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Abstract

Since the universal acceptance of atoms and molecules as the fundamental constituents of matter

in the early twentieth century, molecular physics, chemistry and molecular biology have all

experienced major theoretical breakthroughs. To be able to actually “see” biological

macromolecules, one at a time in action, one has to wait until the 1970s. Since then the field of

single-molecule biophysics has witnessed extensive growth both in experiments and theory. A

distinct feature of single-molecule biophysics is that the motions and interactions of molecules and

the transformation of molecular species are necessarily described in the language of stochastic

processes, whether one investigates equilibrium or nonequilibrium living behavior. For laboratory

measurements following a biological process, if it is sampled over time on individual participating

molecules, then the analysis of experimental data naturally calls for the inference of stochastic

processes. The theoretical and experimental developments of single-molecule biophysics thus

present interesting questions and unique opportunity for applied statisticians and probabilists. In

this article, we review some important statistical developments in connection to single-molecule

biophysics, emphasizing the application of stochastic-process theory and the statistical questions

arising from modeling and analyzing experimental data.

1 Introduction

Although the concept of atoms and molecules can be traced back to ancient Greece, the

corpuscular nature of atoms was firmly established only in the beginning of the 20th

century. The stochastic movement of molecules and colloidal particles in aqueous solutions,

known as the Brownian motion, explained by the diffusion theory of A. Einstein (1905) and

M. von Smoluchowski (1906), and the stochastic differential equation of P. Langevin (1908)

– confirmed experimentally through the statistical measurements of J.-B. Perrin (1912), T.

Svedberg and A.F. Westgren (1915) – played a decisive role in its acceptance [1]. The

literature on this subject is enormous. We refer the readers to the excellent edited volume

[2], which included now classical papers by Chandrasekhar, Uhlenbeck-Ornstein, Wang-

Uhlenbeck, Rice, Kac and Doob, and [3], a collection of lectures by Kac, one of the

founding members of the modern probability theory [4].

While physicists, ever since Isaac Newton, have been interested in the position and velocity

of particle movements, chemists have always perceived molecular reactions as discrete

events, even though no one had seen it until the 1970s. Two landmark papers that marked

the beginning of statistical theories in chemistry (at least in the U.S.) appeared in the 1940s
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[5, 6]. Kramers' paper [5] elucidated the emergence of a discrete chemical transition in terms

of a continuous “Brownian motion in a molecular force field” with two stable equilibria

separated by an energy saddle and derived an asymptotic formula for the reaction rate.

Probabilistically speaking, this is the rate of an elementary chemical reaction as a rare event

[7]. Delbrück's paper [6] assumed discrete transitions with exponential waiting time for each

and every chemical reaction and outlined a stochastic multi-dimensional birth-and-death

process for a chemical reaction system with multiple reacting chemical species. Together,

these two mathematical theories have established a path from physics to cell biology by (i)

bridging the atomic physics with individual chemical reactions in aqueous solutions, and (ii)

connecting coupled chemical reactions with dynamic chemical/biochemical systems. In

1977, Gillespie independently discovered Delbrück's chemical master equation approach [8]

in terms of its Markovian trajectories based on a computational sampling algorithm now

bears his name in the biochemistry community [9]. The simulation method actually can be

traced back to Doob [10].

Experimental techniques have experienced major breakthroughs along with these theoretical

developments. J.-B. Perrin's investigations on Brownian motion gave perhaps the first set of

single-particle measurements with stochastic trajectory. The spatial and temporal resolutions

back in 1910s were on the order of micrometer and tens of second. By the late 1980s, they

became nanometer and tens of millisecond. The observation of discrete stochastic transitions

between different states of a single molecule was first achieved in the 1970s on ion

channels, proteins imbedded in the biological cell membrane. This was made possible by the

invention of the patch-clamp technique, together with the exquisite electronics, for

measuring small electrical current [11]. To measure the stochastic dynamics of a “tumbling”

single molecule in an aqueous solution, one needs to be able to “see” the molecule under a

microscope for a sufficiently long time. For this purpose, one needs an experimental

technique to immobilize a molecule and a highly sensitive optical microscopy. This was first

accomplished for enzyme molecules at room temperature in 1998 [12].

To statisticians and probabilists, this is abundantly clear that biophysical dynamics at the

molecular level are stochastic processes. To characterize such dynamics, called fluctuations

in chemical physics literature, one thus needs stochastic models. In an experiment, if such

processes are sampled over time, one molecule at a time, then the analysis of experimental

data naturally calls for the inference of stochastic processes. Therefore, the theoretical and

experimental developments of single-molecule biophysics constitute one great opportunity

for applied statistics and probabilities.

The aim of this article is to review some important statistical developments in single-

molecule biophysics from the construction of theoretical models to advances in the

experiments, mostly drawing from our own limited research experience. The discussion is

far from complete, as the field of single-molecule biophysics, with a substantial background,

is advancing too rapidly to be captured by a short review. Still, we hope to convey a certain

amount of historical continuity, as well as current excitement at the research interface

between statistics and molecular biophysics. Special attention is paid to the application of

stochastic-process theory and the statistical questions arising from analyzing experimental

data.
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In the presentation we discuss the underlying theory, the experiments as well as the analysis

of experimental data. The discussion of theory focuses more on the application of stochastic

processes in modeling various problems in single-molecule biophysics, whereas the

discussion of experiments and data focuses more on the statistical analysis of data. However,

we want to emphasize that, as one observes in the advance of modern sciences, theory and

experiment/data really go hand in hand: the development in one stimulates and inspires the

other.

2 Brownian motion and diffusion of biological macromolecules

Before we discuss Brownian motion and its profound implications in biophysics, we want to

first clarify the terminology, because the term “Brownian motion” used by physicists and

chemists and the term “Brownian motion” used in probability and statistics refer to different

things: physicists and chemists' Brownian motion corresponds to the integral of the

Ornstein-Uhlenbeck process (as we shall see shortly), whereas statisticians and probabilists'

Brownian motion refers to the Wiener process, although both share the characteristic of

E[x2(t)]∝ t for large t. Likewise, “diffusion” has different meaning in statistics and

biophysics. In statistics and probability, the term “diffusion processes” typically refers to

continuous-time and continuous-space Markov processes, such as Itō's diffusions. In

biophysics, the term “diffusion” typically refers to physical motion of a particle without an

external potential; when there is a drift, it is often called biased diffusion.

To facilitate our discussion, let us first review the derivation of the law of physical

Brownian motion [7]. Suppose we have a particle with mass m suspended in a fluid. Then

according to Newton's equation of motion formulated by Langevin, the velocity v(t) of the

particle satisfies

(1)

where ζ is the damping coefficient and F(t) is a white noise – formally the “derivative” of

the Wiener process. To correctly represent an inert particle in thermal equilibrium with the

fluid, the Langevin equation has an important physical constraint that links the damping

coefficient ζ with the noise level, because both the movement of the particle and the friction

originate from one source – the collision between the particle and surrounding fluid

molecules:

(2)

where δ(·) is Dirac's delta function, kB is the Boltzmann constant, and T is the underlying

temperature. Equation (2) is a consequence of the fluctuation-dissipation theorem in

statistical mechanics [13]. Probabilistically speaking, a Markov-process model for an inert

system that tends to thermal equilibrium is necessarily reversible [14, 15].

In the more rigorous probability notation, equations (1) and (2) translate to
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(3)

where B(t) is the Wiener process, and the formal association of “ ”

is recognized. The stationary solution of equation (3) is the Ornstein-Uhlenbeck process [2],

which is Gaussian with mean function E[v(t)] = 0 and covariance function

. It follows that for the displacement, ,

which can be recorded in single-particle tracking, its mean squared is

Therefore,

(4a)

(4b)

Equation (4b) gives the famous Einstein-Smoluchowski relation, which links the diffusion

constant D with the “mobility” ζ of the particle D = kBT/ζ. This equation is historically

highly significant in that by combining it with Stokes' law, ζ = 6πηr, and the definition of

the Boltzmann constant (kB = R/N), one obtains

(5)

where η is the viscosity, r is the radius of the spherical particle, R is the gas constant, and N

is the Avogadro constant.

An immediate experimental consequence of (5) is that by measuring the diffusion constant

of a spherical particle, one can estimate the Avogadro constant! The experiments on

Brownian motions in fact had a rather shinning history in both physics and chemist. In 1926,

Jean-Baptiste Perrin and Theodor Svedberg won the Nobel Prizes in physics and chemistry

respectively. Perrin had studied trajectories of Brownian motions, verifying Einstein's

description of Brownian motion and providing one of the first modern estimates of the

Avogadro constant, while Svedberg developed the method of analytical ultracentrifugation

using which he studied the counts of Brownian particles in a well-defined volume and how

this counting process evolves over time. This counting process is referred to as the

Smoluchowski process (first by M. Kac in [3]). Both Perrin and Svedberg's observations

were performed on large colloids; it has to wait for nearly a half century for such
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measurements to be performed on biological macromolecules. A version of the Svedberg

experiment appeared in the 1970s under the name of Fluorescence Correlation Spectroscopy

(FCS, see Sec. 4), and the measurement of single trajectory was developed in the 1980s,

known as Single-Particle Tracking (SPT), using the principle of “spatial high-resolution by

centroid localization”. This principle is responsible for driving much of the recent advance

in single-molecule biophysics and super-resolution imaging.

For experimental data from a true Brownian motion, a natural statistical question is to obtain

estimates of the diffusion constant. If the data consist of the trajectories of individual

particles as in SPT, the diffusion constant can be estimated by either a least-square

regression or an MLE. Sec. 2.1 will discuss it in some detail. If the data consist of particle

counting over time, the statistical estimation becomes more involved. We will discuss it in

Sec. 3, starting with the Smoluchowski process, which is non-Markovian [16, 17].

In addition to estimating the diffusion constant, often the experimental objective is to

investigate the motion that deviates from a simple Brownian motion. This has yielded a

great deal of development in statistical treatments of these data: What if there is a drift, if the

space is not homogeneous, if the Brownian particles can reversibly attach to other stationary

or moving objects, or if the particles are interacting (e.g., not independent)? With the

emerging of super-resolution imaging, these questions are still constantly being asked in

laboratories; a systematic statistical treatment of the problem is yet to be developed [18].

2.1 Single-particle tracking of biological molecules

Since the late 1980s, camera-based single-particle tracking (SPT) has become a popular tool

for studying the microscopic behavior of individual molecules [19]. The trajectory of an

individual particle is typically recorded through a microscope by a digital camera in such

experiments; the speed of the camera can be as fast as a few milliseconds per frame. The

superb spatial resolution owes to the idea of centroid localization.

One of the most common statistical questions is to determine the diffusion constant D of the

underlying particle from the experimental trajectory. If we denote (x(t1), …, x(tn)) the true

positions of the particle at times t1, …, tn, where Δt ≡ ti – ti−1 is the time interval between

successive positions, then the experimental observations (y1, y2, …, yn) are yi = x(ti) + εi,

where  are the localization (measurement) error. If the particle's motion is

really Brownian, then, as we have seen in equation (4b) the process x(t) can be well

approximated by , where B(t) is the standard Wiener process, provided t ≫ m/ζ.

This leads to

(6)

An intuitive estimate of D used by many experimentalists utilizes the mean square

displacement (MSD) [20], such as
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which are averages of correlated (square) increments, or

which are averages of nonoverlapping (square) increments. One can also try to combine

them, for example, by weighting or a regression (against k) [21].

Given the parametric specification (6), another natural estimate of D is the maximum

likelihood estimate (MLE) [22]. It is interesting to note that (i) MLE and the optimal

estimate based on MSD have comparable accuracy [23], and (ii) the estimation error in D

decreases with n, the sample size (the number of camera frames), at the rather slow rate of

O(n−1/4), which contrasts with the familiar rate of O(n−1/2) as in the central limit theorem

[24, 25, 26].

The determination of the diffusion constant D serves many purposes, ranging from (Perrin's

original) estimation of the Avogadro constant to the test of whether the underlying motion is

Brownian to the elucidation of detailed molecular mechanism. For example, Blainey et al.

[27] studied how DNA-binding proteins move along DNA segments. Does a DNA-binding

protein simply slide along the DNA, in which a protein executes simple one-dimensional

translational move parallel to the DNA without rotation, or does a DNA-binding protein

move along the DNA through a helical path, in which it retains a specific orientation with

respect to the DNA helix and rotates with the helix (in a spiral fashion) [28, 29]? If we

measure a protein's position along the DNA over time, then the two motions are subject to

different expressions of the diffusion constant: in the parallel motion, the diffusion constant

is

as we have seen in equation (5), where η is the viscosity and r is the size of the protein; in

the helical motion, the diffusion constant is

(7)

where roc is the distance between the protein's center of mass and the axis of the DNA, and b

is the distance along the DNA traveled by the protein per helical turn. Equation (7) is
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derived from hydrodynamic considerations [30, 31]. The parallel motion and helical motion

can thus be told apart from the experimentally estimated diffusion constant. By tracking

DNA-binding proteins with various sizes from different functional groups and estimating

their diffusion constants from single-molecule experimental data, Blainey et al. [27] found

that the helical motion is the general mechanism.

2.2 Subdiffusion

As we have seen in (4b), a key characteristic of Brownian motion is that the mean squared

displacement E[x2(t)] ∝ t for moderate and large t. In some physical and biological systems

[32, 33] the motion is observed to follow E[x2(t)] ∝ tα with 0 < α < 1. These motions are

referred to as subdiffusion because of α < 1. One theoretical approach to model subdiffusion

is to employ fractional calculus (such as the use of fractional derivatives). This approach is

reviewed in [34]. We review an alternative approach here: generalized Langevin equation

with fractional Gaussian noise as postulated in [91].

We start with a generalized Langevin equation (GLE) [13]

(8)

where, in comparison with the Langevin equation (1), (i) a noise G(t) having memory

replaces the white noise, and (ii) the memory kernel K convoluted with the velocity makes

the process non-Markovian. Owing to the fluctuation-dissipation theorem, the memory

kernel K(t) and the noise are linked by [35]

Note that the GLE reduces to the Langevin equation when K is the delta function.

Within the GLE framework, we are looking for a kernel function that can give subdiffusion.

As the white noise is the formal “derivative” of a Wiener process, which is the unique

process that satisfies (a) being Gaussian, (b) having independent increment, (c) having

stationary increment, and (d) being self-similar, to generalize the white noise, a good

candidate is a process with the properties of (a) Gaussian, (b) stationary increment and (c)

self-similar. The only class of processes that embodies all three properties is the fractional

Brownian motion (fBm) BH(t) [36, 37], which has mean E[BH(t)] = 0, and covariance

. H ∈ [0, 1] is called the Hurst parameter.

BH(t) reduces to the Wiener process when H = 1/2.

Taking G(t) in (8) to be the (formal) derivative of fBm, , we

reach the model , where the kernel KH(t) is

given by
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(9)

FH(t) is known as the fractional Gaussian noise (fGn).

In the more rigorous probability notation, the model can be written as

(10)

This equation is non-Markovian. Nevertheless, it can be solved in closed form via a Fourier

analysis [38]. The solution v(t) is a stationary Gaussian process, and the displacement

 satisfies

for large t. Therefore, the model with H > 1/2 leads to subdiffusion.

If there exists an external potential U(x), a term −U′(x(t)) will be added to the right hand side

of (8), yielding

(11)

For a harmonic potential , the model can be solved by the Fourier transform

method [38].

The subdiffusive motion is observed in single-molecule experiments on protein

conformational fluctuation [39, 40]. The experiments studied the conformation fluctuation

through the fluorescence lifetime of the protein. The fluorescence lifetime is a sensitive

indicator, as it depends on the 3D atomic arrangements of the protein in an exponential way.

The stochastic fluctuation of the fluorescence lifetime, recorded in the experiments, reveals

the stochastic fluctuation in the protein's conformation. Detailed analysis of the

autocorrelation, three-step and four-step correlation of the experimental fluorescence

lifetime data shows that (i) the conformation fluctuation of the two protein systems undergo

subdiffusion; (ii) the memory kernel is well described by equation (9), (iii) the conformation

fluctuation is reversible in time, and (iv) a harmonic potential captures the fluctuation quite

well. These subdiffusive observations, therefore, directly support the notation of fluctuating

enzymes, also known as dynamic disorder – as an enzyme molecule spontaneously changes

its conformation, its catalytic rate does not hold constant. The different conformations of an

enzyme molecule and their intertransitions thus could have direct implications in the

enzyme's catalytic behavior [41]. We will discuss some of those implications in Sec. 5.5.
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From a pure statistics standpoint, inference and testing the subdiffusive models beyond the

autocorrelation function and three-step, four-step correlations are an open question.

3 Particle counting

The idea of counting the number of particles in a fixed region and using the temporal

correlation of the resulting counting process to extract the kinetic parameters of the

underlying experimental system has a long history, dating back to Smoluchowski's

investigation of Brownian motion in the early twentieth century. Suppose we have

indistinguishable particles, each undergoing independent Brownian motion. Let n(t) be the

number of particles at time t in a region Ω (such as an area illuminated under a microscope).

This counting process {n(t), t ≥ 0} is referred to as the Smoluchowski process. Under the

assumption that the initial positions of the particles are uniformly distributed in a volume S

(which is typically much larger than Ω), it can be shown that E(n(t)) = |Ω | / |S| and that for t

≫ m/ζ,

(12)

where |Ω| and |S| are the volumes of Ω and S, respectively, and D is the diffusion constant [3,

42, 43, 17, 44]. Note that under t ≫ m/ζ, the Brownian diffusion is well approximated by

the Wiener process, which is the basis for equation (12). Historically, this result allowed the

Brownian diffusion theory to be tested by particle counting – this was done notably by

Svedberg and Westgren in the 1910s. It also allowed Smoluchowski to successfully account

for the apparent “paradox” of microscopic reversibility of the motion of molecules and the

macroscopic irreversibility as in the Second Law of Thermodynamics [45]. Finally, it offers

an experimental way to determine the diffusion constant.

Estimating D from the experimentally observations (n(t1), …, n(tM)), where Δt ≡ ti − ti−1, is

a statistical question. An intuitive method is to match the theoretical covariance function

with the empirical one [42]:

(13)

where C(Δt, D) is the right hand side of (12), which is a function of Δt and D. The solution

D ̂ of the generalized difference equation (13) is the estimate of D. Alternatively, one can

also match lag-k square difference

or use the nonlinear least square
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or its (weighted) variation to estimate D [43].

The approach of using MLE to estimate D encounters the difficulty that the Smolochowski

process is non-Markovian and that it does not have analytically tractable joint probability

function. Approximating the Smolochowski process by an emigration-immigration (birth-

death) process, which is Markovian, has been proposed [16, 17], where the birth rate and

death rates can be set by making sure that the emigration-immigration and Smolochowski

processes share the same mean and covariance (for small Δt). Systematic comparison

between the two different estimation methods – the one based on empirical autocovariance

function versus the quasi-likelihood estimate based on the emigration-immigration

approximation – is an open question.

The scheme of counting particles and utilizing the temporal correlation to extract kinetic

parameters was further developed into fluorescence correlation spectroscopy (FCS) in the

1970s, as we shall discuss in the next section, where, instead of the exact counts, the

fluorescence level of the underlying system, which depends on the molecules' concentration,

is recorded. The autocorrelation of the stochastic fluorescence reading can be used to

estimate the parameters such as the diffusion constant and the reaction rate.

4 Fluorescence correlation spectroscopy and concentration fluctuations

With the development of laser-based microscope, one can now measure the number of

molecules in a very small region within an aqueous solution and “count” the number of

molecules: The counting is based on the fluorescent light emitted from the molecules.

Assuming molecules are continuously giving out fluorescence, then the measurement of

stationary fluorescence fluctuation from a small region provides information on

concentration fluctuation. Since fluorescent emission requires excitation of an incoming

light, the small region is naturally defined by the laser intensity function I(r), where r = (x,

y, z) is the three-dimensional (3D) location of the particle [46]; I(r) can often be nicely

represented by a Gaussian function .

For a collection of free-moving, identical, independent fluorescence-emitting particles, the

theory is built upon the function of a single Brownian motion: I(Xt), where Xt is a 3D

Brownian motion, with diffusion coefficient D, confined in a large finite volume Ω. To

compare with a real experiment, we consider N i.i.d. Brownian motions and let N, Ω → ∞

such that N / |Ω| = c corresponds to the concentration of the particles in the real experiment

[47], with |Ω| denoting the volume of Ω. Then one can derive the autocovariance function of

I(Xt) [46]:
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which can be used to obtain the diffusion constant D. This result and the corresponding

experiments were developed in the 1970s. If the number of fluorescent particles are very

large, then the measured stationary intensity I(t) is essentially a Gaussian process with the

mean and variance given by

(14)

which can be derived by assuming that the particles are distributed in space according to a

homogeneous Poisson point process. In the Gaussian limit, one can thus measure the

concentration  and the “brightness” of a particle from the Fano factor

Var[I]/E[I].

FCS can also be used to obtain the reaction rate of a chemical process. Suppose we have a

two-state reversible chemical reaction A ⇌ B, where A and B are the two states of the

reaction. Let  be the rate of A changing to B and  be the rate of B changing to A. This

two-state reaction is typically described by a two-state continuous-time Markov chain with

 and  being the (infinitesimal) transition rate. Suppose the two states A and B have

different fluorescence intensity IA and IB. If we use Xt to denote the two-state process, then

This equation can be used to estimate the relaxation time  of the reaction.

In the late 1980s, researchers started to measure non-Gaussian intensity distributions and

obtain information about the heterogeneity of brightness in a mixture of particles. Various

methods emerged: fluorescence distribution spectroscopy (FDS), high-moment analysis

(HMA), photon-counting histogram (PCH), and fluorescence intensity distribution analysis

(FIDA), to name a few. Non-Gaussian behavior means that higher-order temporal statistics

such as E[I(t1 + t2)I(t1)I(0)] also contains useful information.

If ΔI(t) = I(t)−E[I] is a Markov process and is linear, i.e., the conditional expectation

(15)

then the autocovariance function
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(16)

Therefore, we see that the functional form of the autocorrelation function (16) and the

relaxation function after perturbation (15) are the same. This is the mathematical basis of the

traditional, phenomenological approach of Einstein, Onsager, Lax, and Keizer to

fluctuations. In a similar spirit, the higher-order temporal correlation functions are

mathematically related to relaxations with multiple perturbations, known as multi-

dimensional spectroscopy [48, 49].

The experimentally determined fluorescence autocorrelation function ĝ(nδ), with n = 1, 2,

⋯ and δ being the time step for successive measurements, often has a curious feature: The

measured ĝ(0) is always much greater than the extrapolated value from ĝ(n) based on n ≥ 1.

In fact, the difference is about E(I). This is known as “shot noise”; its origin is the Poisson

nature of the random emissions of fluorescent photons, which are completely uncorrelated

on the time scale of δ. Instead of treating the experimental fluorescence reading as a

deterministic function of the underlying Xt, one needs to consider the quantum nature of

photon emission – the photon counts are Poisson with the intensity function as the mean.

Taking this into consideration, the photon count from a single diffusing particle is an integer

random variable with distribution [50]

in which fX(r, t) is the probability density function of Xt Therefore, we see that, under the

assumption that Brownian particles are uniformly distributed in space

Now again consider total N i.i.d. particles, and let N, Ω → ∞ and N / |Ω| = c. Assuming that

the particles are distributed in space according to a homogeneous Poisson point process, we

have

Comparing this with equation (14), we see the extra shot noise term E[I]. This is a good

example of the textbook problem of the sum of a random number of independent random

variables. In a laser illuminated region, there are random number of fluorescent particles,

and each particle emit a Poisson number of photons; the total photon count is, thus, a sum of

a random number of terms.
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Recently, the optical setup for FCS has been expanded to have two different colored

fluorescence, or to have two laser beams at different locations of the system [51, 52]. These

measurements generate multivariate stationary fluorescence fluctuations. There are good

opportunities for in-depth statistical studies of the new data; for example, the assessment of

time-reversibility of a Gaussian process [14, 99].

5 Discrete Markov description of single-molecule kinetics

While the diffusion theory describes a continuous-state, continuous-time Markov process [2,

7], intense studies of discrete-state continuous-time Markov processes (also called Q-process

by Doob [10] and Reuter [53]) as models for internal stochastic dynamics of individual

biomacromolecules started in the 1970s, mainly driven by the novel experimental data from

single-channel recording of membrane protein conductance. For their contributions, E.

Neher and B. Sakmann received Nobel prize in 1976. The book by Sakmann and Neher [11]

provides a thorough review of single-channel recording. We also refer the readers to earlier

accounts in the pre-single-channel era of the development of discrete-state Markov approach

in biochemistry [54, 8] and an exhaustive summary of the literature on ion-channel

modeling and statistical analysis [55].

Enzymes and proteins are large molecules consisting of tens of thousands of atoms. (They

are sometimes called biopolymers; see also Section 6.) One of the central concepts

established since the 1960s is that a protein can have several discrete conformational states:

These states have different atomic arrangements within the molecule, and they can be

“observed” through various molecular characteristics, including absorption and emission

optical spectra, physical sizes, or biochemical functional activities. These different “probes”

can have different temporal resolutions and sensitivities. If one has an access to a highly

sensitive probe with reasonably high temporal resolution, then one can measure dynamic

fluctuations of a single protein as a stationary, discrete-state stochastic process. Markov, or

hidden Markov models, therefore, are natural tools to describe the conformational dynamics

of a protein and such measurements.

5.1 Single-channel recording of membrane proteins

The earliest “single-molecule” experiments were carried out in the 1970s on ion channels;

the patch-clamp technique pioneered by Neher and Sakmann enables reliable recording of

membrane protein conductance on a single channel. Since the close and open of an ion

channel control the passage of ions across a cell membrane, the conductance recorded in the

experiments essentially consists of step functions, such as (stochastically) alternating high

and low current levels. The simplest model to describe such on-off signal is the two-state

continuous-time Markov chain model

(17)

Due to experimental noise and data filtering, the sequence of real observations {y(ti), i = 1,

2, …} are better described by hidden Markov models. Under specific models, such as y(ti)|
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X(ti) ∼ N(X(ti), σ2), where X(t) is the underlying state of the Ion channel, maximum

likelihood estimation can be (straightforwardly) obtained for the transition rates.

The conductance of real ion channels, however, is typically much more complicated than the

simple two-state model. For example, in addition to the open and closed states of the ion

channel, there might exist “blocked” states, in which a blocking molecule's binding to the

ion channel stops the ion flow; alternatively, the channel's opening might be triggered by an

agonist molecule's binding. An ion channel, thus, could have multiple closed and open

states. The complication for modeling and inference is that these open states (and closed

states) are not distinguishable from the experimental data: typically the open states (and

closed states) have the same conductance. We are, therefore, dealing with aggregated

Markov processes: although the underlying mechanism is Markovian, we only observe in

which aggregate (i.e., a collection of states) the process is [56]. A natural question is the

identifiability of different models given that we can only observe the aggregates. Note that it

is possible that two distinct models give the same data structure/likelihood.

Statistical questions include estimating the number of (open and closed) states, postulating a

model and inferring the parameters of the model. Ball and Rice [55] overviews the statistical

analysis and modeling of ion channel data. Chapter 3 and Part III of the encyclopedic book

by Sakmann and Neher [11] provide an introduction and review of ion channel data analysis,

from initial data processing to the inference complications, such as the time interval

omission problem.

Parallel to constructing, testing and estimating Markov models, an alternatively statistical

approach is to treat the inference as an change-point detection problem: given the on-off

signal, determine from the data the change points (i.e., the transition times) and then infer

the sojourn times and their correlation, which provide clues for the eventual model building.

The change-point approach can be viewed as non-parametric as it does not explicitly rely on

a (Markov) model specification. The problem of change-point estimation has a long history

in statistics dating back to the 1960s. More recent approaches, particularly relevant for

single-channel data, include the use of BIC (Bayesian information criterion) penalty [57],

quasi-likelihood method [58], L1 penalty method [59], the multi-resolution method [60], and

the marginal likelihood method [61]. Compared to the parametric inference methods based

on continuous-time Markov chains, many of these change-point methods are flexible and

can be made automatic. Thus, they are suitable for fast initial analysis of a large amount of

single-channel data, such as thousands of data traces commonly generated in a modern

single-channel recording experiment.

5.2 Two-state and three-state single-molecule kinetics

The two-state Markov chain, such as in (17), is widely used in biochemical kinetics. They

are typically diagrammed as

(18)
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where A and B are the two states, and  and  are the (infinitesimal) transition rates.

One of the simplest biochemical reactions, the reversible binding of a single protein E to its

substrate molecule S, E+S ⇌ ES, can often be described by such two-state Markov model

with rate parameters  and , where cS denotes the concentration of the substrate

molecules. Note that the expression  assumes that the protein concentration is

sufficiently dilute, while there are a large number of substrate molecules S per E so that the

concentration cS remains essentially constant. Writing out  also highlights the fact

that the concentration cS of the substrate can be controlled in the experiments. Thus, one can

study the effect of the concentration cS on the overall reaction.  and  are called second-

order and pseudo-first-order rate constants in chemical kinetics, respectively: A second-

order rate constant has a dimension [time]−1×[concentration]−1 while a first-order rate

constant has a dimension [time]−1. The states E and ES of a single protein can be monitored

through a change in the fluorescence intensity of the molecule; for example, either through

the intrinsic fluorescence of the protein or Föster resonance energy transfer (FRET) between

the protein and the substrate.

A three-state Markov chain is often used to describe an enzyme's cycling through three

states E, ES, EP:

(19)

An enzyme catalytic cycle is completed every time it helps convert a substrate molecule S to

a product P, while the state of the enzyme molecule returns to the E so that it can start the

cycle to convert the next substrate molecule, as shown in Fig. 1. The enzyme E serves as a

catalyst to the chemical transformations S ⇌ P. Again, using the idea of pseudo-first order

rate constants, we have the (infinitesimal) transition rates  and , where cP

is the concentration of the product P.

A three-state Markov process is reversible if , which is a special case

of the Kolmogorov criterion of reversibility [62]. This mathematical concept precisely

matches the important notion of a chemical equilibrium between S and P when

In fact, it is widely known in biochemistry that in the absence of the enzyme, reaction S ⇌ P

will have very small forward and backward first-order rate constants α+ and α−.

Nevertheless, the fundamental law of chemical equilibrium dictates that

 [64].
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In a living cell, however, the substrate and the product of an enzyme are usually not at their

chemical equilibrium, and their concentrations cS and cP do not satisfy the equality in Eq.

5.2. This means

In this case, the corresponding Markov chain is no longer reversible. This motivated the

mathematical theory of nonequilibrium steady state (NESS) [65, 66, 67]. For strongly

irreversible, three-state Markov process, its Q-matrix (i.e., the infinitesimal generator) is

possible to have a pair of complex eigenvalues, giving rise to non-monotonic, oscillatory

autocorrelation function [68]. For example, if  and , then the

two non-zero eigenvalues are . Such oscillatory behavior has been observed in

single-molecule experiments.

5.3 Entropy production and nonequilibrium steady state

The chemical NESS also motivated the mathematical concept of entropy production rate

[69, 65]:

(20)

For a continuous-time Markov process X(t), ℙt in equation (20) is the likelihood of a

stationary trajectory, and  is the likelihood of the time-reversed trajectory. For example, if

ℙt is the likelihood of a particular trajectory 2 → 3 → 1, where the transitions occur at t1 and

t2 with 0 < t1 < t2 < t, then  is the likelihood of the trajectory 1 → 3 → 2, where the

transitions occur at t − t2 and t − t1.

For a three-state system, it is easy to show that

(21)

with NESS probability circulation

We see that ep is never negative; and it is zero if and only if the Markov process is

reversible. In fact, in the energy unit of kBT, the logarithmic term in equation (21) is the
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chemical potential different between S and P: ; Jness is the number

of reactions per unit time, and ep is the amount of heat dissipated into environment per unit

time. The chemical potential equaling heat dissipation is the First Law of Thermodynamics;

ep ≥ 0 is interpreted as the Second Law of Thermodynamics. The Second Law has always

been taught as an inequality; equation (20) provides it a more quantitative formulation in

terms of a Markov process.

For finite t, the ep in equation (20) is stochastic and it has a negative tail. Characterizing this

negative tail under a proper choice of the initial probability for a finite trajectory is the

central theme of the recently developed fluctuation theorems [70, 71].

5.4 Michaelis-Menten single-enzyme kinetics

In single-molecule enzyme kinetics [12], one can measure the arrival times of successive

product P, following the simple Michaelis-Menten enzyme kinetic scheme [72, 73]:

(22)

This is a simpler model than that in equation (19): It is assumed that reactions associated

with  and  are so fast that they can be neglected. Since each arriving P is immediately

processed, . The arrivals of P's are now a renewal process with mean waiting

time E[T] easily computed [72, 68, 74] from

Solving E[T] and noting , one obtains

(23)

This is the celebrated Michaelis-Menten (MM) equation for steady-state enzyme catalytic

velocity, first discovered in 1913 based on a non-statistical theory. One of the immediate

insights from the probabilistic derivation of MM equation is that if an enzyme has only a

single unbound state E, then irrespective of how many and how complex the bounding states

(ES)1, ⋯, (ES)n might be, the MM equation is always valid. The expressions for the Vmax

and KM can be very complex [73, 75]. We will discuss in some detail the single-molecule

experiments on enzymes and models beyond the Michaelis-Menten mechanism in the next

subection.

If cP ≠ 0, then the NESS probability circulation in the enzyme cycle is [74]:
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This equation is known as Briggs-Haldane equation (1925) for reversible enzyme.

5.5 Single-molecule enzymology in aqueous solution

We have seen how schemes (19) and (22) describe enzyme kinetics. Traditionally, they are

used to set up (coupled) differential equations, which specify how the concentrations of the

enzyme, the substrate and the product change over time. These theoretical descriptions then

can be compared with the experimental results carried out in balk solution, which involve a

large ensemble of enzyme molecules.

In contrast to these traditional ensemble experiments, to be able to see the action of a single

enzyme molecule in aqueous solution, one needs to develop methods to immobilize an

enzyme molecule, to make the experimental system fluorescent, and one also needs high

sensitivity optical microscopy. This was first accomplished in 1998 [12] on cholesterol

oxidase, where the active site of the enzyme, E + S and ES in equation (22), is fluorescent,

yielding an on-off system. The experimental data of [12] have similar appearance as the on-

off data from ion channels (Section 5.1). Thus, many data analysis tools developed for

single-channel recording can be applied. The experimental fluorescence techniques, such as

the design and utilization of fluorescent substrate, fluorescent active site and fluorescent

product, and the experimental techniques to immobilize an enzyme molecule were reviewed

in [76, 77], which also discussed the relationship between single-molecule enzymology and

the traditional ensemble approach.

As the experimental methods develop and mature, we are finally able to directly study and

test the Michaelis-Menten mechanism (22) on the single-molecule scale. English et al.

(2006) [73] conducted single-molecule experiments on the enzyme β-galactosidase, using

fluorescent product. The sharp fluorescence spikes from the product enables the

experimental resolution of β-galactosidase's individual turnovers (i.e., the successive cycles

of the enzyme). It was found from the experimental data that (a) the distribution of the

enzyme's turnover times is much heavier than an exponential distribution, contradicting the

Michaelis-Menten mechanism's prediction; (b) there is a strong serial correlation in a single

enzyme's successive turnover times, also contradicting the Michaelis-Menten mechanism;

and (c) the hyperbolic Michaelis-Menten relationship of E−1(T) ∝ cS/(cS + KM), as given in

(23), still holds. To explain the experimental results, in particular, their contradiction with

the Michaelis-Menten mechanism, Kou et al. (2005) [72] introduced the following model, as

diagrammed in Fig. 2:

In Fig. 2 E1, E2, … represent the different conformations of the enzyme, and SEi are the

different conformations of the enzyme-substrate complex. The model is based on the insight

that a protein molecule can have multiple conformational states: these states have different

atomic arrangements and can have different biochemical functional activities. Detailed
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calculation in [72, 73, 78, 79] shows that the model is capable of explaining the

experimental data.

The data from experiments like [73] have different pattern from the on-off data of [12].

Since fluorescent product is used, which, once formed, quickly diffuses away from the focus

of the microscope, the experimental data consist of fluorescent spikes, with each spike

corresponding to the formation of one product molecule, amid fluorescence from the

background. In principle, the time lag between two successive spikes is the (individual)

turnover time of the enzyme. In practice, since the level of the fluorescent spike is random

(as a product molecule spends a random time in the focal area of the microscope before

diffusing away), one needs to threshold the data to locate the spikes. Finding statistically

efficient thresholding level (to minimize false positive) for such data is an open problem.

5.6 Motor protein with mechanical movements against external force

One particular type of enzymes, called motor proteins, can move along their designated

linear, periodic tracks inside a living cell, even against a resistant force. The energy of the

motor is derived from the chemical potential in the S → P reaction, given in equation (21)

[80, 81, 82, 83, 84].

An external mechanical force Fext enters the rate constants for a conformational transition of

a motor protein as follows: If the transition from conformational state A to state B moves a

distance dAB along the track against the force, then according to Boltzmann's law

Substituting such a relation into equation (21), and let d be the total motor step length for

one enzyme cycle (from S to P), then

In this case, part of the chemical energy from transformation S → P is converted to

mechanical energy. The part that becomes heat is the entropy production.

The motor protein carries out a biased random walk with velocity vmotor = Jnessd. With

increasing force Fext, vmotor decreases. When Fext = ΔµS→P/d, the random walk is no longer

biased; this is known as a stalling force. One can also compute the dispersion of the motor,

i.e., a “diffusion coefficient”:
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In fact, as a semi-Markov process (also known as Markov renewal process or continuous-

time random walk), the mean cycle time is E[Tc] and the ratio of probabilities of forward

and backward cycles is .

5.7 Advanced topics

5.7.1 Empirical measure with finite time—Even for the simplest two-state Markov

process, some of the statistics can be complex. For example, [85] studies analytically the

statistical quantity

in which ξB(t) is the indicator function for state B in Eq. (18). They showed that the pdf

(probability density function) of Xτ can be obtained in terms of its Fourier transform γ(y):

in which , and

We see for large τ,

5.7.2 Non-Markovian two-state systems—Some enzymes exhibit clear two-state

stochastic behavior, but the process is not Markovian. For example, the consecutive dwell

times in state B could have non-zero correlation [12]. This is a strong violation of the

Markovian property. To explain this observation, the theory of dynamic disorder, or

fluctuating enzyme, assumes that  and  in equation (18) are themselves stochastic

processes in the form  in which Xt is an Ornstein-Uhlenbeck process (see Eq.

(3)) [86, 87, 88]. In this case, even though ξB(t) is no longer a Markov process, (ξB, X)

together is now a coupled diffusion process [89]. A more complex model on Xt (describing it

as fractional Gaussian noise) is considered in [90]. One can also model Xt by the generalized

Langevin equation [91] of Sec. 2.2.
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5.7.3 Dwell time distribution peaking—As we have discussed above, a continuous-

time Markov chain in a NESS can have complex eigenvalues, thus the power spectrum of its

stationary data can exhibit off-zero peak representing intrinsic frequency [92]. However, a

surprising result is that one can also observe an off-zero peak in the pdf of the dwell time

within a group of states, and this is impossible for a reversible process. This has been

discovered independently in [93, 94, 95].

5.7.4 Detailed balance violation and event ordering—The fundamental insight that

an sustained chemical energy input is necessary for observing an irreversible Markov

process in molecular systems has opened several lines of inquiry on stationary data. On the

one hand, for stationary molecular fluctuations in chemico-thermodynamic equilibrium, one

wants to test the preservation of detailed balance [96, 97, 98]. On the other hand, for a

molecular process with unknown mechanism, one wants to discover whether it is chemically

driven [99]. In fact, a quantification of the deviation from reversibility could reveal the

source of external energy supply. Finally, for system with breakdown of detailed balance,

the event ordering from statistical analysis provides insights toward molecular mechanism

[100].

The concept of detailed balance also exists in chemistry [64, 101, 102]. But it is essentially

different from the same term known in statistics. The chemical detailed balance requires that

a set of linear and nonlinear reactions forming a reaction cycle has zero cycle flux in

chemical equilibrium. This chemical detailed-balance is expressed in terms of

concentrations of the reactants, which are deterministic quantities. There is no probability

involved in this statement. If all the reactions are unimolecular, however, then a chemical

reaction system in terms of the law of mass action is equivalent to a continuous-time

Markov chain. Only in this case the chemical and the probabilistic detailed balance

conditions are the same.

6 Polymer dynamics and Gaussian processes

Polymer dynamics is another highly successful theory based on stochastic processes [103,

104]. A polymer chain in aqueous solution is modelled by a string of identical beads

connected by harmonic springs. The Langevin equation for the kth bead (k = 1, 2, …, N) is

(24)

in which α is the spring constant, m and ζ are the mass and damping coefficient of a bead,

and Bk(t) are i.i.d. Wiener processes, again representing the collisions with the solvent.

Usually the mechanical system is under overdamped condition, e.g., mα ≪ ζ2, in which the

acceleration is negligible. Then equation (24) is simplified to

(25)

Qian and Kou Page 21

Annu Rev Stat Appl. Author manuscript; available in PMC 2014 July 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



This is a multi-dimensional OU process. A polymer molecule presented by such a dynamics

is called a Gaussian chain.

One uses the boundary condition X0(t) = 0 to represent a tethered polymer end, and XN(t) =

XN+1(t) to represent a free polymer end. To study (25), an elegant approach is to

approximate it by a stochastic partial differential equation (SPDE):

in which  represents a spatio-temporal white noise. With the boundary conditions

X(0, t) = 0 and , Fourier transform yields

in which each normal mode

and

Each ξj(t) is an OU process; its stationary distribution has variance

Therefore, X(s, t) is a Gaussian random field with stationary variance

One strong prediction of the Gaussian polymer theory is that the end-to-end distance of a

long polymer should be scaled as the square-root of its molecular weight M. This result has
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become the standard against which a real polymer is classified: When a polymer is dissolved

in a “bad” solvent, its conformation is more collapsed, and thus its end-to-end distance

might scale as Mν with ν < 1/2. On the other hand, due to physical exclusion among polymer

segments, a real polymer in a “good” solvent is expected to be more expanded with ν > 1/2.

Indeed, the problem of excluded-volume effect in polymer theory has been a major topic in

chemistry and in mathematics. Paul Flory received the 1974 Nobel Prize in Chemistry for

his studies leading to a ν = 3/4. The rigorous mathematical work on this subject, known as

self-avoiding random walks, was carried out by Wendelin Werner, who received 2006 Fields

Medal for related work.

6.1 Tethered particle motion measuring DNA looping

Polymer theory has been widely applied in modeling biomacromolecules, especially DNA

[105]. In 1990s, Gelles, Sheetz, and their colleagues have developed a single-molecule

method to study transcription and DNA looping, called tethered particle motion (TPM)

[106, 107]. This time, the trajectory a Brownian motion particle, attached to a piece of DNA,

is followed. The statistical movements of the particle, therefore, provide informations on the

DNA flexibility, length, etc. The theory for the TPM requires a boundary condition at XN

that is different from Eq. (25), taking into account of the much larger particle that serves as

the optical marker [108, 109].

6.2 Rubber elasticity and entropic force

The Gaussian chain theory owes its great success to the Central Limit Theorem (CLT). The

end-to-end distance of a polymer chain can be thought as a sum of N i.i.d. random segment

lk, 1 ≤ k ≤ N, where N is proportional to the total molecular weight M. As long as l has a

distribution with finite second moment, then [103]

in which, due to spatial symmetry, it is assumed that E[lj · lk] = σ2δjk.

We like to point out that the elasticity of rubber is not due to any other molecular

interaction, to a large extent, but simply a consequence of this statistical behavior of a

Gaussian chain. The end-to-end distance is asymptotically a Gaussian random variable with

variance Nσ2:

Let one end of a chain be attached. Then the stochastic chain dynamics, on average, pulls the

free end from less probable position toward more probable position: This is called “entropic
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force” in polymer physics. In fact, reversing the Boltzmann's Law, there is an equivalent

harmonic “entropy potential energy” U(x) = kBTx2/(2Nσ2) with springer constant kBT/(Nσ2).

6.3 Potential of mean force and conditional probability

Stationary probability giving rise to an equivalent “force” is one of the fundamental insights

from polymer chemistry. A key concept in statistical chemistry, first developed by John

Kirkwood in 1930s [110], is the potential of mean force, which we shall discuss in this

subsection. It is essentially an incarnation of the conditional probability.

To illustrate the idea, let us again consider the Langevin equation for an overdamped particle

in a potential U(x):

The corresponding Kolmogorov forward equation, for probability density function fX(x, t) is

(26)

in which the −U′(x) term represents a potential force acting on the Brownian particle.

Now let us consider a Brownian particle in a 3-dimensional space without any force. If one

is only interested in the distance of the Brownian particle to the origin: R(t), then the pdf

fR(r, t) follows a Kolmogorov forward equation:

(27)

Comparing equation (27) to (26), we see that the stochastic motion of R(t) experiences an

equivalent force 2kBT/r, with a potential function UR(r) = −2kBT ln r. This is again an

entropic force, and the corresponding UR(r) is called potential of mean force. We recognize

that the entropic force arises essentially from a change of measure, therefore, it is

fundamentally rooted in the theory of probability. The potential of mean force UR(r) should

be understood as

(28)

Eq. (28) is again applying the Boltzmann's law in reverse, relating an energy to probability.
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7 Statistical description of general stochastic dynamics

7.1 Chemical kinetic systems as a paradigm for complex dynamics

It is arguable that, since the work of Kramers, chemists are among the first groups to fully

appreciate the nature of separation of time scales in complex dynamics: while the rapid

atomic movements in a molecule is extremely fast on the order pico- to femto-seconds, a

chemical reaction which involves passing through a saddle point in the energy landscape, on

this time scale is a rare event. From this realization, the notions of transition state and

reaction coordinate have become two of the most elusive, yet extremely important concepts

distinctly chemical. They are even more important in biophysics, which, among others, deals

with the transitions between conformational states of proteins. Although not being widely

articulated, this is the appropriate statistical treatment of any dynamic system with a

separation of time scales due to statistical multi-modality.

7.2 General Markov dynamics with irreversible thermodynamics

Ever since the work of Kolmogorov, reversible, or symmetric Markov process has been

widely studied both in theory and in applications. Detailed balance is one of the most

important concepts in the theory of MCMC. On the other hand, the notion of entropy has

grown increasingly prominent in the general discussions on complex systems, usually in

connection to the information theory.

The central role of irreversible Markov description of complex biophysical processes is now

firmed established. In recent years, it has also become clear that entropy, and entropy

production, are essential concepts in irreversible, often stationary, Markov processes. In this

section, we give a concise description of this emergent statistical dynamic theory. We shall

only present the key results and leave out all the mathematical proofs, which can be found in

the literature [15, 111, 112, 113].

Consider a diffusion process with its Kolmogorov forward equation in the form of

(29)

We assume that it has an ergodic, differentiable stationary density fness(x), x ∈ Ω. Then one

can define two essential thermodynamic quantities: internal energy of the system U(x) = −ln

fness(x) and entropy of the entire system

Then one has the expected value of the U and the so called generalized free energy Ψ [f(x, t)]

= E[U] − S:
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(30)

As a relative entropy, the importance of Ψ ≥ 0 is widely known. Then one has the following

set of equations that constitute a theory of irreversible thermodynamics:

(31a)

(31b)

(31c)

(31d)

(31e)

The first equation in (31a) can be interpreted as an energy balance equation, with the non-

negative Ein and ep as a source and a sink. ep is called entropy production. The second

equation in (31a) is an entropy balance equation, with heat exchange hex can be either

positive or negative. dΨ/dt ≤ 0 is the second law of thermodynamics.

For a reversible Markov process, Ein(t) = 0 for all t. Its stationary version has J(x) = 0 for all

x and ep = hex = 0. This is know as chemico-thermodynamic equilibrium in biophysics. In

general, in a nonequilibrium steady state, ∇ · Jness = 0 but Jness ≠ 0.

We now turn our attention to the dynamic equation (29). Its generator is ℒ* = ∇ · D(x) ∇ +

b(x) ∇. Introducing inner product

then the linear differential operator ℒ* can be decomposed into , a symmetric

and an anti-symmetric part. Correspondingly, one has the operator in (29), ℒ = ℒs + ℒa:

(32a)

(32b)

In connection to the thermodynamics in (31), a diffusion process with pure ℒs has Ein(t) = 0;

a process with pure ℒa has dΨ/dt = 0 for all t. Noting that the operator in (32b) is actually
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hyperbolic rather than elliptic: it is a generalization of a conservative, classical Hamiltonian

dynamics [113]. Eq. (32a) of course is a generalization of the heat kernel. The generalized

Markov dynamics, therefore, unifies the Newtonian conservative and Fourier's dissipative

dynamics.

Thermodynamics, and the notions of dissipative and conservative dynamics have been the

cornerstone of classical physics. We now see that they emerge from a statistical description

of Markov processes. It will be an exciting challenge to the practicing statisticians to apply

this new-found stochastic perspective in modeling dynamic data.

How to use these mathematical relations in (31)? We give a speculative example: Consider a

stochastic biophysical process Xt in stationarity and assume we know its stationary density

fness(x). Now one carries out a measurement at time t0 and observes Xt0 = x0 ± ∊.

Conditioning on this information, the process is no longer stationary; and the system in fact

possesses an amount of “chemical energy”, which can be utilized for t > t0. According to the

thermodynamic theory, the amount of energy is Ψ[f(x, t0)] = – ln (fness(x0)/(2∈)). This result

is consistent with information theory. How to calibrate this mathematical result against

energy in joules and calories, however, is a challenge.

8 Summary and Outlooks

Biological dynamics are complex. Uncertainty is one of the hallmarks of complex behavior,

either in the cause(s) of an occurred event, or in the prediction of its future – modeling and

predicting weather is one example. This intuitive sense in fact can be mathematically

justifies: Voigt [114] has shown that the generalized free energy Ψ defined in (30) is

monotonically decreasing if a dynamics is stochastic with uncertainty in the future, or is

deterministic but non-invertable with uncertainty in the past (i.e., many-to-one in discrete

time). Ψ is conserved in one-to-one dynamics such as determined by differential equations!

In contrast to the deterministic view of classical physics with certainty, quantitative

descriptions of biological systems and processes require a statistical perspective [115], as

testified in many successful theories and discoveries from population genetics, genomics,

and bioinformatics. In the context of single-molecule biophysics, where one zooms in on

individual molecules to study their behavior and interactions, one at a time, this stochastic

view is ever so fundamental: the random motion of and interaction between molecules in

time and space are necessarily described by stochastic processes. We have seen in this

review that the basic laws and understanding of statistical mechanics naturally lead to many

stochastic processes that govern the behavior of the underlying single-molecule system, but

more importantly the understanding and advances in stochastic processes theory motivate

new physical and chemical concepts – entropy production in nonequilibrium steady state

developed from studying irreversible Markov processes is one such example. The statistical

inference of single-molecule experimental data, ranging from exploratory data analysis,

testing stochastic models to the estimation of model parameters, has the distinctive feature

that the data are typically not the familiar i.i.d. (or independence) type. Often the underlying

stochastic-process model does not offer closed-form likelihood; even numerical evaluations

are difficult in many models; missing data, in the form of missing components/states or

state-aggregation, are prevalent owing to the experimental limitations. There are many open
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problems in stochastic model building, theoretical investigation of stochastic processes,

testing a stochastic model and the estimation of model parameters. The development in

stochastic-process theory and the statistical analysis of stochastic-process data will in turn

provide new modeling and data-analysis tools for biologists, chemists and physicists. We

believe the many open problems present great opportunities for statisticians and probabilists,

not only to provide correlations and distributions, but to actually determine mechanistic

causality through statistical analysis.

Stochastic process is a more natural language than classical differential equations for

chemical and biochemical dynamics at the levels of single molecules and individual cells. It

is still not widely appreciated that many of the key notions in chemistry echo important

concepts in the theory of probability: transition state as the “origin” of a rare event, chemical

potential as a form of stationary probability, Gaussian chain as a consequence of the Central

Limit Theorem, and potential of mean force as a manifestation of conditional probability, to

name a few. All these chemical concepts have fundamental roots in statistics, though most

of them were developed independently by chemists without the explicit usage of modern

theory of probability and stochastic processes.

8.1 Mechanism, entropic force and statistics

Before closing, we would like to discuss a philosophical point one inevitably encounters in

statistical modeling of complex dynamic data. A fundamental reason to study dynamics in

classical sciences is to establish causal relations between events in the sense that modern

scientific understanding demands a “mechanism” beyond mere statistical correlations.

However, non-deterministic dynamics with random elements raises a very different kind of

“understanding”: a force that exerts on a population level might not exist at all on an

individuals level; the former is an emergent phenomenon.

Taking the celebrated Fick's law as an example. For a large collection of i.i.d. Brownian

particles with diffusion coefficient D, their density flux clearly follows J(x, t) = −D∇c(x, t)

where c(x, t) is the concentration of the particle. A net movement of the particle population

is due to “more particles moving from a high-concentration region to a low-concentration

region than the reverse”, while every particle moves in completely random direction. There

is a “Fickean force” pushing the particle population; but this force is not acting on any one

individual in the population. Therefore, this Fickean force is a simple example of the

concept of entropic force discussed in Sec. 6.2. In fact, noting D = kBT/ζ, J(x, t) can be

expressed as (1/ζ)∇S(x, t) × c(x, t) where S(x, t) = − kBT ln c(x, t) is a form of energy if one

applies the Boltzmann's law in reverse.

This simple example illustrates that in statistical understanding of stochastic dynamics, one

needs to be able to appreciate a fundamentally novel type of “law of force” that has no

mechanical counterpart. This is the notion of entropy first developed by physicists in

thermodynamics. But its significance goes far beyond molecular physics; so is the Second

Law that accompanies it. In fact, we believe these concepts are firmly grounded in the

domain of probability and statistics. More and deeper investigations are clearly needed.
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Figure 1.
A typical enzyme kinetics can be written as a sequence of biochemical steps as in Eq. 19, or

from a single enzyme perspective, a cycle as illustrated here. Note that the second order rate

constants  and  in (19) are replaced by pseudo-first-order rate constants  and ,

respective. The simplest statistical kinetic model is to consider this system as a continuous-

time, discrete-state Markov process. More sophisticated model, when there are sufficient

data, could be a semi-Markov model with arbitrary, non-exponential sojourn time for each

of the three states [63].
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Figure 2.
A discrete schematic illustrating the Markovian kinetics of a single enzyme molecule with

conformational fluctuations.
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