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Abstract: The rapid growth of global aviation operations has made its negative environmental
impact an international concern. Accurate modeling of aircraft fuel burn, emissions, and noise is
the prerequisite for informing new operational procedures, technologies, and policies towards a
more sustainable future of aviation. In the past decade, due to the advances in big data technologies
and effective algorithms, the transformative data-driven analysis has begun to play a substantial
role in aviation environmental impact analysis. The integration of statistical and machine learning
methods in the workflow has made such analysis more efficient and accurate. Through summarizing
and classifying the representative works in this intersection area, this survey paper aims to extract
prevailing research trends and suggest research opportunities for the future. The methodology
overview section presents a comprehensive development process and landscape of statistical and
machine learning methods for applied researchers. In the main section, relevant works in the
literature are organized into seven application themes: data reduction, efficient computation, predictive
modeling, uncertainty quantification, pattern discovery, verification and validation, and infrastructure
and tools. Each theme contains background information, in-depth discussion, and a summary of
representative works. The paper concludes with the proposal of five future opportunities for this
research area.

Keywords: data-driven methods; statistics; machine learning; aviation environmental impact; air
transportation; sustainable aviation

1. Introduction

With the rapid growth of global air traffic operations in the past five decades, the
aviation industry has grown to become an integral part of the global economy. While the
global air transportation operations at scale have greatly facilitated people’s travel and
business, their negative environmental impact, also identified by some entities as the most
significant adverse impact of aviation [1], has emerged as a major concern internationally.
The three primary aspects of aviation’s negative impacts on the environment are: (1) local air
quality impacts that can exacerbate health-harming air pollution, (2) climate change impacts
that can accelerate global warming, and (3) community noise impacts that can undermine
affected population’s mental well-being [2]. Undoubtedly, the aviation industry must keep
the development momentum to meet the needs of a growing economy while simultaneously
being more environmentally sustainable. The system must operate harmoniously within
the constraints imposed by requisites such as clean air and water, limited noise impacts,
and a livable climate.

Aircraft, ground vehicles, Ground Support Equipment (GSE), and other stationary
sources at the airport produce emissions as a result of the combustion of fuel. Aircraft
engines mainly produce carbon dioxide (CO2), which comprises around 70% of the exhaust,
and water vapor (H2O), which comprises around 30% of the exhaust. Less than 1% of the
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emissions is composed of nitrogen oxides (NOx), carbon monoxide (CO), sulfur oxides
(SOx), partially combusted or unburned hydrocarbons (HC), particulate matter (PM), other
trace compounds, soot and sulfate aerosols, and increased cloudiness due to contrail
formation [2,3]. These emissions undergo complex interactions among themselves and
with the changing background atmosphere [4]. Among the aircraft pollutant emissions,
around 10% are emitted near the surface of earth (below 3000 ft above ground level) while
the remaining 90% are emitted at above 3000 ft, mostly at cruise altitudes within the
Upper Troposphere and the Lower Stratosphere (UTLS). While aviation technologies have
become more fuel efficient, the overall emissions from aviation has risen due to the rapidly
increasing volume of air travel. Statistics reveal that the annually averaged growth rate in
global aviation CO2 emissions was 2.2% per year over the period 1970 to 2012 and 5% per
year for 2013 to 2018. In 2018, global aviation CO2 emissions exceeded 1000 million tonnes
per year for the first time, which accounts for approximately 2.4% of all anthropogenic
emissions of CO2 (including land use change) [3]. These observations indicate that aviation
emissions remains a challenging issue towards a more sustainable future of aviation.

Aircraft noise pollution refers to the “unwanted sound” produced by aircraft or its
components in flight. In general, aircraft noise is produced by three main sources. Engine
noise is the main source of aircraft noise. For propeller aircraft and helicopter, engine noise
includes both aerodynamically induced noise from the propeller and mechanically induced
noise from other moving parts of the engine. For jet aircraft, engine noise is dominated
by jet noise from the gas turbine engines, which is responsible for much of the aircraft
noise during takeoff and climb. Jet noise is caused by the high speed flow leaving the
exhaust of the engine which is highly unstable and turbulent. Aerodynamic noise is the
second source of aircraft noise. Aerodynamic noise arises from airflow around the aircraft
fuselage and control surfaces and increases with aircraft speed and air density. Supersonic
aircraft, such as fighter jets, often creates intense aerodynamic noise called sonic boom
due to the formation of shock waves during supersonic flight. Aerodynamic noise can
sometimes be mitigated by designing the shape of airframe. The third source of aircraft
noise is the aircraft systems. Some examples include noises from the Auxiliary Power Unit
(APU) and the cabin pressurization and conditioning systems. Aircraft noise can disrupt
sleep, cause community annoyance, adversely affect academic performance of children,
and could increase the risk for cardiovascular disease of people living in the vicinity of
airports [5].

Accurate modeling of aircraft environmental impacts—mainly fuel burn, emissions,
and noise, is crucial in informing a number of new operational procedures, technologies,
and policies to abate negative aviation environmental impacts. In the past decade, key
breakthroughs in data-driven analysis have been catalyzed by (1) advances in data quantity
and quality, (2) effective and scalable algorithms from applied mathematics and computer
science, and (3) high-performance computation [6]. The introduction of big data technolo-
gies in aviation industry has brought a good opportunity for aviation environmental impact
modeling to more precisely reflect real-world operations. Two typical examples of rich
datasets in aviation are Flight Operational Quality Assurance (FOQA) data and Automatic
Dependent Surveillance—Broadcast (ADS–B) data [7]. FOQA data consist of regularly
recorded aircraft sensor measurements and switch settings. The data collected are a multi-
variate time series consists of thousands of parameters (numerical, discrete, categorical, text,
etc.) recorded at a frequency of up to 16 Hz (typically at 1 Hz). ADS–B data collects the air-
craft’s identification, altitude, position, and velocity in a lower resolution than FOQA. The
data determined by satellite navigation or other sensors is periodically transmitted by the
aircraft to ground-based stations. According Federal Aviation Administration (FAA) web-
site, “Automatic Dependent Surveillance-Broadcast (ADS-B)”, because ADS-B improves
the safety and efficiency of aviation infrastructure and operations, real-time ADS-B is now
the preferred method of surveillance for air traffic control in the National Airspace System
(NAS). A report from Oliver Wyman, “MRO Big Data—A Lion or a Lamb?”, estimates that
the global fleet is likely to generate over 98 million terabytes of data by end of 2026, about
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ten times that of 2018, due to the increase in global fleet size and the deployment of new
technologies to collect and transmit data. In this context, analytical methods from statistics,
machine learning, and computing will keep playing an increasingly critical role to make
future air transportation more environmentally friendly, more efficient, more predictable,
and safer.

This paper is a survey of recent works which employ statistical and machine learning
methods to make aviation environmental impact analysis more efficient and accurate [8].
After years of progress, the opportunity to fill in this gap of the existing literature has
matured. Through summarizing and classifying representative works in this area, the
objective is to extract prevailing research trends regarding how statistical and machine
learning methods function in advancing aviation environmental impact modeling and
suggest research opportunities for the future. As a survey paper at the intersection of
methodology and application, its content is planned to have the following features:

1. Summary of methodology: On the summary of methods from statistics and machine
learning, the emphasis is to present a comprehensive landscape and development
process for each field. There are many excellent textbooks and review papers in the
literature which introduce the mathematical foundation, detailed algorithms, and
experimental analysis of of the these methods. The summary of methodology in this
paper is not an attempt to replicate or elevate those existing methodology-oriented
review papers. Instead, from an engineering researcher’s perspective, the aim of this
part is to clearly convey the basic ideas in the methods and the differences between
them such that applied researchers can have a clearer big picture.

2. Organization of representative works: Most similar survey papers focusing on other
application areas group relevant works in the literature by the type of method used.
In that manner, the existing literature on aviation environmental impact analysis
would be divided into, for example, the applications of regression analysis, clustering,
dimensionality reduction, feature selection, neural networks, etc. In our approach,
representative works in the literature are grouped by the purpose of applying statis-
tical and machine learning methods, i.e., for what reasons were these method used
to tackle different problems. Thus, the main section of this paper is organized into
seven themes: data reduction, efficient computation, predictive modeling, uncer-
tainty quantification, pattern discovery, verification and validation, and infrastruc-
ture and tools. For each theme, we present both the necessary background and the
representative papers.

3. Diversity: This paper is by no means an exhaustive list of every relevant work in this
area. The overarching objective is to summarize the overall research trends through
representative works/projects. Under the premise that each selected work has enough
quality and correct scope, we hope to present a diverse research portfolio which covers
different methods, different application directions, and even different regions in the
world (although with lower priority than the previous two aspects). For example, on
the methodology side we cover from basic statistical analysis and regression models
to unsupervised learning approaches such as clustering and dimensionality reduction,
different types of neural networks (ordinary, convolutional, recurrent), and graphical
model. On the application side we cover the modeling of fuel burn, emissions, and
noise, for fixed-wing aircraft, helicopter, airport, and air transportation system. The
selection range also covers works from different entities and regions to reflect the fact
that sustainable aviation is a global effort.

While the focus of this paper is on the application of statistics and machine learning
methods to make aviation environmental impact analysis more efficient, accurate, and
interpretable, there are certain “closely-related” aspects that we do not cover. The following
three topics are not included:

• Optimization: There are three facets of analytics: descriptive, predictive, and pre-
scriptive analytics. On the methodology side we only cover the former two facets
of analytics. Optimization is at the kernel of prescriptive analytics. Although it also
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belongs to data-driven approaches, it is not covered here simply because it is a rich
area that is worthy of an independent survey paper. Optimization methods have been
used to design aircraft operations that reduce environmental impacts. A sample of
such works include [9–12]. Reference [13] is a recent survey paper on climate optimal
aircraft trajectory planning.

• Aircraft design: Since sustainable aviation became a major research area in the
aerospace community, novel methods in aircraft design and Multidisciplinary Design
Optimization (MDO) have started to incorporate environmental considerations into
aircraft conceptual and preliminary design phases. An early work of this type [14]
dates back to almost two decades ago. Examples of some more recent works in-
clude [15–17].

• Physics-based methods: Under the category of efficient and accurate modeling of avi-
ation environmental impacts, some recent progresses/capabilities are physics-based
which do not involve much data-driven components discussed in this paper. This
type of approaches is also a crucial and indispensable part of aviation environmental
impact modeling. Interested readers can refer to [18–21] as starting point.

The remainder of the paper is organized as follows. Section 2 contains a brief overview
of methods from statistics and machine learning. Section 3 introduces the seven main
application themes of statistical and machine learning methods in aviation environmental
impact analysis. Each subsection in Section 3 includes an overview of an application theme
and summarizes at most ten representative papers under the theme. Section 4 discusses
some future avenues of the research area before Section 5 concludes the paper.

2. A Brief Overview of Methods from Statistics and Machine Learning
2.1. Statistical Methods

Statistics is the mathematical science of developing theories and methods for collect-
ing, presenting, analyzing, and interpreting empirical data. There is also an opinion that
statistical inference is at the triple point of mathematics, empirical science, and philoso-
phy [22]. Statistics is a highly interdisciplinary field which finds applications in virtually all
types of scientific disciplines. The advancements of new statistical theories and methods
have also been motivated by research questions from disciplines such as science, medicine,
engineering, economics, and business. Statistical thinking particularly concerns the relation
of quantitative data to a real-world problem in the presence of uncertainty and variabil-
ity [23,24]. Therefore, probability is the language used by statistics and plays a key role in
the field. Statisticians map problems of interest into formal probability models, compute
inferences from the data and models, and explore the adequacy of the inferences [25].

Inductive inference is one of the core ideas in statistics. Inductive inference uses sample
data to derive results that extend beyond the data, such as predictions over future data and
information about the population [26]. Unlike deductive inference which is logically certain,
inductive inference is uncertain in nature. In a typical survey problem, inductive inference
needs to go through four stages: (1) raw data, (2) study sample, (3) study population, and
(4) target population. From (1) to (2) is the problem of measurement, i.e., how accurate
(honest) the observations are; from (2) to (3) needs internal validity, i.e., that the sample
must be a representative random sample, which is also the most challenging step; from (3) to
(4) requires external validity, i.e., that the sample covers the complete population, which can
be ensured by careful experimental design. Another core idea is to claim discovery through
hypothesis testing. The null hypothesis H0 of a question refers to a working conjecture
until there is sufficient evidence against it [27]. It always denies differences, progresses, and
changes. To test the null hypothesis, a test statistic is chosen and its sampling distribution is
generated given that H0 is true. If the observed statistic turns out to be extreme enough (lies
in the tails of the distribution), the test supports the rejection of H0. The result is declared
statistically significant if the p-value (P(Observation|H0 = True)) is below some critical
threshold.
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Statistics has many branches, depending on the angle of classification. Descriptive
statistics collects data from experiment and describes the properties of data. Inferential
statistics then uses those properties to test hypotheses and draw conclusions. The two key
elements in this process are (1) designing the right experiment to obtain a small sample, and
(2) applying the right approach/model to draw predictions and generalizations on how
the population behaves. Stringent scientific approaches are required in both steps to obtain
reliable results. Frequentist statistics considers a parameter to estimate θ as a fixed unknown
and draws conclusions from only the sample data. Through methods such as design of
experiments and regression analysis, Frequentist inference constructs hypothesis testing
and confidence interval. Bayesian statistics, on the other hand, considers the parameter
of interest θ as a random variable with a certain probability distribution, also known as
the prior distribution. The prior distribution represents the external knowledge/belief of
the problem outside of data. Bayesian inference then utilizes Bayes’ theorem to update the
prior distribution using likelihood function and observed data, resulting in the posterior
distribution. Since there might not exist a ‘true’ prior distribution, the analysis should
include the sensitivity to multiple alternative choices, encompassing a range of different
candidate opinions [27]. Causal inference, as opposed to just statistical inference, is another
crucial topic in statistics as identifying causal rather than associative relationships is one of
the foundational tasks in science. It analyzes the response of an effect variable when a cause
variable is changed. Because correlation does not imply causation, such causal questions
cannot be addressed from observational data alone and require certain knowledge of
the data-generating process [28]. Experimental data from a well-designed randomized
experiments (natural or artificial) can provide a basis for investigating causal relations
and drawing valid causal conclusions. One can refer to [28,29] for more details on causal
inference from a statistics point of view.

In recent decades, the field of statistics has also been evolving to accommodate the
latest trends, capabilities, and needs. Those changes can be summarized into two main
facets. First, it has been changing from a focus on mathematical methods to one that covers
the entire problem-solving cycle. For example, the PPDAC problem-solving cycle shown in
Figure 1 goes from Problem (definition), Plan (design), Data (collection and processing),
Analysis, to Conclusion, and starts to repeat another cycle. Even though the PPDAC cycle
seems to not emphasize the more theoretical side of statistics, each step is in fact technical
and can inspire the development of innovative methodologies. Second, it has been adapting
to the change in computational power, which was originally the bottleneck of statistical
analysis [22]. Computational statistics has become more significant and covered a large
part of topics in twenty-first-century statistics. Because the rising field of data science
emphasizes algorithmic thinking rather than inferential justification, large-scale prediction
algorithms have become the focus of many statisticians today. This causes a blurring of
the boundary between computational statistics and one of the hottest field in the present,
machine learning. Nevertheless, the interplay between computational methodologies and
inferential theories, or the justification of the ambitious algorithms, has become the new
task of modern statistical inference [22].
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Figure 1. Elements in the PPDAC problem-solving cycle.

2.2. Machine Learning Methods

Machine learning is the science of automatically learn programs from data [30].
The term encompasses techniques, automated tools, and the entire process of intelligently
transforming data into important knowledge and making predictions on future, yet-to-be-
seen data. Machine learning algorithms can learn to perform complex tasks by generalizing
from examples and are widely used in computer science and beyond. There exists a bewil-
dering variety of machine learning tasks and algorithms. Despite this, at the kernel of all
learning algorithms are a combination of three components, i.e., learning = representation +
evaluation + optimization.

• Representation: In the first step, a learner must be represented in a format for com-
puter to handle. Selecting a set of representations for a learner forms the hypothesis
space of the learner. A learner cannot be learned if it is not in the hypothesis space.

• Evaluation: An evaluation function, also referred to as the objective function, is needed
to distinguish good learners from bad ones. The construction of the objective function
must consider issues in optimization such that it may differ from the direct objective
one wants to optimize.

• Optimization: An optimization method searches through the space of possible hy-
potheses for one with the best performance. The choice of optimization method is key
to both the efficiency and efficacy of the learner. Table 1 includes typical examples of
each of the three components.
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Table 1. Examples of the three components of learning algorithm (Original structure from [30]).

Component Examples

Representation

Instance-based: k-nearest Neighbor, Support Vector Machines
Hyperplanes: Naive Bayes, Logistic Regression

Trees-based: Classification and Regression Trees, Boosted Trees
Rule-based: Association Rules

Neural Networks: Artificial Neural Networks
Graphical Models: Bayesian Networks, Markov Random Fields

Evaluation

Mean Squared Error, Likelihood, R2

Accuracy, Precision, Recall
Mutual Information, Homogeneity

Posterior Probability, K-L Divergence, Cost/Utility

Optimization
Discrete: Greedy Search, Branch-and-bound, Beam Search

Continuous (Unconstrained): Gradient Descent, Newton’s Method
Continuous (Constrained): Linear Programming, Augmented Lagrangian

The landscape of machine learning described in the remainder of this section is shown
in Figure 2. A diverse set of machine learning algorithms tackle different types of learning,
among which the three primary types of learning problems are supervised, unsupervised,
and reinforcement learning. Supervised learning is a category of problem that learns a
mapping f (x) from labeled data, i.e., training data comprised of both input and output vec-
tors. Two common supervised learning problems are classification and regression, which
involve the predictions of class label and numerical label respectively. By contrast, unsuper-
vised learning involves learning to make sense of unlabeled data where only input vectors
are available. Four common unsupervised learning problems include clustering which
groups similar examples in the data, density estimation which determines the distribution
of data, dimensionality reduction which finds a low-dimensional representation of data,
and anomaly detection which identifies rare patterns. The third type of learning problem,
reinforcement learning, learns how to operate (map situations to actions) in an environment
so as to maximize numerical reward [31]. Reinforcement learning algorithms do not rely
on fixed training data and instead interact with an environment to gain feedback from its
experiences. Outside of these three main paradigms, deep learning is a family of learning
algorithms based on large deep neural networks, whose performance could outperform
traditional machine learning algorithms on massive datasets. With the scalability of neural
networks, the learning outcome gets better with more data, larger models, and more com-
putation. Another appealing aspect of deep learning is representation learning, where deep
learning models can perform hierarchical feature learning to extract features at multiple
levels of abstraction. Some complex algorithms, however, may lack transparency and
interpretability. When the performance of a particular learning problem is good enough, it
may be worthy of trading off small performance increases for simplicity.

A few other learning algorithms use a hybrid of different learning types above to
tackle certain scenarios. Semi-supervised learning is useful when the training data includes
very few labeled data and a significant number of unlabeled data because of the high
expense for labeling data. Semi-supervised learning attempts to combine labeled and
unlabeled data and improve the performance of supervised learning tasks. The success of a
semi-supervised learning algorithm depends critically on the underlying assumption [32].
Examples of semi-supervised learning approaches include self-training, mixture models,
co-training, and graph-based learning. Self-supervised learning frames an unsupervised
learning problem as a supervised learning problem such that supervised learning algo-
rithms apply to solve the problem. One common example of self-supervised learning
algorithm is the autoencoder. An autoencoder is a feed-forward neural network that is
trained to reproduce its input at the output [33]. It consists of an encoder network henc(x)
which creates a compact representation of the input and a decoder network x′ = fdec(h)
which reconstructs it back to the original. Generative Adversarial Networks (GANs) [34]
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is another example of self-supervised learning. Multi-instance learning deals with prob-
lems in which the individual data are unlabeled, and the label information is associated
with bags or groups of data. Machine learning algorithms can also be categorized by
different paradigms for inference. Inductive learning fits general models or rules from
examples (data); deductive inference applies the model to make predictions; transductive
learning makes predictions directly based on specific examples without generalization
(e.g., k-NN algorithm).

Figure 2. Taxonomy of the landscape of machine learning.

Aside from the different types of learning problems mentioned above, some more
advanced learning techniques or strategies have also become game changers. Ensemble
learning uses multiple learning algorithms to achieve better predictive performance than
any individual learning algorithm alone. In cases where an optimal hypothesis is difficult
to find, an ensemble represents a single hypothesis that allows better flexibility among the
set of alternative hypotheses. A machine learning ensemble can be either homogeneous
or heterogeneous, depending on whether it contains multiple hypotheses with the same
base learner (e.g., random forest) or from different base learners. The general objectives of
ensemble methods are three-fold: (1) decreasing variance through voting (in classification)
and averaging (in regression); (2) decreasing bias through giving greater weights to more
accurate learners; and (3) improving predictions through meta-classifier or meta-regressor.
Ensembles tend to perform even better when there exists a significant diversity (low correla-
tion) among the learning algorithms. In the ideal case, the base learners are both maximally
accurate and diverse. Common ensemble learning methods include Bayes optimal classifier,
bootstrap aggregating (bagging), boosting, and stacking. The two main disadvantages of
ensemble learning are reduction in interpretability and increase in computational time.
Multi-task learning learns a shared model/representation across multiple related tasks
to improve generalization, efficiency, and potentially accuracy as well. Transfer learning
learns multiple tasks sequentially and uses an existing model as the starting point for con-
tinued training on another relevant task. Active learning distinguishes itself from “passive
learning” because it can adaptively or interactively query a user during the learning process
to resolve ambiguity. It can choose which data to label and learn from and therefore can
achieve better accuracy with fewer training labels [35], making it particularly attractive
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to cases where labels are expensive to obtain. Compared to traditional machine learning
methods which are offline, online learning is performed incrementally on streaming data
to update the model as new data arrives [36]. Online learning is appropriate for problems
where observations are collected and changing over time.

The discussion now moves from learning algorithms, problem types, and techniques
to the entire machine learning workflow and production system. There are five aspects
that are crucial for the successful training of a machine learning algorithm. First, general-
ization is the fundamental goal of a machine learning task, i.e., to generalize beyond the
observations in the training set. This can be achieved by either using both training and test
sets or using cross-validation which mitigates the reduction in training data. Second, the
bias-variance trade-off is a central problem in supervised machine learning. The objective
is to simultaneously avoid both bias (an error source caused by underfitting) and variance
(an error source caused by overfitting). Especially in the case of insufficient data, overfitting
is prone to happen. Common remedies for overfitting include cross-validation, regular-
ization, and statistical significance tests. Third, feature engineering is one of the most
important factors for the success of a machine learning project. The original features in
the raw data are often not at the best conditions for learning, which favors independent
features that each correlate well with the outputs [30]. Construction of features often re-
quires most of the effort in a machine learning project, because it needs intuition, creativity,
and expertise in both machine learning algorithms and the application domain. Fourth, a
learner which incorporates data with knowledge can make a good solution on the specific
problem, because every learner (representation) embodies some knowledge or assumptions.
Lastly, apart from the algorithm perspective (design and use), a machine learning task is
still centered around data. Gathering a large amount of high quality data can even enable
a simple algorithm to beat a clever algorithm with less data. Therefore, the performance
of a machine learning task can always be further improved by ameliorating the quantity
and/or quality of data.

The deployment of machine learning algorithms is only one component in the entire
end-to-end machine learning workflow (also called machine learning engineering), which
is depicted in Figure 3. A similar concept in data mining literature is the Knowledge
Discovery from Data (KDD) process, which consists of seven steps from data cleaning to
knowledge representation [37]. The end-to-end workflow consists of various components
of a data intensive project. In industry, such an end-to-end machine learning production
system which transforms theoretical knowledge into production-ready capabilities is re-
ferred to as machine learning engineering in production (MLOps). The MLOps system is
comprised of four primary blocks: project scoping, data engineering, machine learning
model engineering, and deployment. In scoping, practitioners identify the most valuable
problems, ask initial questions, evaluate the project’s feasibility, set up overall objectives,
and integrate resources to start the project. Then, data engineering is about acquiring the
right raw data for the problem and transforming it into structured data to apply machine
learning algorithms. Data engineering mainly consists of data selection, initial exploratory
analysis, data cleaning (wrangling), data integration, feature extraction and engineering,
feature selection, and feature transformation. Machine learning model engineering is the
phase of applying machine learning algorithms to obtain a high performing machine learn-
ing model. The modeling engineering includes multiple operations such as model training,
model evaluation, hyperparameter tuning, and evaluation to arrive at a final model. In the
end, the machine learning model is integrated into existing software and deployed as part
of an application in business, engineering, and scientific research. The deployment phase
includes the determination of deployment pattern (full automation, partial automation
with human in the loop, etc.) and system monitoring to potentially update and improve
the model.
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Figure 3. The machine learning engineering workflow.

3. The Main Application Themes

In this section, we analyze representative papers in the literature which apply sta-
tistical and machine learning methods for efficient and/or accurate analysis of aviation
environmental impacts. Here, instead of using traditional approach which groups the se-
lected papers by the type of method involved (regression, clustering, neural networks, etc.),
we classify representative papers by the application theme, i.e., the actual purpose those
methods are used for. The seven resulting themes are: data reduction, efficient computation,
predictive modeling, uncertainty quantification, pattern discovery, verification and valida-
tion, and infrastructure and tools. The discussion of each theme includes the introductory
background information, primary research trends under the theme, and a summary table
containing details of at most 10 featured papers for each theme. Please note that some
selected papers may span across multiple themes. For example, a paper could belong to
both data reduction and efficient computation. We discuss such papers in a theme that can
best complement other papers in the theme and complete the narrative.

3.1. Data Reduction

Performing complex analysis and computation on large datasets can be impractical
or infeasible. In such cases, data reduction is applied to obtain a reduced representation
of the dataset that is much smaller in volume, yet still closely maintains the integrity of
the original dataset [37]. Applying a reduced dataset in analysis and computation trades
accuracy for speed in response to the need of obtaining quick approximate answers to
queries on large datasets. The development of data reduction techniques for science and
engineering applications has gained increasing interest in the community. The motivation
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behind the trend is that contemporary operations, scientific observations, experiments, and
simulations are generating unwieldy amounts of data which are beyond people’s capacity
to store, stream, analyze, and archive. In the meantime, these massive datasets almost
always contain redundancies and trivialities.

As shown in Figure 4, data reduction strategies mainly include three broad categories:
dimensionality reduction, numerosity reduction, and data compression. Dimensionality re-
duction techniques reduce the number of attributes/features p under consideration. Some
dimensionality reduction methods, such as Principal Components Analysis (PCA) and
wavelet transform, aim to transform or project the original data onto a lower-dimensional
space. Other methods such as attribute subset selection detect and remove non-informative,
irrelevant, and redundant attributes from the full feature set. Numerosity reduction, on
the other hand, reduces the number of data points n in the original dataset. Numerosity
reduction can be classified as either parametric or nonparametric. For parametric methods,
the data is represented by a parametric model which consists of model form and model
parameters. After the modeling process, only the model parameters are stored instead of
the actual dataset, thus reducing the size of the data. Some examples of parametric data
reduction methods include regression models, log-linear models, and graphical models.
For nonparametric methods, the data reduction process does not assume a specific para-
metric model for the data. Therefore, nonparametric methods are overall more flexible
yet more challenging. Some typical examples of nonparametric data reduction methods
include histogram, clustering, sampling, and data cube aggregation. Data compression is
the third category of methods which first transforms the original data into a compressed
representation, then reconstructs the data in a later recovery process. Data compression
belongs to either lossless or lossy, depending on whether the original data can be recon-
structed from the compressed representation without any information loss. In general, the
computational time of a data reduction process should not outweigh the amount of time
saved by analyzing the reduced dataset.

Figure 4. Taxonomy of common classes of data reduction methods.

A summary of representative papers in data reduction is given in Table 2. In most cases,
data reduction is a step before data-driven simulation for estimating aviation environmental
impacts, on either the aircraft-level or the fleet-level. The data-driven simulation relies
on aircraft flight data to ensure that the simulation result can closely reflect real-world
operations. Nevertheless, conducting computation and evaluation for a massive amount
of operations and models can be infeasible. Therefore, data reduction is necessary to
extract a small amount of representative data and models for efficient yet accurate analysis.
Overall, there have been three primary usages of data reduction in aviation environmental
impact analysis: representative data, representative models, and representative operations.
Representative data refers to a small subset of data points which can closely maintain certain
characteristics of the population. For example, in probabilistic analysis and many common
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scenarios, the small subset should retain the same data distribution as the complete dataset.
Reference [38] proposes a distributional data reduction method PREM which outperforms
random sampling at very small sample sizes. PREM enables efficient simulation-based
uncertainty propagation in the uncertainty quantification of aircraft fuel burn and emissions
in real-world operations. Representative models involve both numerosity reduction and
dimensionality reduction. The need for numerosity reduction is due to the fact that there
exists a substantial amount of aircraft types to model, where each aircraft type is a unique
combination of airframe and engine. Because building aircraft noise and performance
(ANP) model for each aircraft type takes a long and rigorous process, Reference [39]
selects a small proportion of representative aircraft models that can sufficiently cover
the richness and complexity in the population for detailed modeling. References [40,41]
select representative aircraft types for efficient fleet-level noise contour and emissions
computation. On dimensionality reduction, Reference [42] conducts a feature selection
study to find a reduced set of aircraft features which are most influential to different
environmental impact metrics. Representative operations refer to the flight procedures,
trajectories, or profiles that can be utilized to model aircraft fuel burn, emissions, and noise.
References [40,43–45] apply clustering on large datasets to group flight trajectories and
extract the most representative trajectories. Some works, such as [43,44], take a step forward
to convert the representative flight profiles into parameterized forms. Reference [46] also
applies probabilistic modeling on the representative mission profiles and account for
uncertainty in the process. These representative information from real-world operations
have made aviation environmental impact modeling closer to the reality in an efficient
manner.

Table 2. Summary of representative papers in data reduction.

Year Paper Topic Key Contributions

2017 [40] Development of Rapid Fleet-Wide
Environmental Assessment Capability

Develops a methodology for rapid analysis of fleet-level noise
and emissions. The method extracts representative flight trajectories
from large operations (ASDE-X) data and uses a subset of
representative aircraft types to reduce the computational cost.

2017 [43]
Calculation of Aircraft Fuel Consumption
and CO2 Emissions based on Path Profile
Estimation by Clustering and Registration

Calculates typical aircraft fuel burn and CO2 emissions on the
Climb-Cruise-Descent (CCD) cycle using representative flight paths
and aircraft performance model. The method applies clustering on
large dataset to extract flight characteristics and converts them into
representative flight profiles.

2017 [44]
Flight Extraction and Phase Identification
for Large Automatic Dependent
Surveillance–Broadcast Datasets

Performs flight extraction and phase identification on the large
ADS-B datasets. The flight extraction part utilizes clustering
to extract continuous flights. The flight phase identification part then
applies fuzzy logic to segment flight data into different phases.

2018 [41]
Aircraft Classification for Efficient
Modelling of Environmental Noise
Impact of Aviation

Conducts rapid fleet-level noise contour computation through
aircraft classification. The method reduces the UK commercial
aircraft fleet to four representative-in-class aircraft using aircraft
physical, emissions, and noise features.

2018 [45]
Identification, Characterization, and
Prediction of Traffic Flow Patterns
in Multi-Airport Systems

Presents a data-driven framework to identify, characterize, and
predict traffic flow patterns in complex airspace. The methods applies
machine learning methods, mainly multi-layer clustering and
multi-way classification , on historical flight and weather data.

2019 [46]
Design of Fuel Cell Systems for Aviation:
Representative Mission Profiles and
Sensitivity Analyses

Specifies requirements for the design of fuel cell systems for
passenger aircraft. The work extracts representative mission profiles
through statistical analysis on flight data and construction of
probabilistic model for the mission profile.

2021 [47]
Development and Analysis of Improved
Departure Modeling for Aviation
Environmental Impact Assessment

Develops representative aircraft departure procedures from real-world
flight operations data for simulating aircraft takeoff environmental
impacts. The simulation results are then evaluated through statistical
analysis and statistical learning to uncover patterns.

2022 [38]
Probabilistic REpresentatives Mining
(PREM): A Clustering Method for
Distributional Data Reduction

Develops a methodology for distributional data reduction which is
effective and consistent at small sample sizes. The method enables
the use of only a very small subset of aircraft operations data for
efficient uncertainty propagation in environmental impact modeling.
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Table 2. Cont.

Year Paper Topic Key Contributions

2022 [39]
Minimax and Multi-Criteria Selection
of Representative Model Portfolios
for Complex Systems Analysis

Develops a methodology which utilizes minimax and multi-criteria
considerations to select a small subset of representative aircraft types
to cover the richness and complexity in entire population for building
the costly aircraft noise and performance models. Multiple machine
learning and data visualization techniques are involved.

2022 [42]
Multi-level Aircraft Feature Representation
and Selection for Aviation Environmental
Impact Analysis

Conducts a comprehensive aircraft feature selection study on aviation
environmental impacts. The result provides improved (and reduced)
aircraft representation for the aircraft grouping problem and generates
insights on aircraft features that are influential on different levels of
environmental impacts.

3.2. Efficient Computation

Since computer simulation/experiment became an indispensable part in contemporary
engineering design optimization and systems analysis problems, computational efficiency
has been a major concern in such processes due to two main reasons. First, high-fidelity
simulation and analysis models are typically computationally expensive and time con-
suming. One common approach to tackle this challenge is the Surrogate-Based Analysis
and Optimization (SBAO) [48] approach depicted in Figure 5 which relies on surrogate
models to provide fast approximations of the sophisticated high-fidelity models. Second,
the design optimization of a complex system inevitably involves the exploration of a broad
design space. This usually translates to a large number of candidate design points and
simulation runs, depending on the actual size of the design space and the number of design
parameters. Some statistical and data-driven approaches can further reduce the number
of simulation runs to improve the efficiency. Overall, these two facts can lead to excessive
computational costs and prohibitive run times in engineering design and analysis process.
Two typical examples of the computationally expensive simulations in the design and anal-
ysis of aerospace systems are Computational Fluid Dynamics (CFD) and multidisciplinary
vehicle modeling.

Figure 5. The process of building surrogate model.

Aviation environmental impact analysis can also be computationally expensive, be-
cause performing high-fidelity fuel burn, emissions, and noise analyses for a air transporta-
tion system is a massive task. Take aircraft noise modeling as an example, depending on
factors such as the number of aircraft operations, the size of the region, the length of the
time interval, and the fidelity level of the models, the current state-of-the-art noise modeling



Aerospace 2022, 9, 750 14 of 35

capabilities could require long setup and computational times for a single case study. A
previous study [49] reported that running the high-fidelity Integrated Noise Model (INM)
to perform airport-level noise study for a four-parallel-runway airport in crossflow takes
between two days to two weeks to finish. Another example is the Aviation Environmental
Design Tool (AEDT), a software system that models aircraft performance in space and
time to estimate noise, fuel consumption, emissions, and air quality consequences [50].
A study [51] reported that on the AEDT, a national-level noise study comprising a moderate
number of airports and flights could take several days to complete.

A summary of representative papers in efficient computation is given in Table 3.
These representative works involving efficient computation can be classified into three
generic groups. The first group employs surrogate models or reduced-order models
(ROMs) to reduce the computational complexity of the complicated models and therefore
reducing the computational time. In some literature, this is also referred to as “meta
modeling”. The authors of [52] construct a response surface model to approximate the
computationally expensive Community Multiscale Air Quality (CMAQ) modeling system
for fast evaluations of aviation’s impacts on air quality. The authors of [51] apply ROM
on AEDT’s noise model to develop a rapid noise prediction capability. The second group
builds rapid integrated analysis capabilities for fleet-level aviation environmental impact
modeling. Such rapid fleet-level analysis capabilities could consist of elements such as
simplified models, generic aircraft and operations (with connections to data reduction), and
some pre-computed outcomes. The authors of [49] develop the airport noise grid integration
method (ANGIM) which uses simplified methods and offline computational results for
generic aircraft operations to enable rapid fleet-level noise modeling. The authors of [53]
propose the GENERICA method which leverages methods such as classification algorithms,
designs of experiments, surrogate models, and multi-criteria decision-making to identify
better baseline models than the traditional representative-in-class vehicles, also called
“average generic vehicles”, for more realistic approximation of fleet-level environmental
impact results. The authors of [54] develop the Rapid Environmental impact on Airport
Community Tradeoff (REACT) environment to conduct rapid tradeoff by modeling different
noise mitigation strategies’ noise exposure on the airport community. The third group is
hybrid data-driven approaches for efficient modeling. The authors of [55] use performance
and acoustic data from flight and wind tunnel tests to develop an efficient analytical model
for helicopter Blade–Vortex Interaction (BVI) noise during maneuvering flight. The authors
of [56] combine physics-based model and aircraft performance data to build an efficient
and accurate “data-enhanced surrogate model” for aircraft fuel consumption. The authors
of [57] develop Fuel Estimation in Air Transportation (FEAT), a rapid analysis framework,
by using a high fidelity flight profile simulator and a reduced order fuel burn model.
These efficient models have contributed to the aviation environmental analysis tool-suite
that enable rapid assessment and evaluation, which is crucial especially for preliminary
analysis.
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Table 3. Summary of representative papers in efficient computation.

Year Paper Topic Key Contributions

2013 [52]
Development of a Response Surface
Model of Aviation’s Air Quality
Impacts in the United States

Constructs a response surface model (RSM) to evaluate the air
quality impacts of aviation in the U.S. for present-day and
future scenarios. The surrogate model is a rapid version which
approximates the computationally expensive Community
Multiscale Air Quality (CMAQ) modeling system.

2015 [49]
Development of a Rapid Fleet-level
Noise Computation Model

Presents a rapid fleet-level noise computation model that
leverages the fidelity of detailed models. The simplified method
performs generic aircraft operations upfront and recombines
events later to evaluate the impact of new technologies and
perform trades of different noise mitigating strategies.

2015 [55]
A Semiempirical Noise Modeling
Method for Helicopter Maneuvering
Flight Operations

Develops a semi-empirical noise model for helicopter
blade–vortex interaction (BVI) noise during maneuvering flight.
The methods uses performance and acoustic data from both flight
and wind tunnel tests to build a computationally efficient analytical
model for acoustic mission planning.

2018 [53]
Average Generic Vehicle Method
for Fleet-level Analysis of Noise
and Emission Tradeoffs

Proposes a method named generating emissions and noise,
evaluating residuals, and using inverse methods for choosing
the best alternatives (GENERICA). The method uses surrogate
models to model average generic vehicles for fleet-level analysis
of technology impacts on environmental metrics.

2018 [54]
REACT: A Rapid Environmental
Impact on Airport Community
Tradeoff Environment

Proposes a rapid computational environment named Rapid
Environmental Impact on Airport Community Tradeoff (REACT).
The environment has a user interface and can rapidly tradeoff
various noise mitigation strategies to manage airport community
noise exposure in current and future airport scenarios.

2018 [51]
Reduced-Order Modeling Applied
to the Aviation Environmental
Design Tool for Rapid Noise Prediction

Develops a rapid approximation of the aviation environmental
design tool (AEDT) noise model via reduced-order modeling
(ROM). The method uses proper orthogonal decomposition
(POD) for orthonormal basis extraction and kriging for
basis coefficient prediction.

2018 [56]
Aircraft Fuel Burn Performance Study:
A Data-enhanced Modeling Approach

Develops a data-enhanced surrogate model for aircraft fuel
burn. The method improves the efficiency and accuracy of fuel
burn modeling by combining a low-fidelity physics-based model
with aircraft operation and performance data. A sample-based
linear regression model is built for each aircraft type.

2020 [57]
Fuel Estimation in Air Transportation:
Modeling Global Fuel Consumption for
Commercial Aviation

Develops a framework named Fuel Estimation in Air
Transportation (FEAT). It is a rapid analysis capability which consists
of (1) a high fidelity flight profile simulator based on
EUROCONTROL’s aircraft performance model, and (2) a reduced
order fuel burn model with airport pair and aircraft type as inputs.

3.3. Predictive Modeling

With the ultimate objective of making accurate predictions, predictive modeling is one
of the most typical tasks of machine learning. In contrast to the specific machine learning or
data mining techniques which uncover patterns in data, predictive modeling encompasses
the entire process of developing a mathematical model in a way that we can understand
and quantify the model’s accuracy on predicting future, yet-to-be-seen data [58]. Steps such
as data pre-processing, model tuning, performance measurement, and model selection are
of critical importance in the predictive modeling process. Therefore, to a certain degree,
predictive modeling is highly similar to the machine learning engineering process depicted
in Figure 3. Although the foremost objective of predictive modeling is to make accurate
predictions, a secondary interest is to interpret the model and understand how it makes
prediction. On certain problems, interpretation could be just as important, and this involves
a tradeoff between accuracy and interpretation. Overall, a more accurate model is often
associated with higher model complexity and lower interpretability. More discussions on
the model interpretability can be found later in Section 4.

Predictive models mainly include regression models and classification models, which
predict continuous and categorical responses, respectively. Under each category, depending
on whether a model is based on linear combinations of the predictors, different models
can be further divided into linear models and nonlinear models. Although different
models differ by the model form, number of parameters, and overall complexity, no
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predictive model is universally superior in every problem. Practitioners are encouraged
to explore a diverse set of models for any given problem and identify the best predictive
model [58]. A key foundation to the success of predictive modeling is the practitioner’s
domain knowledge and deep understanding of the problem. When predictive signal exists
in a dataset, even a naive model can capture some degree of predictive power. The domain
knowledge applied to the modeling process is what distinguishes a great model from good
models. In a serious decision making process, neither data-driven predictive model nor
expert intuition will do better than a combination of both.

A summary of representative papers in predictive modeling is given in Table 4. Most of
these representative papers were published after year 2018. Although classification models
can find applications in many data-driven analysis tasks in aerospace and transportation
domains (e.g., flight risk identification), the predictive models for aviation environmental
impact analysis are mostly regression models. Some recent works have started to adopt
advanced model architectures on more complex data forms to predict aircraft fuel burn,
emissions, and noise. Among some of the earlier works, Reference [59] uses Gaussian
Process Regression (GPR) and Probabilistic Graphical Model (PGM) to develop a wind
forecasting model, which informs improved flight route planning to reduce environmental
impact of aviation. Some advanced set-ups in statistics and machine learning are used to
more accurately estimate aircraft fuel consumption. In a series works to improve aircraft
fuel efficiency, Reference [60] first applies ensemble learning to improve the prediction
of discretionary fuel and construct uncertainty intervals for the predictions. After that,
Reference [61] utilizes quantile regression to estimate the Statistical Contingency Fuel
(SCF) from a large fuel burn dataset from airline. The rest of the papers adopt different
types of deep learning models. To minimize transport aircraft emissions and save fuel,
Reference [62] applies neural network whose topology is optimized by genetic algorithm on
flight data to predict fuel consumption. The authors of [63] use a type of feedforward neural
network called covariance bidirectional extreme learning machine (CovB-ELM) to predict
aircraft trajectory and the associated fuel consumption. There is also a significant trend
which employs Recurrent Neural Network (RNN) to model sequences of data. The authors
of [64] apply Long Short Term Memory (LSTM) neural network on Flight Data Monitoring
(FDM) data records to estimate aircraft on-board parameters such as the fuel flow rate for
enhancing the system’s efficiency. The authors of [65] apply sequence-to-sequence LSTM
on large radar and noise datasets to predict ground level aviation noise and evaluates
the model using real-world noise measurements. The authors of [66] use a combination
of LSTM and extreme gradient boosting (XGBoost) to predict short-term flight emissions
within enroute airspace. The last two papers apply the more advanced physics-informed
learning approaches which combine data-driven model with physical model to predict
specific problems more effectively. The authors of [67] use physics-guided deep learning
to model aircraft fuel burn. To outperform both the traditional physics-based models and
the common supervised learning approaches, the authors: (1) guide the neural network
with fuel flow dynamics equations, and (2) embed physical knowledge as extra losses in
the model training process. The authors of [68] use physics-guided neural networks to
predict propeller tonal noise with less experimental data, which can be difficult to collect. In
some other works, even applying methods like ordinal regression and neural network can
achieve satisfactory results on certain problems. Yet the more advanced more architectures
and considerations have opened the door for a wider variety of problems.
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Table 4. Summary of representative papers in predictive modeling.

Year Paper Topic Key Contributions

2014 [59]
Airplanes Aloft as a Sensor Network
for Wind Forecasting

Applies machine learning on aircraft air and ground speeds data
to develop a wind forecasting model for reducing the
environmental impact of aviation. The method involves the use
of Probabilistic Graphical Model (PGM) and
Gaussian Process Regression (GPR) for wind prediction.

2016 [62]

Modeling the Fuel Flow-rate of
Transport Aircraft During Flight Phases
using Genetic Algorithm-optimized
Neural Networks

Develops a deep learning model to predict the fuel consumption
of transport aircraft for minimizing emissions and saving fuel.
The method develops from real flight data a
genetic algorithm-optimized neural network topology
that is specifically designed for the fuel flow rate problem.

2018 [60]
Improving Airline Fuel Efficiency via
Fuel Burn Prediction and
Uncertainty Estimation

Proposes a discretionary fuel prediction method for reducing
the discretionary fuel loading by dispatchers while maintaining
the same safety level and saving fuel. The method applies
ensemble learning to improve the prediction of fuel burn
and construct uncertainty intervals for the model predictions.

2020 [64]
Approach and Landing Aircraft
On-Board Parameters Estimation
with LSTM Networks

Develops a model to estimate aircraft on-board parameters
such as the fuel flow rate for enhancing the system’s safety
and efficiency. The method applies Long Short Term Memory
(LSTM) neural network on Flight Data Monitoring (FDM)
data records to estimate target parameters.

2020 [65]

Ground Level Aviation Noise
Prediction: A Sequence to Sequence
Modeling Approach Using LSTM
Recurrent Neural Networks

Develops a deep learning model to predict ground level
aviation noise. The method applies Sequence-to-sequence
Long Short Term Memory (LSTM) Recurrent Neural Network
(RNN) on large radar and noise datasets to predict aviation noise
at a ground location near Washington National Airport.

2021 [61]

Quantile Regression–Based
Estimation of Dynamic
Statistical Contingency Fuel

Applies machine learning to estimate the Statistical Contingency
Fuel (SCF) for reducing fuel consumption. The method employs
quantile regression on a large fuel burn dataset from a major
U.S.-based airline to estimate the SCF and account for uncertainties.

2021 [67]

Physics Guided Deep Learning for
Data-Driven Aircraft
Fuel Consumption Modeling

Presents a framework which uses physics-guided deep learning
to model aircraft fuel burn. The method guides the neural network
with fuel flow dynamics equations and embeds physical knowledge
as extra losses in the model training to outperform other
model-based and supervised learning approaches.

2021 [63]

Prediction of Aircraft Trajectory
and the Associated Fuel Consumption
using Covariance Bidirectional
Extreme Learning Machines

Applies deep learning to predict aircraft trajectory and the associated
fuel consumption. The method uses covariance bidirectional extreme
learning machine (CovB-ELM) to achieve a more accurate and robust
performance than the existing methods.

2022 [66]

A Novel Combined Model for
Short-Term Emission Prediction of
Airspace Flights Based on Machine
Learning: A Case Study of China

Applies machine learning to predict short-term flight emissions
within enroute airspace. The method uses an adaptive weighting
approach on results from a Long Short Term Memory (LSTM)
prediction model and an extreme gradient boosting (XGBoost)
prediction model to improve the performance.

2022 [68]
Constructing a Physics-guided Machine
Learning Neural Network to Predict
Tonal Noise Emitted by a Propeller

Applies deep learning to predict propeller tonal noise in the time
domain over a broad range of flight conditions. The method uses
physics-guided neural networks to improve the prediction
performance while alleviating the dataset size requirement
for experimental data.

3.4. Uncertainty Quantification

Uncertainties related to imprecise assumptions, natural variability, and the presence
of unknowns is not only an unavoidable part of the real-world, but also a significant factor
that could determine the success or failure of a decision or system. At the intersection
of mathematics, statistics, and engineering, Uncertainty Quantification (UQ) is an inter-
disciplinary field that addresses the problems associated with incorporating real-world
variability and probabilistic behavior into the design and analysis of complex systems.
UQ provides uncertainty information about the Quantities of Interest (QoI) through charac-
terizing, propagating, and managing uncertainties in a computational or real-world system.
The high degree of complexity and uncertainty associated with aviation environmental
impact analysis have driven practitioners towards the use of UQ in the modeling process.

Different sources of uncertainty can be generally categorized as either epistemic
uncertainty or aleatory uncertainty. The former is caused by a lack of knowledge and is
possible to be reduced by collecting more information. Aleatory uncertainty, on the other
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hand, results from the intrinsic randomness of nature. Therefore, it is beyond people’s
ability to reduce aleatory uncertainty through gathering additional information. Some
previous research efforts [69,70] explore how to deal with both types of uncertainties.
Common sources of uncertainty can be classified into four categories:

1. Inputs uncertainty: The inputs of a model/system may have inherent uncertainty
and substantial variation around a deterministic value.

2. Model uncertainty: All models are “wrong” because they inevitably include as-
sumptions, approximations, and errors and are therefore not exact representations of
reality. Two aspects of uncertainties related to model are model-form uncertainty and
uncertainty about parameters within the model.

3. Computational and numerical uncertainty: Normally numerical errors from run-
ning simulations or solving mathematical models, including simplified equations,
convergence error, truncation, etc.

4. Physical testing uncertainty: A result of uncontrolled or unknown inputs, measure-
ment errors, and limitations in the design and implementation of tests.

A standard uncertainty quantification step consists of four main steps: uncertainty
identification, uncertainty characterization, uncertainty propagation, and uncertainty analy-
sis. Figure 6 displays a standard UQ process and compares it with the traditional determin-
istic modeling procedure. As a starting point, uncertainty identification refers to a step of
identifying potential uncertain sources in a simulation or analysis process. The subsequent
uncertainty characterization is a step to mathematically represent all the uncertain sources.
In uncertainty propagation, uncertainties in all levels of the model/system are mathemat-
ically mapped to the uncertainties in the outputs [71]. When the sophisticated system
analysis code is computationally expensive, surrogate models can be used to reduce the
complexity of the original model while retaining the physics-based relationships between
the inputs and outputs. The uncertainty propagation process in Figure 6 is simulation-
based, in which Monte Carlo Simulation (MCS) is utilized. The last step, uncertainty
analysis, involves using statistical analysis and visualization to study the uncertainties
inherent in the system’s outputs for making better decisions.

In aviation environmental impact analysis, UQ is generally used to: (1) understand
the uncertainties inherent in a complex model or software systems, (2) predict system
responses across uncertain inputs and quantify confidence intervals, (3) understand the key
contributors to model output variations, and (4) inform researchers of directions for future
model development and enhancement. A summary of representative papers in uncertainty
quantification is given in Table 5. Several works in Table 5, such as [72], encompass surro-
gate modeling in their UQ approach as well, because it is common to use simulation-based
methods, such as MCS, for uncertainty propagation. This process learns the distributions
of the nondeterministic outputs through a large number of experiment runs on the sophis-
ticated analysis code and is impractical without surrogate model. Hence, surrogate model
is a vital enabler to efficient UQ and design optimization. Some earlier works perform a
complete UQ process on a complex aviation environmental model. Both [73,74] conduct
a UQ study on AEDT to better understand the uncertainties in AEDT estimations and
identify priority aspects for future research and development. Also based on AEDT, Refer-
ence [75] conducts a sensitivity analysis for fleet-level environmental impacts to changes in
operational uncertain factors for the optimization of flight operations to mitigate aviation
environmental impacts. The authors of [76] perform rapid computation and UQ on the
global fleet-wide simulation of aviation emissions for rapid and robust policy analysis. On
the data-driven approach, Reference [77] uses Gaussian Process Regression (GPR) to quan-
tify uncertainty in a data-driven 4D flight trajectory prediction problem and gain insights
on uncertainty reduction—an important objective of UQ. Some works focus on novel UQ
methodologies and make contributions in methodology development. Inspired by mul-
tidisciplinary analysis and optimization, Reference [78] proposes a decomposition-based
approach to quantify uncertainty in multi-component systems and applies the method to
perform uncertainty analysis and sensitivity analysis for the environmental impacts of new
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aircraft technologies and operations. When only limited data is available for UQ, Refer-
ence [79] develops a nonparametric approach to characterize and propagate uncertainty,
which is more flexible and does not introduce unwarranted assumptions into the process.
Some latest works initiate the trend of performing UQ on the environmental impact of
future aircraft configurations. The authors of [80] perform UQ on the noise of a Hybrid
Wing–Body (HWB) aircraft configuration at the noise certification locations. The authors
of [81] perform system noise assessment and UQ for a conceptual supersonic aircraft and
identifies factors that could significantly affect the concept’s Landing and Takeoff noise
(LTO) noise. Since robustness is a key consideration in the design and analysis of complex
aerospace systems, UQ will continue to play a substantial role in the design and analyze of
sustainable aviation system.

Table 5. Summary of representative papers in uncertainty quantification.

Year Paper Topic Key Contributions

2010 [72]
Surrogate Modeling for Uncertainty
Assessment with Application to
Aviation Environmental System Models

Proposes a surrogate modeling methodology designed specifically for
uncertainty propagation and sensitivity analysis. The method is
demonstrated on a large-scale aviation environmental model and can
provide fast predictions with confidence intervals to support
environmental policy-making.

2013 [76]
Rapid Estimation of Global Civil
Aviation Emissions with Uncertainty
Quantification

Develops a methodology and open source code for rapidly computing
global aviation emissions with uncertainty quantification. The method
enables global fleet-wide simulations for rapid policy analyses and
quantification of uncertainties from operational factors, scientific
knowledge, and model fidelity.

2014 [73]
Uncertainty Quantification of
an Aviation Environmental Toolsuite

Describes uncertainty quantification of a complex computational tool
for aviation environmental impact. The method consists of surrogate
modeling to overcome the complexities of long run times and
sensitivity analysis to identifying high priority areas for future research.

2017 [78]

A Decomposition-based Uncertainty
Quantification Approach for
Environmental Impacts of Aviation
Technology and Operation

Proposes a divide-and-conquer approach, similar to the
decomposition-based approaches in multidisciplinary analysis and
optimization, to quantify uncertainty in multicomponent systems.
Performs uncertainty analysis and global sensitivity analysis for
environmental impacts of enhanced aviation technologies and operations.

2018 [74]

Parametric Uncertainty Quantification
of Aviation Environmental
Design Tool

Conducts parametric uncertainty quantification at the vehicle level for
Aviation Environmental Design Tool (AEDT). The study to identifies
the main contributors to AEDT output uncertainties and gains better
insights on the areas of future AEDT improvements.

2019 [79]

A Nonparametric-based Approach
for the Characterization and
Propagation of Epistemic Uncertainty
due to Small Datasets

Proposes a nonparametric framework to characterize and propagate
uncertainty when only small datasets are available. The approach
requires less assumption on the type of probability distribution of the
uncertainty sources and brings greater flexibility into the UQ process.

2020 [75]

Sensitivity Analysis of Airport Level
Environmental Impacts to Aircraft
Thrust, Weight, and
Departure Procedures

Conducts sensitivity analysis for fleet-level fuel burn, noise, and
emissions to changes in uncertain factors such as aircraft takeoff
weight, thrust, and departure profiles. The result underlines the
importance of these factors when optimizing aircraft departure
operations for environmental impact mitigation.

2020 [80]
System Noise Prediction Uncertainty
Quantification for a Hybrid
Wing–Body Transport Concept

Performs uncertainty quantification on the noise of a hybrid wing–body
aircraft configuration. The method propagates element-level
uncertainties through Monte Carlo simulation to the system level for
noise predictions at the three certification locations and provides
future research directions.

2021 [77]

Quantifying Accuracy and
Uncertainty in Data-Driven Flight
Trajectory Predictions with
Gaussian Process Regression

Performs uncertainty quantification on data-driven 4D flight trajectory
predictions using a two-stage Gaussian Process Regression (GPR).
The study also evaluates and quantifies how flight-plan and
meteorological information can help reducing the prediction
error and uncertainty.

2022 [81]
System Noise Assessment and
Uncertainty Analysis of a
Conceptual Supersonic Aircraft

Performs system noise assessment, uncertainty analysis, and validation
tests for a conceptual supersonic aircraft using Monte Carlo simulation.
The result also identifies the noise factors that have significant impact
on the landing and takeoff noise (LTO) noise.
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Figure 6. A standard uncertainty quantification process.

3.5. Pattern Discovery

Pattern discovery (or knowledge discovery) is a term commonly seen in data mining.
A pattern generally refers to some useful information in the data that can guide action
or decision-making. Some simple patterns include total, ratio, correlation, variation, etc.
Examples of the (slightly) more complex patterns include emerging trend, receding signal,
alternating behaviour, and spatiotemporal variation. Statistical and machine learning
methods provide techniques to discover patterns from data. The following types of non-
chaotic patterns can be found in data:

• Descriptive patterns: The identification of these patterns usually do not involve
advanced algorithms. They are obtained through descriptive statistics or sometimes
the direct results of data collection.

• Associative patterns: These patterns are mainly about co-occurring phenomena. A
typical statement of associative pattern is: “If A happens, then B is also likely to happen”.

• Periodic patterns: These patterns repeat themselves with a specific period, which can
be found in time series data, sequence data, and spatiotemporal data.

• Structural patterns: These patterns are extracted summary information represented
in terms of a structure that can be reasoned about. There are different structural forms
such as graphs, trees, sets, clusters, etc.

• Abnormal patterns: A substantial divergence from normal behaviour is considered abnor-
mal. These abnormalities could be signals of risk or opportunities for novel discoveries.

In aviation environmental impact analysis, the discovered patterns on aircraft fuel
burn, emissions, and noise can provide insights for aviation and environmental analysts to
make decisions and plans for mitigating aviation’s environmental impact and achieving
sustainable air traffic growth. Some patterns can be directly discovered by analyzing
existing datasets on aviation environmental impact. Most of the time, however, the dataset
for a target study is not available. For example, if a researcher wants to obtain the quantity
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and distribution of a certain emission type over a continent, it would be impractical to
obtain such measurements via sensors and instruments. In such cases, data-driven flight
simulation become a key enabler for computation and pattern discovery. Data-driven
flight simulation utilizes real-world flight operations data, such as ADS-B, and “flies” the
aircraft in an computational environment. The aircraft furn burn, emissions, and noise are
computed using aircraft performance models, such as Base of Aircraft Data (BADA), and
noise models. Since the real-world flight data reflects how aircraft operate in time and space,
with reliable performance and noise models it is possible to obtain decent approximations
of the real-world situations. The estimations resulting from data-driven flight simulations
are then ready to be analyzed by statistical and machine learning methods to discover
useful patterns.

A summary of representative papers in pattern discovery is given in Table 6. Many se-
lected papers under this theme also encompass elements from efficient computation and
predictive modeling. One thing the papers in Table 6 have in common is a strong emphasis
on the actual findings of the study. Data-driven flight simulation is widely applied in
pattern discovery for aviation environmental impact. In one of the pioneering works,
Reference [82] develops an aviation emission inventory and discovers the disparity of CO2
concentration in different parts of Australia. The authors of [83] use flight track data and
fast noise approximation model to observe the variability in noise patterns on evolving
airport runway configuration at Boston Logan International Airport (KBOS). The authors
of [84] use ADS-B data and OpenAP emission models to obtain cruise-level flight emissions
for different airlines, geographic regions, altitudes, and timeframe. The authors of [85]
employ ADS-B and flight performance model to study aviation emissions at altitude and
finds out that NOx and water vapour emissions concentrate around tropospheric altitudes
only for long-range flights. The authors of [86] use similar approach to analyze fuel burn
and emissions for a network of short-haul commuter flights in Europe. Through analyz-
ing fuel burn and emissions as function of distance, altitude, city pair, the conclusion is
that flight range is the most significant discriminator in emissions. The authors of [87,88]
extend such simulations to global-scale. Together with a clustering step, Reference [87]
studies the transport patterns and climate impacts of aviation-emitted NOx and highlights
the spatially and temporally heterogeneous nature of the NOx–O3 chemistry in different
regions and seasons around the globe. The authors of [88] estimate global emissions from
aircraft operations between 2017–2020 and quantifies the impact from COVID-19. Deep
learning is a powerful tool in finding aircraft emissions patterns in a more complex setting.
The authors of [89] apply Convolutional Neural Network (CNN) on satellite images to
detect aircraft contrails—a contributor of climate warming effect. The project estimates that
contrails cover an average of 0.55% of the contiguous U.S. and discovers detailed patterns
of contrail coverage. The above findings are key information for people to understand the
status and patterns of regional and global aviation environmental impact. With continued
advancements in data quantity, aircraft performance models, and analytical techniques,
such data-driven approaches can make even better contributions to sustainable aviation.

Table 6. Summary of representative papers in pattern discovery.

Year Paper Topic Key Contributions

2010 [82]
Aviation Emission Inventory development
and analysis

Develops a 4D aviation emission inventory using air traffic trajectory
data from Australian Airspace for spatial and temporal emission
analysis. The result shows the disparity of CO2 concentration in
different parts of Australia and the impact of NOx emission on
different layers of the atmosphere.

2019 [89]
Satellite-based Detection of Contrails
using Deep Learning

Trains a Convolutional Neural Network (CNN) on satellite images
for the automated detection of aircraft contrails, a major source of
climate warming effect by aviation emissions. The result estimates
that contrails cover an average of 0.55% of the contiguous U.S. and
discovers the relationship between contrail coverage and air traffic
as a function of time and location.



Aerospace 2022, 9, 750 22 of 35

Table 6. Cont.

Year Paper Topic Key Contributions

2021 [83]
Development of a Fast Method to Analyze
Patterns in Airport Noise

Uses large quantity of flight track data and a fast noise approximation
model on airport noise modeling. The result highlights the variability
in noise patterns depending on evolving airport runway configuration
at Boston Logan International Airport (KBOS).

2021 [84]
Evaluation of Aviation Emissions and
Environmental Costs in Europe Using
OpenSky and OpenAP

Proposes a data-driven approach for rapid estimations of cruise-level
flight emissions over Europe using open data (ADS-B data) and open
models (OpenAP emission models). The result shows cruise-level
flight emissions by different airlines, geographic regions,
altitudes, and timeframe.

2021 [85]
Prediction of Aircraft Engine Emissions
using ADS-B Flight Data

Combines real-time flight data from ADS-B and flight performance
model to predict aviation emissions at altitude – greater than 3,000 ft
and exclude takeoff and landing. The result shows that NOx and
water vapour emissions concentrate around tropospheric altitudes
only for long-range flights.

2021 [86]
Evaluation of Commuter Airplane
Emissions: A European Case Study
Author Links Open Overlay Panel

Simulates flights using ADS-B/Mode-S data to evaluate commuter
airplane emissions in Europe. It studies a network of short-haul
commuter flights (less than 300 n-miles) and analyzes fuel burn
and emissions as function of distance, altitude, city pairs. It finds out
that flight range is the biggest clear discriminator in emissions.

2022 [87]
Transport Patterns of Global Aviation
NOx and their Short-term O3 Radiative
Forcing – A Machine Learning Approach

Uses global-scale simulations and the unsupervised QuickBundles
clustering approach to study the transport patterns of emitted NOx
and their associated climate impacts in different regions and seasons.
The result highlights the spatially and temporally heterogeneous
nature of the NOx–O3 chemistry from a global perspective.

2022 [88]
Global Civil Aviation Emissions
Estimates for 2017–2020 Using
ADS-B Data

Uses ADS-B data, Base of Aircraft Data (BADA) aircraft
performance model, and ICAO’s Engine Emissions Databank to
estimate global emissions from aircraft operations for the years
2017–2020. The result quantifies global aviation emissions and
the evolution of the fleet average emission indices over time,
including impact from COVID-19.

3.6. Verification and Validation

Verification and validation (V&V) are evaluation procedures throughout the develop-
ment phase to assess whether a system, product, or process meets the requirements and
specifications that are initially set in the proposal. V&V are an integral part of the systems
engineering processes to ensure the success of a project. Sometimes such procedures need
to be executed by a disinterested third party and are referred to as Independent Verifi-
cation and validation (IV&V). Verification is the procedure of comparing the solution to
the requirements. Verification uses examination, demonstration, analysis, and testing to
answer the query “are you building it correctly?”. A verification procedure takes as input
a system/product/process A and the requirements Q, and returns whether A is satisfac-
tory (all behaviors of A meet Q) or unsatisfactory (at least one behavior of A violates Q).
Data-driven verification is a novel research area that combines numerical simulation with
sensitivity analysis to provide bounds on how much the states of a system/product/process
can change in a non-deterministic setting [90]. In contrast, validation is the procedure
of checking whether a system/product/process meets the needs of the user and other
stakeholders. Validation involves review, demonstration, and testing to answer the query
“are you building the correct thing?”. Validation is of vital importance because the cost
of fixing a user requirement error is very higher—usually much higher than fixing an
implementation error.

V&V has become an essential part in the development of a complex model or software,
especially for a field that is safety-critical in nature. Because of the complexities in modeling
the environmental impact of aircraft and air transportation system, relevant computational
tools are complex and multi-module systems as well. The computational models for
aviation environmental impact could leverage data processing, flight simulation, aircraft
performance models, emissions models, noise models, large aircraft databases, Geographic
Information System (GIS), and extensive system databases cover airports, airspace, and
fleet information for accurate modeling. Therefore, it is indispensable to conduct V&V in
all levels of the system to make sure that the environment functions properly.
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A summary of representative papers in V&V is given in Table 7. Enabled by data-
driven simulation and statistical analysis, two common practices are seen in these works:
(1) comparing the predictions between different models, and (2) comparing the model
predictions with real-world measurements. The results of V&V can guide actions to
further enhance the analysis capabilities. Among these works, Reference [91] performs
a V&V study on AEDT’s emission inventory and air quality modeling capability and
investigates causes behind the deviation between AEDT and the legacy tool Emissions and
Dispersion Modeling System (EDMS). Still on AEDT, Reference [92] provides a structured
and repeatable framework for validating AEDT’s noise model using detailed airline flight
data records, weather data, and noise monitoring data from stations around airport. The
authors of [93] compare thousands of the actual single flight noise exposure measurements
with predictions from three noise models: AEDT, FLULA2, and sonAIR. To understand
a helicopter noise prediction system’s limitations, Reference [94] compares its Sound
Exposure Level (SEL) noise contours with the acoustic flight test data for a range of flight
conditions. The authors of [95] conduct a validation for an integrated aircraft environmental
simulation software’s acoustic and engine exhaust emissions modules using the microphone
field measurements at Manchester airport for a range of aircraft types. The authors of [96]
compare predictions from the “Dutch aircraft noise model” to measured values from
the NOise MOnitoring System (NOMOS) around Amsterdam Airport Schiphol between
2012 and 2018 and observes how the model accuracy has changed overtime. The authors
of [97] conduct a sensitivity analysis on semi-empirical noise models and compares the
predictions to flyover measurements of A320, A330, and B777. The authors of [98] present
a validation methodology for the noise impact of delayed deceleration approach, a new
procedure, using ground-noise-monitor measurements and radar data for several aircraft
types. Most of these studies confirm that the aviation environmental impact models can
achieve satisfactory accuracy on their predictions. Some works also identify reasons behind
the mismatch and modify the models accordingly to obtain better agreement between
modeled and measured values.

Table 7. Summary of representative papers in verification and validation.

Year Paper Topic Key Contributions

2018 [91]

Uncertainty Quantification Analysis of
the Aviation Environmental Design Tool
in Emission Inventory and
Air Quality Modeling

Conducts an uncertainty quantification analysis on AEDT provide
verification and validation of AEDT’s emission inventory and air
quality modeling. It investigates causes that lead to the differences
between AEDT and the legacy tool Emissions and
Dispersion Modeling System (EDMS).

2019 [94]
Validation of Helicopter Noise Prediction
System with Flight Data

Conducts a validation exercise for a helicopter noise prediction
system to understand its limitations. It compares the Sound
Exposure Level (SEL) noise contours between the model
predictions and the acoustic flight test data for a range of flight
conditions and concludes the predictions are overall satisfactory.

2019 [95]
Validation of an Integrated Simulation
Model for Aircraft Noise
and Engine Emissions

Conducts a validation exercise for an integrated aircraft
environmental simulation software’s acoustic and engine exhaust
emissions modules. It compares between the microphone field
measurements at Manchester airport and numerical predictions
for 12 common commercial airplanes.

2021 [93]

Comparison of the Aircraft Noise
Calculation Programs sonAIR,
FLULA2 and AEDT with Noise
Measurements of Single Flights

Compares the actual noise exposure measurements with
calculations of several thousand single flights using three noise
calculation programs: sonAIR, FLULA2, and AEDT. It mentions
that all three programs show good result, yet sonAIR can perform
better in modeling single flights.

2021 [92]
Noise Model Validation using
Real World Operations Data

Provides a structured and repeatable framework for noise model
validation using real-world operations data. The validation
utilizes multiple types of real-world data including detailed
airline flight data records, noise monitoring data from stations
around airport, and historical weather data.

2022 [98]
Delayed Deceleration Approach
Noise Impact and Modeling Validation

Presents a validation methodology for delayed deceleration
approach using noise measurements and radar data for several
aircraft types. The method is demonstrated through comparing
modeled sound exposure levels of these new procedures with
available ground-noise-monitor data at two major airports.
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Table 7. Cont.

Year Paper Topic Key Contributions

2022 [96]
Comparative Assessment of Measured
and Modelled Aircraft Noise around
Amsterdam Airport Schiphol

Compares the “Dutch aircraft noise model” predictions to
measured values from the NOise MOnitoring System (NOMOS)
around Amsterdam Airport Schiphol between 2012 and 2018.
It finds out that the model prediction improved throughout the
years due several factors.

2022 [97]
Comparison of Semi-Empirical Noise
Models with Flyover Measurements
of Operating Aircraft

Investigates the sensitivity of semi-empirical models of engine
and airframe noise to uncertainties in geometrical parameters
and aircraft operating conditions, and compares the predictions
to measurements of A320, A330, and B777. It identifies
reasons behind the mismatch and improves the model.

3.7. Infrastructure and Tools

The research outcomes from all the previous themes have direct impacts on the
methodology and/or actual findings of aviation environmental impact analysis. This theme
devoted to infrastructure and tools is special because the relevant efforts may not lead to
immediate breakthroughs on the more efficient and accurate models of aviation environ-
mental impact. Instead, they lay the foundations for data-driven researches and make them
happen. Undeniably, the efforts on building infrastructure and tools to collect, integrate,
clean, and process data (the majority of the “data engineering” block in Figure 3) are an
indispensable part of the ecosystem and have notably streamlined data-driven analysis
in aviation.

A summary of representative papers in infrastructure and tools is given in Table 8.
Different types of works under this theme can be classified into: (1) hardware system,
(2) data repository, and (3) data integration and pre-processing tools. Even these infras-
tructures and tools are built for aviation researchers and data scientists to perform more
complex analyses, such as machine learning tasks, most of them are also capable of prelim-
inary data analysis and data visualization. On the hardware design side, Reference [99]
presents the system architecture, design, and capabilities of a modern hardware/software
infrastructure called the Metroplex Overflight Noise Analysis (MONA). MONA is a system
to measure, analyze, and archive the ground noise data from aircraft overflights for a
variety of purposes, such as V&V of improved noise prediction methods. It also has a
strong data visualization capability. The authors of [100] propose DV8—an interactive data
visualization framework which provides visualized aviation-oriented insights for capacity
planning, flight route prediction, and fuel consumption. Data repository is another crucial
part of the infrastructure. Threaded Track [101] integrates radar trajectory data from a
variety of surveillance sources to produce an optimal representation of an aircraft’s end to
end trajectory. Since its inception, Threaded Track has facilitated data-driven analyses for
aviation safety and environmental impact. WRAP [102] is an open-source database which
includes extracted full-flight aircraft performance parameters from large scale open ADS-B
data. Apart from the aircraft performance parameters, WRAP also provides the first set of
open parametric performance models for common aircraft types. Flight DNA [103] is one
of the latest aviation data repositories. It is a common database with anonymized data on
aviation components, systems, technologies, and operations. On the data pre-processing
tools, there has been a significant trend to convert them into open-source libraries for
popular programming languages such as Python and R. traffic [104] is a Python toolbox
for pre-processing and analyzing aircraft trajectories data so that they are better prepared
for statistical modeling and machine learning. pyModeS [105] is another open-source
library in Python. The focus of pyModeS is to decode the Mode-S Comm-B replies and
provide researchers broader access to accurate aircraft state updates that are transmitted
via Enhanced Mode-S. openSkies [106] is the first R package for processing public air traffic
data. It has an interface to resources in the OpenSky Network, standardized data structures,
and functionalities to analyze and visualize data. In the future, continued development
of infrastructures and tools for aviation data analytics is a key to promoting data-driven
transformation for mitigating aviation environmental impact.
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Table 8. Summary of representative papers in infrastructure and tools.

Year Paper Topic Key Contributions

2012 [101]

Threaded Track: Geospatial Data
Fusion for Aircraft
Flight Trajectories

Presents the threaded track repository: a robust and efficient
capability of fusing radar trajectories from a variety of surveillance
sources based on their temporal and spatial proximity to produce
a synthetic track with the best possible coverage and fidelity.
The Threaded Track represents the optimal representation of an
aircraft’s end to end trajectory to support a wide range of
safety, security, and efficiency analyses.

2017 [100]
DV8: Interactive Analysis of
Aviation Data

Proposes DV8: an interactive data visualization framework for
providing visualized aviation-oriented insights, with a focus on
evaluating the deviations among flights by route, type, airport,
and aircraft performance. DV8 can be utilized in areas such as
capacity planning, flight route prediction, and fuel consumption.

2019 [104]
traffic: A Toolbox for Processing
and Analyzing Air Traffic Data

Presents traffic: a Python toolbox for preprocessing and analyzing
trajectories data evolving in airspaces. The tool can prepare data
for aviation researchers and data scientists needing to compute
statistics, performance indicators and building datasets for
common machine learning tasks.

2019 [102]
WRAP: An Open-source
Kinematic Aircraft
Performance Model

Presents WRAP: a comprehensive set of methods for extracting
different aircraft performance parameters from large scale open
ADS-B data. This open-source data includes a set of more than
30 parameters from 7 distinct flight phases for 17 common
commercial aircraft types and the fitted parametric models.

2020 [105]

pyModeS: Decoding Mode-S
Surveillance Data for Open
Air Transportation Research

Proposes pyModeS: an open-source library and new
heuristic-probabilistic method to decode the Mode-S Comm-B
replies and to check the correctness of the messages. It fills the gap
of handling interrogation-based surveillance data and gives
researchers broader access to accurate aircraft state updates
that are transmitted through Enhanced Mode-S.

2021 [99]
A System for Measurement and
Analysis of Aircraft Noise Impacts

Presents the system architecture, design, and current set of
capabilities of the Metroplex Overflight Noise Analysis (MONA)
system. The MONA project seeks to measure, analyze, and archive
the ground noise data from aircraft overflights for a variety of
purposes, such as an openly-available database for V&V of
improved noise prediction methods.

2021 [106]
openSkies: Integration of Aviation
Data into the R Ecosystem

Present openSkies: the first R package for processing public air traffic
data. The package provides an interface to resources in the OpenSky
Network, standardized data structures to represent the different entities
involved in air traffic data, and functionalities to analyze and
visualize such data.

2022 [103]
Flight DNA: An Anonymized
Aviation Data Tool and Repository

Introduces Flight DNA: a common database with anonymized data
on aviation components, systems, technologies, and operations.
It includes planning and analysis tools, and repository for aviation
emissions, energy consumption, and performance profiles.

4. Future Opportunities

The previous section serves to provide a review of the seven main themes on how
statistics and machine learning have been leveraged to make aviation environmental impact
modeling more efficient and accurate. The content under each theme includes background
information, connection to aviation environmental impact analysis, and a summary of
representative papers and their contributions. Based on the current development status of
this research area, the characteristics of aviation environmental impact analysis, and the
remaining potential of data-driven approaches, below we suggest five future research op-
portunities from the perspective of methodology: advanced statistical modeling and data
mining, physics-informed learning, explainable/interpretable models, Bayesian meth-
ods, and data-driven optimization. Some of these methodologies are already mature in
their respective fields or in other application domains, yet their applications in aviation
environmental impact analysis have been limited so far. For some research opportuni-
ties, one can see the appearance of progress in some latest advances; for other research
opportunities, they are proposed in a more speculative manner.
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4.1. Future Opportunity 1: Advanced Statistical Modeling and Data Mining

Even though machine learning is a hotter topic today, there is still much left in the
tank for statistical modeling. We observe that most relevant works in the literature choose
basic statistic models for statistical analysis (although basic models are not necessarily bad
models). The more advanced statistical models, which are designed to tackle certain chal-
lenges/settings, also have their own advantages on analyzing aviation data and aviation
environmental impact. For example, Reference [61] applies quantile regression in a fuel
consumption estimation problem, which is an interesting method that is not widely spread
in the community yet. The advantages of nonparametric data analysis and mix effects
models on analyzing unconventional and complex data also have not been adequately
explored by the aerospace/aviation community. Below we first highlight two areas of
advanced statistical modeling and data mining that could further contribute to data-driven
aviation environmental impact analysis:

• High-dimensional data analysis: Dataset size n and dimension p are two primary
indicators to choose among data analysis frameworks. Many real-world aviation
datasets are high-dimensional in nature. For such datasets with a large number of
attributes, traditional statistical theories and methodologies are inadequate and can
break down in unexpected ways. A main challenge here is the Curse of Dimension-
ality (CoD) [107], which refers to a set of phenomena and challenges that do not
normally occur in low-dimensional spaces yet arise when the data has too many
attributes/features. Modern advances in high-dimensional data analysis can perform
statistical inference and prediction in high-dimensional settings. A key assumption
behind most such analyses is that high-dimensional data typically concentrates on
low-dimensional, sparse, or degenerate structures. Dimensionality reduction is a
common way to transform high-dimensional data into a lower dimensional represen-
tation while preserving the intrinsic properties of the data. The other two categories
of methods that can find applications in aviation environmental impact analysis are
Functional Data Analysis (FDA) and tensor data analysis. FDA [108,109] deals with
the analysis and theory of data that are in the form of functions or curves. FDA can
also be thought of as the statistical analysis of samples of curves and surfaces. With
the deployment of big data technologies, more and more aviation data are being
recorded continuously during a time interval or intermittently at discrete time points.
Section 3 highlights the use of flight operation and performance data, a typical ex-
ample of functional data, for accurate environmental impact analysis. Some popular
FDA techniques include Functional Principal Component Analysis (FPCA), functional
regression, and clustering/classification of functional data. Tensor data in the form of
multi-dimensional array can be found in the analysis of for example image streams, or
aircraft noise or emissions data measured at different locations in a two-dimensional
plane (two-dimensional data) sampled over different times (the third dimension, lead-
ing to three-dimensional data). Tensor decomposition [110] techniques can be applied
to process and analyze tensor data.

• Spatio-temporal data analysis: Some representative works in the literature have
started to explore the spatial, temporal, and spatio-temporal patterns of aviation emis-
sions and noise. Because aviation environmental impacts have inherently spatial or
temporal context, the modeling process must take into account the space and/or time
component to better understand and interpret the data. Spatio-temporal data differ
from relational data in that both spatial and temporal attributes are available in addi-
tion to the actual measurements/attributes, which introduces additional challenges
and requires novel formulations to analyze. Of note, References [111,112] are two
good references for the statistics and data mining for spatio-temporal data. Temporal
data analysis applies to events ordered by one or more dimensions of time [113].
Within temporal data analysis, the discovery of similar patterns within the same time
sequence or among different time sequences relies on time series analysis—an active
research field of statistics. On the other hand, spatial statistics [114] provides tech-
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niques and tools to analyze data that has a spatial characteristic to it. Since the future
of aviation is likely to incorporate emerging components such as Urban Air Mobility
(UAM) and Unmanned Aerial Vehicles (UAV), research topics at the intersection of
aeronautics and urban and regional studies can contribute to the integration of such
disruptive concepts into the existing transportation system. This includes the design of
UAM and UAV operations with maximum efficiency and minimum societal (including
environmental) impacts. Methods from spatial statistics can play a pivotal role in this
interdisciplinary area.

4.2. Future Opportunity 2: Physics-Informed Learning

Since machine learning became a dominant tool for accurately and efficiently recog-
nizing complex patterns from data [115,116], it has been applied to model challenging
problems in physical sciences and engineering and make predictions. However, those
“off-the-shelf” machine learning models do not necessarily obey the fundamental governing
laws of physical systems, which prevents them from generalizing well to scenarios on
which they have not been trained [116]. When modeling certain complex systems/effects, it
is likely that neither purely data-driven model nor physics-based model alone can achieve
the best performance. Through incorporating physics and domain knowledge into machine
learning models, physics-informed machine learning [117] is referred to by many as the
“ultimate solution” for the application of machine learning to phenomena governed by phys-
ical principles. As a representative of the physics-informed machine learning approaches,
Physics-Informed Neural Networks (PINNs) is a deep learning framework that enables the
synergistic combination of mathematical models and (noisy) data [118]. In areas related to
aeronautics, PINNs have been applied to model problems in fluid mechanics [119,120] and
solid mechanics [121]. In addition, it is also possible to design specialized network architec-
tures that automatically satisfy some of the physical invariants. Overall, physics-informed
machine learning have the following advantages [116,117]:

1. Greater physical consistency: Purely data-driven models may fit training data very
well, but predictions may be physically inconsistent or implausible. Through integrat-
ing governing physical laws in the learning process, the model produce predictions
that respect the underlying physical principles.

2. Improved trainability: Physics-informed learning can find meaningful solutions
even when the problem is not perfectly well posed—with incomplete models and
incomplete data. Specific to physics-informed learning, there are also effective ways
to accelerate training.

3. Better generalization: Normal deep learning methods require big data for training,
which may not be available for problems in science and engineering. Physics-informed
learning performs well in the small data regime and has strong generalization capa-
bility from small data.

4. Uncertainty quantification: There are multiple ways of quantifying the uncertainties
due to physics, data, and learning models. One such example is Bayesian PINNs
(B-PINNs), which integrates the Bayesian approach with physics-informed learning
for uncertainty quantification.

On aviation environmental impact modeling, some works reviewed in the previous
section, such as [67,68], have started to apply physics-guided neural networks for modeling
aircraft fuel burn and noise. However, overall, such explorations are still at an early stage.
There is still a lot of untapped potential in the interaction of physics-informed learning and
aviation environmental impact analysis. The first research direction here is data-driven
aircraft performance modeling, which is a requisite for environmental impact modeling.
Aircraft performance models span across multiple disciplines, such as aerodynamics,
flight dynamics, etc. For models that are governed by physical laws, physics-informed
Learning is a potential enabler for improved modeling. Second, the aircraft fuel burn,
emissions, and noise have their respective physics-based models as well. Most of the
previous researches have considered either data-oriented or physics-oriented approaches
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to tackle the estimation problems and produced fruitful outcomes. Nevertheless, the
convergence of the two aspects has not materialized yet.

4.3. Future Opportunity 3: Explainable/Interpretable Models

State-of-the-art data-driven methods, especially machine learning and deep learning
models, have demonstrated exceptional capabilities in learning a wide variety of complex
patterns from data and making predictions about unobserved data. However, in addition
to obtaining models with high performance, the interpretability of the models is also
critical in the design and analysis of complex systems. Interpretation is defined as the
extraction of knowledge about domain relationships either contained in data or learned
by the model [122]. The extracted knowledge can be represented by formats such as
mathematical equations, visualizations, or natural language, depending on the particular
audience and problem. A literature review of the interpretability methods in machine
learning can be found in [123]. Overall, the interpretable results can be used in three ways:
fundamental knowledge discovery, actionable items, and effective communications.

The use of data-driven methods for fundamental knowledge discovery can find its
root in numerous science and engineering disciplines. Researchers from those scientific
disciplines often aim to gain fundamental understanding of a chosen problem through
analyzing massive datasets produced by scientific experiments, simulations, and observa-
tions. In aviation environmental impact analysis, one of the research questions is: “what
factors contribute most to the levels of aircraft fuel burn, emissions, and noise?”. In such
problems, people either attempt to understand casual relationships, i.e., statements that
changing one variable will cause a change in another [122], through experiments and
statistical modeling, or capture correlations from observed data. In addition, an effective
model needs to convert the result into insights and actionable items. More specifically,
outputs produced by a data-driven model must be clearly explained and understood by
a human Subject Matter Expert (SME). Here we further illustrate this necessity with two
example applications in aviation: predictive maintenance and safety analysis. Methods
like the Deep Neural Networks (DNNs) have shown their superiority in a large variety
of predictive modeling tasks and are promising in predicting maintenance measures such
as Time-To-Failure (TTF) and Remaining Useful Life (RUL) [124]. However, conventional
DNNs are considered black-box models which lack transparency. For use cases like aircraft
maintenance which is safety critical and heavily regulated, being able to fully understand
the decision-making process is vital. The inability to trust black-box models has limited
the usability of those complex models in aircraft predictive maintenance [124]. The similar
logic also applies to data-driven safety analysis, where explainable models [125,126] are
vital. When applying predictive models to aviation safety assurance, the objective is to not
only accurately predict unsafe events and identify anomalies, but also yield insights on why
they arise (precursors identification) and how to mitigate safety-related risks in the future.
Lastly, interpretable models can be used to guide communication between people from
different backgrounds. In one scenario, it enables data scientists who extract knowledge
from data to clearly communicate with domain experts who will then make sense of the
knowledge and put it into practice. In a second scenario, policy makers can use the result
to communicate with the public and make the policy-making process more transparent and
understandable. Going forward, there will be concrete needs for the complex models in
aviation environmental impact analysis to guide knowledge discovery, actionable items,
and effective communications.

4.4. Future Opportunity 4: Bayesian Methods

Bayesian methods have not be utilized by the representative works considered in this
survey paper to tackle challenges in aviation environmental impact analysis. The Bayesian
paradigm can construct powerful and flexible statistical models within a rigorous and
coherent probabilistic framework [127]. Based on Bayes’ theorem, the Bayesian approach
updates the available background knowledge about parameters in a statistical model
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with new information from observational data. The conventional Bayesian workflow
consists of three primary steps: (1) use the available knowledge to determine the prior
distribution about a given parameter in a statistical model; (2) select the likelihood function
by specifying a statistical model that stochastically generates the data; and (3) combine
the prior distribution and the likelihood function via Bayes’ theorem to determine the
posterior distribution. The posterior distribution reflects the updated knowledge and can
be used to make predictions about future events. Compared to the frequentist methods,
Bayesian methods include available knowledge into the modelling process as prior and
use probability statements on the unknown parameters. In problems related to aircraft
performance modeling and aviation environmental impact analysis, Bayesian methods
have the following two merits:

• Combination of expert knowledge and data: in some problems, people seek ap-
proaches which can combine both SME knowledge/opinions and collected data to
make better decisions. Bayesian methods incorporate background information, knowl-
edge, or beliefs into the modeling process through prior elicitation—the translation
of background information into a suitable prior distribution. Common strategies for
prior elicitation include asking an expert or a panel of experts for judgements, or
analyzing historical data. The result from Bayesian modelling (posterior) can also be
regarded as a compromise or balancing between the prior knowledge (prior) and the
observed data (likelihood).

• Uncertainty quantification: Bayesian methods are a natural fit for uncertainty quan-
tification. When a Bayesian framework is used for model fitting, probability distribu-
tions are assigned to the model parameters to describe the associated uncertainties.
The uncertainty in the resulting posterior is jointly determined by the the informative-
ness (or variance) of the prior, and the sample size of the observed data. For a weakly
informative prior, the posterior result is weighted more by the observed data. When
the sample size is small, Bayesian methods often require more informative priors to
output appropriate results.

The selections of both the prior distribution and the likelihood function in Bayesian
modeling are important choices that can substantially affect the final results. Procedures
such as prior predictive checking can assess the appropriateness of the selections. In the
meantime, since the prior distribution and underlying data-generating model is not always
known, it is always vital to conduct comprehensive sensitivity analyses to fully understand
the influences that different priors and likelihood settings have on the posterior estimates.
For further readings, Reference [128] provides a discussion of the philosophy behind
Bayesian statistics and argues that Bayesian inference accords better with hypothetico-
deductivism rather than inductive inference. Reference [129] provides an introductory
course in Bayesian statistics.

4.5. Future Opportunity 5: Data-Driven Optimization

Even though optimization is out of the scope of this survey paper, the more accurate
modeling of aviation environmental impact is meant to eventually pave the way for better
mitigation solutions. Then, optimization comes into play in designing environmental-
friendly operations and policies. Data-driven optimization is where machine learning
(or predictive modeling) meets mathematical programming for better decision-making.
A framework of data-driven optimization typically consists of two stages. The first stage
is data-driven, where machine learning or data mining approaches are applied on real-
world datasets to extract useful information/pattern. The second stage is model-based,
where mathematical programming approaches, such as Mixed-Integer Linear Program-
ming (MILP), are employed to derive the optimal decisions from the pattern. Some latest
advances can further “close the loop” for the data-driven optimization paradigm by adding
an additional information feedback component to couple downstream optimization and
upstream machine learning to improve the performance. The authors of [130] provide a
review of data-driven optimization with emphasis on decision-making under uncertainty.
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In recent years, data-driven optimization has been applied to many problems in the trans-
portation domain as well [131,132]. Of note, Reference [133] is a recent example in aviation
which performs flight path optimization based on weather prediction. On research topics
related to sustainable aviation, the coupling between machine learning and optimization
is still a gap that awaits further research efforts. In fact, this multidisciplinary research
area still have a lot of space for innovations on the methodology side. For example, in a
latest study, Reference [134] proposes a Smart “Predict, then Optimize” (SPO) framework
which attempts to improve the standard predict-then-optimize paradigm by leveraging
the downstream optimization problem structure (objective and constraints) for designing
better upstream prediction models. Such innovations could become game changers and
potentially bring many new research opportunities.

5. Conclusions

The popularity of data-driven methods and the availability of rich datasets have
changed the landscape of aviation environmental impact analysis, an important ingredient
towards a sustainable future of aviation. In the past decade, researchers from the aerospace
community have started to actively leverage methods from statistics and machine learning
to make aviation environmental impact analysis more efficient and accurate. The fruitful
research outcomes in this area have begun to make positive impacts to the aviation industry
and the society. Through reviewing representative papers, this papers aims to sort out the
important development trends of data-driven aviation environmental impact analysis and
explore research opportunities for the future. The paper starts with a primer on statistics
and machine learning. In the review of statistical methods, we sketch out the development
of the subject from basic statistical inference to modern aspects which focus on the entire
problem-solve cycle and computation. In the review of machine learning, we discuss the
main components of a machine learning algorithm and presents the landscape of machine
learning. In the analysis of representative works, we first classify them into seven objective-
oriented themes. The content under each theme includes detailed discussion on how
data-driven approaches function in that specific scene to facilitate aviation environmental
impact analysis and summary of representative papers. Last but not least, a section devoted
to future opportunities proposes five high-potential research directions. Some of these
research directions have already aroused people’s interest or can be seen in the state-
of-the-art development of a related area. Other research directions are suggested based
on the concrete needs for the future or the convergence of data and methodology in a
more speculative manner. In addition to the opportunities, there are still some critical
challenges facing the integration of data-driven approaches and aviation environmental
impact modeling. Three typical examples here are methodologies for analyzing high-
dimensional and heterogeneous datasets, more interpretable machine learning models,
and data sharing and open science. Continued research efforts are needed to tackle both
fundamental machine learning problems and the application of novel methods in the
aviation domain.
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