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Single particle tracking of mRNA molecules and lipid granules in living cells shows that the time
averaged mean squared displacement �2 of individual particles remains a random variable while
indicating that the particle motion is subdiffusive. We investigate this type of ergodicity breaking within
the continuous time random walk model and show that �2 differs from the corresponding ensemble
average. In particular we derive the distribution for the fluctuations of the random variable �2. Similarly
we quantify the response to a constant external field, revealing a generalization of the Einstein relation.
Consequences for the interpretation of single molecule tracking data are discussed.
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An ensemble of noninteracting Brownian particles
spreads according to Fick’s law as a Gaussian packet.
The ensemble averaged mean square displacement
(MSD) is hx2�t�i � 2D1t where D1 is the diffusion con-
stant. By an Einstein relation D1 is expressed in terms of
statistical properties of the microscopic jumps according to
D1 � h�x

2i=2h�i where h�i is the average time between
jumps and h�x2i is the variance of the jump lengths.
Instead, one can analyze the time series x�t� of the particle
trajectory and determine the time averaged (TA) MSD

 �2��; t� �

R
t��
0 �x�t0 � �� � x�t0��2dt0

t��
; (1)

where � is called the lag time. For regular Brownian
motion and long measurement time t� h�i we have �2 �
2D1�, i.e., an ergodic behavior such that the diffusion
coefficient obtained from an individual trajectory is iden-
tical to the diffusion constant found from an ensemble of
particles under identical physical conditions.

From in vivo single particle tracking the diffusion of
lipid granules in yeast cells [1] and of mRNA molecules in
E. coli cells [2] two findings were made. (i) The TA MSD is
subdiffusive, �2 	 2 �D��� with � 
 3=4. Usually subdif-
fusion is defined by the behavior of an ensemble of parti-
cles hx2�t�i � 2D�t

�=��1� �� and 0<�< 1. Such
anomalous behavior is widespread [3–7], including charge
carrier transport in amorphous semiconductors [4], models
of gene regulation [8], enzymatic binding in crowded
cellular environments [9], and anomalous dynamics of
cell migration [10] to name but a few. (ii) The second
striking observation [1,2] was that the TA diffusion coef-
ficient �D� is a random variable different from the diffusion
constant of the ensemble D�, albeit the measurement time
is long (see below) [11]. Namely using Eq. (1) to compute a
TA MSD we get a result which varies from one single
particle trajectory to another [1,2] (see Fig. 4). This means
that ergodicity is broken such that time and ensemble
averages of the diffusion process are nonidentical.

In this Letter we investigate a widely applicable model
for anomalous diffusion: the continuous time random walk
(CTRW) [3–7]. In CTRW subdiffusion is scale invariant
and h�i ! 1 which naturally leads to ergodicity breaking
[12,13]. We show that for the subdiffusive CTRW the TA
MSD (1) differs from the ensemble average, even in the
limit of long averaging times. We obtain the distribution of
TA MSDs that completely quantifies the magnitude of the
new fluctuations. Then we treat the biased random walk
showing that the TA response to an external driving field F
also remains random. These new findings lead to a new
type of fluctuation-dissipation relation for anomalous ki-
netics which depends both on the lag time � and the
measurement time t. Finally, we discuss the validity of
our theory in experimental situations and its generality in
other models of anomalous diffusion.

The uncoupled CTRW in one dimension is considered
[3–6]. The probability density function (PDF) of jump
lengths is f��x� for which we assume that its variance
h�x2i �

R
1
�1 �x

2f��x�d��x� is finite. Waiting times be-
tween jump events are distributed with a common PDF
 ���. So the particle waits in its initial location for a
random waiting time, then makes a jump in space, and
then the process is renewed. Our main interest is in the case
where the average sojourn time is infinite h�i � 1, namely
the subdiffusive case with a power law PDF  ��� 	
A���1���=j�����j and 0<�< 1. Physical models which
give specific values of � for different systems and models
are given in Refs. [3–6].

We simulate CTRW trajectories with � � 3=4, for an
unbiased random walk on a lattice f�x� � ���x� 1� �
��x� 1��=2 and in Fig. 1 show the TA MSD (1) of 10 in-
dividual trajectories with free boundary conditions. The
most striking feature in the figure is that the curves are
nonidentical, and the TA MSDs remain a random variable
even though a large number of jump events occur. In
contrast, if we choose a waiting time distribution with �>
1 the TAs will be identical to the ensemble average and
nonrandom when the measurement time is long.
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To develop a theory for the observed behavior we first
consider the average of Eq. (1) for unbiased CTRWs,
namely for the case when the average jump length is
zero. We consider first free boundary conditions, a widely
applicable case [3–7], not necessarily relevant for the
bounded motion in the cell (see below). We have x�t0 �
�� � x�t0� �

Pn�t0 ;t0���

i�1 �xi, where f�xig are random jump
lengths, and n�t0;t0��� is the number of jumps in the interval
�t0; t0 ���. For the unbiased CTRW the f�xig’s are inde-
pendent random variables with zero mean; hence, h�x�t0 �
�� � x�t0��2i � h�x2ihn�t0;t0���i. The average number of
jumps in �t0; t0 ��� is hn�t0;t0���i � hn�0;t0���i � hn�0;t0�i.
Using hn�0;t0�i 	 t0�=�A��1� ���,

 h�2i �
h�x2i

A��1� ��
t1�� � �1�� � �t� ��1��

�1� ���t���
(2)

is obtained from Eq. (1). In the limit �� t we find

 h�2i 	
2D�

��1� ��
�

t1��
; (3)

where we used the generalized Einstein relation D� �
h�x2i=�2A� [14]. For � � 1 Eq. (3) is very different from
the behavior found for an ensemble, hx2�t�i �
2D�t

�=��1� �� indicating ergodicity breaking.
Equation (3) shows that if we know through measurement
the ensemble averaged anomalous diffusion coefficient D�
we can determine the single particle trajectory averaged
behavior. The result Eq. (3) can be explained by noting that
the longer the process goes on, the more likely we are to
find long trapping times of the order of the measurement
time (aging). Hence, h�2i decreases when measurement
time t is increased. Roughly speaking the diffusion con-
stant depends on time D�t� 	 dhx2i=dt	 t��1 and Eq. (3)
is described by �2 ’ D�t�� so a linear dependence on the
lag time also seen in the simulations in Fig. 1 is found.

Distribution of �2.—For the CTRW under investigation
we still have the usual scaling of x2 	 N with the number
of jumps N in �0; t�, however, due to the broad distribution
of waiting times N 	 t� and so x2 	 t�. Similar scaling
arguments can be used to analyze the distribution of �2.
Assume no jump event occurs between time t1 and t2 and
that t2 � t1 ��. Then for t1 < t0 < t2 � � we have
�x�t0 � �� � x�t0��2 � 0. Since for the scale free dynamics
we have long sojourn times of the order of the measure-
ment time without any jump event, �x�t0 ��� � x�t0��2 �
0 for long renewal periods separated by shorter periods of
activity. The most important point to realize is that for the
process �x�t0 � �� � x�t0��2 the distribution of sojourn
times in state �x�t0 ��� � x�t0��2 � 0 follows the same
power law decay as the original process x�t� with a waiting
time PDF  ��� 	 ���1���. This means that when N serves
as the operational time we have normal behavior

 �2 	 CN=t; (4)

where C is a constant independent of N soon to be deter-
mined, and in the denominator we approximate t� �	 t.
Let PN�t� be the probability of making N jumps in the
time interval �0; t� and P̂N�u� its Laplace transform.
From the convolution theorem P̂N�u� � �1�  ̂�u���
exp�N ln ̂�u��=u as well known [14]. Since we are inter-
ested in the long time behavior only the small u expansion
 ̂�u� 	 1� Au� is relevant and we have

 P̂ N�u� 	 Au��1 exp��NAu��: (5)

Inverting to the time domain

 PN�t� 	
t

�A1=�N1�1=�
l�

�
t

A1=�N1=�

�
; (6)

where l��t� is the one-sided Lévy stable PDF, whose
Laplace pair is exp��u�� [15,16]. To find C we note that
after averaging h�2i � ChNi=t, using hNi 	 t�=A��1� ��
and Eq. (3) we have C � 2AD��. By change of variables
we obtain the PDF of the dimensionless random variable
� � �2=h�2i using Eqs. (4) and (6)

 lim
t!1

����� �
�1=��1� ��

��1�1=�
l�

�
�1=��1� ��

�1=�

�
: (7)

This is one of our main results since it describes the
distribution of a large class of time average observables,
as we soon show. When �! 1 we have an ergodic behav-
ior lim�!1����� � ���� 1�. A measure of ergodicity
breaking (EB) is the parameter

 EB � lim
t!1

h��2�2i � h�2i2

h�2i2
�

2�2�1� ��
��1� 2��

� 1; (8)

which is independent of the lag time � and D�.
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FIG. 1 (color online). Simulations of the subdiffusive CTRW
process with � � 3=4 and free boundary conditions show that
the TA MSD is a random variable depending on individual
trajectories. The solid curve is the averaged behavior Eq. (3).
The measurement time is t � 108 and  ��� � ����1��� for
� > 1.
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In Fig. 2 we show the behavior of the average of �2 and
the fluctuations characterized by the EB parameter, show-
ing excellent agreement between asymptotic theory and
simulations though the convergence of the EB parameter is
typically slow. In Fig. 3 simulations of the PDF of �2=h�2i
for � � 1=2 and � � 3=4 are shown. We see that for � �
3=4 we have a peak close to �2=h�2i � 1 which indicates
that we are closer to the ergodic phase (�! 1) while for
� � 1=2 the peak is on zero indicating stronger nonergo-
dic behavior as we decrease �.

Biased CTRW and generalized Einstein relation.—Now
we assume that h�xi � 0 but constant, a case which leads
to anomalous drift. We consider the TA

 ���; t� �
Z t��

0
�x�t0 � �� � x�t0��dt0=�t� ��: (9)

First we obtain the average which is done with an approach
similar to the unbiased case, and using hx�t0 � �� �
x�t0�i � h�xi��t0 � ��� � t0��=�A��1� ��� we find

 h�i 	
h�xi

A��1� ��
�

t1��
; (10)

for t� �. Then we can show that the PDF of � � �=h�i is
given by Eq. (7); thus, fluctuations of the TA MSD of the
unbiased random walk and the fluctuations of the biased
mean response have identical distributions.

As is well known according to the generalized Einstein
relation the transport of an ensemble of particles is related
to the free diffusion of the same particles by hx�t�iF �
Fhx2�t�i=2kbT, where hx2�t�i is the ensemble average MSD
in the absence of a force field and hx�t�iF is the mean drift
when a constant force F is applied to the system [3,17–19].
This relation can be used to prove that on a microscopic
scale h�xiF � Fh�2xi=�2kbT�, which can be obtained from

thermal detailed balance conditions [17]. Using this rela-
tion and Eqs. (3) and (10)

 h�iF � Fh�2i=�2kbT�; (11)

which is valid under usual linear response assumptions.
This Einstein relation for the TAs while clearly related to
the Einstein relation for the ensemble average is valid for
any lag time � and measurement time t. In this sense it
differs from the usual Einstein relation. As mentioned, the
relation between transport and diffusion runs deeper, at
least within the CTRW model, since we showed that the
fluctuations are identical as long as the external field does
not modify  ��� (a reasonable assumption for weak fields
[17]) and described by Eq. (7).

Relation with experiments.—Our results can be tested in
single particle experiments, for example, for a bead anom-
alously diffusing in an actin network which exhibits a
CTRW type of dynamics [20]. However, in the experi-
ments in the cell [1,2] the particle motion is bounded by
the cell walls. Indeed the particles may interact with the
cell wall many times whenever 2D�t

�=��1� ��> L2,
where L is the system length. Finiteness of the system
implies that at long times the ensemble averaged MSD
will not increase with time but rather saturate.

We have simulated the effect of a boundary by consid-
ering an unbiased CTRW on a lattice with system size L �
62 with lattice spacing equal unity and � � 3=4. The
simulations shown in Fig. 4 look similar to experiment
and we have �2 ’ �� with � ’ 3=4 at least within a
reasonable time window. The exponent �< 1 depends
on the system size, on �, and on the time window under
investigation. Still our numerical results show that CTRW
theory is compatible with available experiment. A direct
test of our theory would be to change the experimental time

10
4

10
5

0.1

0.5

2.0 

8.0 

 ∆  

 <
 δ

2  (
 ∆

 )
 >

 

10
2

10
6

10
12

0.3

0.57
1.0

2.0

4.0

  t  

E
B

 

2×103

FIG. 2 (color online). (a) h�2i versus � for � � 1=2 and t �
108. Stars are simulations and the solid curve is theory Eq. (3)
without fitting. (b) The EB parameter converges slowly to the
asymptotic value EB � 0:5708 given by Eq. (8). Here � � 10
(dots), � � 2500 (stars), and � � 1=2.
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FIG. 3 (color online). PDF of the scaled random variable � �
�2=h�2i for � � 1=2 and � � 3=4 with t � 108 and t � 107,
respectively. The full line is Eq. (7). Stars �� � 2500� and
circles �� � 4� 104� are simulations.
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t (not only � as done so far) and see if the TA diffusion
slows down with increasing t.

Notice that for free boundary conditions we get �2 / �,
the existence of the boundaries thus causes the diffusion to
appear slower (i.e., �< 1) which is intuitively expected.
For free boundary conditions, what appears as normal
diffusion in a single particle measurement therefore may
actually be a hidden subdiffusive process. For both free and
reflecting boundary conditions as we increase the measure-
ment time diffusion is slowed down when the TA proce-
dure is made. In all such experiments it is thus imperative
to analyze the TA MSD also as function of the measure-
ment time t. Additional clues about the nature of the
diffusion are the potential scatter of the diffusivity as
well as the shape of the trajectories.

In the cell, the measurement time t is limited by the
lifetime of the cell. This is important from the point of view
of theory which usually assumes an infinite measurement
time. Indeed in a finite volume one can expect from a
thermodynamical argument demanding stationarity that if
 ��� decays like a power law it does so only within a finite
time interval and then a cutoff will appear. However, the
finite lifetime of the cell implies that the usual long time
limit essential for ergodicity may not be reached and
ergodicity breaking is found: Ergodicity of diffusion pro-
cesses is not fulfilled in a living cell.

More generally we expect TA diffusion and transport
coefficients to remain random in other models of anoma-
lous diffusion. We have recently shown [21] that for inter-
mittent weakly chaotic systems exhibiting anomalous
diffusion, the distribution of scaled TA Lyaponov expo-
nents is described by Eq. (7); similar behavior is found for
superdiffusive Lévy walks. For random walks in random

environments (e.g., random trap and comb models) we
expect similar behavior due to the deep connections be-
tween these models and CTRW theory (in these models
h�i ! 1 as in the subdiffusive CTRW; however, the dis-
order is quenched not annealed). Thus one of the most
basic paradigms of transport and diffusion theory, namely
that information obtained from single particle tracking is
contained already in the ensemble measurement, is not
valid for anomalous diffusion. This has ramifications for
vast classes of processes.
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FIG. 4 (color online). Time average �2 vs � for unbiased
CTRW on a lattice of size L � 62, mimicking a particle bounded
in a finite domain, as found in the cell. Compared with the
unbounded case in Fig. 1 the diffusion is slower. The trajectory
averaged MSD follows �2 	�� with � � 3=4 similar to what is
found in [1,2]. The measurement time was t � 108, � � 3=4.
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