by optical imaging methods (Obermayer and

Blasdel 1993).
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Schüz 1998). Whether the specific presence and arrangement

of clustered inhibition is supported by experiments awaits

further research.

In the following, we propose an alternative model that we

think is more consistent with biological data, while at the

same time preserves the essential features of the geomet-

ric model. We complement the geometric model by taking

the statistical connectivity of thalamocortical afferents from

LGN to V1 into consideration and propose that this approach

provides a better explanation for the emergence of feature

maps.

2 Results

2.1 Columnar receptive field

In layer IV cat primary visual cortex, afferent connections

from a single LGN neuron terminate and ramify in a region

of approximately 1 mm2 (Peters and Payne 1993). In our

simplified model, we assume that the arborization has the

same size for all LGN cells, neglecting the fact, among other

things, that y-cells have larger termination areas than x-cells.

Also, we do not include different center-surround types of

LGN neurons in our model; we take all LGN cells to be of

the ON center type.

A “column” in our model is the aggregate arborization

of many LGN afferents with similar receptive fields. Thus,

we do not explicitly consider here the differences in size

and shape of LGN receptive fields (Chapman et al. 1991;

Jin et al. 2011). This columnar organization reflects the ocu-

lar clustering of afferents very early in development, which

already looks like the organization of mature ocular domi-

nance columns (Crowley and Katz 2000). As Katz and Crow-

ley (2002) put it: “Axons initially grow to their correct loca-

tions and generate increasingly dense arborizations, with lit-

tle evidence of overlap between adjacent columns.”2 Note

2 The authors therefore argue for molecular cues, rather than stimulus-

driven or spontaneous activity, being responsible for the formation of

these columns; a recent study has in fact demonstrated the clustering of

heat shock protein 90 alpha in register with ODC of the ipsilateral eye

in the developing cat visual cortex (Tomita et al. 2013). Indeed, the total

removal of the eyes early in visual development does not impede the

segregation of thalamocortical axons into ocular dominance columns,

with normal periodicity (Crowley and Katz 1999). However, the result

of a more recent study in ferrets (Huberman et al. 2006) shows that

preventing stage II retinal waves severely disrupts ODC segregation

and patterning, although it does not prevent its formation. The authors

therefore suggest that the segregation may already happen when the

LGN axons still reside in the subplate (Huberman et al. 2008). Given

the existing controversy about the exact mechanism, one may assume

that the pattern and segregation of ODC is a combined result of patterned

spontaneous retinal activity and axon guidance cues (Calabrese 2009).

An argument against a role of spontaneous retinal activity was, however,

given by Adams and Horton (2003). Our results in the following do not

depend on the exact mechanism responsible for this columnar structure.

that this columnar structure is purely a property of thalamo-

cortical projections and does not imply (nor does it contra-

dict) any columnar structure in the recurrent wiring of cortex.

Indeed, in our model, we assume no clustering of cortical

neurons and model them as a homogeneous network in a

two-dimensional plane corresponding to the cortical surface

(see below).

We model the receptive field of LGN neurons as a differ-

ence in Gaussians (Fig. 2a). These receptive fields are highly

overlapping for all LGN neurons within a column, as they

cover a similar area in the visual field (Fig. 2b). The centers

of these receptive fields have a Gaussian distribution approx-

imately aligned with the center of the column. The density of

axonal arborizations of each LGN afferent is also assumed

to have a Gaussian distribution.

We combine all these Gaussians to obtain an aggregate

receptive field that describes the input that each cortical neu-

ron receives from the column. This is a weighted sum of all

LGN receptive fields; the weights are given by a Gaussian

function of the distance to each position on the cortical sur-

face. This is a consequence of the Gaussian distribution of

axonal termination points, which implies a higher connection

probability for close-by cortical neurons. Simulated samples

of this aggregate receptive field for different cortical posi-

tions are shown in Fig. 2c. Since this is a reduced recep-

tive field, which summarizes the total effect of all affer-

ents within a column, we call it the “columnar receptive

field.”

Columnar receptive fields are larger than the receptive

fields of individual LGN neurons. This is a result of many

partially overlapping receptive fields. Moreover, as a result of

the massive overlap, receptive fields are very similar for dif-

ferent cortical positions with respect to the column, as shown

in Fig. 2c. This fact justifies that we reduce the complexity

of a column and describe it by an aggregate receptive field,

as introduced here. This means, for all neighboring neurons,

the effect of each column is now reduced to the columnar

receptive field inherited from it. The weight of this columnar

receptive field for each cortical neuron depends on its dis-

tance to the center of the column and can be approximated

by an effective Gaussian (Fig. 2d).

We use this simplification in the following to highlight the

role of columnar interaction for orientation selectivity. Note,

however, that some of the assumptions can be further relaxed.

First, it is not necessary to assume a precise Gaussian dis-

tribution of inputs from LGN around the center of columns.

In fact, allowing for a uniform distribution of LGN receptive

fields in the column results in similar columnar receptive

fields, only slightly shifted from the center (Fig. 3). Second,

sampling from heterogeneous LGN receptive fields with dif-

ferent sizes does not change the result qualitatively (Fig. 4).

Finally, the concept of a columnar receptive field itself is

not a strictly necessary assumption of the model; we also
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A B

C D

Fig. 2 Columnar receptive field. a Receptive field of an LGN affer-

ent, modeled as a normalized difference of Gaussian with σon = 1 and

σoff = 1.5. Black line indicates the contour of half-maximum height

(0.5). b Receptive fields of all N = 100 LGN afferents projecting in one

column, as assumed in the model. Red crosses mark the LGN centers

(the standard deviation of distribution is σc = 0.5; see Sect. 4), and the

gray lines are the half-height contours in each case. The colors code

the sum of all individual receptive fields. Two white crosses and white

circles show, respectively, the centers and half-height contours of two

LGN receptive fields with the maximum distance. This distance is 2.85.

c Receptive fields in our model, for cortical neurons at different posi-

tions on the column (denoted by the small circle in red). Dots show the

centers of afferents. σw = 1. d The peak value of the cortical receptive

field at each position on the column. Dots shows the centers of afferents

consider a more general scenario without this assumption

later.

2.2 Size of receptive fields

The simplification introduced in the previous section allows

us to go beyond one column in our model and investigate

interactions between columns. Let us first consider a hexag-

onal grid of such columns (Braitenberg 1985), as shown in

Fig. 5a. The receptive field of each cortical neuron in this

columnar structure is given by a weighted sum of all the

columnar receptive fields. The corresponding weights come

from a Gaussian function of the distance to the center of each

column.

The receptive fields obtained in this manner are larger

than each individual columnar receptive field, since a cortical

neuron sees several columns, depending on its position in

the columnar grid. If a neuron is located close to the center

of a column, the within-column density of branches is so

dominant that the receptive field is mostly determined by this

particular column. Shown is the case of a neuron exactly at the

center in Fig. 5b. In contrast, a neuron which is located exactly

in the middle between two columns would see both columnar

receptive fields with the same weight and, as a result, have

itself a larger receptive field (Fig. 5c). An increase in size of

the receptive field is not the only consequence, however. As a

result of the elongation in its receptive field, the neuron also

attains orientation selectivity.
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A B

C D

Fig. 3 Columnar receptive field for a uniform distribution of LGN ter-

minals. a–d Same as in Fig. 2, but for a uniform distribution of LGN

centers. x and y positions of LGN centers (red crosses) are taken ran-

domly from a uniform distribution between [−1, 1], N = 50. Other

parameters and conventions are the same as in Fig. 2

2.3 Orientation selectivity

Depending on the position of a cortical neuron relative to

the grid of cortical columns, it would integrate the columnar

receptive fields differently. As a result, the exact shape of

receptive field elongation, and hence the orientation selec-

tivity that follows from it, varies across neurons. If a neu-

ron is located at the center of a column (as in Fig. 5b), no

elongation of its receptive field results, as a single, isotropic

columnar receptive field is dominating it. In contrast, if a

neuron is located between two columns, it sees effectively

two neighboring columnar receptive fields, which leads to an

elongation of its combined receptive field. This neuron now

becomes orientation selective, responding best to a stimulus

orientation of the line connecting the two columns (Fig. 5c).

Note that, although there are no clusters of inhibitory neurons

in the column centers, the perfect symmetry of the columnar

structure in combination with the columnar receptive fields

effectively “inhibit” orientation selectivity in the center of

columns. The reason is that the highest density of afferent

arborization in the center makes the isotropic, non-oriented

receptive field of the column dominant, preventing any recep-

tive field elongation.

To quantify orientation selectivity at each position, we

stimulate the system with drifting gratings of different

orientations. In the absence of nonlinearities, the scalar prod-

uct of the grating with the receptive field of any neuron pre-

dicts the net feedforward input to this neuron. Neglecting

recurrent interactions, this also determines the membrane

potential response, temporally modulated at the frequency

of the stimulus. We take the temporal F1 component as a

measure of anisotropy of response, similar to what experi-
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A B

Fig. 4 Columnar receptive field from heterogeneous LGN receptive

fields. a N = 50 receptive fields of LGN afferents projecting to one

cortical column, as in Fig. 2b. Unlike Fig. 2b, the sizes of receptive

fields are now not the same: σon has a uniform distribution between

[0.5, 1.5], and σoff = 1.5σon in each case. The half-height contours for

the smallest and the largest receptive field are shown in white. The col-

ors code the sum of all individual receptive fields. b Cortical receptive

fields, for neurons at different positions in the column (denoted by the

small circle in red). Dots show the centers of afferents. σw = 1

A B

C D

Fig. 5 Multi-columnar receptive fields. a A hexagonal grid of columns

described in Fig. 2. Shown is the aggregate receptive field of the center

column. Other columns have the same columnar receptive fields, cen-

tered at the center of columns (small white circles). b Receptive field of

a neuron located at the center of a central column. c Receptive field of a

neuron located between the central column and one of the neighboring

columns. d Tuning curve of neuronal input. The receptive field of the

neuron is stimulated with drifting gratings of 18 different orientations

(shown on the x-axis). The temporal modulation of the response for

each orientation is shown on the y-axis
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Fig. 6 Sample receptive fields from the columnar grid. For 16 neurons

at different positions on the hexagonal grid (Fig. 5), the resulting recep-

tive field is plotted on the left. The evenly sampled positions are shown

by crosses. For each receptive field, the best-matching grating (i.e., the

grating at PO) is shown on the right

mentalists do in intracellular recordings, when they extract

orientation selectivity from the modulation component of

the responses (Ferster et al. 1996; Carandini and Ferster

2000).

We compute the F1 component at different orientations

and this way obtain a tuning curve of the neuron. This is

shown in Fig. 5d for the two receptive fields discussed before

(Fig. 5b, C). The elongated receptive field implies a clear

modulation across different orientations, while the tuning

curve for an isotropic receptive field is flat. We take the ori-

entation of the strongest response as the preferred orientation

(PO) of the neuron. To quantify the degree of selectivity, we

employ an orientation selectivity index (OSI), which amounts

to 1 − circular variance of the tuning curve (see Sect. 4).

Figure 6 shows the result of this procedure for some sam-

ple receptive fields. Receptive fields obtained at different cor-

tical positions are shown along with the best-matching stim-

ulus, respectively. There are different degrees of selectivity,

ranging from almost isotropic to strongly elongated, and for

all examples shown the PO is matching the one inferred by

visual inspection very well.

2.4 Pinwheels and spatial organization of orientation

selectivity

Once we have obtained PO and OSI of cortical neurons,

we can also study the properties of the map of orientation

selectivity that emerges on the cortical surface. Figure 7a

depicts this map for the hexagonal grid of columns dis-

cussed in the previous section, where the PO of each neuron

is indicated by a hue value. The maps obtained in this way

indeed have continuous regions of selectivity (iso-orientation

domains) as well as pinwheel-like singularities. Singulari-

ties coincide with the centers of columns, where the OSI is

in fact zero (Fig. 7b), and where all orientations are repre-

sented in a small neighborhood around the center. However,

not unexpectedly, each orientation is represented twice in

each pinwheel, implied by the geometry of the hexagonal

grid.

The same problem arises in Braitenberg’s model, if pin-

wheels are localized at the centers. He argues, however, that

the visible pinwheels are not localized at the hypercolumn

centers. Rather, they emerge between hypercolumns (Brait-

enberg 1992). The region in the hypercolumn center (as

opposed to the pinwheel center), he argues, is not orientation

selective, and this lack of selectivity is masked by the way

data obtained by optical imaging are processed for display.

Also, since the between-hypercolumn pinwheels are more

numerous in a hexagonal structure, they are more visible in

an orientation map. Hypercolumn centers are also present in

these maps, however, but their identification needs a closer

look.

As discussed above, the apparent coincidence of pinwheel

centers with the centers of ocular dominance columns may

argue against this interpretation. Although pinwheel centers

do also appear between hypercolumns, they could as well be

present close to the column centers. We explain here how

this happens in our model, i.e., how pinwheel centers can
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Fig. 7 Map of orientation selectivity for the columnar grid. a A pseudo-

color map of orientation selectivity, which shows the PO of neurons at

different positions on the columnar grid. White circles depict the center

of columns. b A map of orientation selectivity, where the PO at each

point is represented by the orientation of the marker line. Its length

is proportional to the degree of selectivity (OSI). A map of selectiv-

ity (brighter regions denoting higher OSI) is shown in the background.

c, d) Same as (a, b) for the monocular grid. Half of the surrounding

columns are deleted

be localized at the center of columns without seeing each

orientation twice.

In binocular animals, the cortex needs to accommodate

columns of LGN afferents from both eyes. Assuming that

each column is essentially dominated by one eye (ocular

dominance columns), monocular maps would deviate from

binocular maps. In our simple model based on a hexago-

nal grid, one way to account for this is to assume alternat-

ing ocularities. In monocular maps, the binocular hexagonal

grid would then be reduced to a triangular neighborhood,

with three columns of the same ocularity around the central

column (Fig. 7c). If we now compute the orientation map

for this reduced structure, there would still be a pinwheel

in the center, but each orientation is only represented once

around each singularity (Fig. 7c, d). Note that the remaining

columns belonging to the opposite ocularity would have their

own pinwheel center at a different position. This position is

determined by the relative geometry of monocular columnar

projections. As a result, two 180◦-pinwheels (pinwheels with

each orientation appearing once around them) are now born

out of one 360◦-pinwheel (pinwheel with each orientation

appearing twice around it).

2.5 Ocular dominance columns and orientation maps

For a more realistic version of the model, we will now con-

sider more realistic patterns of ODC. In fact, given any ODC

pattern, our model would eventually predict the correspond-

ing orientation map. The only parameters then are the extent

of columnar receptive fields and the connection weights.
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There are, in fact, different patterns of ODC observed

for different species, ranging from a patchy structure as in

cats (Löwel and Singer 1987) to stripes in monkeys (LeVay

et al. 1975). From a theoretical point of view, different pat-

terns of ODC might simply reflect different strategies to solve

one problem: To maintain retinotopy simultaneously for two

eyes. The problem is to tile a two-dimensional sheet (cortical

surface) with ocular dominance columns, while keeping the

proximity of their receptive fields on the retinal grid. This is

not a trivial problem, since each column on the cortical grid

must now maintain the neighborhood of input from both eyes.

As a result, distortions of retinal coordinates are inevitable.

We now include these aspects into our model by consider-

ing two different coordinate systems, one for the visual field

and one for the cortical surface. From the centers of receptive

fields on the 2D “retinal grid,” afferents from each eye are

projected (via the LGN) to cortex in a columnar fashion; this

in turn forms the “columnar grid,” as discussed previously.

If columns were completely binocular, the same retino-

topic mapping from the two eyes to the columns could be

assumed. This is obtained by sampling from the same posi-

tion in the visual field for both eyes and directing afferents

of both ocularities to each (binocular) column. If columns

were monocular, in contrast, the same retinal grid would be

mapped to two separate columnar grids, one for each eye,

respectively.

Whatever the precise ODC structure is, we assume that

the centers of columns (for both ocularities) are maintaining

a good match with the centers of the retinal grid, in order to

preserve the topography of the retinal projection as much as

possible. The competition between left and right eye for their

grid positions on the same cortical surface can only result in

a displacement from the best-matching pattern of monocular

projections.

In theory, one way to implement this scheme is to first

make the columnar grid an identical copy of the retinal grid,

assuming perfect retinotopy. For simplicity, we are neglect-

ing here different cortical magnification factors for the center

and the periphery. Then, we randomly displace the positions

of cortical columns to mimic the displacement due to the

competition of two eyes. The randomly displaced copy of

the retinal grid now represents a monocular columnar grid.

The result of such a procedure for the projections from one

eye is shown in Fig. 8a. Note that we have now relaxed the

assumption of hexagonal structure of columns and, instead,

placed the column centers on a square lattice for the retinal

grid. The model, therefore, does not depend on the specific

arrangement of the columns.

We then assign a columnar receptive field to each col-

umn, as explained before. The receptive field of a neuron at a

given position on the cortical surface is, as before, obtained

as a weighted sum of columnar receptive fields, with weights

being a function of the distance to each column center. For

each receptive field, we then compute the PO and in this

way construct the full orientation map. A monocular map

of orientation (obtained from the central region to minimize

boundary effects) is also shown in Fig. 8a.

Zooming into the map (Fig. 8b) reveals iso-orientation

domains as well as characteristic singularities (pinwheels).

Note that, although the displacement between retinal and cor-

tical grids is small, the resulting map is quite different from

a regular map that would be expected from a regular lattice.

Moreover, pinwheels are now structured like the pinwheels in

Fig. 7c, i.e., each orientation is represented only once around

its center. Near these singularities, the selectivity is low. This

is indicated by a saturation map superimposed on the image,

with brighter colors denoting higher selectivity. The most

selective regions are the middle parts of the iso-orientation

domains. The four sample receptive fields and their tuning

curves shown in Fig. 8c indicate all the same trend: Neurons

closer to pinwheel centers are less selective, as their tuning

curves are less strongly modulated. Neurons in the center of

iso-orientation domains, in contrast, exhibit stronger tuning,

since the elongation of their receptive fields is more pro-

nounced.3

2.6 Relaxing columnar receptive fields

We used the simplified model in the previous sections to

illustrate how orientation selectivity and realistic orienta-

tion maps could be obtained from the columnar pattern and

the statistics of thalamocortical connectivity. The reduced

columnar receptive field that we introduced served this illus-

trative purpose and made the model conceptually and com-

putationally simpler. In this section, we now introduce a sim-

ilar columnar model without resorting to an aggregate recep-

tive field for each column. The model is more efficient for

numerical simulations, which allows us to more conveniently

explore the properties of larger orientation maps.

The new model is constructed as follows: Each neuron has

a set of random inputs, the distribution of which determines

the orientation preference of the target neuron. The retinal

position of inputs depends on the position of the neuron on

the cortical surface relative to the position of thalamocorti-

cal input columns. The columnar structure implies that the

density of afferents is higher at the center of columns than

between columns. The position of the neuron also determines

the distribution of its dendritic arborization and hence the

probability of receiving a connection. We assume both dis-

tributions to be Gaussian and combine them in a Gaussian

probability distribution, localized in the middle between the

3 Note that this is the tuning obtained from the feedforward input alone,

before recurrent interactions can modulate it, and before it has been

transformed to output activity. The spiking response of neurons in a

recurrent network may be different.

123



642 Biol Cybern (2014) 108:631–653

A B

C

Fig. 8 Orientation map of a displaced grid. a The retinal grid (white

circles) and the columnar grid (black crosses) are shown together. The

retinal grid is a regular Cartesian grid. The columnar grid is obtained by

applying a random displacement (uniformly sampled from [−1.5, 1.5])
to each coordinate of all grid positions. A sample columnar receptive

field is shown on the lower left. Other columns have the same extent

of receptive fields. Note that the receptive field is given in retinal coor-

dinates. The resulting map of PO for the columnar grid is shown for

the central region (to avoid boundary effects). Note that this map is

displayed in columnar coordinates. b The same orientation map as in

a. The OSI for each position is shown as the brightness of the color,

with brighter colors corresponding to higher selectivity. c Four sample

receptive fields from different locations on the map. The crosses show

the position of sampling, corresponding to the numbers denoted in b.

The tuning curves of input modulation, along with the best-matching

gratings and the values of PO and OSI, are shown on the right in each

case

neuron and the center of the column.4 This is an approxi-

mation to the overlap of distributions. In terms of receptive

fields, this probability distribution describes the sampling

from the retinal grid. The density of sampling depends on the

4 The result, however, does not change qualitatively, if the probability

distribution is centered at the position of neuron (not shown). For further

explanation, see Sect. 4.

distance of the neuron to the column. We fix the total number

of samples, and for each column draw a fraction of that num-

ber according to the distance (see Sect. 4, for details). Note

that the distance is now measured on the cortical surface in

the cortical coordinate system.

First, we consider a case where retinal and columnar grids

have identical parameters (Fig. 9a). An example for the dis-
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Fig. 9 Orientation map of a larger grid. a The retinal and columnar grid

points are marked by white squares and black circles, respectively. For

a given position on the grid, an ensemble of n = 10, 000 positions are

randomly drawn, depending on the position of the neighboring columns.

The orientation of the receptive field is given by the axis of elongation of

the ensemble (see Sect. 4 for details). The eigenvectors corresponding

to the maximum and minimum eigenvalue are shown by the blue and the

red bars, respectively. The width of each bar is proportional to its cor-

responding eigenvalue, respectively. A map of PO for the central region

is shown. b The same orientation map as in a. c A map of selectivity for

the orientation map in b, which shows the degree of elongation of recep-

tive fields at each position. Brighter regions represent higher elongation

ratios (ER, see Sect. 4). d–f The same as a–c, when the columnar grid

is randomly displaced with respect to the retinal grid. The displacement

is a fixed value of δ = 0.75D at random angles

tribution of connections is shown for a cortical neuron on the

top left. The columns that are closest to this neuron are the

columns above and below it. As a result, the cloud of samples

is elongated in that direction.

To quantify this non-isotropy, we determine the principal

axes of the distribution (see Sect. 4). The covariance matrix

then indicates a possible elongation of the receptive field, and

we take the orientation of the eigenvector corresponding to

the larger eigenvalue as the PO. The difference between the

larger and the smaller eigenvalue normalized by their sum is

used here as a measure of selectivity (see Sect. 4 for details).

The orientation map and the map of selectivity obtained in

this manner are shown in Fig. 9a–c. This is a map of orienta-

tion selectivity as expected from a regular lattice of columns.

Note that pinwheels have each orientation represented twice,

as expected.

This is not the case, however, if the columnar grid is

slightly displaced with respect to the retinal grid (Fig. 9d–f).

The rationale for the displacement is again that the compe-

tition between ocular dominance columns preserves neigh-

borhoods, represented here by a jitter from the actual posi-

tion (same as in Fig. 8). The change in the shape of orienta-

tion maps, and especially the fact that 360◦ pinwheels now

turned into 180◦ pinwheels, can be explained in terms of

the change in the position of columns. More specifically, the

distance of the nearest columns to each neuron is important

in determining its OS, which in turn determines the map.

The PO of neurons at each position should therefore be com-

puted from the relative positions of the new columns with

the least distances. The resulting map would therefore devi-

ate from the symmetric map of a regular columnar positions.

As the symmetry of columns is now broken, 360◦ pinwheels,

which need the same distance of all columns in all directions,

disappear.

2.7 Monocular versus binocular orientation maps

The maps shown in Fig. 9 are monocular maps. Arranging

a different columnar grid for the other eye would result in
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Fig. 10 Monocular and binocular orientation maps. a Same as Fig. 9d,

depicting the grid (blue circles), a sample receptive field (blue cloud)

and orientation map (center) for the left eye. Only the orientation of

the eigenvector corresponding to the larger eigenvalue is plotted for the

sample receptive field (blue bar). b The binocular orientation selectiv-

ity and orientation map are obtained when both grids (for the left and

right eye, in blue and red, respectively) are present. A sample binocu-

lar receptive field is shown by the gray cloud. Orientation selectivity is

shown by the gray bar (eigenvector corresponding to the larger eigen-

value). c Same as a, for the right eye. The columnar grid (red circles)

is obtained by random displacement of the retinal grid, independent of

the random displacement for the left eye. Only the eigenvector corre-

sponding to the larger eigenvalue is plotted for the sample receptive

field (red bar). d–f Map of PO shown for the central region of the grids

in a–c, respectively. g–i Map of selectivity for the same PO maps in

d–f, respectively. Conventions are the same as in Fig. 9c

another orientation map. Therefore, the monocular orienta-

tion selectivity at each point on the cortical surface could be

different, depending on which eye is actually stimulated.

Figure 10a, c show the columnar grid and the resultant

orientation map for the left and the right eye, respectively.

There are overall similarities between the maps of orienta-

tion (Fig. 10d, f) and selectivity (Fig. 10g, i), but there are

also clear differences. In particular, different maps have dif-

ferent pinwheels. This was also reported in experiments with

monocular maps (Hübener et al. 1997).

Under binocular stimulation, inputs from both eyes jointly

drive the network. In our model, we assume that each neuron

sees the same monocular inputs it received before. The result-

ing distribution of connections is now a combination of both

clouds, shown in Fig. 10b for the sample distribution. The

aggregate elongation of receptive fields interpolates between
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the previous cases, and one obtains a binocular map from

these orientations. Again, there are similarities to the respec-

tive monocular maps, but they are definitely not identical

(Fig. 10e, h).

3 Discussion

3.1 Statistics and geometry of orientation selectivity

By combining statistics and geometry of thalamocortical

connectivity, we provided a computational model that can

simultaneously account for many properties of orientation

selectivity and maps thereof observed in the primary visual

cortex of species like cats and macaques. We discuss these

aspects in the following.

3.2 Size and elongation of receptive fields

Since cortical receptive fields are multi-columnar in our

model, they typically span a region larger than a single col-

umn on the cortical surface. There is, therefore, no need for a

composite receptive field (Braitenberg 1985) to explain why

oriented receptive fields are “larger than the mechanism that

determines their orientation” (Braitenberg and Schüz 1998).

Here, the position of a neuron within the system of columns

is important in determining its orientation selectivity, as sug-

gested in Braitenberg (1985), Braitenberg and Schüz (1998).

However, unlike in this work, in our model, it is not only the

geometric relation of the position with respect to the nearest

column that determines the elongation. Rather, the geomet-

ric relation to all columns in the neighborhood is important.

Specifically, the neuron sees all the columnar receptive fields

weighted according to their respective distances.

This feature is a result of the axonal arborization of feed-

forward projections from thalamus to the cortex that implies

a columnar structure. The impact of a column on a neuron’s

receptive field is mainly dependent on how close the neuron

is to the center of the column. Elongation comes as a result

of the non-isotropic localization of the contributing recep-

tive fields, which depends on the exact location relative to

the columns.

This has two important consequences. First, it suggests

that orientation selectivity is an inter-columnar computa-

tion. Inter-columnar computations make particular sense in a

sensory modality like vision, where continuous features are

being processed. Second, the selectivity of cortical neurons

could already be determined by the pattern of feedforward

connectivity (Chapman et al. 1991), and hence the neuronal

input would be orientation selective even in the absence of

cortical activity (Ferster et al. 1996). Note that this would

not be the case if orientation was computed in the cortex, for

example by the presence of inhibitory neurons in the cen-

ter of columns. In this case, the feedforward input would

be non-oriented and cortical inhibition extracts the preferred

orientation out of the non-selective input by cross-orientation

suppression.

It should be noted that the elongation of receptive fields

in the model is the result of only one type of LGN afferents,

as we have not modeled ON and OFF center LGN chan-

nels separately. It would be interesting to see how including

these two pathways and their interaction change orientation

selectivity of neurons and their spatial organization. This is

especially important in the context of recent findings by Jin

et al. (2011), who demonstrated that the arrangement of ON

and OFF subregions provides a more accurate prediction of

orientation preference than the overall shape of the receptive

field. More specifically, they show that the ON–OFF better

predicts the preferred orientation of an orientation column in

cats, as compared to ON + OFF. The consequences of incor-

porating both channels should thus be explored in a more

detailed modeling study.

3.3 Relationship between ocular dominance columns

and the orientation map

The geometry of cortex induced by the columnar structure of

its thalamocortical afferents not only determines the orien-

tation selectivity of a neuron at any given position, but also

shapes the selectivity map. Indeed, given the pattern of ocu-

lar dominance columns, a unique resultant orientation map

follows from our model. This is a strong prediction, as it links

the two patterns tightly and inherently together without any

further assumptions. Experimental testing of this connection

seems also possible.

As the emergence of orientation selectivity and the geom-

etry of its organization rely on the patten of inputs, another

consequence of the model is that they could be manifested

in any other piece of cortex. No specific structure or geom-

etry is needed at this stage, only the same columnar pattern

of thalamocortical afferents must be provided. This might

provide an explanation for the result of rewiring studies.

They show that redirecting of the visual input to the auditory

cortex in ferrets leads to the induction of the same orienta-

tion modules as normally in the visual cortex (Sharma et al.

2000). Indeed, rerouted projections from the ipsilateral and

contralateral eyes (to the medial geniculate nucleus, MGN)

get developmentally segregated in the form of adjacent but

non-overlapping eye-specific clusters, similar to the normal

retino-LGN projections (Angelucci et al. 1997). Different

patterns of input provided to a cortex, therefore, determines

its eventual functional specification in our model, rather than

some intrinsic difference in the cytoarchitecture or functional

properties of the cortex. A similar conclusion has been drawn

from the emergence of “barrels” in the transplanted visual

(occipital) cortex (Schlaggar and O’Leary 1991).
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The link between ocular dominance columns and the ori-

entation map has also the potential to explain other known

relationships between the two patterns. First, it has been

reported in experiments that the contour lines of the two

maps are roughly orthogonal, i.e., iso-orientation lines tend

to cross the ocular dominance boundaries at right angles

(Hübener et al. 1997; Obermayer and Blasdel 1993; Bart-

feld and Grinvald 1992). In our simplified example (Fig. 5),

this relation is immediate: The preferred orientation of a neu-

ron is determined by the direction of a line connecting the

centers of its nearest columns, which is of course orthogonal

to the boundaries of the column. Second, pinwheel centers

have been reported to avoid binocular regions (the bound-

aries between regions of equal ocular dominance), with a

tendency to be located at the center of columns (Hübener et

al. 1997; Obermayer and Blasdel 1993; Bartfeld and Grin-

vald 1992). This property is also illustrated in the simplified

grid of Fig. 7, where the pinwheels occur at the center of

columns.

For more complex patterns of ocular dominance columns

(as shown in our Figs. 8, 9, 10), the situation might not

be as easy to analyze. It would therefore be interesting to

see how the different ocular dominance patterns of differ-

ent species influence these relations. Of particular interest is

the question whether differences in cortical geometry and

thalamic projections can explain the characteristic differ-

ences between the maps exhibited by different species. It

appears that the relationships between the two maps are more

precise in monkeys and somewhat more fuzzy in cats. We

hypothesize that this might be related to different patterns of

ocular dominance in these species, which in turn may reflect

different strategies to maintain the retinotopy of binocular

inputs.

In our model, the columnar projection of afferents is

needed to obtain orientation maps. Therefore, it is also rel-

evant to ask whether orientation maps would be absent in

species lacking such columnar pattern. This seems apparent

in rodents and lagomorphs, which have neither ODCs nor

orientation maps. The presence of ODCs, however, does not

seem as clear even in species that do have orientation maps

(Horton and Adams 2005). In marmosets, for instance, a pri-

mate with orientation maps, a capricious expression of ODC

has been reported (similar to squirrel monkeys, see Adams

and Horton 2003). While some studies have not found any

evidence for ocular dominance (McLoughlin and Schiessl

2006), others suggest a high variability of ODC within the

marmoset population, consistent with the studies in other

New World monkeys (Roe et al. 2005). In fact, the same

controversy existed in squirrel monkeys, “the only primate

reported to lack ocular dominance columns” at that time

(Horton and Hocking 1996). Later studies in these animals,

however, revealed the presence of ODC (Horton and Hock-

ing 1996), although the variability, both within the population

and within a single individual, seems to be high (Adams and

Horton 2003).

It might be possible, therefore, that in such species (New

World monkeys, in particular), as a result of developmental

constraints, “structural ODCs” are present, namely the clus-

tered projection of inputs from the eyes to the cortex. The

“functional ODCs,” however, need not be expressed, as the

segregation of cortical neurons to left-dominated and right-

dominated clusters depends on cortical activity. Such a seg-

regation requires that cortical neurons detect the dominance

of ocularity in their inputs, when they still overlap during

the critical period.5 If, for some reason, the initial overlap

of innervation from the non-dominant eye is not pruned dur-

ing this period, and clustered inputs from the two eyes have

a persistent overlap, cortical neurons show less segregated

responses to monocular stimulations.6 In the extreme case of

homogeneous overlap of the two clusters, a salt-and-pepper

structure of ocular dominance would be expected.

In such a case, we actually expect a smaller displacement

in the monocular columnar grids, than what we have assumed

here (Figs. 8, 9, 10). The reason is that there would be less

competition for keeping a good match with retinotopy, as the

afferent projections from the two eyes can now extend their

termination to each other’s territory, in an overlapping fash-

ion. The situation would now be more similar to the monocu-

lar case described in the discussion of our model (Fig. 7a). In

that case, however, we expect observing 360◦-pinwheels in

the map. It might be interesting to see whether the presence

of such pinwheels in marmosets (McLoughlin and Schiessl

2006) is connected to the variability of ODCs in this species.

It is also tempting to conjecture on the spatial position of

CO blobs and its relation to pinwheels. CO staining reveals

dense regions (blobs) of higher metabolic activity, which

have been reported to correspond to the regions of thalamic

terminals and to be centered on ODCs (Horton and Hubel

1981; Livingstone and Hubel 1982). Possibly, they appear at

the center of columnar projections of thalamocortical affer-

ents, because the activity is higher in these regions due to

5 Note that this is now part of ocular dominance “plasticity”, which is

governed by neuronal activity. The initial phase of its “establishment”

is presumably governed by molecular cues (see Crowley and Katz 2002

for more details on the distinction). Spatz (1989) has also suggested

two distinct phases of “formation” and “persistence” for ODCs: “The

formation of ODCs during ontogenesis in (possibly) all living primates

[...] and the persistence of ODCs throughout life in a group of monkeys

which includes the most advanced species [...] suggest that the forma-

tion and the persistence of ODCs are two different developmental steps

which probably depend on different mechanisms”.

6 If one eye is deprived, its afferent projections should now overlap

less with the clustered input of the other eye, and hence the columnar

pattern of the non-deprived eye should be less obscured. As a result,

the “hidden” ocular dominance pattern would be more apparent in the

deprived animal, as has indeed been reported (DeBruyn and Casagrande

1981; Hess and Edwards 1987).
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stronger synaptic drive. In our model, therefore, CO blobs

would coincide with the center of columnar grids. They do

not necessarily coincide with pinwheel centers (Bartfeld and

Grinvald 1992), though, as these do not necessarily appear

at the center of columns (see Figs. 8 or 9 for instance).

3.4 Monocular and binocular maps

Indeed, if the goal is to maintain the ocularity of the afferents,

and not to merge them too early into a completely binocular

signal, cortex would face a problem: How to optimize the

retinotopy of inputs? To achieve this, the number of neigh-

bors for each node needs to be increased. As a consequence,

neighborhoods are compromised, in one way or another.

One possibility to attenuate this problem is to employ a

probabilistic strategy, where neighborhoods are enhanced in

a random fashion. This might exactly be the strategy used

in cats, leading to a patchy pattern of ocular dominance

columns. An alternative strategy could be a more systematic

alignment of columns with the same ocularity, as suggested

by the stripy pattern in macaque monkeys. In this work, we

have not considered the precise form of this pattern. Rather,

we attacked the problem in a generic fashion (a Cartesian

grid with some random jitter). To explore the match with the

experimental data, more realistic patterns need to be consid-

ered.

From our generic model, several conclusions could already

be drawn. First, it is possible to obtain orientation maps that

are very similar to the ones observed in biology, with the

same joint pattern of iso-orientation domains and pinwheel

centers. Second, the two monocular maps are different from

each other, as their monocular columnar structure is different.

Such a difference between monocular maps has also been

reported in experiments (Hübener et al. 1997). Moreover,

binocular maps are equipped with the same overall structure.

There is no need to postulate an extra mechanism to align the

monocular inputs of a neuron inducing its binocular selectiv-

ity. Although some developmental post-processing might be

employed to improve selectivity, the combination of monoc-

ular receptive fields is already taken care of while the inputs

from different ocular dominance columns are being com-

bined.

The post-processing is, however, even necessary if the

monocular selectivities of a binocular neuron are different.

In cats and macaques, it has been reported that most of the

binocular cortical neurons have the same orientation prefer-

ence through the two eyes (Hubel and Wiesel 1962; Bridge

and Cumming 2001). If the monocular selectivities, carried

by the pattern of feedforward thalamocortical afferents to

the neuron, were different, a need for a plasticity mecha-

nism would arise, which ameliorates this mismatch during

development. Our model thus predicts that binocular neu-

rons have potentially a mismatch in their monocular POs,

which decreases during development. Such a developmental

process has indeed been reported recently in mouse visual

cortex (Wang et al. 2010).

It has been reported in experiments (Gödecke and Bon-

hoeffer 1996) that the orientation maps established by input

from only one eye are very similar. Our model, in contrast,

displays different monocular maps. This discrepancy might

be due to the fact that the different monocular maps of our

model correspond to the mature cortex, where the projections

from each eye are already firmly established. During the criti-

cal period, however, where connections are generally plastic,

it is conceivable that one eye takes over the columns of the

other, if the latter has no input (Hubel et al. 1977; Hubel and

Wiesel 1977). In this case, a column which was previously

dominated by the second eye would now receive predomi-

nant input from the first eye. Both eyes have more or less the

same receptive fields. To satisfy the latter condition, it is only

necessary that retinotopy is preserved for both eyes. This was

indeed assumed in our model by resorting to the same reti-

nal grid for different ocular dominance grids (Fig. 10, white

squares). If the same retinal input (from the open eye) is now

fed to both columns (columns corresponding to the same reti-

nal position), the resulting map would be very similar to the

binocular map. The same map would of course also result by

changing the roles of the two eyes.

3.5 Retinotopy and orientation maps

It has been reported that retinotopy is not perfect, and visuo-

topic distortions match the inhomogeneities of the orien-

tation map (Das and Gilbert 1997). The rate of receptive

field movement over the cortex is proportional to the corre-

sponding local rate of orientation change on the orientation

map. Specifically, the changes in receptive field positions are

very abrupt near pinwheel centers, very much related to the

abrupt shifts of orientation selectivity near these singularities.

We therefore wondered whether our model could provide an

explanation for this observation.

As discussed before, the receptive field of a neuron in our

model is a multi-columnar feature. Singularities of the orien-

tation map are the points around which these inter-columnar

receptive fields change drastically. To illustrate this, consider

the simplified hexagonal grid of Fig. 5, which has a singular-

ity in the center (shown in Fig. 7). If one moves away from

this center (along the sample receptive field of Fig. 5c for

instance), the receptive field changes slowly and smoothly.

The reason is that the dominant columns are the same, and

moving closer to, or farther away from each column changes

the corresponding weights only slightly, and keeps the extent

and elongation of the receptive fields more or less the same.

This is not the case, however, if one moves over the pin-

wheel center. Here, although traversing only a small distance,

another neighboring column becomes dominant. This leads
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to a strong change in the receptive field and, as a consequence,

to a change in orientation selectivity of the membrane poten-

tial. Note that to compute the full spiking response, more

details of cortical circuitry and the neuronal model must be

included into the model.

The same conclusions would, in fact, be drawn from Fig. 8.

Here, moving within an iso-orientation domain changes the

receptive field and the orientation selectivity only smoothly:

A long distance can be traversed without inducing a signifi-

cant change in both properties (compare the PO at positions

2 and 3). In contrast, a small displacement around a pinwheel

center brings a large change in the extent and selectivity of the

receptive field (compare the PO of positions 1 and 2). Again,

note that we have not modeled the spiking activity of the neu-

ron within its network; more realistic simulations would yield

tuning curves of spiking neurons, which are more selective at

the PO and respond with very low rates at the non-preferred

orientations. The simple and reduced model considered here,

however, demonstrates how the joint inhomogeneity of ori-

entation map and retinotopy could result from the columnar

structure.

3.6 Future work

There are several issues that we have not addressed here and

that should be accounted for in future work. Devising a more

realistic model, in particular, will pave the road to more

directly compare our models with biology. It is, therefore,

necessary to simulate the model with more biological detail

and with realistic parameters of (retinal and cortical) geome-

try and (thalamocortical) connectivity. It is also necessary to

model the spiking responses of neurons within their recurrent

network. The latter is indeed the source of the largest portion

of inputs a cortical neuron receives (Peters and Payne 1993).

This allows one to see the effect of local network operation

on the spiking responses, which includes amplification and

enhancement of orientation selectivity (for a model of this

sort with realistic parameters see McLaughlin et al. 2000).

Orientation selectivity improves during development

(Chapman and Stryker 1993; Chapman et al. 1996). We have

not considered here any possible developmental mechanisms

that are involved in this process. Correlation-based mecha-

nisms like Hebbian synaptic plasticity could be added to the

model, in order to study the process of maturation of recep-

tive fields. We have also not explicitly modeled the forma-

tion and maturation of ocular dominance columns. A similar

mechanism of plastic adaptation could guide this process and

govern the competition of columns for cortical territory. The

exact pattern of ocular dominance columns was also not con-

sidered in our simulations. The exact geometry of this pattern

and the consequence of any particular pattern for spatial orga-

nization of orientation selectivity is an interesting subject of

future research.

Last but not least, we have not considered different types

of afferent channels. Receptive field of LGN neurons is either

ON or OFF center, i.e., they would respond best to the stim-

ulus if it is a light or dark spot on their centers, respectively.

Including both channels into the model would very likely

increase cortical selectivity, since they increase the discrim-

ination.

4 Methods

LGN receptive fields. In the following, we use G(r0, σ )

to refer to a two-dimensional Gaussian centered at r0 =
(x0, y0), with isotropic standard deviation σ

G(r0, σ ) =
1

2πσ 2
exp

(

−
(x − x0)

2 + (y − y0)
2

2σ 2

)

. (1)

We model the LGN receptive fields, centered at r lgn, as a

difference of Gaussians

Rlgn(r
lgn) = G(r lgn, σ1) − G(r lgn, σ2). (2)

We normalize the receptive field to a peak value of 1. When

an LGN cell is ON center, σon = σ1 and σoff = σ2. This is

the case in Fig. 2a, and the values are σon = 1 and σoff = 1.5.

If an LGN cell is OFF center, σon would be larger than σoff ,

i.e., σoff = σ1 and σon = σ2. We have not considered such

cells here, though.

Columnar receptive fields. Each column, centered at r col
i =

(xcol
i , ycol

i ), is defined by the arborization of N LGN cells.

The centers of LGN receptive fields have a Gaussian distri-

bution around the center of a column

r
lgn
i ∼ G(r col

i , σc), (3)

where σc determines the dispersion of LGN centers about

the center of a column (σc = 0.5 and N = 100 in Fig. 2b).

We draw N LGN centers from this distribution for each col-

umn. The i-th LGN receptive field is centered at r
lgn
i and is

therefore obtained according to Eq. (2) as Rlgn(r
lgn
i ).

The receptive field of a cortical neuron in the column,

located at r ctx
j , is a combination of these LGN receptive

fields. We therefore compute the cortical receptive field as

a weighted sum of all LGN receptive fields within a column

Rctx(r
ctx
j ) =

N
∑

i=1

wi j Rlgn(r
lgn
i ), (4)

where wi j = w(r
lgn
i , r ctx

j ) is the weight of i-th LGN recep-

tive field in building the receptive field of the j-th cortical

neuron. This weight summarizes the density of the arboriza-

tion, which is higher close to the LGN center, and falls off as

the distance from the center increases. We approximate the
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resulting profile again by a Gaussian and model the weight

as a Gaussian function of this distance

w(r
lgn
i , r ctx

j ) = G(r ctx
j − r ctx

i , σw). (5)

The resulting receptive field is the aggregate receptive field

of the neuron, as a result of integrating all the afferents within

the column (samples shown in Fig. 2c, for σw = 1).

Since the shapes of receptive fields are very similar, we

idealize them as a “columnar receptive field,” again with a

Gaussian profile

Rcol(r
col) = G(r col, σcol), (6)

where σcol is an effective standard deviation for the column.7

Each neuron on the column would now see the same colum-

nar receptive field, weighted with the distance

Rcol(r
ctx
j ) = G(r ctx

j − r col, σcol)Rcol(r
col). (7)

The Gaussian profile of weights is supposed to reflect the den-

sity of arborizations of all LGN afferents, which monotoni-

cally falls of with distance to the center. A direct demonstra-

tion is given by the simulation in Fig. 2d, where the max-

imum of the aggregate receptive field (Eq. 4) is plotted for

each point on the column, yielding a Gaussian distribution.

We take the standard deviation of this Gaussian to be the

same as σcol.

For simplicity, we have so far assigned the same posi-

tion, r
lgn
i , to both the center of LGN receptive fields and the

center of their axonal arborizations on the cortex. We are

effectively assuming that these two coordinate systems are

perfectly aligned.

Hexagonal grid of columns. A hexagonal grid of columns is

considered in Fig. 5. To obtain the center of columns, we start

from a regular grid ((i, j), where i, j ∈ Z). We then take the

coordinates of the hexagonal grid, (x, y), as x = d × (i + j)

and y =
√

3d × (i − j). The spacing is determined by d,

which is d = 1.5 in Figs. 5, 6, 7.

As described in the previous section, for each column,

a columnar receptive field is assumed. This is a Gaussian

localized at the center of the column, with some effective

standard deviation (σcol = 1.25 for the example shown in

Fig. 5a). The receptive field of a cortical neuron on such a

grid is then computed by summing all columnar contributions

according to Eq. (7)

Rctx(r
ctx
j ) =

∑

i

G(r ctx
j − r col

i , σcol)Rcol(r
col
i ). (8)

7 Indeed, since the operation described above “in expectation” amounts

to a convolution of two Gaussians, the new distribution is again

Gaussian. Its variance is obtained by summing the two partial variances.

Orientation selectivity. Once we have obtained the cortical

receptive fields, we can quantify their orientation selectiv-

ity. To this end, we stimulate each neuron with a sinusoidal

grating at different orientations

gθ,φ(x, y) = Ī + ∆I sin

(

2π

λ
(x sin θ + y cos θ) + φ

)

.

(9)

Here, θ is the orientation of the grating, and φ = 2π f t

denotes its phase. The spatial frequency is controlled by λ,

and f is the temporal frequency. The strength of the stimulus

is given by its luminance, I , with Ī and ∆I being its mean

and its modulation, respectively,

Ī =
Imax + Imin

2
, ∆I =

Imax − Imin

2
. (10)

From this, the Michelson contrast of the grating can be com-

puted as

C =
Imax − Imin

Imax + Imin
= ∆I/ Ī . (11)

We choose gratings with maximum contrast, i.e., C = 100%

and ∆I = Ī .

For each orientation, we change the grating phase from 0

to 2π in steps of δφ (5◦ for Figs. 5, 6 and 10◦ for Figs. 7, 8).

The inner product of the grating with the receptive field at

each phase determines the input to the neuron

Input(θ, φ) = 〈Rctx(r
ctx
j ) · gθ,φ〉. (12)

For each orientation, we neglect the mean response and take

the modulation (F1 component) of the Input vs. φ as the

Input Modulation. The tuning curve of the neuron, T (θ), is

then obtained by computing the Input Modulation for dif-

ferent orientations of the drifting grating. This we plot in

Fig. 5d. Here, and for Fig. 6, the tuning curve is obtained

for 18 orientations providing a uniform sampling of the cir-

cle, i.e., θ = 0, 10, . . . , 170◦. For Figs. 7, 8, we reduce

the number to 8 (steps of 22.5◦), to reduce the simulation

time.

From this tuning curve, we obtain the preferred orienta-

tion (PO) as the orientation of the maximum response. To

quantify orientation selectivity, we compute a global orien-

tation selectivity index (OSI), as 1−Circular Variance of the

tuning curve (Ringach et al. 2002)

OSI =
∣

∣

∣

∣

∑

θ T (θ) exp(2π iθ/180◦)
∑

θ T (θ)

∣

∣

∣

∣

, (13)

where θ is given in degrees and |.| denotes the absolute value

of the resultant complex number.

The spatial frequency was λ = 0.15 for all simulations

shown here. Tuning this value for different receptive fields,

in order to find the best spatial frequency, may increase
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responses, but does not change the behavior qualitatively (in

particular, the PO remains the same, as the model is totally

linear).

Modeling retinal and columnar grids. To account for the

ocular dominance of columnar grids, we resorted to a simple

model: We map the retinal grid (same for both eyes) on the

cortex and add a small random displacement to each node to

obtain the position of the corresponding ocular dominance

column for each eye. This is shown in Fig. 8a. The retinal

grid (black circles) is regular with an inter-column distance

of 2.5. The columnar grid (crosses) is obtained by adding

an independent random jitter to the x and y coordinates of

the retinal grid. The jitter in both directions is uniformly and

independently sampled from the interval [−1.5, 1.5]. The

extent of the columnar receptive field is the same as before,

σcol = 1.25 (shown in Fig. 8a). As before, the same Gaussian

describes the weight of receptive fields.

Extracting RF orientation by PCA. The procedure explained

so far would be computationally very expensive, if one

wanted to simulate a larger grid, at a high resolution. For

an orientation map of size 100 × 100, using for each recep-

tive field, 10 orientations of a grating at 50 phases to map

the receptive field, the number of computations would be

increased of order O(106). The numerical procedure could

be many times faster, if a more efficient method to estimate

orientation selectivity could be employed. We have there-

fore used principal component analysis (PCA) in the results

shown in Figs. 9 and 10 to expedite the process.

Principal component analysis was used here to extract the

principal axis of elongation of a two-dimensional distribu-

tion from its covariance matrix. This distribution represents

the receptive field of a cortical neuron, which is obtained as

follows. For each position r = (x, y), the distance to col-

umn centers on the columnar grid determines the weight of

contribution according to a Gaussian function

wi = G(r − r col
i , σw). (14)

In contrast to previous sections, however, this does not

directly weight the columnar receptive field. Instead, it deter-

mines the number of samples that are drawn from each col-

umn of LGN afferents. This could be considered as “sto-

chastic integration,” which replaces an explicit computa-

tion of the covariance matrix from the continuous receptive

fields.

The samples are drawn from a joint receptive field, which

is a Gaussian centered between the neuron and the col-

umn. The rationale is that, if there is a Gaussian distribu-

tion describing the density of dendritic arborization of the

neuron, and a Gaussian distribution for the density of axonal

arborization of afferents within the column, the overlapping

distribution could be approximated with another Gaussian,

which is centered in between.8

The joint distribution of the neuron and the i-th column,

therefore, can be described as

R = G((r + r rtn
i )/2, σr ), (15)

where r rtn
i is the center of the receptive field of the i-th column

on the retinal grid. The extent of the distribution is described

by the effective standard deviation, σr .

From this distribution, we sample ni points (r s
k , k =

1, . . . , ni ). The number of samples is proportional to the

weight (ni ∝ wi ): The closer a column is to the neuron on

the cortex, the higher the number of samples would be. We

normalize the sampling such that a total number of n samples

are drawn for each position

ni ≈
wi

∑

i wi

n. (16)

We have used n = 10,000 for the results shown here.

Once the samples are obtained, we run a PCA on them to

obtain the axis of elongation. We first make a 2 × n matrix

out of x- and y-coordinates:

A =
(

xs
1 xs

2 . . . xs
n

ys
1 ys

2 . . . ys
n

)

. (17)

We then obtain the covariance matrix:

CC =
(

cxx cxy

cyx cyy

)

=
1

n − 1
Ā ĀT , (18)

where Ā is matrix A after subtracting the mean from each

row, and ĀT is its transpose. CC is now a 2 × 2 matrix and

we compute its two eigenvectors as principal axes of the

distribution. The one corresponding to the larger eigenvalue

(vmax) is the axis of elongation, which is shown for sample

8 Note that this was different for the modeling of columnar receptive

fields, as the center of a columnar receptive field was assumed to be at

the center of the respective column (in Figs. 5, 6, 7, 8). However the

results did not change qualitatively, when we repeated those simula-

tions with centers in between the position of a neuron and the center of

columns (not shown). Conversely, the results of our simulations here

do not change qualitatively, if the probability distribution is centered at

the position of neurons (not shown). Orientation maps obtained were

exactly the same, and the only difference was at the level of the distribu-

tion of random samples. While in the former case (the center of distribu-

tion between neuron and column) this distribution was more continuous,

in the latter case (the center of distribution at the center of column) the

samples drawn were more patchy. This is a natural consequence of the

discrete position of columns, which induces a large density of samples

around their centers and leaves the regions in between empty. When the

position of a neuron is also considered, all these “patches” of samples

are shifted toward the neuron’s position, which makes the aggregate

distribution of samples more continuous (of course, this also depends

on the extent of the receptive fields, and increasing this extent makes the

aggregate distributions less discrete). Irrespective of continuity or dis-

creteness, however, the overall orientation selectivity, which is inferred

from the relative position of a neuron with respect to its neighboring

columns, is the same in both cases.
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distributions in Fig. 9a, d. We take the orientation of this

vector as the PO of the receptive field.

If both eigenvalues are the same, there is no elongation

and the distribution is isotropic. The difference of eigenval-

ues therefore gives a measure of elongation. We take a nor-

malized measure of this difference (normalized by the sum)

as an elongation ratio, ER:

ER =
λmax − λmax

λmax + λmin
, (19)

which we use here as a measure of orientation selectivity.

This returns a value between 0 to 1, corresponding to the

minimum and the maximum elongation, respectively.

The retinal grid that is used in Figs. 9 and 10 is a regular

grid with spacing D. The columnar grid is obtained from

this grid by displacing each node. The displacement is fixed

to δ = 0.75D, but its angle, ψ , is drawn randomly from a

uniform distribution on [0, 2π), such that

x ′ = x + δ cos(ψ), y′ = y + δ sin(ψ). (20)

Other parameters are σw = σr = D/2.
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