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SUMMARY 
Just as there are different interpretations of probability, leading to different kinds of 
inferential statements and different conclusions about statistical models and questions, so 
there are different theories of measurement, which in turn may lead to different kinds of 
statistical model and possibly different conclusions. This has led to much confusion and a 
long running debate about when different classes of statistical methods may legitimately be 
applied. This paper outlines the major theories of measurement and their relationships and 
describes the different kinds of models and hypotheses which may be formulated within 
each theory. One general conclusion is that the domains of applicability of the two major 
theories are typically different, and it is this which helps apparent contradictions to be 
avoided in most practical applications. 
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1. INTRODUCTION 

No modern statistician can be unfamiliar with the fact that there are different 
interpretations of probability, that these lead to different schools of inference and 
that the conclusions drawn by these schools can differ. The dialogue about which is 
the 'correct' interpretation of probability has been long and often bitter, and is well 
documented in the statistical literature. Less well appreciated within the statistical 
community, however, is that there has also been a long and often equally acri- 
monious dialogue about the interpretation of measurement. It is curious that this 
debate has barely figured in the statistical literature since it is just as central to 
statistical work as the interpretation of probability. Instead it has occurred mostly in 
the social and behavioural science literature (for example, Stevens (1946, 1951), Lord 
(1953), Adams et al. (1965), Gaito (1980), Townsend and Ashby (1984), Michell 
(1986) and Stine (1989)). An exception to this concerns the measurement of probab- 
ility itself, especially the measurement of subjective probability, which statisticians 
have explored in detail. However, since the aim of this paper is to draw the attention 
of statisticians to issues arising from measurement in general, the particular problems 
of measuring probability are not discussed. (A similar comment applies to utility.) 
Bernardo and Smith (1994) gave a comprehensive overview of the issues associated 
with measuring probability. 
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446 HAND [Part 3, 

As with probability, different interpretations of measurement can lead to different 
consequences for inference -and hence to different conclusions by virtue of the fact 
that different kinds of hypotheses must be formulated and models built. Confusion 
between these different kinds of hypotheses and models has led to confusion and 
considerable debate over the validity of the conclusions drawn. Much of this debate 
has been stimulated by controversy over the legitimacy of applying different classes 
of statistical methods to data arising from different kinds of measurement activity. 
However, there is a complex interplay between transformations of variables, meas- 
urement theory, the precise nature of the research question being investigated and the 
meaningfulness of the results. Given the ubiquity of transformations in modern 
statistical analysis and the subtlety of formulating precise research questions, it is 
even more surprising that the statistical literature does not contain an extensive 
discussion of the meaning of measurement. This paper seeks to make a small step 
towards filling that gap. 

In a study of statistical consultancy, van den Berg (1991) found that measurement 
level was the aspect on which there was least agreement. She reported many different 
classifications of measurements: counts versus measurements; nominal, ordinal and 
numerical; dichotomous as a separate category; qualitative versus quantitative; qual- 
itative levels sometimes being called categorical or non-numerical; quantitative levels 
sometimes being called metric, numerical or simply measurement. Nelder (1990) 
described various 'modes' of data, distinguishing continuous counts, continuous 
ratios, count ratios and categorical, with the last being divided into three subtypes 
(nominal, ordered on the basis of an underlying scale and ordered without an 
underlying scale). Bartholomew (1987) distinguished metrical from categorical. 
Mosteller and Tukey (1977) identified grades, ranks, counted fractions, counts, 
amounts and balances. And other classifications have also been suggested. 

Many, if not most, of these classifications are based on pragmatic data analytic 
grounds: the statistical techniques used to analyse a mere classification are different 
from those used to analyse a 'continuous numeric' variable such as length. However, 
as we shall see, a deeper and more fundamental classification also exists. 

One of the earliest explicit formulations of measurement was due to the physicist 
Campbell (1920), who described ('fundamental') measurement as the assignment of 
numerals to represent the properties of objects, where the objects satisfied 

(a) an order relationship and 
(b) a physical process of 'addition' (nowadays called concatenation, such as 

placing rods end to end in a straight line). 

But not all measurements in physics can be so described (e.g. density) so the basic 
notion had to be extended to include 'derived' measurement: those properties which 
are defined in terms of others. However, even this extension fails for disciplines such 
as psychology, where often not only can no concatenation operation be defined but 
also it may not be obvious precisely what empirical relationship is being represented. 

In an effort to resolve this problem, the psychophysicist Stevens (1946, 1951) made 
two advances. Firstly, he generalized Campbell's concatenation structures to other 
empirical systems (so, for example, systems which satisfied ordinality but not 
concatenation also constituted a kind of measurement). And, secondly, he noted that 
the mapping from the empirical system to the numerical system did not uniquely 

This content downloaded from 128.195.64.2 on Sun, 8 Sep 2013 20:03:56 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1996] STATISTICS AND THEORY OF MEASUREMENT 447 

characterize the numbers to be assigned. We can, for example, measure length in 
inches or centimetres -both representations are equally legitimate. Given this, 
Stevens argued, we should use only those statistics which are invariant to changes 
between legitimate representations. Adopting this principle, he defined the now 
famous nominal, ordinal, interval and ratio scales, characterized by the type of 
transformations which mapped from one legitimate representation to another. Such 
transformations are nowadays called admissible or permissible transformations. 
Thus, for nominal scales one-to-one transformations are permissible. For ordinal 
scales monotonic increasing transformations are permissible. For interval scales 
linear transformations are permissible. And for ratio scales only similarity trans- 
formations are permissible. 

Stevens's arguments seem sound: if statistical methods yield conclusions that vary 
according to which of the equally legitimate numerical representations is adopted, 
then surely something must be amiss. However, not everyone agreed: as some 
pointed out, statistical procedures make merely distributional assumptions, not 
assumptions about the type of scale. Statistical operations can be carried out on 
numbers no matter what the origin of those numbers is. Somehow the issue is deeper, 
involving notions of interpretability of data and statistical conclusions. The debate 
about the relationship between statistical techniques and measurement scales has 
continued, right from the time of Campbell and Stevens to the present. Recent 
contributions include Velleman and Wilkinson (1993a, b), Hand (1993a) and 
Niederee (1994). 

Although most of the debate has taken the form of polemics favouring one or 
other side of the debate, a few authors have attempted to resolve things by 
considering higher level issues. They have suggested that perhaps the existence of 
more than one theory of measurement lies at the root of the controversy. Dawes and 
Smith (1985), for example, contrasted representational and non-representational 
measurement, and Michell (1986) (developed further in Michell (1990)) contrasted 
representational theory, operational theory and classical theory. Michell, in fact, 
described the controversy over scales of measurement as a 'clash of paradigms'- 
making the parallel between probability and measurement again striking. 

In this paper, to provide the necessary background, the different theories are 
outlined in Section 2. The representational paradigm, described in Section 2.1, is by 
far the best developed theoretically and might perhaps be regarded as representing 
the current dominant paradigm (occupying the role that the frequentist interpreta- 
tion of probability did a couple of decades ago?). Certainly, it seems to be regarded 
as having the soundest conceptual basis: when the validity of a statistical analysis and 
conclusion is criticized on measurement theoretic grounds, the representational 
theory is typically the theory referred to. 

The non-representational theory described by Dawes and Smith (1985) seems to 
have very similar content to the operational theory described by Michell (1986) and 
also to the pseudopointer measurement of Suppes and Zinnes (1963). The ideas 
underlying these theories are outlined in Section 2.2, where we have adopted the term 
operational, partly to avoid the awkwardness of non-representational and partly so 
that we can outline Michell's third theory. The importance of operational 
measurement hinges on its place in justifying analytic practices that might be 
regarded as dubious under the representational theory. Operational theory had its 
genesis in physics, where there was an uneasiness about the reality of the theories and 
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concepts introduced in the first decades of this century, but it seems to have had most 
practical effect in disciplines such as psychology. In particular, it has achieved a high 
level of sophistication through statistical models such as latent variable models and 
linear structural relational models. Finally, in addition to the representational and 
operational schools, Michell describes a classical school; this is outlined in Section 
2.3. 

One way of thinking about the difference between representational and opera- 
tional measurement is that the former seeks to represent or model empirical relation- 
ships - and so is about understanding the substantive domain of investigation - 

whereas the latter seeks to predict. Accurate prediction can be achieved without any 
understanding of the underlying mechanism (witness someone who can drive a car 
well without any understanding of how it works). Confusion between these two aims 
is widespread and is probably promoted by the unfortunate adoption within statistics 
of the term 'model' to denote a mere description. Things would be clearer if model 
were reserved for a system which reflected a theory or hypothesis about an under- 
lying mechanism, and if some other term (such as 'description') were used for a 
summary of the data which, though perhaps well fitting, was no more than an 
empirical construct. However, the momentum of statistical usage is too great for me 
to attempt to change it here, so, where it is important in what follows, I shall refer to 
a 'mechanistic model' and a 'descriptive model' as appropriate. 

In Section 3.1 I examine the formulation of statistical models (subsuming both 
types) and hypotheses in detail, adopting strands from both the representational 
and the operational schools. I examine the concept of meaningfulness of statistical 
statements, primarily from Stevens's perspective of invariance over legitimate repre- 
sentations but also briefly from the perspective of definability in terms of the 
system being measured. I argue that statistical statements about samples or groups of 
objects need not be defined solely in terms of the empirical relationships between 
objects. To a large extent, whether or not they should be so defined depends on 
whether one is building a mechanistic or descriptive model. I hope that this sheds 
some light on the controversy over what and when statistical operations are 
legitimate. 

In Section 3.2 I look more closely at transformations and their relationships to 
measurement scales. It may be possible to find numerical assignments, each satisfying 
certain properties which remain invariant under the same classes of transformations, 
but which are not homomorphic to each other. Superficially this seems to suggest 
that we have alternative non-homomorphic representations for a given empirical 
system, suggesting that Stevens's strictures are too severe. Closer examination, 
however, shows that this is not so -the representations reflect different aspects of 
the empirical system. 

Section 3.3 examines the relationship between model generation, model testing and 
the underlying measurement theory. Model generation is the more relaxed activity, in 
that, almost by definition, a search for unexpected pattern should not be constrained 
by pre-existing views on what is and is not legitimate. Model building and model 
testing, however, are necessarily constrained by the properties of the data with which 
we are dealing: one's philosophy of measurement influences the hypotheses that one 
can formulate and the ways in which those hypotheses may be examined. The 
detailed formulation of a statistical question determines what kind of invariances are 
required of the data for it to be meaningful, and some authors have taken this to 
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define the measurement scale of the data. In my view, however, this leads to needless 
complications. 

There are aspects to the relationship between measurement and statistics that are 
beyond those covered in this paper, although inevitably intertwined with them. An 
important one, merely mentioned below in the context of the sort of underlying 
theories that should be built to model it, is accuracy of measurement. Bailar (1985) 
presented a broad overview of measurement accuracy, covering the notions of 
replication and reproducibility, and giving examples from a wide variety of areas. 
Closely related, but, as statisticians will be aware, not identical, is the concept of 
precision. Wise (1995) provided a collection of essays focusing on the historical 
development of the concept. A third, broader, aspect of the relationship between the 
two disciplines is the question of what to measure. Sometimes we shall choose to 
measure a proxy variable because the thing that we are really interested in is difficult 
or expensive to measure, or because it defies clear definition (see Section 2.2). The 
proxy variable may be well defined, it may be based on sound statistical principles 
and it may be precise, all features which make it attractive -but using it as, for 
example, a control mechanism may lead to distortion of the objectives. Topical 
examples are organizational audit mechanisms such as educational league tables and 
the research assessment exercise used in assessing research performance of British 
university departments. 

2. THREE THEORIES OF MEASUREMENT 

2.1. Representational Measurement Theory 
Representational measurement theory is the dominant current measurement 

paradigm. In fact, the phrase 'measurement theory' is often used as a shortened term 
for this particular theory. It originated around the end of the 19th century and the 
beginning of the 20th century with the work of von Helmholtz (1887) and Holder 
(1901). The magnum opus of representational measurement theory is the three- 
volume work Foundations of Measurement (Krantz et al., 1971; Suppes et al., 1989; 
Luce et al., 1990). The approach adopted by this work, and by representational 
measurement theory in general, is made clear in the opening sentences of the preface: 

'Scattered about the literature of economics, mathematics, philosophy, physics, psy- 
chology, and statistics are axiom systems and theorems that are intended to explain why 
some attributes of objects, substances, and events can reasonably be represented numer- 
ically. . . . Although such systems are of some mathematical interest, they warrant our 
attention primarily as empirical theories -as attempts to formulate properties that are 
observed to be true about certain qualitative attributes.' 

So, representational measurement theory is about describing real empirical systems. 
In representational measurement theory we begin with a set of objects, each of 

which has one or more common attributes, each in turn of which can be divided into 
mutually exclusive and exhaustive equivalence classes. To keep things simple at this 
stage, we restrict the discussion to a single attribute. Thus each object can be 
uniquely allocated to a single equivalence class according to the 'value' of its 
attribute. Then the objects and the relationships between them (induced by the 
relationships between the equivalence classes for the attribute) constitute an empirical 
relational system (ERS). In parallel with this we construct a numerical relational 
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system (NRS) comprising numbers (typically the real numbers, though they need not 
be) and the relationships between them. Then representational measurement theory 
is concerned with establishing a mapping from the objects, via the equivalence classes 
to which they belong, to the number system in such a way that the relationships 
between objects are matched by relationships between numbers. These numbers form 
the values of a variable. In particular, representational measurement theory presents 
axioms which the objects must satisfy to permit such numerical representation. 

Statistical operations can then be carried out on the numbers and the aim is that 
conclusions reached about relationships between the numbers will reflect corres- 
ponding relationships between the objects. In particular, in statistical analysis we 
may be interested in making inferential statements about notional classes of objects, 
from which those actually studied were drawn. 

A simple (and basic) example will illustrate these ideas. 
Consider a set of rigid rods. These have an attribute 'length' and we can allocate 

rods to equivalence classes according to whether or not, when laid side by side so that 
the left-hand ends terminate together, the right-hand ends also terminate together. 
All those with both ends terminating together constitute a single class. But we can 
say more than this. These classes are related according to whether the rods in one 
class terminate to the right of the rods in the other class. When this is satisfied we say 
that the rods in the first class 'are not shorter than' the rods in the second. 

We can now establish a mapping from the rods to the positive real numbers such 
that longer rods are associated with larger numbers, i.e. letting M(x) be the number 
corresponding to rod x, we assign numbers such that M(x) > M(y) if and only if 
x D y, where D represents 'is not shorter than'. M(x) is the value of the variable 
'length' for the rod x. 

By these means we establish an isomorphism between the equivalence classes and 
the positive real numbers, and a homomorphism between the rods and the positive 
real numbers. In mathematical terms, we establish a homomorphism from the ERS 
denoted by [A, D], where A represents the set of rods, to the NRS denoted by 
[R+, )]. An important feature of this procedure is that, in general, the homo- 
morphism will not be unique -there will be more than one mapping in which the 
relationships between the numbers reflect the relationships between the objects. Now, 
given a set of numbers which have been assigned to the objects in such a way that 
they preserve the is not shorter than relationship, we can carry out statistical 
operations on those numbers, using the ) relationship, and any conclusions that we 
reach will have empirical counterparts. We could, for example, compare the medians 
of the lengths of two groups of rods. 

As it happens, we can go further with this example. The attribute length possessed 
by rigid rods has other internal relationships. In particular, if we place two rods end 
to end in a straight line then we can (in principle, at least) find a third rod which, if 
placed next to this concatenation, has left- and right-hand ends aligned with those of 
the concatenated pair. We thus have a three-component relationship between the 
rods in addition to the two-component relationship above. Such three-component 
relationships are often written in operation form as x o y = z, symbolizing that x o y, 
the concatenation of x and y, has aligned ends with the single rod z. It turns out, not 
surprisingly to anyone steeped in Western culture, that we can find an NRS which, in 
addition to reflecting the relationship D, also reflects the relationship o. In particular, 
we can represent the relationship o by +. Thus we can assign numbers to the rods to 
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represent their lengths such that M(x o y) = M(x) + M(y). Mathematically, we can 
find a homomorphism M from the ERS [A, D, o] to the NRS [R+, ?, +1. Now we 
can undertake statistical operations which include addition of the numbers - such as 
comparing the total lengths of two groups. Again such operations will have empirical 
counterparts. Note that the introduction of the extra relationship, o, reduces the set 
of mappings which preserve the relationships. 

The rods example is fundamental: length and weight measurement were used by 
Campbell (1920) to illustrate what he called fundamental measurement. They are 
examples of what are called extensive or additive measurements since the concat- 
enation operation (e.g. placing two weights together on the same pan of a weighing 
balance) can be directly represented by addition. 

In general, for a set of objects A, if the attribute has relationships R1, R2, .. ., 
then we seek to establish a homomorphism from the ERS [A, R1, R2, . . ., Rn] to an 
NRS [R, rl, r2, . . ., rn], where the ri are relationships between numbers. Different 
relationships Ri will be represented by different ri. In general, we can produce axioms 
that the empirical system must satisfy to permit representation by a given numerical 
system. For example, axiom systems for extensive structures, introduced by Holder 
(1901), are given by Pfanzagl (1959), Suppes (1951), Suppes and Zinnes (1963) and 
Narens and Luce (1986) and have been generalized in various ways (e.g. Roberts and 
Luce (1968) and Narens (1974)). 

Now, as noted above, the homomorphisms from the given ERS to a particular 
NRS will not, in general, be unique. There will typically be more than one set of 
numbers which models the empirical relationships, so that the Ri may be accurately 
represented by ri for more than one numerical assignment. For example, given an 
acceptable assignment of numbers to the lengths of the rods in the above example, 
then an arbitrary rescaling of the lengths (changing inches to centimetres, for 
example) will also produce an acceptable assignment: the ordering and the end-to- 
end concatenation operation o will be properly represented by > and + respectively, 
in both numerical assignments. More generally, the structure of a model must be 
invariant to changes in the numerical assignment. This is what lies at the heart of 
dimensional analysis in physics -so that, for example, changing the units in which 
length is measured leads to balancing changes on both sides of a model formula. The 
dimensions of length must be balanced. Finney (1977) pointed out that dimensional 
analysis is at least as applicable to statistical models, presenting a series of examples 
which show how the method can be used to detect model inadequacies. 

The fact that a given relationship between objects can be represented by a par- 
ticular NRS in more than one way induces a taxonomy on the representations - and 
hence leads to the notion of types of scale. The set of homomorphisms leading to 
numerical representations of the ERS and which are related by a given type of 
transformation fall into one class. Those related by another type of transformation 
fall into another class. And so on. This is also the essence of Stevens's (1946, 1951) 
scale types. In fact the modern classification is produced by noting that there is a one- 
to-one correspondence between the set of homomorphisms of an ERS into an NRS 
and the group of automorphisms of the ERS and then classifying the automorphism 
groups. The latter is done in terms of the degree of homogeneity (k) and the degree of 
uniqueness (1) (Narens, 1981 a; Narens and Luce, 1986) of the ERS. These tell us the 
size of structures which are preserved by the automorphisms. Using the pair (k, 1) to 
classify scales, we find that ratio scales are of type (1, 1), interval scales are of type 
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(2, 2) and ordinal scales are of type (oo, oo). Moreover, various results have also been 
established about the possible scale types that can arise -so helping to explain why 
so few scale types are used in the sciences. Details were given by Narens (198 1a, b), 
Luce and Narens (1983, 1985) and Alper (1984, 1985, 1987). 

Although concatenation operations, yielding extensive measurement, played a 
fundamental role in the early development of formal measurement theory, and are 
central to the physical sciences, they are of little use in the social and behavioural 
sciences where concatenation operations are typically unavailable. As mentioned 
above, this absence has been the source and stimulus of much of the work on 
measurement theory. It stimulated thought about alternative theories, as outlined in 
Sections 2.2 and 2.3, which was at the root of the controversy mentioned in Section 1, 
and led to the development of alternative axiomatic structures which have sub- 
sequently also become important. These include models for forming weighted means 
(e.g. of expected utility, by Von Neumann and Morgenstern (1947)) and conjoint 
measurement. The latter development dates from the 1960s and produces interval 
scales solely from an ordinal starting point. For example, suppose that we have three 
attributes R, X and Y, such that for each pair (X, Y) there is a unique corresponding 
value of R. Then, given certain restrictions on the empirical system (such as a 
condition which can be loosely interpreted in statistical terms as there being no 
interaction between X and Y in their effect on R), numerical assignments r, x and y 
can be made to R, X and Y such that r(x, y) = x + y. Important early references are 
Krantz (1964), Luce and Tukey (1964) and Holman (1971). Working independently, 
Rasch (see, for example, Rasch (1977)) showed that the existence of order preserving 
numerical representations r, x and y of R, X and Y such that r(x, y) = x + y led to 
interval scales for comparing the Xs (and Ys). 

The fact that the homomorphism from the ERS to the chosen NRS will generally 
not be unique should not be confused with the fact that Ri may be representable by a 
different ri. For example, the addition of numerical length measures in the rods 
example can be replaced by multiplication of exp(those numerical length measures). 
Representations in which addition is the numerical operation are by far the most 
common, but they are not the only ones. Electrical components placed in parallel can 
be measured in terms of conductance, in which case addition of the values is appro- 
priate. Or they can be measured in terms of resistance, in which case the appropriate 
numerical operation corresponding to 'parallel concatenation' is Pi ED P2 = (pp1I 
+ pY')-I. Similarly, velocities may be mapped to the NRS [R, , +] in the usual 
classical way, or they can be mapped to [(0, c), ), ?] where ? is relativistic 
combination of velocities, given by 

ug 
+v 

U@Dv = 1- u/2 

In each such mapping, since the same Ri is being represented by the various ri,, the 
numerical representations must be isomorphic. In these three examples the isomor- 
phisms are given by the respective transformations expx, 1/x and tanh-l'(x/c). 

Of course, care must be taken to be sure that the various alternative repre- 
sentations describe the same empirical operation: electrical components placed in 
series are additively represented in terms of resistance. An example of an unusual 
concatenation operation which may appeal to statisticians is the following alternative 
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concatenation for rigid rods (Ellis, 1966). Instead of placing two rods a and b end to 
end in a straight line, concatenate them by placing them end to end at right angles. 
The third rod, of length equal to the concatenation of the first two, a o b, forms the 
hypotenuse of the right-angled triangle. Can we find a numerical assignment which 
will properly represent the lengths and in which addition of numbers corresponds to 
this concatenation operation? If so, how is this assignment related to the conven- 
tional assignment for end-to-end concatenation? The answer to the first question is 
that we can, and the answer to the second is that numerical lengths arising from the 
right-angled concatenation are the squares of lengths arising from the end-to-end 
concatenation. A ruler graduated using squared numbers in place of the conventional 
graduations would yield a perfectly legitimate alternative description of space, but 
one in which summation of lengths corresponded to right-angle concatenation in 
place of end-to-end concatenation. At first this may seem to lead to a horribly 
contrived description of Euclidean space, but it is precisely what is used in statistics 
when variations arising from multiple sources, described in terms of variances (in 
squared units of measurement), are added. 

2.2. Operational Measurement Theory 
Operationalism defines scientific concepts in terms of the operations used to 

identify or measure them. It avoids assuming an underlying reality and so is fun- 
damentally different from representationalism, which is based on a mapping from an 
assumed underlying reality. In operationalism, things start with the measurement 
procedure. Operationalism was developed by Bridgman (1927) and adopted by 
Dingle (1950), who summarized it thus: 

'Formerly science was regarded as the study of an external world, independent of the 
observer whose experiments and observations were simply means of finding out how the 
world was constructed and by what laws its behaviour was governed. The emphasis has 
now shifted from the nature of the world to the operations of experiment and obser- 
vations. These are no longer regarded as more or less arbitrary means of discovering the 
already established order of nature, but rather as affording primary data for rational 
study; and any world that we may contemplate is no longer an independent existence 
whose nature demands or determines them, but rather a logical construct, formed and 
shaped and modified so as to afford a true picture of the relations which the observations 
exhibit.' 

Thus, an attribute is defined by its measuring procedure, no more and no less, and 
has no 'real' existence beyond that. In operationalism the attribute and the variable 
are one and the same. This approach thus defines 'a measurement [as] any precisely 
specified operation that yields a number' (Dingle (1950), p. 1). 

It follows that, to be useful, the numerical assignment procedure has to be well 
defined. Arbitrariness in the procedure will reflect itself in ambiguity in the results. 
This is one reason why problems arise in the social and behavioural sciences, where, 
inevitably, measuring procedures are complex. A complete specification of the pro- 
cedure is often difficult or impossible and different researchers may use the same 
name for variables that actually have subtly different definitions, leading to different 
conclusions. Since the definition of the concept lies in the measurement procedure it 
is not a cause for concern that different procedures lead to different conclusions, but 
rather an indication that more refined theory needs to be developed. 
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This issue of slightly different definitions for a given variable name in operational 
theory is sometimes confused with the fact that there may be different ways of 
measuring an attribute in the representational theory. We can, for example, measure 
length by using rigid rods or by using the time for light to transit from one point to 
another. These can be regarded as operational definitions of different length concepts 
(which empirical study shows to be very highly correlated) or, by virtue of the 
complex physical theory which has been constructed, to be different descriptions of 
the same underlying attribute. In contrast, it is easier to accept that two question- 
naires, seeking to tap into some attitude to a proposition but using different 
questions, are describing slightly different phenomena. If, in a representational 
model, two supposedly alternative measurement methods lead to consistently 
different results, then this is an indication that the ERS is not as straightforward as 
was thought. The distinction between mass and weight provides an illustration. 

Niederee (1994), p. 568, said of the operational approach, which removes ambi- 
guity by defining a phenomenon in terms of a specified measurement procedure: 

'This outspoken conventionalist procedure appears suitable for bureaucrats, say, who just 
want to establish plausible formal decision rules, or for practical situations where "it 
doesn't really matter", . . . or in scientific contexts where some vaguely formulated theory 
is to be rendered plausible with the help of generally accepted statistical methods.... But 
in many scientific or practical contexts, this strategy usually just begs the question.' 

I agree that in many applications such an approach may not be suitable. However, in 
others it may be. Firstly, if everyone uses the same conventions to discuss some 
phenomenon then useful discussions can take place. Bureaucrats are not the only 
people for whom this is necessary. And, secondly, operational measurements in 
which the measurement sits properly and effectively in a theoretical web of 
relationships with other variables -i.e. those which yield effective predictions- are 
useful. (Non-useful measurements presumably are not used, at least in good science.) 
This is made apparent by the notion of construct validity, which assesses the extent to 
which the measure conforms with the theoretical predictions of relationships with 
other variables. (Of course, lack of construct validity may mean that the measure is a 
poor measure of the theoretical concept in question, but it could also mean that the 
theory relating it to other variables is inadequate or that these other variables are 
poorly measured. But that is another issue.) If measurements in the physical sciences 
are viewed in operational terms then they provide examples of very high construct 
validity: the theoretical predictions conform very closely with measurement out- 
comes. 

The related concept of criterion-related validity refers to the accuracy with which 
the measurement procedure predicts an external criterion (such as true ages in a 
study of subjective age assessments or a 'gold standard' in medicine). Criterion- 
related validity is probably more relevant in a representational than in an operational 
context where there is a clear objective criterion that we are trying to predict, namely 
the behaviour of the ERS. 

Some people find distasteful the fact that operational theory draws conclusions 
only about the results of measurement procedures, and leaves researchers to make an 
inference to an 'underlying reality' if they so wish. But statisticians regularly use a 
parallel strategy in a different context -that of randomization or permutation tests. 
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These make inferences conditionally on the data, and then let the researcher make 
non-statistical inferences to wider populations. 

Techniques for constructing operational measurements fall into two classes: those 
that focus on single variables and those that define a variable in terms of others. An 
operational definition of length in terms of laying a ruler end to end in a straight 
line is of the former type. Campbell's derived measurements, such as density, are of 
the latter type (though, of course, they may also have deeper representational 
interpretations in terms of fundamental measurements). Examples of the former in 
the behavioural sciences are paired comparisons and rating scales. Examples of the 
latter are Guttman scaling and unfolding methods (see, for example, van der Ven 
(1980)). Multidimensional scaling (Cox and Cox, 1994) is also an example of the 
latter, though until recently the intrinsic non-linearity of many of the methods made 
it difficult to reify (i.e. to give a meaning to) the dimensions of the lower dimensional 
representation space in terms of the contributing variables. This has now been 
overcome (see, for example, Gower and Hand (1996)). 

Optimal scaling methods such as correspondence analysis and the more general 
methods described by Gifi (1990) should also be mentioned in this context. These 
identify a numerical coding of the raw variables which optimizes some additional 
criterion -typically some relationships between variables. For example, we might 
find that particular numerical assignment for two ordinal scales which optimizes the 
Pearson correlation coefficient between them, subject to fixed means and variances. 
Or we might find that particular numerical assignment which maximizes the mini- 
mum possible correlation between the assigned numbers and all possible patterns of 
numbers satisfying constraints such as ordinality (as is explored by Abelson and 
Tukey (1959, 1963)). Such statistical techniques identify a particular mapping from 
the objects to numbers, i.e. they identify a unique measuring instrument. This leads 
us to a fundamental point: in representational theory the number assigned to an 
object is not unique; it could be any number from a set of numbers. However, for a 
particular object, the number chosen depends on the numbers chosen for the other 
objects -and this dependence arises via the empirical relationships between the 
objects. In contrast, in operational theory the number assigned to an object is 
unique-it emerges from the measuring instrument. Of course, for a particular 
statistical statement, other numerical assignments might yield the same truth values. 
For example, if the integers 1-10 are assigned to rocks according to their relative 
hardness, then the statement that xl > x2 for two samples of rocks would have the 
same truth value if the coding 21-30 had been adopted instead. So, clearly, similarity 
transformations do not influence the validity of this statement. This suggests that a 
notion of scale type may be definable for operational measurements. We return to 
this in Section 3.3. 

Perhaps the statistical methods that are most widely used in the behavioural 
sciences for constructing operational definitions of variables are latent variable 
models, which explain the relationships between the observed (or manifest or 
indicator) variables in terms of hypothesized unobserved (and unobservable) latent 
variables. It seems to me, however, that the so-called latent variables are opera- 
tionally defined by their relationships to the observed variables. The term 'construct', 
which is also occasionally used, is a much more appropriate term. Quality-of-life 
scales, for example, are clearly constructs, defined in terms of their constituent 
components, rather than underlying variables. Price and quantity indices in 
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economics might also be regarded as constructs. One approach to defining such 
indices is to establish a set of axioms (to be regarded as 'self-evident') and conditions 
(called 'tests') which the indices must satisfy, and then to derive the forms which 
do satisfy them (for a review, see Balk (1995)). This leads to an axiomatic system 
which has parallels to the representational approach. However, whereas in represen- 
tationalism the axioms describe how the empirical objects must behave to permit 
certain numerical representations, here the axioms describe desirable properties for 
the measures themselves. Thus this approach seems more naturally described as 
operational. 

2.3. Classical and Other Theories of Measurement 
Subjective and frequentist interpretations of probability are but two of many. 

Indeed, even within these labels there are different schools of thought. Similar 
diversity applies to theories of measurement: there are other variants in addition to 
the representational and operational schools. Kyburg (1984), p. 253, for example, 
stated: 

'Most approaches to measurement that have been suggested in recent years have taken 
the process of measurement to be the assignment of numbers to objects and events. I have 
suggested that the value (or interval of values) assigned to an object or event by meas- 
urement is a magnitude (or interval of magnitudes), rather than a number.' 

Thus, instead of assigning the number '2' to the length, in feet, of an object, he 
assigns the magnitude '2ft' to the object. His book develops the consequences of 
this approach. Kyburg (1984) also drew attention to the central role of error in 
measurement. Measurement error represents yet another link between the two con- 
cepts of measurement and probability. 

Any mismatch between theoretical predictions and observations can be explained 
in two ways: either the theory is inadequate or there is measurement error (or, and 
probably more usually, both). Implicit in representational measurement is a theory 
about the objects: that they are related (in terms of some kind of behaviour-the 
attribute) in certain ways that form the relationships of the ERS. So, for example, we 
might assume that the objects are ordered and satisfy some concatenation relation- 
ship, despite the fact that we can establish this only for a finite number of (sets of) 
objects. The question of establishing relationships for the ERS is tightly bound up 
with the problem of induction the core of statistical inference itself. If the assumed 
relationships do not hold, or hold only approximately, then we should expect the 
predictions and inferences drawn from our numerical calculations not to hold or to 
hold only approximately. But such approximations will also appear if the meas- 
urements are not perfectly reliable -measurement error manifests itself most clearly 
in the fact that repeated measurements of the same attribute of the same object (using 
the same measuring instrument) can yield different values. It is a ubiquitous aspect of 
measurement in all scientific investigation. As such, one might argue, it should be 
integrated into the theoretical structure describing measurement. Attempts in this 
direction have been made by, for example, Falmagne (1979, 1980). 

Michell (1986, 1990) described yet another theory of measurement -the classical 
theory, which he contrasted with the representational and operational theories. He 
called it classical because, according to him, traces may be found in the works of 
Aristotle and Euclid and it was 
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'developed during the Middle Ages and the Scientific Revolution and sustained the prac- 
tice of measurement until at least the beginning of this century'. 

According to this theory, measurement addresses the question of 'how much' of a 
particular attribute an object has and thus only refers to attributes which are 
'quantitative'. It is this term quantitative on which this third, fundamentally realist, 
theory hangs. 

A quantitative attribute is an attribute whose values satisfy ordinal and additive 
relationships -Michell distinguished this approach from the representational theory 
by stressing that it is the attribute which has these properties and not the objects. The 
behaviour of a set of objects may or may not reflect the quantitative nature of the 
attribute in question: the behaviour of objects is a function of their other properties 
as well as the attribute in question. A physical concatenation operation between 
objects certainly provides evidence for the quantitative nature of an attribute, but the 
lack of such an operation does not mean that the attribute is not quantitative. 
Evidence for the assertion that an attribute is quantitative may be found in other 
ways. Michell cited the example of temperature: objects that have temperature do not 
satisfy a concatenation relationship and yet this attribute is generally regarded as 
quantitative. 

According to this theory the hypothesis that an attribute is quantitative is a 
scientific hypothesis just like any other. Measurement then involves the discovery of 
the relationship between different quantities of the given attribute. The key word here 
is 'discovery'. Whereas the representational theory assigns numbers to objects to 
model their relationships, and the operational theory assigns numbers according to 
some consistent measurement procedure, the classical theory discovers pre-existing 
relationships. By definition, any quantitative attribute has an associated variable. 

Developing a measurement procedure according to the classical theory requires 
relating the hypothesized quantitative attributes to observable quantities within 
some theoretical framework. The hypothesized quantitative attributes can then be 
measured by virtue of their relationships. Here the hypothesized attributes, as well as 
their quantitative nature, are all a part of the theory being studied. Rasch's (1977) 
notion of specific objectivity might be regarded as fitting naturally into this 
framework. Rasch gave an example in which observed scores on a test are described 
by a Poisson model. The parameter of the Poisson model can be viewed as an under- 
lying measure of ability for a given test. Rasch then showed that this model permits 
parameters to be separated into a set describing comparisons between the abilities of 
individuals (independent of which test is used) and a set describing comparisons 
between test difficulties (independent of which subject is assessed). (It is this 
separation which leads one to believe that, for example, ability is an intrinsic 
property of the individual.) The link between the observed scores and the parameters 
is 

(a) stochastic and 
(b) non-linear 

-quite complicated, as Michell suggested it might sometimes be. (Of course, we 
could also regard the parameters as descriptive constructs -as in operational theory 
-rather than as underlying real quantitative attributes.) 

As noted in the preceding section, many researchers view statistical tools such as 
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factor analysis as being ways of measuring an underlying latent variable via its 
relationships to observable variables, i.e. they implicitly adopt a classical approach to 
measurement. However, also as noted above, because of the subjectivity involved in 
the choice of manifest variables, and of the form of model relating the latent and 
manifest variables, we might prefer to regard such statistical tools as yielding an 
operational definition. 

According to the classical theory measurements are always real numbers: if we 
have been able to measure them, the numbers which have resulted satisfy all the 
properties required for arithmetic manipulation, so that we can manipulate them by 
using any statistical operation. This is as true for latent variable scores -measures of 
a hypothesized underlying quantitative attribute -as it is for straightforward 
observables such as length or weight. It is also true for measures such as preference 
scores -they are held to be measurements of a quantitative preference attribute, 
though with measurement error and possible bias, which may indeed be non-linearly 
related to the attribute's value. Such bias, non-linearity and measurement error can 
be investigated by refining the theory in which the preference scale is embedded - by 
relating the scores to other variables -and by using subtle statistical methods. 

Luce et al. (1990) described index measurement as the use of proxy variables which 
are understood and which are easily measurable to act as indicants of others (not to 
be confused with the notion of index numbers mentioned in the preceding section). 
They gave the example (Luce et al. (1990), p. 323) of measuring 'hunger' by using 

'amount of food ingested, initial rate of ingestion, force exerted to overcome a restraint to 
reach food, percentage reduction in normal body weight, time since last food ingestion, 
etc.'. 

Equally, though, and with as much justification, we could use log(amount of food 
ingested) as a measure of hunger. This has as much empirical justification as simple 
amount of food ingested. So, although the amount may be measured on a ratio scale, 
when regarded as a direct measure of (the classical, underlying, additive scale of) 
hunger it is inappropriate to regard it as a ratio scale. It is at best ordinal. Presumably 
a classical theorist would postulate a theory or seek further information which would 
permit the measured amount (ratio scale) to be linked to the underlying attribute 
hunger (ratio scale). 

To Adams (1966) measurements were also merely indicators (good or bad) of the 
underlying phenomena. He started from the premise that things like the intelligence 
quotient IQ are measurements and then considered what sort of measurement theory 
justifies this. This is the opposite of the British Association approach (Ferguson et 
al., 1940), which started from the premise that measurement theory was (a restricted 
subset of) representational measurement theory and then pointed out that psych- 
ological 'measurement' did not conform - and hence was not measurement. To 
Adams, measurements provided systematic and objective indices of phenomena (and 
numbers are not essential to this). This indexical nature is explicit in areas such as 
economics and psychological rating scales. Laws of measurement connect the 
phenomenon under investigation with the results of making the measurement, but 
these laws need not be exactly satisfied for measurement to be useful (and, indeed, 
may not be exactly formulable: IQ is useful, but stating how it relates to intelligence is 
impossible). It follows that we should not ask whether a measurement procedure 
yields a true measure of the quantity but, rather, 'how good an indicator is it of the 
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phenomena it is supposed to give information about?'. That looks like classical 
measurement to me. Weight measurements are a good indicator, whereas preference 
rating on a visual analogue scale may be only ordinally related to the underlying true 
measure (assuming that this measure is unidimensional). 

Making it quite clear that his approach was not operational, Adams asserted: 
'measurement procedures do not define the concept or quantity they measure in the sense 
that they provide logically necessary and sufficient conditions for it. The use of a specific 
procedure is strictly predicated on the assumption that the basic laws of measurement ... 
hold.' 

Superficially similar situations arise with the use of pointer measurements in the 
physical sciences, e.g. the use of the extension of a spring to measure weight. 
However, as Luce et al. (1990) pointed out, there are ratio scale representations of 
weight and of length and there are theories (Newton's laws and Hooke's law) 
connecting the two so that using 'a spring to measure weight directly is valid 
according to this theory'. Expressed another way, we can put markers on the scale of 
length of extension which correspond to the values of weight contained within the 
theory, but nothing equivalent can be done in the hunger example: whatever markers 
we put on the length scale define the extent of hunger. 

Both representational and classical views are realist, and both produce mechanistic 
models (which is not to say that they cannot be used to produce descriptive models). 
However, the representational theory maps from an assumed underlying reality 
and chooses numbers to produce a model of the observed relationships between 
'values' of the attribute. So, only those relationships observed to exist between 
objects (and hence between values of the attribute) are modelled in the represen- 
tational measurement system. In contrast, in classical theory the numbers are a 
fundamental part of the reality: relationships not directly observed between objects 
may also appear in the numerical system. There might, for example, be indirect 
evidence for such relationships. In classical theory the underlying attribute is 
assumed to be quantitative -and relationships between objects can be described in 
terms of it (perhaps via simple concatenation operations or perhaps via something 
more subtle). Take the case of score on a scale measuring preference for one of two 
alternatives. Representational measurement theory will assign people to positions 
(and hence numbers) on the scale and will assert that only ordinality applies and can 
apply. In contrast, classical theory may assert that there is an underlying quantitative 
variable, but that the scale is but a poor measure of it (no doubt, with an unknown 
non-linear relationship to it). Operational theory will define this particular type of 
'preference' as being the number that emerges from the exercise. 

To take another example, representational theory may assign numbers so that the 
ratio between the two numbers assigned to different attribute values is preserved by 
different numerical assignments. In contrast, classical theory will assert that the 
numerical value of the ratio is an empirical property of the attribute, not something 
assigned. Michell (1990) developed this argument in detail. 

In the classical approach, what statistical tools we regard as appropriate to use 
with a particular measurement will depend on the confidence we have that the 
measurement procedure is accurately tapping the underlying variable. If we are 
confident, as for example one presumably is in measuring weight by using a balance, 
then we shall have no hesitation in using any statistical technique. In contrast, if we 
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suspect only a weak link, then we shall be much more circumspect about the methods 
that we shall use and the conclusions that we shall draw. 

3. STATISTICAL STATEMENTS 

In representational terms, it would in general be meaningless to compare mean 
preference scores based on a semantic differential scale. That is not to say that the 
arithmetic manipulations could not be carried out, but simply that the result would 
have no empirical import. In contrast, however, under the operational theory, such 
an analysis would be perfectly legitimate and would tell us something about the 
attribute 'preference' as defined by the particular scale used. This section examines 
such proscriptions in detail, beginning with a more detailed example. 

Suppose that we take a sample of 10 rocks and rank order them according to their 
hardness (using, say, the Moh approach of seeing which rocks scratch which). Here 
the empirical system being represented is merely one of order. However, suppose that 
we now assign the numbers 1-10 to these rocks, in order of increasing hardness. The 
hardness of any new rock can be 'measured' by allocating it the number of the softest 
rock it is softer than. Now, in representational terms, it makes no sense to compute 
mean hardnesses of samples of rocks - such relationships may not be invariant to 
ordinal transformations and only order has been preserved by our mapping 
procedure. However, in operational terms, using the specified 10 rocks as a reference 
set, it would make sense. We can draw conclusions which are replicable by other 
researchers and which can be used to predict the average hardness of other sets of 
rocks. (Of course, if subsequent work leads to the development of a hardness scale 
which has more restricted invariance properties, then these operational comparisons 
of means may be of less interest.) 

3. 1. Meaningfulness 
Representational theory hinges on a homomorphism between the empirical and 

numerical systems. Moreover, as described above, since the homomorphism will 
generally not be unique, there will be alternative legitimate numerical representations 
of the empirical system. Transformations between these representations are the 
permissible transformations. More formally, a transformation 0 mapping R (the real 
numbers) into itself is permissible if, for every homomorphism f from A (the 
attribute of the objects being studied) to R, the function composition Of is also a 
homomorphism from A to R. Statistical computations may be performed on the 
results of any of the homomorphisms, and the results will have identical substantive 
significance. The question then arises, what if the conclusions disagree? The classical 
example is calculating the arithmetic mean of data measured on an ordinal scale. The 
class of permissible transformations for such data is that of monotonic strictly 
increasing transformations. As is well known, however, the order of the means of two 
groups can usually vary according to the transformation employed. 

Stevens's (1946, 1951) suggested solution was to restrict the statistical manipula- 
tions according to the scale type: only those manipulations which were invariant to 
permissible transformations were legitimate. 

Unfortunately, such an approach has its problems, namely of defining exactly 
what is meant by a statistic being invariant (after all, change inches to centimetres 
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and the value of a mean changes). Such issues can be overcome, but a closer 
examination of this invariance approach shows that it is not the statistic per se which 
causes the difficulties, but the use to which that statistic is put the interpretation 
made of that statistic or the statements made about it. The distinction, and 
confusion, between what is required to be able to calculate a statistic and what is 
required to interpret it, lies at the heart of the controversy over scale types and 
statistics which has rumbled on throughout most of the 20th century. Recognizing 
this, Adams et al. (1965), in an important paper, shifted attention from statistics per 
se to statements made about them. A statement is defined as being empirically 
meaningful relative to a measurement scale if and only if its truth value is invariant 
over permissible transformations of that scale. This is the definition of 'meaningful' 
that I adopt in this paper. 

So, for example, a statement that one mean x is greater than another y5, x > y, is 
not generally empirically meaningful for ordinal scales: the order of the means can 
(usually -we shall consider a special case in a moment) be inverted by a suitable 
ordinal transformation. It is, however, empirically meaningful for interval or ratio 
scales. Conversely, although the statement x z= is empirically meaningful for 
interval scales, we cannot infer that therefore it is always legitimate to use means with 
such scales: the statement x + yj = z is not empirically meaningful with interval scales 
(though restrict the class of transformations to similarity transformations and it is 
meaningful). Similarly, the statement x& x y = z, all components being measured on 
the same variable, is not empirically meaningful, even with ratio scales. 

Thus the context in which a statistic is used determines whether it is legitimate or 
not, not merely the scale type. Sometimes a statistic is said to be appropriate relative 
to a statement and a scale if and only if the statement is empirically meaningful 
(invariant over permissible transformations) relative to the scale. However, if a 
statistical statement is or is not empirically meaningful relative to some scale, then all 
statistics are or are not appropriate respectively. The condition for appropriateness 
applies not only to those statistics used in the statement. We shall, presumably, be 
most interested in statements which do involve the statistic in question but the 
condition implies that all statistics are simultaneously either appropriate or inap- 
propriate relative to a given statement and scale. This observation begs the question 
of whether we should be looking at the appropriateness of statistics at all. Perhaps 
the notion of appropriateness of statistics is not useful, and we should simply focus 
on the empirical meaningfulness of the statement (relative to the scale). 

Since permissible transformations are transformations to alternative equally valid 
representations of an underlying empirical system, they have no place in the 
operational theory. Consequently the notion of empirical meaningfulness is mean- 
ingless in the operational context. (And consequently it is not sensible to ask whether 
a statistic is appropriate or not.) However, having said that, we can define a notion of 
scale type for operational measurements in terms of the transformations which 
preserve the truth value of the statistical statement in question. This is outlined in 
Section 3.3. 

Invariance over permissible transformations is an attractive definition for a 
statement to be empirically meaningful, but does it encapsulate all that we want? 
Weitzenhoffer (1951) suggested that the real criterion of 'meaningfulness' should be 
that a relationship could be expressed in terms of the relationships of the ERS under 
consideration. He argued that, in principle at least, we should be able to arrive at 
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substantive conclusions merely from consideration and manipulation of the objects 
themselves -but that this is generally so unwieldy as to be impracticable and hence 
the use of numerical representations and mathematics. Adams et al. (1965) also said 
(pages 118-119): 

'It is worth noting that the association between empirical meaningfulness and intrinsic 
definability outlined here suggests an alternative way of characterising empirical mean- 
ingfulness which is to an extent independent of considerations of numerical measure- 
ment and permissible transformations. That is, a formula may be described as empirically 
meaningful relative to a system of measurement (more generally, any precisely formulated 
empirical theory) just in case it expresses a relation over the objects of the theory which is 
intrinsic in the sense of being definable in terms of the empirical operations and obser- 
vations on which the measurement theory is based. It is a matter of conjecture that this 
criterion of meaningfulness is in fact more fundamental than that which defines it in terms 
of invariance under permissible transformations.' 

Although this is clearly appealing, elucidating exactly what is meant by saying that 
a relationship is 'definable in terms of other relationships' is not easy. (That there is a 
difference is illustrated by an example of Luce et al. (1990), section 22.5, showing that 
'definability' is narrower than invariance.) The subtlety of the issue may be illustrated 
by the following example. 

Consider a single ordinal scale and the statement x < y for data from it. This 
is meaningless in terms of the definability criterion since the arithmetic mean is 
not defined for ordinal scales - there is no empirical operation corresponding to 
addition. Also, in general, it is meaningless in terms of the invariance criterion since 
arbitrary monotonic transformations will change its truth value. But now suppose 
that we find that its truth value is invariant for some particular data set. For such a 
data set it would appear to be meaningful in terms of the invariance criterion but 
meaningless in terms of the definability criterion. However, a closer examination 
shows that for such data sets the x-sample stochastically dominates the y-sample. 
(Informally, this can be seen as follows. Consider the subclass of monotonic 
increasing transformations defined by g(z) = k1 for z < Z and k2 otherwise, with 
k1 < k2 and z ranging over the entire range of the data. Then x < y on all such 
transformed scales implies F(z) > G(z), where F and G are respectively the 
distribution functions for the classes from which the x- and y-samples are drawn. 
The converse, that F(z) > G(z) implies x < y for all monotonic increasing trans- 
formations, is not true.) We could adopt the premise of this example, that x < y for 
all monotonic increasing transformations, as an operational definition of one group 
being 'less than' another group, even though the arithmetic mean is not defined in the 
ERS. 

In what follows the invariance definition is adopted as the defining characteristic 
of meaningfulness, but two points are worth stressing. Firstly, given an NRS 
representing an ERS, any arbitrary (invariant) relationship defined on the NRS 
corresponds to a matching relationship on the ERS. However, general arbitrary 
relationships, defined by exhaustive listing of the sets of objects satisfying them, are 
not of interest. What are of interest are relationships defined by means of a simple 
mathematical formula on the NRS. (See Luce et al. (1990), chapter 22.) 

Secondly, in statistics we are concerned with statements about aggregates of 
objects. (Of course, these aggregates may subsequently be used to make inferential 
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statements about the behaviour of individuals, but that is a different matter, as is the 
fact that the objects may be aggregates themselves.) In particular, our aim is to make 
descriptive and comparative statements about aggregates. Now, aggregates of objects 
are not the same as objects. The properties of aggregates and the relationships 
between aggregates differ from those of individual objects. For example, a group of 
objects can be leptokurtic, but individual objects, pairs of objects and concatenations 
of objects cannot. A statement about an aggregate is an operational definition of the 
way of combining the individual elements (as was illustrated by the comparison of 
means on an ordinal scale example above). Whether this operational definition may 
be expressible in terms of the ERS relationships between objects need not concern 
us -provided that the properties of the higher level objects, the aggregates, can be 
unambiguously defined. (See also Hand (1993b) for discussion in the more general 
context of the relationship between low level and high level metadata.) Presumably 
one will consider it more important that the higher level definitions may be expressed 
in terms of the lower level relationships for mechanistic models than for descriptive 
models. 

For some situations it is easy to show analytically that all the legitimate homo- 
morphisms will lead to the same truth value for a statement. In others it is possible 
to show it, conditionally on the observed data, by exploring the permissible trans- 
formations by using numerical methods. An important subclass of the latter type 
of problem arises with categorical ordinal data with only a few categories. In one 
clinical trial that I encountered, the data had four response categories (none, mild, 
moderate and severe) and the question was whether there was an interaction in a 
study in which each subject was exposed to a 2 x 2 cross-classification of factors. In 
such a situation, all monotonic increasing transformations can be explored by fixing 
the two most extreme categories (at 0 and 1, say) and letting the two intermediate 
categories range over this interval (preserving their order, of course). 

We might also reasonably expect summated rating scales, which are very popular 
in the behavioural sciences, to reflect a stronger empirical property than mere 
ordinality, though not so strong as that in interval scales. Therefore we might not 
be willing to countenance arbitrary monotonic increasing transformations. One 
consequence of this is that a relationship between two means computed from such a 
scale may have invariance properties within the subclass of transformations that 
we are willing to consider. For example, we may find that x- > y for all the 
transformations that we consider reasonable, if not for all monotonic increasing 
transformations. In essence we have identified a set of data configurations lying 
between those for which one group does not stochastically dominate another and 
those for which it does. This is the sort of situation described by Abelson and Tukey 
(1959) when they said: 

'the typical state of knowledge short of metric information is not rank-order information; 
ordinarily, one possesses something more than rank-order information'. 

3.2. Transformations of Data 
Given a set of objects A, suppose that the attribute under study can be represented 

by an interval scale variable. Call a particular numerical assignment S1 (for example, 
if the attribute in question is temperature, then SI might be temperature measured in 
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degrees centigrade). Now, since the scale is interval, the statement that - > x for 
the mean temperatures of two groups of objects has a truth value which is invariant 
for all permissible transformations. This means, for example, that the statement 
would be true when temperature was measured in degrees Fahrenheit if and only if it 
was true when measured in degrees centigrade. 

Now, however, suppose that a mapping from A to R, also representing the D 
relationship by ), can be found such that the numbers assigned to the objects in A 
are normally distributed. Such an assignment (S2, say) is also invariant up to linear 
transformations-i.e. any other numerical assignment such that the numbers in A 
are normally distributed is related to the numbers in S2 by a linear transformation. 
So, again, the objects in A can be represented by an interval scale variable: again the 
statement that xl > - for the mean temperatures of two groups of objects has a 
truth value which is invariant for linear transformations: not, note, for 'permissible' 
transformations there is no empirical relationship beyond ordinality being repre- 
sented and which could make linear transformations the permissible set. 

We thus have two numerical assignments, both of which preserve the truth value 
of the statement xl > x under linear transformations. This means that anyone who 
adopts the same assignment procedure as that leading to S1 (i.e. a procedure that 
preserves the empirical relationships between the objects) will obtain the same truth 
value for this statement as was obtained using SI. Similarly, anyone who adopts the 
same assignment procedure as that leading to S2 (namely assigns numbers so that 
they are normally distributed) will obtain the same truth value for this statement as 
was obtained using S2. Unfortunately, however, there is no reason to expect the 
numbers assigned by the two processes to be linearly related: the statement xI > x2 
might be true under assignment S1 but false under assignment S2. 

The numbers in the first assignment process were chosen so that the relationships 
between them represented the relationships between the objects, i.e. the NRS was 
homomorphic to the ERS. In contrast, in the second assignment process, the only 
empirical relationship (deliberately) preserved by the mapping was order. This means 
that an element of arbitrariness is manifest in the assignment. We chose to remove 
this arbitrariness by requiring the numbers to follow a normal distribution but 
this, in itself, was arbitrary we could have chosen some other distributional form. 
It means that, in the second process, the chosen numerical assignment has an 
operational component. (We shall return to this in Section 3.3 where we consider 
what meaning the notion of 'scale types' might have in an operational context.) Luce 
et al. (1990) also discussed these two alternative ways of assigning the numbers. 

As an example of the above, consider the following. Suppose that we want to 
compare the effects of two diets on the weight of calves. The comparison might be 
based on two groups of calves, one of which has received one diet, and the other the 
other diet. A direct comparison of the total weights of the two groups is not sensible 
unless the groups have the same numbers of calves, so one normally standardizes by 
the numbers in each group and uses the arithmetic means. Various tests can then 
be used. In this example, with the arithmetic mean being the focus of interest, it 
would be wrong to use median, geometric mean or some other 'average'. Similarly, it 
would be wrong to transform (non-linearly) the data and then to use the arithmetic 
mean. In particular, it would be wrong to transform the data to normality and to 
perform a t-test since the test would not be comparing arithmetic means on the 
original scale, which is the scale which maps the empirical concatenation relationship 
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to addition. That is, the question being explored, the hypothesis being tested, would 
not be the question to which an answer was required. (I am indebted to Michael 
Healy for suggesting this example to me -he attributes it to Yates, who cautioned 
against a logarithmic transformation on the basis that 'the farmers are not being paid 
by the log(kg)'.) 

More generally, a relationship of the form y = r7 log w, with w the weights of the 
calves, is not preserved under similarity transformations of w an extra constant 
term appears. Generalized linear models, with the general form g(,u) = /'x, might at 
first be thought to face the same problem, but the coefficients / effectively transform 
the right-hand side so that it is in terms of the same units as those of the left-hand 
side. This is what lies at the root of dimensional analysis, mentioned above. 

In the calf weight example, the original data were weights. Often, however, 
the scale with which we work in everyday life is a transformation of the scale 
representing the empirical system. Great care must then be taken to ensure that the 
question is stated relative to the correct scale. For example, the decibel measure of 
the intensity of sound is logarithmically related to sound pressure, and fuel ratings 
for cars are given in miles per gallon but they are measured in gallons per mile (see 
Hand (1994) for an illustration of the confusion that this reciprocal transformation 
can cause). 

The fact that there may be two or more alternative, non-linearly related repre- 
sentations of a given set of objects, both having the same scale invariance properties, 
has led to some confusion. Anderson (1961), for example, remarked that 'possession 
of an interval scale does not guarantee invariance of interval scale statistics'. This 
was discussed in a stimulating paper by Velleman and Wilkinson (1993a) and further 
in Hand (1993a) and Velleman and Wilkinson (1993b). As pointed out in Hand 
(1993a), Anderson's (1961) example of whether to measure duration or speed, of 
which Velleman and Wilkinson said 'both are valid interval scales, and yet statistics 
computed on one form may be quite different from those computed on the other', 
tells only part of the story. If we are interested in speed then numbers preserving the 
relationships between speeds can be chosen and these will preserve the interval scale 
structure of speed. The same is true for duration if we are interested in duration. 
However, speed and duration are not the same things the empirical relational 
structures are different, with different internal relations so it is no surprise that 
analyses of the two corresponding NRSs may yield different conclusions. I pointed 
out in Section 2.1 that care must be taken to ensure that different alternative 
representations are describing the same empirical operation. 

Hand (1993a) went on to say that if the researcher expects them to yield identical 
conclusions it suggests that the researcher believes that the two variables, speed and 
duration, are tapping the same underlying attribute, and it is this which is the real 
object of study, and not either of speed or duration. If this belief is correct, then the 
numerical assignments can only be ordinally related to the empirical system (they are 
only ordinally related to one another). Put in another way, the representation is 
representing only the ordering of the objects, and nothing more, so that only state- 
ments which are invariant to ordinal transformations should be made. If statements 
requiring interval properties are made then one can conclude, for example, that one 
group takes longer to reach the objective than another despite travelling more 
quickly. (See, for example, Hand (1994), section 3.3.) Such a contradiction is bad 
enough, but the situation is worse if only one of the analyses (speed or duration) is 
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carried out then we are not even aware of the ambiguities in the conclusion. We 
must not fix the statistic while changing (transforming) the data without being aware 
that this changes the statistical model and questions, in just the same way that fixing 
the data and changing the statistic changes the model and questions. 

This does not mean, as Velleman and Wilkinson (1993b) suggested, that I would 
prevent the researcher from experimenting (so that 'as a good scientist he is willing to 
entertain the possibility that what he thinks might not be the way the world really is') 
by transforming the data (by analysing both duration and speed). Experimenting, in 
this usage, means hypothesis generation, whereas comparing, whichever of duration 
or speed is used, is hypothesis testing (in a general sense). This distinction is discussed 
in more detail in the next section. 

Generalized linear models (McCullagh and Nelder, 1989) represent an advance in 
this context. They establish a relationship between the conditional mean and a linear 
function of the covariates: the response variable is not transformed, and so remains 
on the original scale (representing the ERS, if that is what it does). 

3.3. Model Generation and Model Evaluation 
Evaluating a model is completely separate from formulating it. In particular, we 

can test meaningless hypotheses: a comparison of two means on numbers used to 
indicate the levels of a nominal scale, for example. Translating a scientific statement 
into formal statistical terms includes representing the statement numerically in 
representational terms, choosing one of the homomorphisms, and, in operational 
terms, choosing a measuring instrument and if the probabilistic and statistical 
conditions are satisfied then the statistical test is valid. It is merely that it is a test of a 
particular numerical assignment and different, equally valid, assignments may lead 
to different conclusions. This, of course, is where distribution-free statistics come in. 
The hypotheses associated with distribution-free tests are typically merely in terms of 
ordinal relationships, so they are invariant over monotonic increasing transforma- 
tions. This is worth emphasizing: the reason that distribution-free methods are 
appropriate for ordinal data whereas 'parametric methods' typically are not is that 
the former test hypotheses which can be meaningfully stated for ordinal data (are 
invariant to permissible transformations) whereas the latter do not. The issue is 
whether or not the hypotheses being tested are meaningful. 

Since the operational theory does not involve notions of homomorphisms between 
an underlying structure and alternative legitimate numerical representations, such 
problems do not arise. The numbers obtained are not partly the result of the 
arbitrary selection of a particular homomorphism, so invariance over those that 
might have been selected does not apply. They are the numbers which emerged from 
the measuring instrument. Consequently the numbers which have resulted from the 
measurement procedure can be treated as numbers and manipulated as one will we 
do not have to be constantly checking that what we are doing satisfies other 
constraints. The conclusions that we arrive at refer simply to those statistics 
calculated on numbers obtained by the specified procedure. If the numbers are 
subjected to a transformation, then, in effect, a different measuring procedure has 
been employed the transformation is a part of the measurement procedure and a 
part of the definition of the concept concerned. It is no wonder, then, that the results 
may differ. This also illustrates why proponents of the representational and 
operationalist theories may reach contrary conclusions. 
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In the preceding section we noted the distinction between model evaluation and 
model generation. In the latter, anything goes in the search for potential patterns in 
the data, whereas the former may be much more restrictive in what it is sensible to 
do -it depends on the precision with which the hypothesis is specified. The calf 
weight example showed that, if we wanted to test a hypothesis about arithmetic 
means, then it would be inappropriate to transform the data first (to normality, for 
example) and then to study the arithmetic means. Such a transformation would mean 
that the means we would be working with were not the arithmetic means of the raw 
data were not the subject of the hypothesis. Implicit in the statement that we want 
to test arithmetic means is the fact that (in representational theory) an interval or 
ratio scale is involved or that an operational approach has been adopted. However, 
if we simply wanted to compare the 'averages' of the groups, without having a 
clearly specified empirical hypothesis, then arbitrary (monotonic) transformations 
are legitimate. This hinges on lack of precision in the empirical hypothesis, requiring 
an operational stage in defining the summary statistic, whichever measurement 
school we are working within. Further examples of problems arising from ambiguity 
in hypotheses were given by Hand (1994). 

In contrast, in hypothesis generation, if we were simply seeking patterns involving 
summary statistics, then it would be fine to transform and use means. Any patterns 
discovered would relate, not to the arithmetic means of the raw data, but to some 
other summary statistics (e.g. to the geometric mean if a log-transformation had been 
used). Nevertheless, they would be patterns. 

It is presumably points of this kind (imprecision in the substantive hypothesis and 
the arbitrariness of patterns in hypothesis generation) which led to Velleman and 
Wilkinson's (1993a) statement that (p. 68) 

'Experience has shown in a wide range of situations that the application of proscribed 
statistics to data can yield results that are scientifically meaningful, useful in making 
decisions, and valuable as a basis for further research', 

and why they later said (p. 70) 
'Good data analysis ... is a general search for patterns in data that is open to discovering 
unanticipated relationships. Such analyses are, of course, impossible if the data are 
asserted to have a scale type that forbids even considering some patterns.... A scientist 
must be open to any interesting pattern.' 

This is all very well but for the following. 

(a) Data analysis is more than simply 'searching for patterns' (and anomalies). It 
also involves exploring substantive models and hypotheses we are back to 
the mechanistic versus descriptive model distinction: in mechanistic models 
fairly stringent constraints may be imposed on what transformations are 
reasonable. 

(b) If the pattern exists for only an arbitrarily chosen numerical assignment then it 
is likely to be of no empirical interest: give me data on an ordinal scale and I 
can find some fascinating patterns between arithmetic means of subgroups! 

Presumably Velleman and Wilkinson's point is that such patterns may have empirical 
import. However, simply exploring arbitrary transformations of the data in the hope 
that they will throw up 'interesting patterns' is not the most efficient way to proceed! 
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Velleman and Wilkinson (1993a) also stated (p. 68): 'There is no reason to believe 
that data come to us measured in the "best" way'. However, if the data have been 
chosen to reflect a particular empirical relational structure then, for representing that 
structure, they have been measured in the best way. Transforming a representational 
measurement (by a non-permissible transformation) will mean that the transformed 
data no longer model the ERS (at least, not by the same numerical operation). Of 
course, for representational measurement, if we subsequently decided that we did not 
wish to pose questions about the particular empirical structure being modelled, then 
the data might indeed not have been measured in the 'best' way. From the 
operational perspective, transforming the measurements will mean that the numbers 
are no longer on the same (perhaps the commonly used 'conventional') scale, so that 
statistical statements will not be directly comparable with those on raw data derived 
by other researchers. Best here is not defined relative to some reality, but in terms of 
predictive power. Thus, for operational measurements, I agree with Velleman and 
Wilkinson. In both situations the transformation may yield model simplification (e.g. 
by removing an interaction). However, if the data are regarded as having been 
obtained by a representational procedure the transformed numbers (after a non- 
permissible transformation) no longer model the internal relationships of the objects. 
Conversely, if the data are regarded as having been obtained by an operational 
procedure, the new variable is effectively defining a new measurement. In general, 
transformation should only be undertaken with care, and an awareness of the 
relationships between statements made about the transformed data and statements 
made about the raw data. 

If we adopt a representational approach, the ERS determines the scale type of the 
data. This does not mean that all models and hypotheses involving those data must 
use all the properties of those scales. However, if the models and hypotheses make 
use of only a subset of the properties of the scales then they are referring only to a 
subset of the properties of the ERS and hence we might regard the models and 
hypotheses as being about a lesser ERS. It follows that we might regard the scale type 
as being weaker. To this extent the statistical questions might be regarded as 
determining the scale type. For example, we can compare medians, which use only 
ordinal information, of data sets measured on ratio scales but if we do this we might 
as well regard the data as only ordinal. This ambiguity appears to be the source of 
the disagreement between Velleman and Wilkinson (1993a, b) and Hand (1993a), i.e. 
whether we define scale type to reflect the properties of the global ERS, even though 
our questions may use only some of those properties, or we define scale type only in 
terms of the properties which are made use of in the questions. My inclination is 
towards the former approach, so that, for example, the fact that I use only ordinal 
properties in comparing the lengths of two sticks does not mean, to me, that length is 
only an ordinal scale. 

I have two reasons for this preference. 
Firstly, it discourages the inappropriate use of statistical methods for data having 

scale types that do not support those methods. For example, given data that are 
ordinal according to my definition, I will not compare two means (or, at least, not 
without careful thought about what we hope to achieve by such an analysis). 
Velleman and Wilkinson's definition would apparently allow this: after all, according 
to them, the ordinality of the data is not intrinsic to the data but arises only as a 
consequence of the questions asked of the data. This is not to say that the com- 
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parison of means on data which are only ordinal according to my definition might 
not throw up interesting results. But that is an issue of hypothesis generation, not of 
model building. By defining scale type as a property of the data (based on the way 
that they model reality) we can safely undertake analyses by using a subset of the 
ERS's properties (they will be reflected in properties of the scale type) and are 
protected from mistaken analyses which use properties not had by the ERS. If it is 
later discovered that some particular (class of) numerical assignment(s) corresponds 
to a stronger set of empirical relationships then naturally those assignments will be 
regarded as belonging to a stronger scale type. 

Secondly, if we allow the scale type to be determined partly by the question then 
we hit unnecessary complications such as those described in section 10 of Velleman 
and Wilkinson (1993a). They showed that robust measures, specifically trimmed 
means, use interval properties of data in the central region but only ordinal 
properties of data in the tails. This means that, as they put it, much data would have 
to be described as falling into a variety of scale types simultaneously. From my 
perspective, however, such problems do not arise: the data have interval or ratio scale 
type, but for objects which lie in the tails of the distribution only a subset of the 
properties, namely ordinal relationships, are used. 

Scale type enters the representational theory via the links between the ERS and the 
NRS. Since, in the operational theory, there are no such links, can scale type have 
any meaning in this theory? As it happens, a definition of scale type for operational 
measurements can be provided. To see this, let us (again) contrast the representa- 
tional and operational theories. 

Representational measurement starts with objects, finds relationships between 
them in terms of attributes, maps the attributes to numbers (which are values of 
variables) and makes a statistical statement about those numbers. There are 
constraints on what statistical statements can be made as a consequence of the 
requirement that the truth values of the statements must remain the same under all 
permissible mappings. The nature of the mappings determines the scale types. 

In contrast, operational measurement starts with objects, maps the objects to 
numbers (which are values of variables) by using some operation (which could be the 
same operation as was used in the representational approach) and makes a statistical 
statement about those numbers. This statistical statement will have a truth value 
which is invariant to certain transformations and we can use that class of trans- 
formations to define the scale type of the variable. Of course, this means that the 
scale type will depend on the statistical statement (Velleman and Wilkinson (1993a), 
p. 70: 'the scale type of data may be determined in part by the questions we ask of the 
data'). In a sense this makes the scale type the choice of the researcher. 

Let us take a real example. I have a collection of rocks. I hang them, one at a time 
from a spring. To each resulting extension of the spring I assign a specific number, in 
such a way that larger numbers correspond to greater extensions. This use of the 
spring provides an operational way of assigning numbers to the rocks and I shall 
assume that the same operation provides the numbers for both the representational 
and the operational measurement approaches. 

For the representationalist, the rocks are the objects. The quality of causing an 
extension of the spring is the attribute. The number assigned is the value of the 
variable to be associated with that rock. The ordered nature of the numbers reflects 
the ordered magnitudes of the attribute. I have deliberately not included any attempt 

This content downloaded from 128.195.64.2 on Sun, 8 Sep 2013 20:03:56 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


470 HAND [Part 3, 

to represent any notion of concatenation in the NRS, so any other similarly ordered 
sets of numbers would equally validly reflect the ordered magnitudes of the attribute. 
Thus the only statements which are meaningful are those which are invariant to 
arbitrary monotonically increasing transformations. An example of a meaningful 
statistical statement is that the median value of the variable for one group of rocks is 
greater than the median value for another group. This statement has a truth value 
which is invariant to any monotonically increasing transformation. The variable is 
thus of ordinal scale type. 

For the operationalist, the rocks are also the objects. Numbers -the values of the 
variable - are assigned by noting the extension of the spring, as above. However, 
no other numbers have resulted or can result from this particular measurement 
procedure. Thus we do not have to restnct our considerations to those statistical 
statements which have invariant truth values under alternative legitimate numerical 
assignments -there are no others. So, consider an arbitrary statistical statement. 
Take, as an example, that the arithmetic mean of the measured variable for the rocks 
in one group is larger than the mean for another group. Now, this statistical 
statement has a truth value which is invariant to linear transformations (but not to 
arbitrary monotonic increasing transformations). Any alternative set of numbers, 
related to the original numbers by a linear transformation, will yield the same result. 
Thus we might describe the variable as being of interval scale type. But the point is 
that the class of transformations leading to the same truth value is determined by the 
statistical statement. 

Thus, in the representational approach the scale type is a result of constraints 
implicit in the ERS, whereas in the operational approach the scale type is a result of 
constraints that are implicit in the statistical statement. I can find no practical value 
in the notion of scale type arising from the operational approach. 

4. CONCLUSION 

The relationship between measurement scales and statistics has been the source of 
much confusion and controversy. To a large extent, the confusion can be resolved by 
the recognition that there are several different theories of how measurement should 
be interpreted, just as there are different theories about how probability should be 
interpreted. 

The representational school assigns numbers so that the numerical relationships 
model empirical relationships. Scale types are defined in terms of the classes of 
transformations between alternative numerical representations which model the 
empirical relationships. Statistical statements are meaningful only to the extent that 
they take the same truth value under different, equally legitimate, numerical 
representations of the empirical relationships. In contrast, in the operational school 
the numbers are the product of a particular measurement operation -with no 
reference to 'an underlying reality'. Consequently, the notion of 'equally legitimate 
numerical representations' is meaningless. Any numerical operation may be carried 
out on such numbers. Invariance of the truth value of a particular statistical 
statement may then be used to identify a particular class of transformations, and this 
may be used as a definition of scale type, but this seems of limited value. The classical 
school assumes that there are underlying numbers which lie on a ratio scale and it is 
the scientist's job to discover those numbers. 
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Adding to the confusion is the practice among statisticians of referring to two 
different classes of structures as 'models'. As has been pointed out (e.g. by Neyman 
(1939), Box and Hunter (1965), Lehmann (1990), Cox (1990) and Hand (1994, 1995)) 
there is a difference between models that seek to represent some empirical phen- 
omenon (which I here call mechanistic models) and models that seek merely to 
describe (descriptive models), though clearly there is a grey area. To a large extent, 
the representational and the classical theories correspond to mechanistic models 
whereas the operational theory corresponds to descriptive models. 

Some of the confusion in the representational theory has arisen from the 
complication of having two levels of objects. At the lower level are the empirical 
objects under investigation. Empirical relationships exist between these objects. At 
the higher level are aggregates of objects, about which statistical statements are 
made. Whether or not the properties of aggregates can always be expressed in terms 
of lower level properties, the defining of aggregate properties inevitably involves an 
operational component. 

Finally, restrictions on statistical operations arising from scale type are more 
important in model fitting and hypothesis testing contexts than in model generation 
or hypothesis generation contexts. In the latter, in principle at least, anything is 
legitimate in the initial search for potentially interesting relationships. 
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DISCUSSION OF THE PAPER BY HAND 

D. J. Bartholomew (London School of Economics and Political Science): Given that measurement, in 
some sense, is an essential prerequisite of statistics it is surprising that it has received so little attention 
from statisticians. Perhaps, like many working scientists, we view debates about the philosophical bases 
of our subject as of little practical importance. After all, we have managed very nicely so far and 
probably feel that our work is so firmly anchored in the real world that the measurement question can 
look after itself. The measurement of probability is an obvious counter-example to that line of argument 
but the author has deliberately excluded that from his paper. 

What, then, are the practical benefits of this work? One concerns the matter of 'permissible statistics'. 
Whether or not certain statistical manipulations are legitimate turns on what view we take of the 
measurements on which they operate. This is an issue which I leave to other discussants. Instead, I wish 
to concentrate on a second area to which we might look for practical benefits. This is the contribution 
that the approach might make to social measurement and here I must declare an interest as the author 

This content downloaded from 128.195.64.2 on Sun, 8 Sep 2013 20:03:56 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


474 DISCUSSION OF THE PAPER BY HAND [Part 3, 

of a forthcoming book on The Statistical Approach to Social Measurement (Bartholomew, 1996). In that 
book I have advocated a model-based treatment which, though it has many affinities with the classical 
approach described here, seems to me to be more closely in tune with statistical thinking. 

Social scientific discourse makes great use of latent variables. Business confidence, quality of life and 
intelligence, for example, figure prominently in social theorizing yet are not susceptible to direct 
measurement. Does the classification described in the present paper clarify the nature of such variables 
and help to place them on a firmer scientific footing? Not, I think, to any significant extent. The 
distinction between the three approaches is most clearly seen in the physical sciences -where it is least 
needed! For practical purposes it then matters little which we adopt. As we move into the social 
sciences, where help is most needed, the boundaries become blurred. Latent variables provide a 
particularly good illustration of the difficulty. In so far as they are defined by their relationships with 
manifest variables their measurement seems to be an example of the classical approach. But since there 
is an inevitable arbitrariness about which manifest variables we choose for the purpose, the author opts 
for the operational classification. This is superficially attractive because it settles all social measurement 
questions byfiat. But could any set of rules command universal support? Many of the concepts seem to 
be more firmly rooted than this arbitrariness allows and to ignore it savours of desperation rather than 
genuine science. 

As the author notes, there have been some efforts to place social measurement on a par with that used 
in the physical sciences and the contribution by Rasch, referred to by the author, is a particularly 
noteworthy attempt. In a very limited range of circumstances it is possible to justify an interval level 
scale without introducing concatenation. But if social measurement is to be possible at all it needs a 
broader foundation. 

My preference is to start within the classical paradigm by defining social variables in terms of their 
relationships with other variables - observable or not. These relationships are expressed by a statistical 
model in which the quantities of interest appear either as random variables (at the individual level) or as 
parameters (at the population level). The model here envisaged is what the author calls a mechanistic 
model, describing how the system works. The process of measurement then resolves itself into one of 
statistical estimation or prediction. The inevitable arbitrariness in the choice of which variables to 
observe and in the uncertainties of estimation and prediction are then handled as problems of sampling 
whether of individuals or variables. A good measurement model is one which fits the data and which 
survives testing in many different situations. It must also pass the ultimate test of whether it adequately 
translates the qualitative idea into quantitative terms. This is made easier if this is done by first 
expressing the essence of the idea in axiomatic form as Balk (1995) did for price levels and Shorrocks 
(1978) did for social mobility. The reality, or otherwise, of the measure is then on a par with all other 
statistical entities with which we deal. Instead of speaking of 'statistics and the theory of measurement' 
we would then be speaking of 'the statistical theory of measurement'. For all practical purposes we 
could then leave arguments about classification to others. 

As tradition demands I have done my best to be critical but, whatever view one takes, the paper 
provides an admirable framework for debate. It is good that the Society has provided the forum for this 
to take place and I have great pleasure in proposing the vote of thanks to the author. 

M. J. R. Healy (Harpenden): To what extent does measurement theory impinge on statistical 
practice? One area where it should be directly relevant is that of scale construction. An example is the 
assessment of physical maturity in children (Tanner et al., 1975). If you X-ray the wrist of a newborn 
baby, you will find that it has almost no bones. The bones of the wrist appear and grow as the child's 
age increases until they assume their adult forms during the teenage years. There are more than a dozen 
separate bones and each passes through a number of recognizable stages. It is natural to suppose that 
the bone stages reflect an underlying property which may be called maturity (Tanner, 1959) and which 
in a given wrist takes a value between 0% and 100%. The problem then arises how to measure maturity 
from a particular X-ray. Presumably we must attach a number to each stage of each bone and then 
combine these numbers in some way. If we follow up the suggestion that all the bones reflect a single 
underlying quantity, then it seems natural to take the mean, possibly weighted. In choosing the scores to 
be allotted to the stages of each bone, Professor Goldstein and I (Healy and Goldstein, 1976), with the 
same suggestion in mind, proposed minimizing the within-subject variability, totalled over a large 
standardizing sample. A further decision is needed, however, since zero variability is readily achieved by 
choosing all the scores to be equal. Goldstein and I showed that this could be avoided by imposing a 
constraint on the scores. One possibility is a quadratic constraint, say that the sum of squares of all the 
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mean scores be non-zero. This leads to a method that is essentially due to Guttman (Torgerson (1958), 
pages 338-345). However, normal individuals change as they age from being totally immature to being 
totally mature. We can thus impose a linear constraint that the mean scores corresponding to the two 
extremes should be (say) 0 and 100. The two different types of constraint lead to rather different sets of 
scores. 

How, then, do the theories of measurement relate to this problem? It could, I suggest, be subsumed 
under all three of them. As I have described it, the problem is classical; a child possesses a certain 
amount of maturity and the problem is to measure this. Yet it could also be described as operational. 
There is no external definition of maturity; instead it is defined by the methodology itself. I am less clear 
about the relevance of the representational theory, but I suspect that this could be pursued by taking 
into account the correlates of maturity and the purposes for which it is being measured. In the language 
of clinical trials (Schwartz et al., 1980; Healy, 1978) maturity is a very pragmatic concept and does not 
lend itself to the more explanatory approach associated with representational measurement. 

Yet the distinctions do not seem to me to be very helpful in relation to the problems associated with 
the measurement of maturity. I have already mentioned the two possible systems of constraint, and I 
could add a disquiet over the assumption of a single dimension of maturity-it is biologically plausible 
that the round bones of the wrist and the long bones of the forearms and fingers mature at slightly 
different rates. When analysing maturity data, problems arise because of the ceiling at 100% and for 
some purposes it proves useful to treat such data as censored, indicating a state of 'supermaturity' with 
a true score exceeding 100. I cannot at the moment see what light measurement theory throws on all 
this. 

I have avoided numbering the bone stages from 1 upwards. It is tempting to do this and to use these 
numbers as scores, giving rise to the so-called Likert index (Torgerson, 1958). This ignores the 
distinction between the cardinal numbers 1, 2, 3, ... and the ordinals 1 st, 2nd, 3rd, .... A problem that 
preoccupies much of the measurement literature is the legitimacy of doing something like this, such as 
comparing the means of two sets of ranks. It seems to be widely agreed that this is not a proper thing to 
do. Yet applied statisticians do this whenever they utilize the standard nonparametric tests - Wilcoxon, 
Mann-Whitney and (transparently) Spearman and Kruskal-Wallis. 

Many of the emphases in Professor Hand's paper would change quite radically if he gave more 
prominence to estimation at the expense of significance testing. Frank Yates's warning against a 
particular use of a log-transform was based on the externally imposed requirement to estimate an 
arithmetic mean or difference of two means. In other circumstances, an analysis of the same data based 
on geometric means might have been equally appropriate. 

I believe that closer interaction between statisticians and measurement theorists can produce benefits 
for both parties. We owe a debt to Professor Hand for bringing the issues before us and I am pleased to 
second the vote of thanks. 

The vote of thanks was passed by acclamation. 

J. L. Hutton (University of Newcastle): I wish to consider the implications of this paper for the theory 
of measuring evidence, where the measuring device might be a jury or a judge. 

In operational terms, we wish to know how different presentations of evidence given by advocates on 
the opposing sides can be used to predict the verdict of the jury or judge. In representational terms we 
wish to understand why different presentations of the evidence affect jurors, to improve our success as a 
barrister. We wish to be able to attain a given outcome by understanding the measuring device. 

The distinction between objects and the properties of aggregates of objects will be important. Indeed, 
a further level will be required, as jurors might have to combine representational evidence from 
scientists (e.g. Balding and Donnelly (1995)) and operational evidence from psychologists. I was 
interested to see in the first number of the journal Expert Evidence that scientific reports are specifically 
excluded. 

Juries and judges also have to measure testimony. Whether accepting testimony is a valid way of 
gaining knowledge has been debated since Plato. The common wisdom is that sciences, and subjects 
aping science, rely on measuring. This has been challenged recently by Coady in his book on testimony 
(Coady, 1994). In particular, he notes that psychologists, in aiming to be scientific by basing theories on 
observed measurements, claim that the testimony of witnesses is unreliable but use testimony to justify 
this claim. 

The distinction between representational and operational schools might also contribute to 
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understanding the role of induction and David Hume's well-known assertion that knowledge cannot be 
gained by induction. Mechanistic models use deductive logic to represent a system. Descriptive models, 
used for prediction, essentially use induction. In terms of Hume's dismissal of the possibility that 
testimony can establish the occurrence of miracles, we can usefully distinguish between two different 
prior distributions: 

(a) Pr(What one does not expect I a mechanistic model of what can happen) or 
(b) Pr(What one does not expect I our belief in a 'law of averages'). 

As Professor Healy does, I have reservations about Professor Hand's claims about statistical 
statements and meaningfulness. To say that what is meaningful is related to the statistical statement 
depends very much on what is being thought of as a statistical statement. 

Peter J. Cameron (Queen Mary and Westfield College, London): An interesting theoretical point is 
alluded to by Hand: why are the nominal, ratio, interval and ordinal scales and their transforms the 
only scales ever used? 

In Section 2.1, the results of Luce, Narens and Alper (see Alper (1987)) on scale type are mentioned. 
If a real scale has type (k, 0 (i.e. the degree of homogeneity is k and the degree of uniqueness is 0, with k 
and 1 finite and positive, then (k, 0 = (1, 1), (1, 2) or (2, 2), and the scale is determined up to a 
transformation (with some ambiguity in the case (1, 2)). But what if we use a different number system 
for measurement? Cameron (1989) and Macpherson (1996) have shown that, if rational numbers are 
used, then every type (k, 0 satisfying the obvious necessary condition k < 1 actually occurs. 

Why have none of these exotic scales ever been used? As Hand points out, the structure of the 
empirical relational system determines the scale, since measurements are homomorphisms to the 
numerical system. No natural examples of empirical relational systems giving rise to strange rational 
scales have been discovered, but no compelling reason for their non-existence has been given. 

In any case, why do we use the real number system, rather than the rationals or some subsystem 
thereof? H6lder's (1901) axioms lead to the real numbers, but no version of completeness can be verified 
empirically because of lack of precision in measurement. Certainly, any item of raw data is a rational 
number. 

Narens (personal communication) has suggested that there may be a case for imposing some logical 
or topological requirement on the scale, which would exclude all but the familiar scales and their 
transforms. One such result, using the logical concept of o-minimality, has been found by Mosley 
(1996). 

Stephen Senn (University College London): I disagree with some conclusions of this interesting paper. 
The calf feeding example is related to the issue of clinical relevance in medical statistics and reminds me 
of a dilemma in drug development. Should we measure how well a treatment does what we should like it 
to do or simply what it does? I once tended to the former view but now believe the latter is usually 
correct. Presumably, if feed has an effect on weight, it affects the individual calves. If it produces a near 
constant proportionate increase per individual, then a logarithmic transformation is useful even if (pace, 
Hand quoting Healy quoting Yates) 'farmers are not paid by the log(kg)'. A future farmer wishing to 
know whether to use a given diet cannot do so using the mean difference unless the mean and standard 
deviation of his calves are the same as those in the experiment. If, however, the proportionate increase is 
constant, then, given this information, it is possible to work out the economic implications for any given 
set of calves. A similar point to Yates's applies to meta-analysis of clinical trials. 

It has been claimed, on grounds of clinical relevance, that results should be reported in terms of 
absolute risk rather than log-odds ratios. But, if the treatment is additive on the log-odds scale, the 
answer of a meta-analysis on the absolute risk scale is simply wrong. (It is even wrong for the average 
patient.) However, having analysed the data on the log-odds scale, nothing precludes us from 
calculating what the benefit would be for a given individual at a presumed level of absolute risk. An 
even simpler example can be given. A union negotiating a wage increase might agree a constant increase 
in pounds per individual or a constant percentage. Now, it might be that to given individuals either the 
absolute difference in pay or the percentage difference is considered relevant. Whichever of the two is 
considered more relevant, the only way that an individual can work out the implications for himself, 
given one single piece of information, is if the union truly reports the wage increase on the basis actually 
negotiated with the employer. 
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In choosing scales of measurement for effects, we must measure the causal basis on which change is 
effected. In the calf-feeding example we are not studying the effect of weight on value but diet on weight. 

Oliver Keene (Glaxo Wellcome, London): Professor Hand provides an illuminating description of 
theories of measurement and their implications for statistical inference. 

I am surprised that the paper ignores one common aspect of measurement. People commonly assess 
the distance between numbers in two ways. As well as taking a simple difference, a ratio is frequently 
calculated. Sometimes the multiplicative system predominates, particularly in medical applications. 

The paper quotes an example of a farmer giving his calves two different diets and claims that the 
arithmetic mean is the focus of interest. My guess is that most farmers, when presented with arithmetic 
means for the two groups on different diets, would immediately divide the two numbers to calculate a 
percentage increase. Similarly, wage increases are expressed as percentage changes yet, to misquote this 
example, no-one is paid by the log-pound. 

I am therefore interested in Professor Hand's thoughts on this pervasive duality of methods of 
measuring distance between numbers. 

In his section on transformations, Professor Hand implicitly implies that the only objective of a 
transformation is to achieve a normal distribution. As he says, choosing a transformation only because 
it produces a normal distribution is an arbitrary process and loosens the link to the relative value of the 
original numbers. 

However, I am concerned that Professor Hand gives short shrift to the log-transformation and, as is 
frequently done, merely classes it with all other transformations. It has been argued elsewhere that there 
are compelling reasons for according this transformation a special status (Keene, 1995), other than 
simply to achieve a normal distribution. 

Professor Hand commends generalized linear models because the response variable remains on the 
original scale. Yet a frequently used link function for continuous positive data is a log-link, and 
estimates of effects resulting from the modelling process are therefore ratios on the original scale. Use of 
any link function other than the identity link implies that the effects in the model are not additive on the 
original scale. 

In the speed-duration example, Professor Hand appears willing only to use arithmetic means or 
medians. However, people often refer to distances as being twice as long and speeds half as fast. 
Geometric means therefore provide a third option and if used allow faster cars to reach their destination 
quicker. The log-transformation frequently provides a simple solution to apparent paradoxes such as 
this of variables measured on scales inverse to each other. 

Wm Wren Stine (University of New Hampshire, Durham): I am extremely pleased to have the 
opportunity to discuss this delightful paper by David Hand. The point that I wish to make concerns the 
confusion of two issues (Stine, 1989): 

(a) should statements about empirical events be meaningful and 
(b) how do we decide that a statement is meaningful within a given empirical context? 

I shall argue that the answer to the first issue is yes and is certainly independent of one's philosophy of 
measurement or science. However, the answer to the second question is very difficult and is intimately 
dependent on one's philosophy of science (or measurement). 

Let us consider just operationalism. Michell (1986), Hand, and, of course, Bridgman (1927), chapter 
1, state that the operations used to measure an event define the event for scientific purposes. But, 
relationships among the results of different measurement operations are discovered and formalized into 
laws or theories. I have no doubt that Bridgman would claim that these laws (or theories) do not change 
as a function of one's philosophy of science. The algebraic axioms that define a given empirical 
relational structure apply to relationships among measurement operations. Indeed, Bridgman (1941), 
p. 19, writes 

.... we shall assume . . ., that two bodies each at the same temperature as a third are at the same 
temperature as each other, etc., etc.'. 

Surely Bridgman would find the statement that a room with a measured temperature of 30 ?C is twice as 
hot as a room with a temperature of 15?C ludicrous. Statements about empirical events should be 
meaningful. 
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Deciding for a given empirical situation which statements will be meaningful will depend on one's 
philosophy of science. Given no theory, one who operationalizes some behavioural rating scale as the 
attribute of interest, for example, may assume interval or ratio properties whereas someone else might 
imagine that the ratings are related to the underlying attributes within the person by an ordinal scale. 
How we decide that a statement is meaningful within a given empirical context will be intimately 
involved with how we define our empirical context (i.e. with the philosphy of science that we believe): 

'. . ., although these philosophies may differ with respect to how the scientist views his or her scientific 
statements, theories, and so on, the algebra of measurement transcends these philosophies. Indeed, 
only by either demonstrating inconsistencies in the mathematics or discarding mathematics as a valid 
form of argument can the algebra be avoided' (Stine (1989), p. 151). 

C. S. Wallace (Monash University, Clayton): Professor Hand is to be thanked for reminding us of the 
importance of measurement in scientific enquiry, and of how the nature of a measurement limits the 
range of its statistical treatment. I would like to have his comments on a related point not explored in 
his paper, namely how a measured variable acquires its representational status. Take temperature as an 
example. A pseudohistory of its evolution might start with a simple categorical variable: hot, cold and 
ordinary. Soon this might evolve to an ordering, from very cold to very hot and burning, with 
equivalence modelling thermal equilibrium and an ordering induced by mixing: hot water plus cold 
water gives warm water. The observation of thermal expansion leads to the thermometer, and then to an 
operational scale that is linear in the expansion of mercury between the freezing and boiling points of 
water. Initially this scale could claim only to be an operationally quantified form of an order scale, but 
empirical evidence that the expansions of other materials are also nearly linear in this scale, and that 
heating and cooling rates, and the temperatures reached in mixing, have simple expressions in this scale, 
lead to its acceptance as an interval scale. Finally, the expansion of gases and other evidence leads to its 
present status as a ratio scale, with treatment as an interval scale being useful in some contexts. 

During this kind of evolution, how should the analyst treat the variable? What statistics are 
legitimate? Further, since the status of the variable is evidently itself a matter for empirical scientific 
study, we should be able to use statistical methods in analysing the data used in this study, which will of 
course include measurements of the variable in question. We must thus ask what statistics are legitimate 
in studying the status of the variable being measured. 

Following Professor Hand's suggestion that we form models to express and exploit 'unexpected 
patterns', we might argue that a variable may acquire a particular representational status, even in the 
initial absence of a sound theoretical basis, if assuming it to have this status leads to simple and general 
mathematical relationships between its measured values and the values of other variables. However, it is 
not obvious how we should treat the variable while trying to establish the statistical significance of such 
apparent relationships. 

A. C. Atkinson (London School of Economics and Political Science): The questions that Professor 
Hand raises about measurement are particularly important in the social sciences. I, however, will discuss 
the material on modelling. 

Generalized linear modelling is mentioned positively in the paper. It is helpful to remember that 
Professor Nelder's categories of measurements were produced in the context of developing GLIMPSE, 
an intelligent front end for GLIM. 

The distinction between empirical and mechanistic models is often useful, but seemingly mechanistic 
models may rely heavily on simplifying assumptions. For example in chemical kinetics all reactions may 
be assumed first order and side-reactions may be ignored. It is difficult to believe that such models differ 
in essence from empirical models. 

Transformations of data, for example to normality, are mentioned much less positively than is 
GLIM. One way of building appropriate models in science is the use of dimensional analysis and I was 
glad to see a reference to Finney (1977). It might be for the calf weight example that length is the 
underlying variable, in which case y'/3 would be the appropriate transformation. Similarly, in the Box 
and Cox data on survival times, the appropriate transformation is y-', so that rate has a simple 
representation. If a model with suitable dimensional properties is found in which the response needs 
transformation for statistical purposes, such as obtaining constant variance or normality, the 
dimensional relationships can be preserved by transforming both sides of the equation (Carroll and 
Ruppert, 1988). These ideas of transformation and dimensional analysis are nicely illustrated by the 
MINITAB tree data (Ryan et al., 1985). There are 31 measurements of the volume of cherry trees, 
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together with their girth (xl) and height (x2). Table 1 gives the residual sum of squares of the normalized 
variables, called z(A) by Box and Cox (1964), the normalization ensuring that the residual sums of 
squares are directly comparable. 

Straightforward regression analysis indicates that model 1 is unsatisfactory and that a term in xl 
should be included. But residual plots show that y in model 2 should be transformed. The value of I is 
included in the 95% confidence interval for the transformation parameter A, giving model 4 in which 
both sides have the dimension of length. An alternative approach is to realize that tree trunks are 
shaped like cones, yielding model 3, in which both sides have the dimension of volume. Although 
dimensionally satisfactory the y in this model also requires transformation. The both sides technique 
leads to model 5. This model has only one parameter and also the smallest residual sum of squares of 
those in the table. The details are in Atkinson (1985) and Atkinson (1994). 

K. Rennoils (University of Greenwich, London): The paper presents the representational and 
operational theories of measurement as alternatives and reasonably advocates a preference for 
restricting statistical statements to those appropriate to the natural scale of an empirical relational 
system (ERS), as a means of avoiding 'inappropriate' data analysis. This presupposes the existence of a 
satisfactory ERS. 

It seems to me that theories of measurement and the meaningfulness of statistical statements cannot 
be properly considered apart from consideration of the epistemology and interpretation of scientific 
theories, e.g. ERSs. A statistician, and more generally a scientist, may take an eclectic view, accepting 
that there might be an ERS, but that knowledge of the ERS is not sufficiently firm to constrain 
the modelling process. Our perceptions of an ERS can only be formed through observation of 
measurements. Models of these measurements, including transformations, are the means of elucidating 
constructs and structure that are relevant to the ERS. The world of mathematical models is larger than 
that of empirical reality and statistical scientists will put themselves in strait-jackets if they restrict their 
data analysis to conform to preconceptions of the structure of the ERS. 

A parallel debate to that on measurement theory in psychometrics has taken place since the 1920s 
over meaning, interpretation and measurement in quantum mechanics. Schroedinger's equation may be 
cast in the role of an ERS, whereas the Heisenberg approach was 'operational' in more than one sense. 
Epistemological questions have been important; does the complex wavefunction have an empirical 
(physical) existence? However, the equivalence of the approaches means that there is no basis for 
preference of either approach. Similarly, there will be equivalences between statistical models 
formulated in the natural scale of an ERS, and apparently different 'operational' models of transformed 
data. 

In forestry, the ERS is based on the 'aggregate object', the 'forest stand', with the primary attribute of 
'top height', defined as the mean height of the 100 greatest girth trees per hectare. This definition is not 
consistent (invariant) under proportional changes in the unit of area and number of trees in the 
definition. A consistent definition might be possible in terms of a conjectured multivariate-marked point 
process defined on the infinite plane. Does an attribute so defined constitute part of a useful and 
illuminating view of the forest stand as an ERS? It would certainly present us with problems in 
communicating with the forester. An operational approach is preferable in practical terms, but adopting 
an operational approach does not stop us from believing that forest stands empirically exist and have 
relationships. 

TABLE 1 
Residual sum of squares (RSS) of normalized transformations for five 
models for the MINITAB tree data, showing the importance of 

dimensional considerations 

Model Type Response Carriers RSS[z(%)J 

1 Regression y 1 XI x2 421.9 
2 Regression y 1 xl X? X2 186.0 
3 Cone y XsX2 180.8 
4 Transform y y1/3 1 XI x2 135.8 
5 Both sides logy logIX2) 130.6 
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The following contributions were received in writing after the meeting. 

George A. Barnard (Colchester): Those of us who have come to statistics from the natural sciences or 
engineering have learned that most of what can usefully be said about measurement in general can be 
found in Campbell (1920) and comments on it by Tukey and others. See, for example, Barnard (1968), 
especially Tukey's discussion. But we must be grateful to Professor Hand for his detailed account of the 
very mixed set of doubtful ideas initiated by S. S. Stevens. 

The addition in the later middle-ages of digit sequences and elementary arithmetical signs to 
European alphabets made possible remarkable gains in our capacity to describe the world that we live 
in. Poets such as e. e. cummings and novelists such as James Joyce have stretched the use of letters 
beyond what was formerly customary and have risked failures in communication with at least some 
degree of success. Why should we not allow similar freedom in the use and manipulation of digit 
sequences? It is for authors and readers of any such use to judge the success or otherwise of any 
particular case, just as it is for readers of modernist literature. 

Anyone criticized for violation of Stevens's rules may refer to the history of thermometry. When 
Celsius introduced his thermometer it was used as an interval scale, measuring the amount of heat in a 
body of water. On this basis the theory of heat made much useful progress. But after the invention of 
the steam-engine, and the determination of the mechanical equivalent of heat, it came to be realized that 
temperature in kelvins should be regarded as forming a ratio scale, relating degrees Celsius to kelvins by 
the linear relationship X ?C = (X+ 273.1) K, for temperatures between 0 ?C and 100 'C. 

A point often overlooked, especially by mathematical statisticians, is that any digit sequence 
representing an observation must be finite. Huxley's monkeys typing all the books in the British Museum 
will eventually succeed; but they will never succeed in typing the value of i even though their typewriters 
can print all the digits from 0 to 9. Thus, contrary to the classical theory as quoted on p. 458, seventh 
line, numerical observations must be thought of as small intervals of real numbers. So observations on 
an x which can take values near to 0 can never be equated to observations on I/x. This fact will be borne 
in on anyone who looks for a cheap and accurate instrument for measuring small resistances. 

D. R. Cox (Nuffield College, Oxford): Professor Hand's paper is a very welcome critical account of an 
interesting body of work. An additional general reference is Duncan (1984), which is partly a historical 
review and partly a critique of S. S. Stevens's typography of variables. As Professor Hand remarks, it is 
surprising that the main statistical literature does not refer to the topic more commonly; a partial 
explanation may be the relatively philosophical tone. The various kinds of validation bear on the 
fundamental distinction in multivariate analysis between internal and external methods. The point that 
for extensive variables (called in the paper concatenated) the mean is an appropriate parameter 
regardless of distributional shape is of quite wide relevance. Most importantly, however, it would be 
valuable to have Professor Hand's comments on the implications of the work for constructing 
instruments. How many dimensions are necessary to capture a particular notion? How does one set 
about systematically studying the relative merits of three-, five-, seven-point scales and visual analogue 
scales? Of course there is psychometric work bearing on these matters and in some fields considerable 
practical experience, but some more systematic discussion could be helpful. 

N. J. Cox (University of Durham): Professor Hand's report from territory explored largely by 
philosophically minded physicists and mathematically inclined psychologists indicates to me that 
statisticians have as much to contribute to this field as they have to learn from it. Systematic theory 
seems to lag behind knowledge based on practice. Recall that power functions y = axb with non-integral 
b were awkward children for classical dimensional analysis, which seems to have put off few users over 
several decades (e.g. biologists studying allometric growth). Come a theory of fractional (fractal) 
dimensions, and they find a welcoming home. 

It is 50 years since Stevens (1946) introduced the distinctions between nominal, ordinal, interval and 
ratio scales, leading by way of hundreds of texts and thousands of courses to many confused and 
inadequate notions of measurement, not only in the social and behavioural sciences, but also in several 
environmental sciences, including my own subject of geography. Treated in its own terms, Stevens's 
scheme is a four-point ordinal scale which fails to do justice to the diversity of measurement. It omits 
large classes of variables, including compositional data on the simplex and directional data on the circle 
or the sphere. It also fails to distinguish between discrete and continuous and bounded and unbounded 
variables. 

I bear witness to puzzlement at many apparent contradictions in the literature. 
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(a) Supposedly ordinal scales span an enormous range. 'Position in a race' is just one more than the 
number of people faster and akin to a counted (ratio) variable. A set of positions yields many 
observable relationships (e.g. two runners are between fourth and seventh) that would not be 
preserved under all increasing monotone transformations. Even adding constants seems decidedly 
perverse: try telling the winner that first could be relabelled ninth. 

(b) Nominal scales are repeatedly said to allow only arbitrary numerical labels. Yet it is well known 
that assigning 0 and 1 to binary states leads to interpretable means and all manner of worthwhile 
analyses. 

(c) Correlation for ordinal scales is a matter of monotonicity of relationship and for interval scales 
one of linearity. Yet Spearman rank correlation is just Pearson correlation applied to ranks, 
treated as though they were interval measurements. 

Duncan (1984) gave a very interesting discussion and critique of the Stevens scheme. 

Mark L. Davison (University of Minnesota, Minneapolis) and Anu R. Sharma (Search Institute, 
Minneapolis): 
Meaningfulness and hypothesis testing with ordinal variables 

As Hand states, in hypothesis testing, the issue is the meaningfulness of the null hypothesis. We define 
meaningfulness as follows: let X represent an observed ordinal scale and 0 represent any alternative 
metric related to X by a permissible transformation. If the null hypothesis is meaningful, the null 
hypotheses for X and 0 are equivalent: Ho(X) <=> Ho(@) for all 6. Hence, X can be used to test the 
null hypothesis as expressed in any accepted metric 6. 

In a variety of disciplines, investigators have sought conditions under which various null hypotheses 
are meaningful. When the standard normality and equality of variance-covariance assumptions are met 
by the measured variables, then null hypotheses associated with the two-sample t-test, the one-way 
analysis of variance (ANOVA), one-way analysis of covariance and linear regression are all meaningful. 
A case where meaningfulness does not hold is that of the factorial ANOVA, where the standard 
normality and equality of variance-covariance assumptions do not guarantee the meaningfulness of the 
main effect and interaction hypotheses (Davison and Sharma, 1988, 1990, 1994; Townsend, 1990; 
Spencer, 1983). 

Meaningfulness is related to replicability. Behavioural researchers using different measures have 
sometimes reached differing conclusions about factorial ANOVA effects. The null hypothesis has been 
retained when expressed in the metric used by one group of researchers but consistently rejected by 
other researchers measuring in an alternative metric (Anderson, 1974). 

In our view, Hand overstates the limitations of transformations, expressing concern that results will 
apply to transformed variables, but not necessarily to the raw data. However, if the null hypothesis is 
meaningful and the transformation is permissible, then the transformed variable provides a test of the 
null hypothesis in every acceptable metric 6, including the metric of the raw data. 

Hand focuses on two sample means, saying that empirical meaningfulness holds only in special cases. 
In practice, these 'special' cases may be reasonably common. In situations where standard assumptions 
hold, t-tests (or one-way ANOVAs) are appropriate for ordinal variables. When standard assumptions 
are not met but sample sizes are large, t- and F-statistics are none-the-less robust, and researchers may 
examine the empirical cumulative distribution functions or the probability density functions in the two 
or more groups to confirm or refute the meaningfulness of any mean differences (Townsend, 1990). 

John Gower (The Open University, Milton Keynes): Once again we are indebted to Professor Hand 
for bringing to our attention an important area which has been strangely neglected in the Society's 
activities. That measurement is a fundamental concern of applied statisticians is clear from the names 
like biometrics, psychometrics and bibliometrics. True, the measurement of uncertainty is an aspect that 
deserves and receives attention in all these areas but substantive measurement is at least of equal 
importance. As the paper makes clear, the more difficult it is to measure properties believed to be of 
interest, the more attention has been paid to problems of measurement; psychometricians have been 
particularly active in developing measurement theories. Two issues, both with extensive literatures, that 
arise from psychometrics are 

(a) how best to combine values on many variables. This arises, for example, in combining 
examination marks on several subjects to produce an overall mark; it also arises in the many 
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definitions of intersample distance where the usual, but surely arbitrary, device is first to 
normalize each variable. 

(b) The original aim of multidimensional scaling in psychometrics and ordination in ecology is, as 
their names suggest, to derive a scale (or at least an ordering) from distance-like data. The 
original distances may be derived from more fundamental measurements or they may be derived 
directly by comparing pairs of objects (e.g. confusion matrices or paired comparisons). Thus, 
there are measurement problems from the outset but other measurement problems flow from 
these. Firstly, a single scale rarely adequately generates the given distances and we are forced to 
accept two-dimensional, or more, solutions. Attempts may be made to reify two directions in the 
space of the solution but, generally, we have a measure of a two-dimensional entity. Secondly, in 
non-metric forms of multidimensional scaling it is a remarkable fact that the redundant 
information available when ordering all pairs of distances, or even some subset of them, suffices 
to produce a tightly constrained metric solution. Ordinal information in the distances has been 
transformed into metric information. 

These kinds of problem do not immediately seem to fit into the measurement theories discussed in the 
paper. Thus I ask what do the theories of measurement have to say about combining multivariate 
measurements, what about multidimensional measures and what about the relationships between 
ordinal and numerical measures? 

J. K. Lindsey (University of Liege): The author distinguishes between mechanistic models for 
understanding and descriptive models for prediction. This appears to ignore descriptive and 
nonparametric statistics, which are generally inappropriate for these goals. Can the author relate his 
classification to these branches of statistics? (Ordinal data are not restricted to distribution-free 
methods; several excellent parametric ordinal models are available.) 

In the classification, model generation, building and testing, where the last two are more closely 
associated, I do not understand how a model can be generated without building it, and thus I would 
prefer to associate the first two. 

What is the relationship between transformation of measurements and the location-scale family? 
Only scale transformations are possible for ratio variables. Does this imply that the location family 
(with its arbitrary origin), including the normal distribution, is only applicable to interval variables? 

The author provides extensive examples of measurements where the representation is by the (positive) 
real numbers. However, a real number has an infinite number of decimals that can never actually be 
recorded, in spite of the author's claim ('the numbers which emerged from the measuring instrument'). 
Many of the manipulations discussed depend on this. How can statisticians pass from such a theoretical 
model of measurement to the finite reality of the instruments actually used? 

Thus, I am not convinced that measurement can be usefully discussed without taking into account 
precision. Suppose that some phenomenon can be represented by a continuous variable Y and is 
measured using some instrument with constant precision A throughout its range. We are interested in 
some probability modelf(y, O)A. Any non-linear transformation, such as from duration to speed, will 
no longer have constant precision throughout its range. It is astonishing that a field so concerned with 
measurement insists on ignoring this phenomenon in its modelling and inference procedures. Of course, 
taking this fact of life into account implies, among other things, that sufficient statistics are no longer 
available and that most point estimates currently used are inconsistent. 

Closely related to this, the apparent contradiction between mean speed and mean duration arises 
because the model from which the mean parameter comes has not been specified. Once it has been, any 
transformation is taken into account by the Jacobian. 

The fundamental Bayesian measurement problem is not prior probabilities but determining on what 
scale to 'measure' a parameter. Unlike empirical observation, no instrument tells us what parameter 
scale has constant precision. 

Joel Michell (University of Sydney): Hand uses my distinction between representational, operational 
and classical paradigms of measurement but fails to stress their mutual incompatibility. Aside from 
counting frequencies, there are three different numerical practices in the social sciences: measurement in 
the classical sense (i.e. the estimation of the ratio of some quantitative attribute to a relevant unit of 
measurement), numerical coding (in which apparently non-numerical information (e.g. an ordering of 
objects) is represented numerically) and, what might be called, opportunistic numeralization (in which 
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apparently numerical data are generated by some other set of operations (e.g. rating scales)). While 
these three practices co-exist, the above three paradigms of measurement are mutually contradictory. 
The operational is the most inclusive (implying that all three practices are measurement), the repre- 
sentational excludes opportunistic numeralization and the classical numerical coding as well. Most 
social scientists prefer the operational for this reason. Stevens's (1946) issue of permissible statistics was 
raised within the representational paradigm because, obviously, given the different possible varieties of 
numerical coding (e.g. coding a mere classification of objects versus coding an ordering of objects), 
deductively valid numerical argument forms (including patterns of statistical reasoning) leading to 
conclusions about the objects (rather than to those about the numbers assigned) will be relative to the 
character of the information coded in roughly the way prescribed by Stevens; otherwise contradictory 
conclusions could just as easily be derived. The solution to Stevens's problem was provided by Suppes 
and Zinnes (1963) in the sense that, in the numerical coding situation, if conclusions derived about the 
objects coded are restricted just to those that remain true under permissible transformations of the 
numbers used, then contradictions can never be derived from the same set of data. These authors 
muddied the waters by introducing meaningfulness, a confusing and redundant concept, but one that 
Hand inexplicably persists with. Indeed, the general problem addressed by Hand is only solvable by 
considering it as one of validity of inference: whichever of the above numerical practices we engage in, 
provided that the conclusions arrived at follow validity from the numerical data, any statistical 
procedures used are permissible, whether these conclusions are about the objects involved or just about 
the numerical assignments. Hand's thesis that 'different interpretations of measurement can lead to 
different consequences for inference' (p. 446) is mistaken. Although this controversy originated from the 
competing paradigms, the above solution transcends the paradigm of measurement endorsed. 

Ivo W. Molenaar (University of Groningen): The name of my university department is Statistics and 
Measurement Theory. With great pleasure I have followed Professor Hand's attempts to bring more 
clarity into the concepts covered by this name. Here are some additions to, rather than objections 
against, Hand's paper. 

Fischer (1995a,b) has presented the foundations of the Rasch model, the issue of specific objectivity 
and the specific problems in the measurement of change. This is an area where conceptual, 
philosophical, mathematical and practical problems pose an obstacle for the fully satisfactory design, 
implementation, data analysis and interpretation of results in any empirical study. Fischer argued that 
the Rasch model has some unique properties for solving these problems. 

A second interesting aspect is that a combined attack on the measurement problems and the problems 
of the subsequent analysis given the measurements is often decidedly superior to a separate study of the 
two phases. If body weight and body height correlate less than 1 nobody will attribute this to the use of 
poor scales and yardsticks, but in social research our instruments are far more suspect. The popularity 
of software like LISREL or EQS for so-called covariance structure analysis is well deserved, in the sense 
that the joint modelling of measurement error and natural variation can be very helpful in reaching 
correct conclusions. Although this approach was first based on factor analysis models, it is currently 
also used for other latent trait models. 

A third point related to Hand's topic is the consideration of explicit measurement desiderata and 
quality criteria in the process of selection of either a measurement model or a specific measurement 
instrument. Samejima (1995) gave a list of criteria in her presentation of the acceleration model for 
polytomous items. Ellis and Van den Wollenberg (1993) explored monotone local homogeneity, by 
which no other personal characteristic than the latent trait value may systematically influence the 
category probabilities of an item. Hemker et al. (1996) studied the largest class of item response models 
for which total test score and latent trait value have a monotone likelihood ratio relationship. The 
common idea appears to be that a couple of desirable features are formulated, the class of measurement 
models satisfying them is identified and a favourable test or scale is then sought within such a class. 

Reinhard Niederee (University of Kiel, Bielefeld): Hand's discussion centres on Michell's juxta- 
position of 'the' operational, classical and representational approach to measurement, which I believe is 
too coarse to settle the controversies addressed. I shall focus here on 'the representational approach', 
which usually is taken to imply invariance criteria that delimit the range of admissible statistics, or more 
precisely the range of 'meaningful' statements involving such statistics. (For details see Niederee (1994) 
and Niederee and Mausfeld (1996).) 

Modern representational measurement theory is founded on the concept of a homomorphic 
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representation of some empirical relational system (ERS) in a numerical relational system (NRS), 
emphasis being on the structural properties of the ERS expressible by (almost directly testable) 
'qualitative axioms' that underlie certain numerical scales and models. A sufficiently sophisticated 
version of a representational account of that kind (for brevity, SR) needs to incorporate elements 
allegedly characteristic of an operational or a 'classical' viewpoint. The relationships constituting the 
ERSs need not, and often cannot, be viewed as 'observable' in a naive strict sense (even for length: error, 
macroscopic objects, etc.). This introduces a theoretical, or 'latent', aspect (which need not necessarily 
be conceived in a standard realist fashion). Furthermore, as with the operational approach, individual 
scales can be referred to by extending the ERS (and NRS) accordingly. 

More importantly, there is no 'logic of measurement' whatsoever that could justify traditional 
restrictive 'meaningfulness' criteria in terms of scale types. This includes the cases of dimensional 
analysis and statistical statements or hypotheses. From an SR perspective, the crucial point is not 
simply that 'aggregates' of objects are considered (which in Sections 3.1 and 4 is taken to imply an 
operational account), but rather that we are interested in a new qualitative relationship Q on 
(aggregates of) objects. Numerical characterizations of Q in terms of the scales based on an ERS are 
provably invariant with respect to admissible transformations if and only if Q preserves certain 
symmetries of (or is extensionally 'definable' in) that ERS. In each specific instance, such an assumption 
amounts to a scientific hypothesis about Q (or to a substantive normative stipulation), which may or 
may not be appropriate. 

A key issue rightly stressed by Hand (see also Hand (1994)) is whether a statistical hypothesis (e.g. a 
comparison of means or medians) is relevant to some specific goal (e.g. some stochastic model to be 
tested, or a practical decision problem such as Hand's calf weight example). This is not a genuinely 
measurement theoretic problem, although SR analyses might sometimes prove useful in this context 
also. The passage from Niederee (1994), p. 568, which Hand -misleadingly -quotes in Section 2.2 
belongs to a discussion of this very issue; it is not about operational approaches per se. 

Tony O'Hagan (University of Nottingham): I am grateful to Professor Hand for a fascinating insight 
into a topic that, as he says, statisticians should be more aware of. I found the discussion of data 
transformation and the example of calf weights particularly thought provoking. If under some 
transformation yi = ?b(wi) the transformed data yi may be regarded as normally distributed, conditional 
presumably on unknown mean p and variance o2, then that is the model for the data, whether we think 
of it as a model for the yis or for the original weights wi. If the quantity of interest is mean weight, then 
we wish to make inference about E(wilii, o2). Unless cb is linear, this is a function of both , and o2, and 
so it is clear that inference about means of yis could be quite different. 

Now I may be accused of seeing almost everything as an opportunity to score points for Bayes, but I 
do think that a follower of the Bayesian approach is far less susceptible to 'measurement theory errors'. 
One always begins by modelling, and then proceeds to make appropriate inferences. If ?b is the log- 
transform, we would compute posterior distributions for 

E(exp y lp, &2) = exp(u + 1&) 

for each sample. The contrast with the less disciplined frequentist teaching is ably illustrated by 
Professor Hand's remark that 'various tests can then be used' on mean weights, with no reference to first 
constructing an appropriate model. And the frequentist statistician is not taught always to ask exactly 
what the object of interest should be, perhaps because inference about exp(,u + I o2) is not so easy in a 
frequentist framework. 

Perhaps I am being unjust. Maybe the best frequentist teaching now does emphasize the discipline of 
modelling and then identifying just what inference is required, but if so I find Professor Hand's warnings 
scarcely necessary. And have frequentists learnt, as someone whose discipline requires specifying prior 
information has always known, that a model expressed in terms of parameters that have no natural 
interpretation in the real world context is telling us loudly and clearly that these parameters cannot 
really be the object of interest? 

P. Sprent (Wormit): I can live happily with different interpretations of probability or types of 
measurement provided that each gives useful information. Professor Hand has referred implicitly to the 
way that the information content of data depends on type, source and relation to other data. In the 
physical sciences such links are often clear cut. For measures of lengths of rods based on equivalence 
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classes and endwise concatenation, rigidity is a minimum physical condition for a sensible interval scale 
representation of length. If the rods are all made of one metal and all have the same uniform cross- 
sectional area, then volume, density and mass relationships imply that the length measure also provides 
an interval scale measure of mass. If there are minor impurities in the metal, or only small fluctuations 
in cross-sectional area, the length measure will still be highly correlated with a true mass measure, but if 
the rods are made of several different metals and have a range of cross-sectional areas we need data on 
densities and areas as well as length to give an informative mass measure. 

If rods are made from different metals, length measurements are not temperature invariant. Length 
differences due to temperature changes may be trivial for some purposes; they are not if you make 
thermostats. 

In the social sciences, the information content of well-defined measures may be virtually nil. If 12% of 
students fail to complete their degrees at each of several universities, does the equivalence mean 
anything? Each university is likely to have different entry and graduation standards, to offer different 
courses and to have different instruction standards and laboratory facilities, etc. However, data about 
these and other factors may permit covariance or more complicated adjustments to failure rates that 
make these a meaningful operational measure of academic performance or resource wastage. 

Various scores or measurements are often combined with little thought about information content or 
how they are related. An arbitrarily weighted mean of often highly correlated data, some of dubious 
relevance, is likely to be at best non-optimal, at worst a grossly misleading single indicator of overall 
performance. Yet this is how many newspapers produce educational and hospital league tables. 
Deciding what are relevant data for answering questions of interest is no trivial matter. We are indebted 
to Professor Hand for an excellent paper that provides a framework for better understanding and 
handling of data. 

Elena Stanghellini (The Open University, Milton Keynes): First of all I would like to express my 
gratitude for this clarifying paper on a difficult and controversial subject. My question is about latent 
variables. I would like clarification about the extent to which latent variables are 'operationally defined 
by their relationships with the observed variables'. Though I agree that the main use of latent variables 
in the literature is in terms of constructs of their constituent components, I do not see any theoretical 
reasons why this should be the only possibility. I believe that the theory of global identifiability of a 
latent variable model leads us to say that latent variables should follow the same measurement rules as 
their observed counterparts. 

I shall use the single-factor model as an example. Suppose that four variables are given, Y = (Y,, Y2, 
Y3)' and X, all representing the numerical representation of an empirical relational system on the basis 
of a given homomorphism. Suppose that only similarity transformations are permissible and that the 
model Y = 3X + e represents relationships between attributes of objects, with the covariance of e a 
diagonal matrix. If X is not observed, the theory of global identifiability of a single-factor model says 
that the value of ,3 can be determined as a function of the covariances between the Y-variables, provided 
that the mean and variance of X are given. It seems to me that the arbitrary judgment in defining the 
mean and the variance of X is nothing more than the arbitrary judgment in fixing the origin and the 
scale of any of the other observed variables in the model. 

J. P. Sutcliffe (University of Sydney): As Professor Hand writes, 'The relationship between 
measurement scales and statistics has been the source of much confusion and controversy'. His 
conclusion from his comprehensive review of the literature is that 

'To a large extent, the confusion can be resolved by the recognition that there are several different 
theories of how measurement should be interpreted, just as there are different theories about how 
probability should be interpreted'. 

That is unconvincing, however, because there are problems of interpretation of statistics within the 
context of any one theory of measurement. The relevant issues cannot be adequately clarified except via 
commitment 

(a) to a tenable theory of measurement and 
(b) to an explicit conception of statistics. 

Only then can we 
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(c) definitively explicate the bearing- legitimacy of inference-of the fonner on the latter. 

Professor Hand's account is deficient 

(a) in its eclectic tolerance of more than one contrary theory of measurement -whereas all may be 
false, if one is true, certainly not all can be true, 

(b) in its omission of discussion of what constitutes a statistical proposition -as distinct from a 
mathematical or substantial empirical scientific proposition -and 

(c) in its failure to develop any one instructive case in its individual detail. 

As the data for statistical analysis are very often the result of the taking of measurements, and as any 
one of many different modes of statistical analysis may be called for depending on the nature of the 
investigation which produced the data in question, there may be an indefinite number of different 
individual questions of 'measurement and statistics' to be decided. We cannot claim a priori that all such 
cases will submit to a single mode of resolution. Accordingly, to make a start with the clarification of 
basic issues, detailed critical examination should be made of at least the following three test cases: 
descriptive statistics - e.g. calculating the mean of a set of values of a (proven to be) quantitative 
variable; numerical coding - e.g. appraising the co-relation of two (empirical) variables for each of 
which satisfaction of no more than simple order conditions -reflexivity, antisymmetry, transitivity and 
connectedness -can be assumed; indicants -e.g. inferring the significance of sampled mean differences 
with respect to an unobserved variable Y from analysis of values of an observed (proven to be) 
quantitative variable X postulated to be monotonically increasing with Y. 

Paul F. Velieman (Cornell University, Ithaca): I congratulate Professor Hand on a stimulating paper. 
Unfortunately, he misunderstands Velleman and Wilkinson (1993). Contrary to his characterizations, 
we advocate neither ignoring scale type nor the haphazard use of transformations to search for 
significance. We do ask researchers to take responsibility for analyses made without superfluous prior 
assumptions. 

Hand finds this too daring. He wants us to begin each data analysis by assuming that we 

(a) know what attributes to measure, 
(b) have assigned numbers that preserve the salient features and relationships of these attributes and 
(c) know what questions to ask about these attributes. 

Although we can derive axiomatic results from such assumptions, the security that they imply is illusory 
because the assumptions are usually false. Often the attributes measured are proxies for other attributes, 
the measurement instrument is not calibrated as believed, or new questions arise. 

Those who think that statistics is for answering well-framed questions about well-measured, well- 
understood attributes of objects that appropriately represent some homogeneous population may 
accept Hand's a priori proscriptions. Those who think it possible that we did not measure the best 
attribute, did not measure it in the best way, or did not pose the best question -or that the population 
was not homogeneous, so that no simple 'attribute' was available for measurement -may prefer the 
freedom to do something 'impermissible' and to judge a posteriori whether it was warranted. 

Good data analysis requires an open mind. In John Tukey's phrase, we must be willing to look in the 
data 'for those things we believe are not there'. But Hand wants us 'protected from mistaken analyses 
which use properties not had by the ERS'. 'Great care must be taken to ensure that the question is 
stated relative to the correct scale', he warns. 

By contrast, I admit that I may not understand everything about the data. After an analysis, I defend 
both the methods and the ability of the data to support them. We do not 'allow the scale type to be 
determined ... by the question', but we may discover new aspects of the scale; Hand will not even let us 
look! 

Hand may analyse only attributes that he understands a priori and may constrain his analyses by his 
assumptions about measurements. But why ask others to wear that strait-jacket? We should instead 
champion the freedom to learn from the data, with the caveat that statistical analyses also examine 
whether the data can support the treatment that they have received. 

Leland Wilkinson (SPSS Inc., and Northwestern University, Chicago): Professor Hand does not 
indulge in ad hominem, but I find it necessary to mention personal background for fear that readers of 
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his excellent survey who have not seen Velleman and Wilkinson (1993) might conclude that Paul 
Velleman and I are operationalists who seek meaning in random patterns. It may suit him to think of us 
this way, but it leads to interpretations which were not present in our paper. 

I learned psychometrics in the 1970s under Robert Abelson. The measurement writings of Stevens, 
Luce, Suppes, Zinnes and others to which Professor Hand refers (as well as those of Tukey, Guttman, 
Coombs, Tversky, Estes and others to which he does not) were part of our basic training. Heretics are 
those who pursue orthodoxy too vigorously, however. Paul and I assumed that Stevens's axioms lead to 
appropriate data analysis if the scale type is known. We simply believed, and still believe, that no analyst 
(including David Hand) has access to such knowledge for received data. If any statistician believes that 
typical medical, social or industrial experiments or surveys qualify for an axiomatic analysis, then I 
invite him or her to consult Wallsten (1976) or similar papers from this discipline for a reality test. If you 
do not know this literature, be prepared to find N< 10 and scant use of inference. The kind of 
procedural control that is necessary for even a tentative empirical relational system (ERS) is unavailable 
to the majority of researchers. No amount of preliminary, client-centred statistical consulting will elicit 
this information. And the popular advice to those possessing 'sloppy data' (downgrade the mea- 
surement level to ordinal or nominal) can only be considered a parody of measurement theory. 

Our position is not simply defensive, however. We believe that a presupposed ERS can blind a 
researcher to potential surprises in the data. We discuss several examples of this in our paper. Moreover, 
we believe that a researcher can discover measurement information by intelligent use of transformations 
and data plotting. And we think that Professor Hand acknowledges as much when he admits 

'If it is later discovered that some particular (class of) numerical assignment(s) corresponds to a 
stronger set of empirical relationships then naturally those assignments will be regarded as belonging 
to a stronger scale type'. 

We are interested less in any post hoc rationalizations for these discoveries than in whether they are 
encouraged. 

Keming Yu (The Open University, Milton Keynes): I would like to congratulate Professor Hand for 
his insight into this interesting topic which is easy to ignore although one often faces the measurement 
problem. I am particularly impressed by two points. 

The first is model generation and model evaluation. Take a simple linear model as an example. 
Suppose that (X, Y) are connected as 

Y = a + bX + e 

where (a, b) are unknown parameters and E is the random error. Given a set of observations, we can 
propose many estimating methods for parametric estimation such as least squares, maximum likeli- 
hood, least median and some robust methods, and, in contrast, we can give several methods of assessing 
scores such as mean-square error, log-score, i.e. -_i Yi log{Yi} (assume that Y>0), and Minkowski R- 
error, i.e. i - Yil (Y is the predictor of Y). However, we are accustomed to using least squares for 
estimation and mean-square error for assessment. It is impossible to have general equivalence between 
the estimating methods, or general equivalence between the assessment scores. So the question is how to 
select the estimation method from the class of estimating methods (much work in statistics of course has 
been done for this so far), and the more difficult and less considered question is how to select a score 
from the class of assessment scores to match the estimating method. 

The second point is related to the meaningfulness of measurement, and just a little to how to assess 
the estimating method and the reliability of a model given a measurement score. Possibly seeking a 
decomposition of scores and exploring both aspects of the model and estimating method based on the 
decomposition are one approach to this aim. Taking the example above again with mean-square error, 
from 

Y-Y = {Y-(a + bX)} + {(a + bX)- Y} 

we have 

E{ (Yi- Y)} = E Yi-Y(a + bXi)}2 + E[ {(a + bXi)- Yi}2] 
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If the left-hand side just measures how (in)effective the predictor is on the basis of estimating the true 
model (accuracy), then the first term on the right-hand side measures how big the variance of the model 
is and thus the reasonableness of model selection that is independent of the estimating method, and the 
second term on the right-hand side measures how similar the estimated model is to the true model if the 
model is thought to be the correct model. 

Bruno D. Zumbo (University of Northern British Columbia, Prince George): I applaud Professor 
Hand for drawing statisticians into a debate about statistics that has barely figured in the statistical 
literature. I was also pleased to see the relationship between the scale of measurement and statistics 
controversy and the controversies about how probability should be interpreted. I have for some time 
made that same parallel in my thinking about the problem of restricting statistics by scale type. 

What makes the measurement statistics (like the Bayesian-frequentist) controversy almost impossible 
to resolve is that it is bathed in all sorts of assumptions about the theory and practice of science 
(including statistical science). These include 

(a) the various perspectives on measurement (as Hand reminds us), 
(b) the role (if any) of data exploration in model and theory generation, 
(c) the role (if any) of hypothesis testing in the practice of science, 
(d) the various theories of truth (of which correspondence theory-invariance is only one of a 

multitude) and 
(e) whether the proper order of inquiry is to seek to answer questions about meaningfulness in terms 

of scale type rather than by judging a scale's type in terms of what it is meaningful on. 

Unpacking the simplest of recommendations by authors in this area requires a consideration of their 
assumptions. 

To some, once the mathematical results have been derived there is nothing to debate -the scale of 
measurement restricts statistical operations. Of course since the work of David Hilbert all mathematics 
has been axiomatic but, as Komolgorov in his Foundations reminds us, any axiomatic system allows for 
an unlimited number of concrete interpretations besides those from which it is derived. Let us not 
denounce, as some have, the unificationist perspective on the measurement-statistics controversy (as 
articulated by Michell and others) as feeble minded, naive, undisciplined or side-stepping the issue lest 
one is willing to apply the same terms to the physicist who conceptualizes light as both a particle and a 
wave. 

Finally, Professor Hand's conclusions regarding scale-type restrictions for model fitting and 
hypothesis testing should be tempered by results in the methodological literature that under certain 
limited conditions we can test simple hypotheses (e.g. mean differences and model fit) without scale-type 
restrictions (Maxwell and Delaney, 1985; Zumbo and Zimmerman, 1993; Davison and Sharma, 1988, 
1990, 1994). 

The author replied later, in writing, as follows. 

I appreciate the thoughtful and wide-ranging comments from the discussants and regret that space 
limitations prevent me from replying in the detail that they deserve. 

Bartholomew is, of course, a leading proponent of what I would term the classical school of social 
measurement. In his various writings he has presented elegant ways of measuring social variables via 
their relationships to manifest variables. But he himself says that he prefers to 'define social variables in 
terms of their relationships with other variables' (my italics). Does not the fact that he chose to use the 
verb 'define' suggest an element of arbitrariness, of creativity, rather than the fact that he is simply 
seeking to discern the value of something which already exists? It seems to me that a fundamental point 
is that concepts such as 'business confidence, quality of life and intelligence', to which Bartholomew 
refers, are not susceptible to direct measurement because they are ill defined. To measure them we need 
to know exactly what we are talking about. And, to do this, we need to formulate an operational 
definition (in terms of variables which we can measure). 

Healy's methods of assigning scores to categorical attributes are those of optimal scaling -find those 
scores which optimize some criterion subject to certain constraints. I agree that his approach could be 
defined as operational. In fact I would be tempted to go further-the essential arbitrariness of the 
constraints make me feel uneasy about the other interpretations. By all means assert that 'a child 
possesses a certain amount of maturity and the problem is to measure this', but the proposed 
connections to the scores assigned to each individual bone seem to have a very weak theoretical basis. 
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The fact that different constraints, leading to different measures, might equally be used suggests to me 
that each set of constraints really defines alternative versions of what he means by 'maturity'. His caveat 
about unidimensionality also supports this interpretation. As to the representational school, I also am 
less clear about its relevance in this context. 

The key issue here seems to be the problem of separating 'what is something?' from 'how do you 
measure it?'. Operationalism overcomes this by defining the something in terms of how you measure it. 
The classical school seeks to define it more closely in terms of its relationships to manifest variables. The 
representational approach postulates that we know very clearly what it is before we set out to measure 
it. 

I am grateful to Cameron for stressing that the restrictions on the possible scale types which can exist 
are based on the assumption of a mapping to the real numbers. As he, Lindsey and Barnard point out, 
data are always defined on a subset of the rationals, where these restrictions do not apply. The question 
is, how does this influence the statistical conclusions which may be drawn -and, if it does not, 
why does it not? As far as I am aware, the only approach to statistical inference which explicitly 
acknowledges this and attempts to handle it in a rigorous manner is the minimum message length 
approach of Wallace and Freeman (1987). N. J. Cox goes further and draws attention to the extension 
of formal systems to produce more sophisticated models and argues that Stevens's typology does not do 
justice to the diversity of measurement. The examples of categorizations that I presented at the start of 
the paper support this. Similarly, Gower, Molenaar and Sprent raise the important point about multiple 
measurements. I have restricted my discussion to single variables, but this is artificial. Measurements 
typically arise in the context of others -we are normally trying to relate different variables together. 
This means that scale type and constraints on what we might regard as sensible to do to the variables 
should really be explored for several variables simultaneously. Conjoint measurement illustrates the 
power of such results. 

In my phrasing of the calf weight example I did not refer to the original weights of the calves. Thus I 
could not carry out Senn's suggestion and standardize by the original weights. If I had known the 
original weights, and if I expected a near constant proportionate increase per individual (per diet), then I 
could indeed estimate this using the mean of the log-transformed data. But this seems to be getting 
rather far from the question that I did consider. Similarly, in response to Keene, I was not 'claiming' 
that the arithmetic mean was the focus of interest, but illustrating what would happen if it was. But 
surely a farmer producing cattle for the beef market would be more interested in knowing that diet A 
yields cattle on average 50 lb heavier than those on diet B, rather than 10% heavier, with no indication 
of how valuable this would be in real terms. I agree that the logarithmic transformation has useful and 
special properties. Its role in converting two scales, related by the reciprocal transformation, to scales 
which are essentially equivalent can be particularly useful. (See the discussion of Hand (1994). An 
example is its role in psychophysiology, where there has been a controversy over whether resistance or 
conductance is the more appropriate measure. The distinction vanishes if the data are first log- 
transformed.) A valuable paper arguing the importance of the log-transform is T6rnqvist et al. (1985). 

I believe that Stine and I are in agreement -how a researcher decides that a statement is meaningful 
depends on his or her philosophical orientation: an operationalist might accept a particular statement as 
making sense in a context where a representationalist might not. 

Wallace raises the important point, with which I agree, that the measurement scale of an attribute, 
within the representational approach, is just as much a scientific hypothesis as is any other theory. It is 
thus susceptible to disconfirmation and the accumulation of supporting evidence. This is particularly 
pertinent when we take into account the complications of measurement error. 

I agree with Atkinson that mechanistic models may be unrealistic in that they may make gross 
assumptions. However, this does not detract from their role as (simple) models of a believed reality, as 
opposed to descriptive models which are solely data driven. 

I am afraid that I do not agree with Rennolls's assertion that 'our perceptions of an ERS can only be 
formed through observations of measurements'. We can observe the empirical relationships between 
(concatenations of) rigid rods, without assigning numbers to those rods. I am glad that Rennolls raises 
the issue of quantum mechanics. The Copenhagen interpretation is very much an operational 
approach -and this is one reason why it is contentious. 

D. R. Cox suggests that a partial explanation for the lack of discussion of the topic of measurement in 
the statistical literature may be its relatively philosophical tone. A similar explanation has been 
proposed for its lack of practical impact in psychology, where it was, at one time, expected to have a 
major influence. Of course, it may be that the philosophical tone reflects a philosophical reality -and 
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that the practical effect of the differences is limited. However, one might once have made similar 
assertions about the different interpretations of probability. 

I agree with Davison and Sharma that there are circumstances in which the truth of a hypothesis on 
transformed data implies the truth of the corresponding hypothesis on the raw data. A classic example 
is comparing the raw data medians of two distributions. If these distributions can be transformed to 
normality with equal variances then a t-test can be used on the transformed data: equality of the means 
of the transformed data implies equality of the medians of the raw data. 

I do not agree with Lindsey that descriptive and nonparametric statistics are inappropriate for the 
goals of understanding and prediction. Descriptions can be used for effective prediction and non- 
parametric statistics can be used for understanding and prediction. 

I believe that Michell and I are in agreement: the issue is one of validity of inference. The question is 
whether we are concerned with making inferences about objects or about the numerical assignments. 
The operational approach is about the latter and is never invalid, though it may be of limited utility. 
The representational approach is about the former, and by definition imposes constraints on what are 
sensible numerical assignments. It is these constraints which determine the notion of meaningfulness. 
That the different interpretations of measurement can lead to different consequences for inference 
follows from the fact that they are referring to different things: to the objects or to the numerical 
assignments themselves. 

Of course, I agree with Stanghellini that, if a latent variable is defined in terms of specified manifest 
variables, then the permissible transformations of the former will be determined by those of the latter. 
But how do we decide what manifest variables to use? An operational component may enter here. 

Sutcliffe's comments have made me wonder whether the word 'theory' is right. These 'theories' are 
not 'descriptions of the way the universe is', so that necessarily only one can be true, but are rather 
descriptions of the alternative ways of doing something (measurement). Thus one assigns numbers 
(representational), defines them (operational) or discovers them (classical). 

I am sorry if I misunderstood Velleman and Wilkinson (1993). However, I think that Velleman goes 
too far in his statement about how I 'want us to begin each data analysis'. I would rather say that if we 
know what attributes to measure, and if we have assigned numbers preserving the salient features of the 
relationships, and if we know what questions to ask, then there are restrictions on what it is sensible to 
do with the data. Of course, the conditions may not be met -in which case relaxing the restrictions may 
be sensible. I am interested in Velleman's assertion that these assumptions are 'usually' false. I suspect 
the truth of the usually may be discipline dependent -with the assumptions often being true in the 
physical sciences and less often so in the social and behavioural sciences. 

In turn I suspect that Velleman has misunderstood my position, which is eclectic rather than 
restrictive. I believe that there is a role for each of the theories of measurement. In some situations the 
assumptions above are justified and in other situations they are not. Hand' (1994) was especially 
concerned with situations where the third assumption in particular was not justified. I would feel rather 
uneasy being represented as an out-and-out proponent of the representational position: I often assert 
the fact that data analysis is an art as well as a science and cannot be reduced to axiomatic mathematics. 

I suspect that the difference between my position and that of Velleman and Wilkinson really hinges 
around how often each of us expects to find data which satisfy the assumptions listed by Velleman. I 
expect to find such data more often than they do. This difference could be put to the test. Barnard seems 
willing to go even further in his readiness to relax restrictions -but surely even he would accept that 
there are limits (one-to-one matching of a set of objects to the natural numbers, for example?). 

Zumbo hits the nail on the head when he points out that an axiom system can be mapped to the world 
in more than one way. Probability provides the classic example for statisticians. 

In answer to O'Hagan, I think that he will find that modern frequentist teaching (even that which is 
not 'the best') does emphasize modelling before inference. This, of itself, does not imply that there may 
not be more than one way of carrying out an inference - the different procedures having different 
properties, each of which one may or may not find attractive. 

Again I would like to thank the discussants. One thing is apparent -that the debate on the 
relationship between measurement and statistics has not yet reached a conclusion. 
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