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One·dimensional complex Ginzburg·Landau equation with a quintic nonlinearity (QCGL) is 
studied numerically to reveal the asymptotic property of its strong turbulence. In the inviscid limit, 
the QCGL equation tends to the nonlinear Schrodinger (NLS) equation which has a singular solution 
self·similarly blowing up in a finite time. The probability distribution function (PDF) of fluctuation 
amplitudes is found to have an algebraic tail with exponent close to -8. This power law is described 
as the multiplication of the PDF of the amplitude of a singular solution of the NLS equation and that 
of maximum heights of bursts. The former is shown to have a -7 power law in terms of the scaling 
property of the NLS singular solution. The latter is found to have a -1 power law by numerical 
simulation. 

§ 1. Introduction 

Significant deviations from Gaussian statistics make it difficult to understand the 
property of the fully developed turbulence. Non-Gaussianity observed in the proba
bility distribution functions (PDFs) of the velocity gradients plays a fundamental role 
in the energy transfer. The nonzero skewness of the longitudinal velocity gradients 
induces the energy transfer toward small scales. The strong intermittency in the 
energy dissipation is reflected in the large flatness of the velocity gradients. 1

)-3) 

Recently several authors have discussed the structures of PDFs.4
H) She et al.4

) 

showed by a Fourier-space band-filtering method that the flatness factors not only of 
the velocity derivatives but of the velocity fields are large when wave numbers 
involved are in the dissipation range. It is noteworthy that the PDFs of velocity 
gradients reconstructed with the Fourier modes in inertial range are close to Gaus
sian. These results suggest the existence of small-scale coherent structures, e.g., 
strong bursts in energy dissipation. The structures may be related to the complex
space singularities of the N avier-Stokes (NS) equations; in the inviscid limit, these 
singularities may appear in real-space in a finite time. Therefore it is plausible that 
the tail structures of the PDFs may be accounted for in terms of those coherent 
structures in the limit of high Reynolds number. 

Introducing a mapping closure model based on this idea, Kraichnan and She 5),6) 

tried to reproduce non-Gaussian PDF of the transverse velocity gradients obtained by 
direct numerical simulations at moderate Reynolds numbers. However, the charac
teristics of coherent structures are not clarified in their heuristic model. Anyway 
singularities of the Euler equations including their existence have not been explained 
thoroughly yet in spite of accumulation of researches.7)-9) 

Our computational facilities are not powerful enough to simulate the NS equa
tions at sufficiently high Reynolds numbers at which singularities may be visible if 

*) Present address: Faculty of Education, Kanazawa University, Kanazawa 920. 
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1128 H. Iwasaki and S. Toh 

they exist. In this paper, we study one-dimensional complex Ginzburg-Landau equa
tion with a quintic nonlinearity (QCGL) to examine the relation between the singular
ity and the asymptotic tail structure of PDF. The QCGL equation has much simpler 
dynamics than the NS equations and shows some essential characteristics similar to 
those of the NS equations. In the non-dissipative or inviscid limit, the QCGL equa
tion tends to a nonlinear Schrodinger (NLS) type equation which has singular solu
tions blowing up in a finite time.10

) As the dissipative effects become weak, the QCGL 
equation shows strongly chaotic and intermittent behavior due to bursting events 
localized in both space and time. These features are reminiscent of those of the NS 
equations. The fundamental features of these equations and their solutions are 
described together with the numerical methods in § 2. The PDFs of amplitudes 
increase deviation from Gaussian distribution with the decrease of the dissipative 
effects, and approach asymptotic forms in the inviscid limit.ll) These numerical 
results are shown in § 3. In § 4, the asymptotic tail structures of the PDFs are 
explained in terms of the singular solutions of the one-dimensiorial nonlinear 
Schrodinger equation involving a quintic nonlinearity (QNLS). Finally, § 5 is 
devoted to concluding remarks. 

§ 2. Fundamentals 

We consider the one-dimensional complex Ginzburg-Landau equation with a 
quintic nonlinearity (QCGL) 

(1) 

in a periodic interval [0,1], where variable </I(x, t) is a complex function of space x 
and time t, and R and v are real positive parameters. Using these parameters, we 
introduce the characteristic time, length and height by viR, R-1

/
2 and R l/4

, respective
ly. 

If v> 1, the system is modulationally unstable and has a chaotic behavior. When 
v is relatively small, the system may be chaotic with a few degrees of freedom. The 
behavior of the solution becomes more complicated with increasing V.

12
) 

In the limit of large v, the QCGL equation approaches the QNLS equation, 

.2.!L=' iJ2</1 + '1,1'14,1. at Z ax2 Z 'f' 'f', 
(2) 

which is known to have a singular solution blowing up at a finite time.10
),13

H
7) It has 

been shown13
) that when the degree of nonlinear term (26+ 1) and the spatial dimen

sion d satisfy the relation 6d~2, the NLS equation generally has a singular solution. 
In the one-dimensional case, the quintic nonlinearity 1</114</1 is the least power with 
which the system has a singular solution. 

Equation (2) has a special solution </I(x, t)=eit/3S(x), where amplitude Sex) is 
governed by d 2S/dx2 -(1/3)S+S5=0, which admits a localized solution 
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Statistics and Structures of Strong Turbulence 1129 

(3) 

having the maximum value of unity at x=O. Furthermore, Eq. (2) has the following 
scaling property. If ¢(x, t) is a -solution, so is A-l!2¢(A-Ix, A-2t), where A is an 
arbitrary positive constant. 

It is expected that a singular solution of Eq. (2) can be described by S which is 
scaled by a time-dependent factor A(t) decreasing to zero at the critical time, i.e., ¢(x, 
t)~A-It2(t)S(A-I(t)X). With this conjecture, many researchersl3H5

) tried to deter
mine this factor for the singul~r solutions of the NLS equation in the I-D and 2-D 
cases, but their results did not agree with numerical results. Recently, a singular 
solution of the 2-D NLS equation has been studied by LeMesurier et a1. I6

),17) Their 
result was found to agree well with that of numerical simulations. 

By a straightforward application of their analytical method, Eq. (2) is found to 
have a singular solution, which blows up at a critical time t*, of the form: 

(4) 

where 

(5) 

The functional form of V(c;, r) near the origin is very close to that of a special 
solution S(c;). At large distance, on the other hand, V(c;, r) decreases only alge
braically while S(c;) decreases exponentially. The region where V coincides with S 
expands slowly as t approaches the critical time, and they become completely identi
cal with each other at the critical time. 

The QCGL equation (1) may have a solution which behaves in a way similar to 
the above singular solution, though the dissipative effects suppress a blow-up. The 
system is disturbed by remnant and modulationally unstable modes.Il) Bartuccelli et 
aU2

) also predicted that the QCGL equation shows strongly chaotic and intermittent 
behavior, called strong turbulence, for sufficiently large Rand )). 

We study this "turbulent" state by solving Eq. (1) numerically in terms of split
step time integration schemelS

) with 1/3 de-aliased pseudo-spectral method. As will 
be shown in the next ,section, the solution sometimes takes extremely large ampli
tudes. The mesh size and the time step are optimized automatically so that the steep 
str,ucture may be well resolved. When the higher wave number components are 
excited strongly, the mesh size is halved and the time step is quartered to avoid 
numerical instability. During the simulation the number of collocation points is 
changed between 211 and 217. We set R=10,000 and ))=500, which are sufficiently 
large for Eq. (1) to show the asymptotic behavior.ll) When we rescale Eq. (1) as ¢(x, 
t)--'> RIt4¢(RIt2x, Rt) to eliminate R from the equation, the system size becomes RIt2 
and the factors of non-conservative terms turn 1/)). Thus 104 is sufficiently large to 
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1130 H. Iwasaki and S. Toh 

examine the behavior of this system for the large system size. In this sense, this 
system for large l/ may behave in a way similar to the QNLS equation even though 
l/ is much smaller than R. 

§ 3. Numerical results 

In order to see the global spatio-temporal structure of solution <P(x, t), we plot in 
Fig. 1 the absolute value 1<P(x, 01 for the whole spatial domain_ The profile is shifted 
up in proportion to time. The variation of I<p(x, t)1 in space and time is very 
complicated. The spatio-temporally localized structure, "burst", can be seen at t 
=1.6077576, x=0.42 and t=1.6099750, x=O.15. The relatively small amplitude waves 
with high wave numbers arise in the whole domain only for a short while after a burst 
appears. 

140 

120 TIME 

100 1.6119881 

--::;- 80 

~ 1.6099750 

$ 60 

40 
1.6077576 

20 

o 1.6057510 

0.0 0.2 0.4 X 0.6 0.8 1.0 

Fig. 1. Time evolutions of I¢(x, t)1 for v=500 in the whole spatial domain. The right ordinates 
show time and each scale indicates the time of corresponding profile. 
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Fig. 2. (a) Enlarged plots of a burst in Fig. 1 at t, = 1.6099742, t2=1.6099750, t3 =1.6099752 and t4 

=1.60997525. The time step during this period is order of 10-9
• (b) Scaled profiles 1¢'(x')1 

=;l"21¢(;lx'.)1 where ;l=(supxl¢(x)l)-2 at f,(o), tz(o), ta(6) and f4(+). The signs are plotted 
every four me.sh. The solid line represents S(x')=sech"2(2x' / j3} 

10 
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v = 1020 

v=500 

1.0 
TIME 

3.1. Local structure of a single burst 

1.9 
X 10-4 

In Fig. 2(a), we enlarge a particular 
burst in Fig. 1. The shape of the burst 
is almost symmetric and its width is 
narrower as the height is larger. In 
Fig. 2(b) we normalize the shape using 
the scaling property of the QNLS equa
tion at each time step so that the height 
is unity. The solid line is a special 
solution Sex') = sech 1/2 (2x' / /3), where 
x' is a scaled variable. The scaled 
shape is close to S near the origin. This 
fact indicates that the burst developes 

Fig. 3. Time-evolutions of the peak value of a 
burst for v=lOO, v=500 and v=1020. The self-similarly like the singular solution 
time origin has been redefined for convenience. of the NLS equation. 

The time-evolutions of the peak 
value of the burst are shown in Fig. 3. For v=500, it first increases algebraically. 
After reaching a finite height it stops increasing and decays rapidly, because the 
dissipation terms, a¢/ax and 1¢41¢, then become dominant. The curves for v=100 and 
v=1020

, the latter being regarded as the QNLS case, were calculated using the same 
data for v=500 as the initial condition. Note that with increasing v, the maximum 
of the peak value increases and the time attaining the maximum approaches the 
critical time of the QNLS singular solution. It is remarkable that the time-evolution 
of the peak value of the burst for v=500 is very close to that of the singular solution 
of the QNLS equation. 

In order to study spatio-temporal structures of this blow-up solution (v=1020
), we 

plot in Fig. 4(a) the shapes of the absolute value, I¢(x, t)l, at several instants. As the 
peak value of I¢(x, t)1 becomes larger, the width gets narrower. The figure suggests 
that this is the self-similar blow-up solution mentioned in the preceding section. This 
self-similarity implies that there is a scaling function L(t) such that the solution ¢ is 
described by a function Vas ¢(x)=L -1/2 VeL -IX) at each time. Next we examine the 
shape of V and time dependent scaling factor L(t). 

For convenience the scaling function LCt) is chosen as LCt)=(suPxl¢(x, 01)-2 so 
that the rescaled function V(L- I x)=V I2 ¢(X) has the maximum value of unity. The 
rescaled functions I V(,;)I at several instants are plotted in Fig. 4(b). The parameter 
,; is shifted so that I Vi has the maximum at ';=0. The solid line represents the 
special solution S. The shape of I Vi is almost identical to S except for the tail part. 
We note that the evolution of the burst in Fig. 2 is almost similar to that of the QNLS 
solution. 

Furthermore, to investigate the scaling function, we show in Fig. 4(c) L against 
t*- t in a logarithmic scale .. The solid lines represent Lo(t)=(t*- t)I/2 and LICt) 
=(t*- t)I/2(In In(1/ct*- t»)-I. The factor L is well fitted by LI as t tends to t*. 
However, it is also well approximated by Lo especially near t*. Note that the 
logarithmic correction in L I , (In In(l/ Ct* - t »)-r, is slightly different from the theoreti-
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1132 H. Iwasaki and S. Toh 
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Fig. 4. (a) Enlarged plots of 1¢l1 for v=lOzO at t1 

= 1.6099720, tz= 1.6099734, t3= 1.6099737 and t. 
= 1.60997375. The time step during this period 
is order of 10-9

• (b) Scaled profiles I V(';)I at 
h( D), tz( 0), t3(.6) and t.e + ). The signs are 
plotted every four mesh. The solid line repre
sents S(';). (c) The scaling factor L(t) plotted 
in comparison with Lo(t)=(t*- t)'/Z and L,(t) 
=(t*- t)'/z/In In(l/(t*- t». 
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cal prediction (Inln(I/(t*-t)))-1/2 given 
in Eq. (5). This slight discrepancy is an 
open question but is not essential for the 
subsequent discussion . 

3.2. Statistics of bursts 

We now consider the statistical 
properties of the bursts. First, we study 
the distribution of the maximum peak 
value of the bursts. While a solution of 
the QNLS equation blows up, a burst of 
the QCGL equation is bounded at a large 
but finite height ho. This maximum 
height ho is different from burst to burst, 
so that the QCGL equation admits a 
variety of bursts in magnitude. The 
simulation was carried out for a long 
time enough to include more than 1,000 
bursts for v=500. 

In Fig. 5, we plot G(h) the probabil
ity of such bursts that have maximum 
heights greater than h. Although G(h) 
decreases rapidly at the small height 
around the· characteristic height (R l/4 

=10), there is a -1 power law range 
followed by a faster decay. By compar

ing G(h) for other parameters (v=100, 200, 300, 400), we can see that the power law 
range increases with v. 

To characterize the intermittent property of the system, it is convenient to study 
the structure of the PDFs. Figure 6 shows the PDF of the real and imaginary parts 
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Fig. 5. The PDF G(h) for 1I=100, 200,400, 500. Fig. 6. The PDF of the real and the imaginary 
part of <p. Gaussian distribution is plotted for 
comparison. 

of the QCGL solution, Re(¢(x, t)) and 1m (¢(x, t», which is normalized so that the 
standard deviation is equal to unity. (Since Eq. (1) is isotropic for the argument of 
¢, the real and imaginary parts obey the same distribution.) The shape of the PDF 
around the central part is nearly Gaussian which is contributed from small amplitude 
waves. In contrast, at large amplitude it is significantly non-Gaussian with an 
algebraic tail, which reflects large bursts. This suggests that non-Gaussianity may 
not be observed strongly in lower-order moments. Indeed, the skewness factor is 

. zero within numerical errors and the flatness factor is 3.4 (as compared to the 
Gaussian value of 3). 

Now we consider the following PDF of the absolute value I¢(x, t)ldefined by 

I D· 
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Fig. 7. The PDF PT(h). 
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Fig. 8. The PDFs PB(h) (1I=500) and Pho(h) 
(1I=102o) for ho=lOO. 
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jjdtdxo(I¢(x, t)1-h) 

jjdtdx/ 
(6) 

Three particular PDFs are important in the following discussion. The first PDF, 
PT(h), is obtained from the QCGL solution, integrated over the whole spatio-temporal 
domain. The second one, PB(h), is obtained from a single burst, whose integral is 
over the whole spatial domain and its lifetime. Finally, Pho(h) is obtained from the 
blow-up solution of the QNLS equation, integrated over the whole spatial domain 
from its birth to the time of the maximum height ho. 

In Fig. 7, we plot PT(h) which has an algebraic tail with an exponent -8. In Fig. 
8, Pho(ho=100) and PB(h) are shown. They have almost the same algebraic tail with 
an exponent -7. The reason why PB decreases slower than Pho for large h is that the 
dissipation effects suppress the growth of bursts near the maximum amplitude. The 
difference in the exponent between PT and PB should be explained by the statistical 
distribution of the bursts. 

In the next section, we will first explain the power law -7 for Pho or PB by the 
scaling property of the QNLS singular solution and then try to reconstruct the power 
law -8 for PT(h) in terms of PB(h) and G(h). 

§ 4. Explanation of the power law of PDF 

In the preceding section, we see that PT(h) has the power law -8. This power 
law should be attributed to the statistics of bursts. Since bursts with very large 
amplitude behave in a way similar to the singular solution, the power law of PB may 
be explained in terms of the scaling law of the singular solution of the QNLS equation. 

As the first step, we estimate P<*>(h), i.e., Pho=oo(h), defined as 

jt*jdtdxo(h-I¢(x, t)1) 

jt*jdtdx 
(7) 

where ¢ is a singular solution of the QNLS equation and t* is its blow-up time. 
To estimate Eq. (7), we use singular solution (4). Near the critical time t*, the 

logarithmic dependence of L on time" (t*-t) can be neglected and V can be approx
imated by S. Hence the solution can be approximated as 

(8) 

Using new variables ~ and A, we find 

=41
00 
d~ roo dA~o(A _ ( S(~) )2) 

-00)0 S(~) h 
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Statistics and Structures of Strong Turbulence 1135 

(9) 

Thus we get P",,(h) rx h-7
• This power law agrees well with the numerical result in 

Fig,8. 
In order to explain the -8 exponent of PT(h) for the QCGL case, we take into 

account the dissipative effects. When the burst reaches a threshold height ho, the 
dissipation suddenly becomes important and the burst dies out rapidly, but a burst 
evolves in a way similar to a singular solution of the QNLS equation before reaching 
ho. The threshold height ho is not definite but distributed as described by a distribu
tion density function g(ho). Therefore Pr(h) is expressed by the ~um of PE(h) 
weighted with g(ho) over various threshold heights ho. 

Note that this distribution density is expressed in terms of G(h), which was 
introduced in § 3.2, as 

g(h)= dG(h) 
dh (10) 

The PDF, PE(h), of a single burst with threshold height ho is approximated by Pho(h), 
which is calculated as 

i to I"" Pho(h)rx _"" dt _"" dxo(h-I¢(x, t)1) (to being a time s.t. ho=supxl¢(x, to)l) 

where 

e(x)={~ for x<O, 
for x>O, 

is the Heaviside step function. 

(11) 

By noticing that Pho(h) vanishes for h > ho, and comparing Eqs. (9) and (11), we 
can approximate Pho(h) by 

(12) 

This approximation is derived since the power 6 of S(.;) in Eq. (11) indicates that only 
the value of S(.;) ~ 1 gives contribution to the integral. 

Then using Eq. (12), we have 

PT(h)rx 1"" g(ho)Pho(h)dho 

~ 1"" e(ho- h)g(ho)P",,(h)dho 

=,P",,(h) 1"" g(ho)dho 

= P",,(h)G(h) . (13) 
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1136 H. Iwasaki and S. Toh 

Thus the PDF of I¢I for the QCGL equation can be expressed as the product of the 
PDF of amplitude of the singular solution of the QNLS equation and the PDF of the 
bursts whose maximum heights are larger than h. 

As was shown, in § 3.2, G(h) has a -1 power law, so that we get PT(h) cx h-8
• 

This result coincides with the numerical result. 

§ 5. Concluding remarks 

We examined the PDFs of ¢ numerically and analytically. It is found numeri
cally that the PDF of I¢I has an algebraic tail with power -8. This tail structure can 
be expressed by the product of the PDF of a single burst and the distribution of the 
maximum amplitudes of bursts. 

Each burst blows up self-similarly like a singular solution of the QNLS equation 
until the dissipation starts to work in case of sufficiently weak dissipation; each 
bursting process is described by the non-dissipative feature. This self-similarity 
gives an algebraic tail with power -7 to the PDF of a single burst. The self-

. similarity of the bursting process is broken slightly by a logarithmic correction and 
a weak dependence of Von time. These effects, however, are too weak to affect the 
results we obtained. Thus we neglected these effects in this paper. 

Bursts are, however, unavoidably depleted by arbitrary dissipation. Thus they 
are forced to obey some distribution. We found that this distribution, G(h), takes an 
algebraic form asymptotically as l/ increases. It is noted that G(h) has a tail falling 
down more rapidly than algebraically at large values of h. The structure of G(h) is 
investigated in detail numerically, but we have not yet succeeded in explanation of 
this structure. 

These relations between statistics and structures seem to be essential for systems 
showing the strongly intermittent behaviors, such as the fully developed turbulence. 
We are now trying to apply our ideas to such systems. 
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