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Abstract. This paper reviews the use of statistical methods in atmospheric
science. The applications covered include the development, assessment and
use of numerical physical models of the atmosphere and more empirical
analysis unconnected to physical models.
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1. INTRODUCTION

In broad terms, the ultimate goal of atmospheric
science is prediction. The atmosphere (and the ocean,
to which it is inextricably coupled) form a classical,
if extremely complex, dynamical system. In principle,
given complete knowledge of the current state of this
system, the physical laws that govern it, the topography
of the domain over which these laws operate and
external forces acting upon it, it would be possible
to predict its future state without error. Needless
to say, the complete knowledge needed for perfect
prediction is unattainable and the bread-and-butter of
atmospheric science is the development of various
kinds of approximations that make useful, if imperfect,
prediction possible and that can provide a measure
of the imperfection of the prediction. Statistics has a
role to play in virtually every aspect of this enterprise
and the goal of this article is to review some of the
ways in which statistical methods have been used in
atmospheric science.

In the United States, the application of statistical
methods to problems in atmospheric science has been
advanced greatly by the establishment in 1994 of
the Geophysical Statistics Project (GSP) at the Na-
tional Center for Atmospheric Research (NCAR). This
project has had two leaders: Mark Berliner, who served
from 1995 until 1997, and Douglas Nychka, who has
served since 1997. The project supports collaboration
between atmospheric scientists and statisticians. Its
centerpiece is a program that brings doctoral students
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and postdoctoral researchers together with more senior
scientists for collaboration. As a glance at the refer-
ences of this article will testify, the GSP has made a
signal contribution to the advancement of statistics in
atmospheric and related science. Some of this work is
presented in the volume edited by Berliner, Nychka
and Hoar (2000). The monograph by von Storch and
Zwiers (1999), although aimed at atmospheric scien-
tists and oceanographers, provides an excellent de-
scription of some statistical problems in these fields
and also reviews some of the statistical and quasista-
tistical methods in current use.

The remainder of this review is organized in the fol-
lowing way. In Section 2, some statistical issues aris-
ing in the use of physical models of the atmosphere
are discussed. In Section 3, some statistical work on
atmospheric data that is less closely tied to physical
models is reviewed. Section 4 contains some conclud-
ing remarks.

2. STATISTICS IN ATMOSPHERIC MODELING

This section reviews some of the ways in which
statistics has been used in the development, assessment
and use of numerical models of atmospheric dynamics.

2.1 Parameterizing Subgrid-Scale Processes

The dynamics of the atmosphere can be described
by a coupled system of partial differential equations
(Salby, 1996). These are called the primitive equa-
tions. Unfortunately, the primitive equations are too
complicated to solve explicitly and atmospheric sci-
entists have turned to large-scale numerical models
called general circulation models (GCMs). In a GCM,
the primitive equations are discretized and numeri-
cally integrated in time on a three-dimensional spatial
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grid. Limitations on computing power require that this
grid be relatively coarse. For example, the Commu-
nity Climate Model maintained at the National Cen-
ter for Atmospheric Research divides the atmosphere
into ∼ 8,000 grid boxes with horizontal dimensions
of ∼300-by-300 km at the equator at each of ∼20 at-
mospheric layers and uses a time step of 20 minutes for
integrations of up to 100 years.

A consequence of the relatively coarse spatial grid
used in GCMs is that atmospheric processes that op-
erate at smaller scales are not resolved. Although these
processes operate at relatively small spatial scales, they
can play an important role in atmospheric dynamics.
To incorporate subgrid-scale processes into GCMs, at-
mospheric scientists use parameterizations. A parame-
terization is essentially an empirical representation of
an unmodeled process that can be incorporated into a
model (Trenberth, 1992). The following general for-
mulation is based on Berliner, Royle, Wikle and Milliff
(1999). Consider a vector-valued dynamical system zt

that can be decomposed as zt = (xt , yt ). In general,
both components xt and yt are also vector-valued. The
dynamics of this system are governed by

xt+1 = h(xt , yt+1),

yt+1 = g(xt , yt ).
(1)

Suppose that the components of xt are resolved by a
numerical model, but the components of yt are not.
The goal is to construct a model for xt that still
incorporates the effect of yt . Toward this end, construct
a parameterization of the unmodeled component:

ŷt+1
∼= f (xt ; θ),(2)

where ŷt is a simplified representation of the unmod-
eled process and θ is a collection of parameters. Fi-
nally, substitute this parameterization into the model:

xt+1 = h̃
(
xt , f (xt; θ)

)
,(3)

where h̃ is the function relating xt+1 to xt and the
simplified representation ŷt+1. As an example of a
simplified representation, in the case of cloud parame-
terizations discussed below, it is common to parameter-
ize the fraction of a GCM grid box that is covered by
cloud and not individual clouds themselves. The sta-
tistical side of this problem is to fit the parameteriza-
tion (2) as a regression problem.

From the perspective of modeling the long-term
effects on climate of increasing atmospheric concentra-
tions of greenhouse gases, the most important subgrid-
scale atmospheric process is cloud formation. Clouds

have a substantial effect on the Earth’s radiation bud-
get. This effect is complicated. Briefly, thick, low-lying
clouds act to cool the surface by reflecting solar radi-
ation back into space, while thin, high clouds act to
warm the surface by trapping reflected longwave radi-
ation through the greenhouse effect. General circula-
tion models generally treat the amount of clouds and
their radiative effects separately. Parameterizations of
cloud amount typically involve two steps. In the first
step, each grid box is determined to be convective or
nonconvective. Convection refers to the mechanism by
which water vapor evaporated at the ocean surface (and
elsewhere on the Earth’s surface) is transported verti-
cally into the atmosphere to form clouds. This deter-
mination is based on the vertical profile of the modeled
atmosphere. In the second step, the amount of cloud
in each convective grid box is estimated from an em-
pirical relationship between cloud amount and mod-
eled variables. Because detailed observational data on
clouds are scarce, this relationship is usually estimated
from simulations from a cloud-resolving model with
overall domain around the size of a single GCM grid
box. As an example, Xu and Randall (1996) proposed
the following parameterization for the stratiform cloud
fraction CS of the sky in a GCM grid box:

CS = r
p
H

(
1 − exp(−αq̄e)

)
,(4)

where rH is relative humidity, q̄e is the large-scale
condensate mixing ratio and

α = α0
(
(1 − rH )q∗)−γ

,(5)

where q∗ is the water vapor mixing ratio. The model
provides values of rH , q̄e and q∗ and the parameters
p,α0 and γ are estimated statistically from model
simulations.

Bailey et al. (2000) described a more complicated
cloud parameterization. Briefly, in their parameteriza-
tion, the cloud amount at time t + 1 in a grid box de-
pends nonlinearly on the cloud amount at time t and
the values of three atmospheric variables—relative hu-
midity, Richardson’s number (a measure of shear in the
atmosphere) and the time rate of change of general-
ized convective available potential energy (a predictor
of convection)—in the grid box itself and in each of
its four nearest neighbors. The resulting nonlinear re-
gression model, which involves a total of 16 regressors,
was fitted to data from a cloud-resolving model using a
feed-forward neural network and was found to perform
reasonably well.

The practice of fitting a parameterization to the out-
put of a deterministic model by regression raises a fun-
damental question. In the usual regression setting, the
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response is treated as a random variable whose mean
is a function of some regressors. Even if this func-
tion is known, the response will be different from the
mean as a result of some kind of stochastic variation. In
practice, some part of the deviation between observed
and fitted values of the response may reflect model er-
ror but, provided the deviations show little systematic
structure, this is ignored. In the case of model-based
parameterization, the regression machinery based on a
stochastic model is used for deterministic functional
approximation. In this case, the deviations between
the “observed” and fitted values of the response can
only be due to model error in the parameterization
and do not reflect uncertainty in the traditional sense.
The statistical treatment of the output of deterministic
models was reviewed by Sacks, Welch, Mitchell and
Wynn (1989) with particular emphasis on the design of
computer experiments. Kennedy and O’Hagan (2001)
outlined a comprehensive Bayesian formalism for the
analysis of model output that incorporates all sources
of error, including model error, in a statistical frame-
work. Berliner (2003) discussed this kind of approach
in the context of climate modeling.

2.2 Model Assessment

Once an atmospheric model is constructed, it is
necessary to assess its ability to simulate atmospheric
dynamics before using it for prediction. One important
use of GCMs is forecasting the long-term response of
the climate system to actual or hypothetical changes in
the atmospheric concentrations of carbon dioxide and
other radiatively active gases. As this is an issue of
considerable interest to society, there is a need to know
whether GCMs provide an accurate picture of climate.
In broad terms, the assessment of GCMs is based on
comparing model reconstructions of historical climate
to historical climate records. This is clearly a statistical
problem and it has been addressed in a number of
ways with varying degrees of formality. A particularly
lucid exposition from a statistical perspective was
provided by Levine and Berliner (1999); for a Bayesian
perspective on related issues, see Berliner, Levine and
Shea (2000). In their notation, the basic statistical
model is

� = �s + �̃,(6)

where � is a vector of dimension n of climate obser-
vations, �s is the climate signal and �̃ is internal cli-
mate variability with mean 0 and dispersion matrix C.
The elements of these vectors correspond to different

climate variables (e.g., temperature, pressure, humid-
ity) at different locations in time and space. Typically,
both � and �s are expressed as deviations or anom-
alies from some baseline. Let the n-dimensional vec-
tors g1, g2, . . . , gp represent the modeled responses of
the climate signal to prescribed radiative forcings and
let G be the n-by-p matrix with columns given by these
vectors. For example, g1 could represent the modeled
response to the radiative effect of historical increases
in greenhouse gas concentrations, g2 could represent
the modeled response to the radiative effect of histor-
ical solar variability and so on. Under the assumption
that these responses are additive, the statistical model
can be written as the regression

� = Ga + �̃,(7)

where a is a vector of unknown regression parameters
of dimension p.

Under this formulation, Levine and Berliner (1999)
proposed as a method of model assessment a formal
test of what they referred to as geoequivalency, in anal-
ogy to bioequivalency in drug testing. The basic idea
is to test the compound null hypothesis H0 :a �= aM

against the simple alternative hypothesis H1 :a = aM ,
where aM is the model-based value of a. The follow-
ing test is due to Brown, Casella and Hwang (1995).
Let θ = a − aM and θ̂ = âobs − âM , where âobs =
(G′C−1G)−1G′C−1� is the generalized least squares
estimate of a based on the observations and âM is
the estimate of aM based on model simulations. Let
� = Cobs + CM , where Cobs = (G′C−1G)−1 and CM

are the dispersion matrices of âobs and âM , respec-
tively. Under the assumption that θ̂ has a multivariate
normal distribution with mean θ and dispersion ma-
trix �,H0 can be rejected at significance level α if the
confidence region

R = {
θ : (θ ′�−1θ)1/2 ≤ zα + (θ ′�−1θ)−1/2

· (θ̂ ′�−1θ)
}(8)

does not cover the origin.
Several issues arise in the implementation of this

approach. Chief among these is the need to estimate
the dispersion matrix C and the effect of using this
estimate in place of C on the properties of the test.
Levine and Berliner (1999) outlined two proposals for
estimating C. One is based on repeated control runs
of the model—that is, simulations in which none of
the radiative forcings that give rise to the responses
comprising G is applied to the model. This places the
additional burden on the GCM of correctly simulating
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unforced variability in climate. The second proposal
is to estimate C from the observations themselves.
The difficulty here is that these observations reflect
variations that are not due solely to true natural
variability—for example, measurement error and data
processing. Finally, there seems to be a problem with
interpreting the result of this test. As every GCM
is based on some approximations to reality, the null
hypothesis is certainly true and there is no logical
reason to test it. To put it another way, as the only
possible reason for failing to reject the null hypothesis
is low power, provided that additional observations are
collected through time, this test is destined to reject the
null hypothesis.

2.3 Data Assimilation

The previous discussion has dealt with the use of sta-
tistical methods in developing an atmospheric model
and in assessing its predictive ability. Here, the use
of statistical methods in the prediction process itself
is discussed. The term data assimilation refers gener-
ally to the blending of observations with a numerical
physical model for improved prediction. One use of
data assimilation is simply to convert measurements of
one variable into measurements of another. For exam-
ple, satellite measurements of energy need to be con-
verted into measurements of temperature. A second use
of data assimilation is in numerical weather prediction.
Numerical weather prediction is based on integrating
a numerical model forward from observed initial con-
ditions. Such predictions can be highly sensitive to er-
rors in these initial conditions and there is a need to
incorporate observations on a continuous basis. In both
of these applications, the use of a physical model is
intended to ensure that the results obey basic physical
laws. Data assimilation and related issues are discussed
in Daley (1997) and Sneddon (2000).

To begin with, consider the data assimilation prob-
lem at a fixed point in time. This would correspond, for
example, to the problem of using observations of one
atmospheric variable to predict the values of another.
The basic model is

y = h(x) + ε,(9)

where y is the vector of observations, x is the vector of
values to be predicted and ε is a vector of observation
errors. The function h is an expression of the physical
law relating x and y. To proceed, this model is
linearized in some way so that

y ∼= Hx + ε,(10)

where H is a known matrix. Let x0 be an initial guess
at x. For example, this guess can be based on an earlier
assimilation. The prediction x̂ is found by minimizing

J (x) = (y − Hx)′P −1(y − Hx)

+ (x − x0)
′R−1(x − x0),

(11)

where P is the dispersion matrix of the observation
errors ε and R is the dispersion matrix of the so-called
forecast errors (x − x0). The minimization of J (x)

is called a three-dimensional variational problem. The
term three-dimensional emphasizes that assimilation
is at a set of locations in three spatial dimensions
at a fixed point in time. The solution to the three-
dimensional variational problem is given by

x̂ = (H ′P −1H + R−1)−1(H ′P −1y + R−1x0).(12)

The variational problem can be interpreted as a pe-
nalized least squares problem where the penalty is the
second term on the right-hand side of (11). This prob-
lem also has a straightforward Bayesian interpretation.
Specifically, x̂ corresponds to the posterior mode of the
random variable X with multivariate normal prior dis-
tribution with mean x0 and dispersion matrix R and
where the distribution of ε is also multivariate normal
with mean 0 and dispersion matrix P . The Bayesian
formulation leads naturally to results about prediction
accuracy and about the design of observations for opti-
mal prediction (Lu, Berliner and Snyder, 2000).

While the solution to the three-dimensional varia-
tional problem is straightforward in principle, there are
significant problems in implementation. One problem
is that the dimension of x can be very large—on the
order of 105–106—so that the inversion of R is chal-
lenging (Sneddon, 2000). To circumvent this problem,
it is common to make assumptions about the spatial
dependence of the forecast errors that result in some
simplifying structure in R. Another problem is that the
quality of the linear approximation to h in the neigh-
borhood of x0 may not always be good. A third prob-
lem can arise if the assumption of normal error is
violated. An example involving the assimilation of pre-
cipitation data, for which the assumption of normal er-
ror is not appropriate, is discussed in Errico, Fillion,
Nychka and Lu (2000).

The second common use of data assimilation is in
numerical weather prediction. Here, the goal is to pre-
dict the state of the atmosphere at time t based on infor-
mation available at time t − 1. This problem, which is
referred to as four-dimensional data assimilation, can
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be formulated through a state-space model. The obser-
vation equation

yt = Htxt + εt(13)

is the same as (10) with the addition of the time index.
The state equation is

xt = Mtxt−1 + ηt ,(14)

where Mt is a linearization of the model governing
atmospheric dynamics and ηt represents stochastic
variability in the atmosphere. The combined state-
space model is solved using the Kalman filter. For
example, the prediction of xt is given by

x̂t = Mtx̂t−1 + Gt(yt − HtMt x̂t−1),(15)

where Gt is the Kalman gain matrix that depends
on Ht , the dispersion matrix Pt of εt , and the disper-
sion matrix of the error of predicting xt based on data
available at time t − 1. Details can be found in Cohn
(1997). A Bayesian interpretation is given in West and
Harrison (1997).

The same kinds of problems that arise in the imple-
mentation of three-dimensional data assimilation also
arise in the four-dimensional version. An acute prob-
lem arises from the need to invert large dispersion ma-
trices at each time step. Various methods have been
used to simplify this calculation, including reducing
dimensionality by focusing on directions in which pre-
diction errors grow particularly quickly. The technical
report by Fisher and Courtier (1995) describes some of
these approaches.

The equations governing the atmospheric dynamics
are nonlinear. Briefly, to accommodate this, in the
so-called extended Kalman filter, Mt in (14) can be
continuously updated by taking a linear approximation
in the neighborhood of x̂t−1. Other approaches to
extending the Kalman filter to the nonlinear case
are discussed in Kitagawa (1996) and Evensen and
van Leeuwen (2000). The nonlinearity of atmospheric
dynamics famously gives rise to extreme sensitivity
to initial conditions (Lorenz, 1963). For this reason,
to map out prediction uncertainty it is now common to
initialize weather predictions from a suitably selected
ensemble of initial conditions. Ensemble forecasting
is discussed in Sivillo, Ahlquist and Toth (1997) and,
from a statistical perspective, in Berliner (2001).

3. EMPIRICAL STATISTICAL ANALYSIS

The previous section reviewed the use of statistical
methods in atmospheric modeling. Statistics has also

been used to analyze atmospheric data outside the
context of physical modeling. This section gives two
examples of this kind of work: one concerned with the
development of statistical methods for decomposing
spatial time series and the other with an application
of well-established methods to inference based on a
partially incomplete climate record.

3.1 Multivariate Methods for Spatial Time Series

Atmospheric and oceanographic data commonly take
the form of spatial time series, that is, time series of the
same variable measured at a collection of locations. Of-
ten atmospheric scientists are interested in empirically
decomposing such data into uncorrelated modes of
variation and, specifically, in isolating low-frequency
modes for further analysis. Let y(t) be a discrete-time,
0-mean, vector time series of dimension p. For exam-
ple, y(t) could represent detrended mean annual sur-
face temperature at a set of p measurement sites. The
overall goal of this kind of analysis is to effect a de-
composition of the form

y(t) =
k∑

j=1

wjxj (t) + ε(t)(16)

with k < p, where x1(t), x2(t), . . . , xk(t) is a set of or-
thogonal univariate index series or temporal modes of
variation, wj is a vector of dimension p that describes
the spatial structure of this mode and ε(t) represents
residual variability not captured by the k modes. There
are various motivations for this kind of decomposition.
One is to attempt to identify physically meaningful
modes of variation in atmospheric dynamics such as
the El Niño–Southern Oscillation or the North Atlantic
Oscillation. Another is to identify modes of variability
that are temporally smooth and, therefore, predictable
from their past values.

The decomposition in (16) is not unique and the ba-
sic problem is to choose one. By a wide margin, the
most common approach in atmospheric science and
oceanography is to use principal component analy-
sis (PCA), also called empirical orthogonal function
(EOF) analysis (Jolliffe, 1986). In PCA, the first mode
is given by the linear combination

x1(t) =
p∑

j=1

vj yj (t)(17)

of the elements of y(t), where the weights are chosen
to maximize the temporal variance of x1(t) subject to
the side condition

∑p
j=1 v2

j = 1. It is straightforward to
show that these weights are given by the elements of
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the unit eigenvector corresponding to the largest eigen-
value of the marginal spatial covariance function �0
of y(t). The vector w1 in (16) can be found by regress-
ing the original component series yj (t) on x1(t). Addi-
tional index series are constructed from the remaining
eigenvectors of �0.

An unsatisfactory feature of this use of PCA is that,
because it is based on the marginal spatial covariance
function, it makes no use of the temporal pattern of
the original time series. As an alternative, Hasselmann
(1988) proposed a method called principal oscillation
patterns (POPS) analysis. This approach is based on a
first-order vector autoregressive model:

y(t) = �y(t − 1) + η(t),(18)

where � is a matrix of autoregressive parameters and
η(t) is multivariate white noise. This can be viewed
as a linear approximation to the nonlinear dynamics of
the field. The approach parallels principal component
analysis, but is based on the eigenvectors of the matrix
B = �1�

−1
0 , where �1 is the lag-one autocovariance

matrix. In counterpoint to PCA, POPS analysis focuses
on identifying (possibly complex) components with
strong temporal structure but that may not be strongly
connected to the spatial structure of the original field.

As a compromise, Kooperberg and O’Sullivan
(1996) proposed a method called predictive oscillation
patterns (PROPS) analysis. Briefly, PROPS analysis
extracts spatial structures—the wj in (16)—that min-
imize an upper bound on the expected squared one-
step-ahead prediction error. A recursive algorithm is
used to identify these structures. Minimization of the
upper bound on prediction error entails making both
the variance of the index series large (as in PCA) and
their predictability high (as in POPS).

This area of statistical climatology has suffered from
a clear statement of the underlying goal of the analy-
sis. The proposal by Kooperberg and O’Sullivan (1996)
to focus on predictability is a substantial step in the
right direction. Objectives other than prediction will, of
course, lead to other methods, but the important point
is to develop the method from an explicit objective.
A practical issue that needs to be faced in this kind
of work concerns the spatial–temporal pattern of data
availability. Atmospheric and oceanographic data are
sparse and irregularly located in space and time. Many
methods of analysis assume some kind of regularity in
spacing. For example, PROPS requires the estimation
of spectral densities and Kooperberg and O’Sullivan
(1996) assume that regularly spaced time series data
are available for this purpose. It is common practice in

atmospheric science to construct regular data sets by
interpolating or gridding sparse, irregularly spaced ob-
servations. It does not appear to be widely recognized
among atmospheric scientists that the statistical prop-
erties of gridded data are different from those of the
underlying variables and that care should be taken in
removing artifacts created by gridding.

3.2 Testing for Trend in a Partially Incomplete
Hurricane Record

So far, this review has focused on examples of
general statistical problems in atmospheric science.
This final example considers a specific application
of well-established statistical methods to address a
substantive question in atmospheric science.

A perennial problem in the empirical analysis of
historical data in atmospheric science is the unrelia-
bility of the early observational record. This is a se-
rious problem because the temporal scale of variability
of most interest to studies of climate change presses
the limit of the reliable record. One example is the an-
nual record of North Atlantic hurricane counts. Prior
to the advent of regular aircraft reconnaissance in 1946,
a hurricane that did not come close to land had a signif-
icant probability of going undetected. For this reason,
attempts to identify a long-term trend in the mean an-
nual number of hurricanes were restricted to the period
of the complete record. Interest in this issue stems from
a possible connection between overall warming and
hurricane activity. As the North Atlantic basin expe-
rienced a general warming trend over the 20th century,
the corresponding pattern of hurricane activity would
shed some light on this connection.

Although the record of North Atlantic hurricanes
is complete only since around 1946, the record of
landfalling hurricanes is believed to be complete back
to 1900 and probably further. Analysis of the postwar
record suggests that the mean proportion of hurricanes
that make landfall has been constant since 1946. Under
the assumption that this result also holds prior to 1946,
the possibility arises of supplementing the partially
incomplete record of all hurricanes with the complete
record of landfalling hurricanes to extend the analysis
of overall hurricane activity back beyond 1946. This
idea was pursued by Solow and Moore (2000) to test
for trend in overall hurricane activity over the period
1930–1998.

Let the random variable Yt be the true basinwide
number of hurricanes in year t (t = 1,2, . . . , n) and
suppose that Yt has a Poisson distribution with mean
µt = exp(µ0 +µ1t). Interest centers on testing the null
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hypothesis H0 :µ1 = 0 of no change in mean number
against the general alternative hypothesis H1 :µ1 /∈ 0.
Let the random variable Xt be the number of land-
falling hurricanes in year t and assume that, condi-
tional on Yt = yt ,Xt has a binomial distribution with
yt trials and unknown landfalling probability p. Fi-
nally, let the random variable Zt be the observed num-
ber of hurricanes in year t that did not make landfall
and assume that, conditional on yt and the observed
value xt of Xt,Zt has a binomial distribution with
yt − xt trials and unknown sighting probability qt = q

for t = 1,2, . . . ,m and 1 for t = m + 1,m + 2, . . . , n.
Using this model, Solow and Moore (2000) tested

for trend over the period 1930–1998 using the likeli-
hood ratio test. The relatively short extension beyond
1946 was chosen to ensure the reasonableness of the
assumption that the sighting probability q is constant
over the period of incomplete record. The contribution
to the likelihood function of the observation (x, z) in
year t is

ft (x, z) =
∞∑

y=x+z

(
y − x

z

)
qz
t (1 − qt)

y−x−z

·
(

y

x

)
px(1 − p)y−x

· µy
t exp(−µt)

/
y!.

(19)

The lower bound of the summation reflects the fact
that the total number of hurricanes in a given year can-
not be less than the observed number. The maximum
likelihood estimate of µ1 is around −0.005 with an
approximate significance level of around 0.09. Solow
and Moore (2002) extended this analysis back to 1900.
In doing so, they checked and retained the assump-
tion of a constant sighting probability, but relaxed the
parametric log linear model for µt in favor of a non-
parametric approach based on kernel estimation. The
significance level estimated by a parametric bootstrap
was around 0.12. Overall, the analysis suggests little
evidence of a trend in hurricane activity.

4. CONCLUDING REMARKS

The involvement of statisticians in atmospheric sci-
ence has grown markedly over the past 10 years. This
article has attempted to review in broad strokes some
of the areas in which this involvement has contributed
and can continue to contribute. As in other fields of ap-
plication, there has been an ongoing tension between
the level of statistical sophistication favored by statis-
ticians working in this area and the practical require-
ments of atmospheric scientists for whom statistics is

not the main object of interest. A particularly gratifying
development of the past few years has been a general
relaxation of this tension.

A review of this kind is necessarily selective. One
important area of statistical work in atmospheric sci-
ence not reviewed here is downscaling. Downscaling
refers to the use of geographically coarse model output
(or other types of large-scale climate information) to
predict climate on a geographically finer scale. Down-
scaling is commonly done by using historical data to
construct a regression model relating regional or lo-
cal climate response variables to selected model out-
put (sometimes called model output statistics, or MOS)
as regressors. The fitted model can then be used in
the future to predict the local variables from model
output. Statistical issues that arise in downscaling in-
clude the specification of the regression model and the
selection of regressor variables. A sample of recent
work in this area includes Vislocky and Fritsch (1995),
who used generalized additive modeling in predict-
ing aviation weather; Kuligowski and Barros (1998),
who considered the use of neural nets in modeling
the relationship between local climate and model out-
put; and Bellone, Hughes and Guttorp (2000), who
used a hidden Markov model for downscaling large-
scale atmospheric patterns to predict local precipitation
amounts.

A second important topic not reviewed here is the
development of empirical prediction models that rely
heavily on physical understanding. These prediction
models occupy a middle ground between determinis-
tic physical models and simple empirical models. Two
recent examples are the work of Berliner, Wikle and
Cressie (2000), who developed a dynamic Bayesian
model for predicting sea surface temperature in the
equatorial Pacific, and Wikle, Milliff, Nychka and
Berliner (2001), who developed a hierarchical Bayesian
spatiotemporal model for constructing high resolution
predictions of surface winds.
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