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Statistics in Medicine

Calculating confidence intervals for regression and correlation

DOUGLAS G ALTMAN, MARTIN J GARDNER

Introduction

The most common statistical analyses are those that examine
one or two groups of individuals with respect to a single variable,
and methods of calculating confidence intervals for means or
proportions and their differences have been described previously.'
Also common are those analyses that consider the relation between
two variables in one group of subjects. We use regression analysis to
predict one variable from another, and correlation analysis to see if
the values of two variables are associated. The purposes of these two
analyses are distinct, and usually one only should be used.

This paper outlines the caiculation of the linear regression
equation for predicting one variable from another and shows how to
calculate confidence intervals for the population value of the slope
and intercept of the line, for the line itself, and for predictions made
using the regression equation. It explains how to obtain a confidence
interval for the population value of the difference between the slopes
of regression lines in two groups of subjects and how to calculate a
confidence interval for the vertical distance between two parallel
regression lines. The calculations of confidence intervals for
Pearson’s correlation coefficient and Spearman’s rank correlation
coefficient are described.

Worked examples are included to illustrate each method. The
calculations have been carried out to full arithmetical precision, as is
recommended practice,’ but intermediate steps are shown as
rounded results. Methods of calculating confidence intervals for
different aspects of regression and correlation are demonstrated,
but the appropriate ones to use depend on the particular problem
being studied.

The interpretation of confidence intervals has been discussed
earlier.’ Confidence intervals convey only the effects of sampling
variation on the estimated statistics and cannot control for other
errors such as biases in design, conduct, or analysis.

General form of confidence intervals

The basic method for constructing the confidence intervals is as
previously described.! Each confidence interval is obtained by subtracting
from, and adding to, the estimated statistic (or a transformation) a multiple
of its standard error (SE). The multiple is determined by the theoretical
distribution of the statistic: the ¢ distribution for regression, or the Normal
distribution for correlation. The multiple is taken as the value that
corresponds to including the central 100(1—a)% of the theoretical
distribution. So, for example, a 95% confidence interval is described by
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finding the value that cuts off 212% from each tail of the distribution. Tables
of the ¢ and Normal distributions are available in most statistics books
and Geigy Scientific Tables.> We denote the relevant value as either
t1_ a2 0r Nj_o2. For the t distribution the degrees of freedom, which depend
on the sample size, must be known.

Regression analysis

For two variables x and y we wish to calculate the regression equation for
predicting y from x. We call y the dependent variable and x the independent
variable. The equation for the population regression line is:

y=A+Bx

where A is the intercept on the y axis (the value of y when x=0) and B is the
slope of the line. In standard regression analysis it is assumed that the
distribution of the y variable at each value of x is Normal with the same
variance, but no assumptions are made about the distribution of the
x variable. Sample estimates a (of A) and b (of B) are needed and also the
means of the two variables (X and ¥), the standard deviations of the two
variables (s, and s,), and the residual standard deviation of y about the
regression line (s.e;). The formulas for deriving a, b, and s, are given in the
appendix.

All the following confidence intervals associated with a single regression
line use the quantity ¢, _ 2, the appropriate value from the ¢ distribution with
n—2 degrees of freedom where n is the sample size.

THE SLOPE OF THE REGRESSION LINE
The slope of the sample regression line estimates the mean change in y for
a unit change in x. The standard error of the slope, b, is calculated as:

Sres
SE(b)y=—""7—==
®) s, Vn—1
The 100(1 — )% confidence interval for the population value of the slope, B,
is then given by
b—(t;_2XSE()) to b+(t;_o2%XSE(b)).

THE MEAN VALUE OF Y FOR A GIVEN VALUE OF X (AND FOR THE
REGRESSION LINE)

The estimated mean value of y for any chosen value of x, say xo, is obtained
from the fitted regression line as:

Yar=a+bx,.

The standard error of yg, is given by:

1 (%—%)
SE(Y60)=Sres X \/ —+ s

The 100(1—a)% confidence interval for the population mean value of y at
X=X, is then:

Vi~ (012 XSE(¥Ys)) 10 Vet (t1—a2 X SE(Yao)-
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When this calculation is made for all values of x in the observed range a
100(1— )% confidence interval for the position of the population regression
line is obtained. Because of the last term in the formula for SE(yg,) the
confidence interval becomes wider with increasing distance of x, from %.

THE INTERCEPT OF THE REGRESSION LINE

The intercept of the regression line on the y axis is generally of less interest
than the slope of the line and does not usually have any obvious
interpretation. It can be seen that the intercept is the fitted value of y when x
is zero. Thus a 100(1—a)% confidence interval for the intercept, A, can be
obtained using the formula from the preceding section with xo=0and yg.=a.
The confidence interval is thus given by:

a—(t;_,2XSE(a)) to a+(2 _.2XSE(a)).

PREDICTION FOR AN INDIVIDUAL (AND ALL INDIVIDUALS)

It is useful to calculate the uncertainty in yg, as a predictor of y for an
individual subject. The range of uncertainty is called a prediction (or
tolerance) interval. A prediction interval is wider than the associated
confidence interval for the mean value of y because the scatter of data about
the regression line is more important. For an individual whose value of x is xo
the predicted value of y is yg,, given by:

yac=a+bx,.

To calculate the prediction interval we use the estimated standard deviation
of individual values of y when x equals X (Spred):

1 (x—%7
Spred=SresX || 14—+ ———
pred n (n—I)7

The 100(1— )% prediction interval is then:

Ve~ (h1-w2XSprea) 10 Yt (1 —a2XSprea)-

When this calculation is made for all values of x in the observed range the
estimated prediction interval should include the values of y for 100(1—a)%
of subjects in the population.

COMPARISON OF TWO REGRESSION LINES

Regression lines fitted to observations from two independent groups of
subjects can be analysed to see if they come from populations with regression
lines that are parallel or even coincident.* If we have fitted regression lines to
two different sets of data on the same two variables we can construct a
confidence interval for the difference between the population regression
slopes using a similar approach to that for a single regression line. The
standard error of the difference between the slopes is given by first
calculating s%, as:

\/(nl—z>s£¢sl+<nz-z>s£esz
Shes=

n;+n,—4

and then

1 1

+
(n;—1)s}y

SE(bl—bz)=S’r"es><\/

(ny—1)s},

where the suffixes 1 and 2 indicate values derived from the two separate sets
of data. The 100(1—a)% confidence interval for the population difference
between the slopes is given by:

by—b;—(t; @2XSE(by—by)) to b;—b,+( 2XSE(b;—by)),

where 1, _, is the appropriate value from the ¢ distribution with n,+n,—4
degrees of freedom.

THE VERTICAL DISTANCE BETWEEN PARALLEL REGRESSION LINES

If the 95% confidence interval for the difference between population
values of the slopes includes zero it is reasonable to fit two parallel regression
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lines with the same slope and calculate a confidence interval for their
common slope. We can also calculate a confidence interval for the vertical
distance between the parallel lines, which is the difference between the mean
values of y calculated from the two lines at any value of x. This is equivalent
to adjusting the observed mean values of y for the mean values of x and is
known as analysis of covariance.*

All the calculation can be done using the results obtained by fitting
separate regression lines to the two groups and the standard deviations of the
x and y values in the two groups: sy, Sy2, Sy1, and sy,. First define the
quantity w as:

w=(n;— 1)s};+(n;— Ds,.
The common slope of the parallel lines (b,,) is estimated as:

by(n; — 1)k +by(n,—1)sk;

par—

w

The residual standard deviation of y around the parallel lines (sg,,) is
given by:

\/ (ny = 1)s2y+(ny— 1)s3,~ bho X W
spar=

n,+n,—-3

and the standard error of the slope by:

Spar
SE(by.)=—"7="
(Bpar) Ve
The 100(1 —a)% confidence interval for the population value of the common
slope is then:

bpar_ (tl a2 X SE(bpar)) to bpar+ (tl —w2X SE(bpar))

where ¢, is the appropriate value from the ¢ distribution with n;+n,—3
degrees of freedom.
The intercepts of the two parallel lines with the y axis are given by:
Vi _bparil and yl_bpariz-
We are usually more interested in the difference between the intercepts,
which is the vertical distance between the parallel lines. This is the same as

the difference between the fitted y values for the two groups at the same value
of x. The adjusted mean difference (y4;s) is calculated as:

Vaite=Y1— Y2~ bpar(X1 —%2)
and the standard error of y g is:

1 1
— (&K,
SE(Vait)=SparX [ n; n, (®1=%2)

w
The 100(1—0)% confidence interval for the population value of y s is:

Vaitt— (102X SE (Yais)) 10 Vaier+ (81— w2 X SE(Yaisr))

where t,_,, is the appropriate value from the ¢ distribution with n,+n,—3
degrees of freedom.

WORKED EXAMPLE

Table I shows data from a clinical trial of enalaparil versus placebo in
diabetic patients.® The variables studied are mean arterial blood pressure
(mmHg) and total glycosylated haemoglobin concentration (%). The
analyses presented here are illustrative and do not relate directly to the
clinical trial. Most of the methods for calculating confidence intervals are
demonstrated using only the data from the 10 subjects who received
enalaparil.

We want to describe the way total glycosylated haemoglobin concentra-
tion (TGH) changes with mean arterial blood pressure (MAP). The
regression line of total glycosylated haemoglobin concentration on mean
arterial blood pressure for the 10 subjects receiving enalaparil is found to be:

TGH=20-19—-0-1168 x MAP.



1240

The estimated slope of the line is negative, indicatihg lower total glyco-
sylated haemoglobin concentrations for subjects with higher mean arterial
blood pressure.

TABLE I—Mean arterial blood pressure and total glycosylated haemoglobin concentration
in two groups of 10 diabetics on entry to a clinical trial of enalaparil versus placebo’®

Enalaparil group Placebo group
Mean Total Mean Total
arterial blood glycosylated arterial blood glycosylated
pressure (mm Hg) haemoglobin (%) pressure (mm Hg) haemoglobin (%)
x y x y
91 9-8 98 95
104 7-4 105 67
107 79 100 70
107 83 101 86
106 83 99 67
100 9-0 87 95
92 97 98 9-0
92 88 104 7:6
105 7-6 106 85
108 69 90 86
Means:
%=101-2 §=8-37 %=988 y=817
Standard deviations:
$x=6-941 5,=0'9615 $x=6-161 sy=1-0914
Standard deviations about the fitted regression lines:
Sres=0-5485 Sres=0-9866

The other quantities needed to obtain the various confidence intervals are
shown in table I. The calculations use 95% confidence intervals. For this we
need the value of t,.4;75 with 8 degrees of freedom, and the appropriate table
shows this to be 2:306.

Confidence interval for the slope of the regression line

The standard error of the slope is:

0-5485

=——={) 9
SE(b) PRIV, | 0:02634% per mm Hg.

The 95% confidence interval for the population value of the slope is:

—0-1168—(2:306x0:02634) to —0-1168+(2:306x0-02634)

that is, from —0-178 to —0-056% per mm Hg.

Confidence interval for the mean total glycosylated haemoglobin
concentration for a given mean arterial blood pressure (and for the
regression line)

The confidence interval for the mean total glycosylated haemoglobin
concentration can be calculated for any specified value of mean arterial blood
pressure. If the mean arterial blood pressure of interest is 100 mm Hg the
estimated total glycosylated haemoglobin concentration (yg,) is 20-19—
(0-1168x100)=8-51%. The standard error of this estimated value is:

1 (100—101-2)
E(yg)=0-5485 \/—+————=0-1763°/.
SEGa) V10" oxe9ar °

The 95% confidence interval for the mean total glycosylated haemoglobin
concentration for the population of diabetic subjects with a mean arterial
blood pressure of 100 mm Hg is thus:

8:51—(2-306x0°1763) to 8:51+(2:306x0-1763)
that is, from 8°10 to 8:92%.

By calculating the 95% confidence interval for the mean total glycosylated
haemoglobin concentration for all values of mean arterial blood pressure
within the range of observations we get a 95% confidence interval for the
regression line. This is shown in figure 1. The confidence interval becomes
wider moving away from the mean mean arterial blood pressure of
101-2 mm Hg.

BRITISH MEDICAL JOURNAL VOLUME 296 30 APRIL 1988

12:0 1

11:0+

10-0

901

8:0 1

704

Total glycosylated haemoglobin concentration (%)

60 -

N\
v T T T g T

L] L T v 1
90 94 98 102 106 110

Mean arterial blood pressure {(mm Hg)
rIG 1—Regression line of total glycosylated haemoglobin concentration on mean
arterial blood pressure, with 95% confidence interval for the mean total
glycosylated haemoglobin concentration.

Confidence interval for the intercept of the regression line

The confidence interval for the population value of the intercept is the
confidence interval for y5, when x=0, and is calculated as before. In this case
the intercept is 20°19%, with a 95% confidence interval from 14:03 to
26°35%.

Prediction interval for the total glycosylated haemoglobin
concentration of an individual

The 95% prediction interval for the total glycosylated haemoglobin
concentration of an individual subject with a mean arterial blood pressure of
100 mm Hg is obtained by first calculating spreq:

1 (100-101-2)

Sprea=0-5485x \/1+—+

10t Toxeoar: 0 o761%

The 95% prediction interval is then given by:
8-51—(2-306x0:5761) to 8:51+(2:306x0-5761)
that is, from 7-18 to 9:84%.

The contrast with the narrower 95% confidence interval for the mean total
glycosylated haemoglobin concentration for a mean arterial blood pressure
of 100 mm Hg calculated above is noticeable. The 95% prediction intervals
for the range of observed levels of mean arterial blood pressure are shown in
figure 2 and again these widen on moving away from the mean arterial blood
pressure of 101-:2 mm Hg.

Confidence interval for the difference between the slopes of two regression
lines

The regression line for the placebo group from the data in table I is:
TGH=17-33—-0-09268 x MAP.

The difference between the estimated slopes of the two lines is
—0-1168—(—0-09268)=—0-02412% per mm Hg. The standard error of this
difference is found either directly or through s%, as:

1/(8x0~54852+8x0'9866z) [ ! 1
_ = +
SE(b~b) 16 % l9x6-9411 9x6-16121

=0-05774% per mm Hg.
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The value of 7y.975 with 16 degrees of freedom is 2-120, so the 95% confidence
interval for the population difference between the slopes is:

—0-02412—(2-120x0:05774) to —0-02412+(2:120%x0-05774)

that is, from —0-147 to 0:098% per mm Hg.

Since a zero difference between slopes is near the middle of this confidence
interval there is no evidence that the two population regression lines have

different slopes. This is not surprising in this example as the subjects were
allocated at random to the treatment groups.

The vertical distance between two parallel lines

First calculate the quantity w as:
w=9Xx6'9412+9x6-161?
=775-22.
The common slope of the parallel lines is then found as:

—0-1168X9X6-9412+(—0-09268) X 9IX 61612
par 77522

=—0'1062% per mm Hg.

The residual standard deviation of y around the parallel lines is:

\/9x0-96152+9x 1:0914?—(—0-1062)2x775-2
Spar™= 10+10-3

=0-7786%
and the standard error of the common slope is thus:

0-7786

SE(bpa,)z—WE:O'ON%% per mm Hg.

The value of 15.975 with 17 degrees of freedom is 2:110, so that the 95%
confidence interval for the population value of b,,, is therefore:
—0-1062—(2-110x0-02796) to —0-1062+(2:110%x0-02796)

that is, from —0-165 to —0:047% per mm Hg.
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FIG 2'~Regression line of total glycosylated haemoglobin concentration on mean
arterial blood pressure, with 95% prediction interval for an individual total
glycosylated haemoglobin concentration.
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Using the calculated value for the common slope the adjusted difference
between the mean total glycosylated haemoglobin concentration in the two
groups is:

Yaigr=(8-37—8-17)—(—0-1062)x(101-2—-98-8)=0-4548%,

and its standard error is:

\/ 1 1 (101-2—98-8)
SE(Yair)=0-7786% || — + — 4 —————
(Yaie) 9 9 77522

=0-3731%.
The 95% confidence interval for the population value of y ;¢ is then given by:

0-4548—(2-110x0°3731) to 0:4548+(2-110x0-3731)

that is, from —0-33 to 1:24%.

EXTENSIONS

The ideas introduced in this section can be extended to studies with more
than two groups and where there are more than two variables by using
analysis of covariance and multiple regression.* Confidence intervals are
constructed in much the same way, and are based on the relevant standard
error. These more complex situations are beyond the scope of this paper.

Correlation analysis
PEARSON’S PRODUCT MOMENT CORRELATION COEFFICIENT

The correlation coefficient usually calculated is the “product moment
correlation coefficient” or “Pearson’s r.” This measures the degree of linear
co-relation between two variables x and y. The formula for calculating r for a
sample of observations is given in the appendix.

A confidence interval for the population value of r, assuming that x and y
have a joint bivariate Normal distribution, can be constructed by using a
transformation of r to a quantity z, which has an approximately Normal
distribution. This transformed value, z, is given by:

1 1+r

=—log.—
o

which for all values of r has a standard error of 1/V'n—3 where n is the sample
size.

For a 100(1—-a)% confidence interval we then calculate the two quantities:
21=2—(N_4»/Vn-3)
2;=2+(N;_o2/Vn-3),

and

where N, _; is the appropriate value from the standard Normal distribu-
tion for the 100(1—a/,) percentile. This can be found in appropriate tables.

The values z; and z, need to be transformed back to the original scale to
give a 100(1—a)% confidence interval for the population correlation
coefficient as:

2:
e 21

= o ——
+1 e +1

Worked example

Table II shows the basal metabolic rate and total energy expenditure in
24 hours from a study of 13 non-obese women.® The data are ranked by
increasing basal metabolic rate. Pearson’s r for these data is 07283, and the
transformed value z is:

1 1+0-7283

z=—"log.

————=0-9251.
2 1-0-7283

The values of z; and z, for a 95% confidence interval are:

z,=0'9251-(1-96/V'10)=0-3053
and

z,=09251+(1-96/V10)=1-545.
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TABLE 1I—DBasal metabolic rate and isotopically
measured 24 hour energy expenditure in 13 non-obese
women®

Basal metabolic rate 24 Hour total energy expenditure

(MJ/day)
467 7-05
5-06 6:13
5-31 8:09
5-37 8:08
5-54 7:53
565 7-58
5:76 8-40
5-85 7:48
586 7-48
5:90 811
5-91 7-90
619 10-88
6-40 10-15

From these values we derive the 95% confidence interval for the population
correlation coefficient:

ZXD'SDiS_l ele'S‘S__ 1

€

elx0'3053+ 1

ele‘545+1

that is, from 0-296 to 0-913.

SPEARMAN’S RANK COEFFICIENT

To calculate Spearman’s rank correlation coefficient (r;) the values of x
and y for the n individuals have to be ranked separately in order of increasing
size from 1 to n. Spearman’s rank correlation coefficient is then obtained
either by using the standard formula for Pearson’s product moment
correlation coefficient on the ranks of the two variables, or as shown in the
appendix using the difference in their two ranks for each individual. The
distribution of r; is similar to that of Pearson’s r, so that confidence intervals
can be constructed as shown in the previous section.

Appendix: Formulas for regression and correlation analyses
REGRESSION

The slope of the regression line is given by:
SXy—nXy

b=
sx?—nx?

where s represents summation over the n sample points. The intercept is
given by:

a=y—Dbx.

The residual standard deviation of y about the regression line is:

1 [ 5(y—yae)?
Sres= -
n—2
\/7 sy?—ny?—b¥(sx’—nx?)
B n-2

(n - l)(syz - bzsxz)
N a2

Most statistical computer programs give all the necessary quantities to
derive confidence intervals, but you may find that the output gives a quantity
called the “standard error of the estimate” (SEE), from which s, can be
calculated using:

Sees=SEE V.

Some of the standard errors needed to calculate confidence intervals may be
given directly by the computer program.
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CORRELATION

The correlation coefficient (Pearson’s r) is estimated by:

SXy—nXy
RV, =X —n& sy’ —ny’]

Spearman’s rank correlation coefficient is given by:

6:d?

rs=]— Y

n’—n

where d; is the difference in the ranks of the two variables for the ith
individual. Alternatively, r; can be obtained by applying the formula for
Pearson’s r to the ranks of the variables. The calculation of r, should be
modi\ﬁed when there are tied ranks in the data, but the effect is minimal
unless there are many tied ranks.

We thank the referee for his helpful suggestions and Mrs Brigid Howells
for her careful typing.
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WORDS HOMO—NOT THE SAME MAN. A reader enquires: “Nowadays
the word homosexual is on everyone’s lips. Does this word really mean what
people generally intend? Surely the opposite of heterosexual is homeosexual.
Does not homosexual refer to normal sexual practice as opposed to sex with
other animals?”

The prefix HOMO- has two entirely unrelated origins and meanings. Homo
(Latin) means “man,” as distinct from “woman.” Homos (Greek) means
“same.” HOMEO- (Gk homoios) means “like, similar,” and is obviously
related to homos. The confusion has arisen from mistakenly
thinking that the HOMO- of homosexual refers solely to sexual relations
between men, whereas it refers to the occurrence of this relationship between
members of the same sex, and is equally applicable to women. It is likewise
appropriate that heterosexual (Gk heteros, other) should refer to sexual
relations with the other sex, and not with animals, as suggested, for which the
epithet is bestiality.

There are not many words beginning with HoMO- (man). Here are a few:
homicide, hominid, homunculus, and the naturalised Latin, Homo sapiens,
H erectus, and H neanderthalensis. By contrast there are many
words beginning with HOMO- (same): apart from homosexual, we have
homogeneous and its derivatives—not to be confused with homogenous
(stressed vowels italicised), which means “similar owing to common
descent”; homologous and homograft; the chemical term homocyclic,
together with those of numerous isomers. Also, in linguistics we have
homophone to describe words that have the same sound but different
meanings, and homonym and homograph, where the spelling as well as the
sound is identical despite different meanings. HOMEO- appears in homeostasis
and homeopathy. HOMEO- yields no advantages over HOMO-, except,
perhaps, where caution suggests that two subjects are similar but not the
same.

As to pronunciation, there appears to be some freedom of choice. The first
“0” is usually short as in “hot,” except in homunculus and Homo sapiens and
his predecessors, where it is long as in “home.” This is odd because the first
“0” in the Latin homo is short and the second is long. But no one ever
suggested that pronunciation in the English language should be dependent
on origins. Pedants might wish for some means of distinguishing *“man”
HOMO- from “same” HOMO-. They might also object that “homosexual” is a
Greek-Latin hybrid, but then so is “bicycle.”—B ) FREEDMAN.



