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Abstract. Statistics of a passive scalar with Sc = 1 transported by steady

homogeneous turbulence at Rλ = 427 and Pλ = 427 is studied by using high-

resolution direct numerical simulation. The Obukhov–Corrsin constant of the

three-dimensional scalar spectrum in the inertial-convective range is found to be

0.68 ± 0.04. It is proved that the 4

3
-law for the scalar-velocity triple correlation

holds in both inertial-convective and viscous-convective ranges when Sc > 1,

and found that the 4

3
-law is approached with increase in Péclet number. Structure

functions of the passive scalar increment and their local scaling exponents are

computed as functions of the separation distance, and it is found that there exist

two scaling ranges: the inertial-convective range and a narrow precursory range

to the viscous-convective range. The scaling exponents in the inertial-convective

range are found to be smaller than those of the velocity field and do not saturate,

whereas they saturate at about 1.5 in the short precursory range to the viscous-

convective range. It is also found that, contrary to the scalar case, the mixed scalar

velocity structure function has a well-developed single scaling range. The scalar

and scalar dissipation fields are visualized and compared with the kinetic energy

dissipation field. The scalar field has a particular shape with a large-scale plateau,

sharp cliff and deep valley, a mesa-canyon structure.
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1. Introduction

The Kolmogorov theory is a milestone for the statistical theory of turbulence [1, 2]. With

two hypotheses, Kolmogorov obtained 〈δur〉 ∝ (ǭr)2/3 scaling for the velocity increment δur =

u(x + re1) − u(x) in the inertial range η ≪ r ≪ Lu, where Lu is a macroscale, η = (ν3/ǭ)1/4 is

the Kolmogorov scale, ν the kinematic viscosity, and ǭ is the mean rate of the energy dissipation

of a unit mass of fluid. Then the energy spectrum is given by

E(k) = Kǭ2/3k−5/3, (1)

where K is a non-dimensional constant and has been estimated to be ∼1.62 by experiments and

1.64 by direct numerical simulation (DNS) [3, 4]. Kolmogorov also derived the 4

5
-law,

〈δu3
r 〉 = −( 4

5
)ǭr, (2)

which is asymptotically exact and is now used to define the inertial range in data obtained from

experiments and DNS.

Passive scalar transport by incompressible turbulence has been attracting considerable

interest owing to its important applications in industrial machine design and also due to its

energy and contaminant transport in geophysical and environmental research [2, 5]. By applying

Kolmogorov’s ideas to the passive scalar, Obukhov [6] and Corrsin [7] derived the scaling law

〈δθ2
r 〉 ∝ χ̄ǭ−1/3r2/3 (3)
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for the second-order moments of the scalar increment δθr = θ(x + r) − θ(x). The scalar

spectrum is defined by

1

2
〈θ2〉 =

∫ ∞

0

Eθ(k) dk, (4)

and the scalar spectrum in the inertial-convective range η ≪ r ≪ Lθ is given by

Eθ(k) = COCχ̄ǫ−1/3k−5/3 for L−1
θ ≪ k ≪ η−1, (5)

where Lθ is the integral scale of the scalar and χ̄ is the average rate of smearing of the passive

scalar by molecular diffusion; we call it the scalar dissipation rate throughout this paper. The

non-dimensional constant COC is the Obukhov–Corrsin constant and considered to be universal.

Sreenivasan [8, 9] examined carefully all the passive scalar spectra in the literature and argued

that, in the grid turbulence, the inertial-convective range spectrum of the scalar can be discussed

even at modest Reynolds numbers, while in the shear flow turbulence the scaling exponent of the

scalar spectrum Eθ ∝ k−mθ depends on the Reynolds number and approaches 5

3
when Rλ > 1000.

This suggests that the homogeneous isotropic scalar turbulence reaches an asymptotic state

suggested by Obukhov and Corrsin at a rate faster than in the shear-flow turbulence; Sreenivasan

concluded that the Obukhov–Corrsin constant is about COC = 0.68 [2], [8]–[10].

When the Schmidt number Sc = ν/κ > 1, the energy spectrum decays quickly at

wavenumbers larger than kd = 1/η, whereas the scalar spectrum remains excited at levels higher

than the energy. The scalar transfer to small scales is maintained by the action of velocity

straining whose characteristic time is (ν/ǭ)1/2, independent of scale, and is ceased at the scale

ηB = (κ2ν/ǭ)1/4 by molecular diffusion. This range of scales is the viscous-convective range and

the scalar spectrum obeys a k−1 power law

Eθ(k) = Bχ̄
(ν

ǭ

)1/2

k−1 for η−1 ≪ k ≪ η−1
B , (6)

where B is a non-dimensional constant [11, 12]. Non-locality of the scalar transfer in the

wavenumber space is essential for the generation of the viscous-convective range. The value

B is also considered to be universal and was about 3–6 [13]–[21].

A relation analogous to the 4

5
-law for the passive scalar was derived by Yaglom [22],

the 4

3
-law,

〈δurδθ
2
r 〉 = −4

3
χ̄r for ηB ≪ r ≪ Lθ. (7)

It is important to notice that the lower end of the range over which the 4

3
-law holds extends up

to ηB (≪η) when Sc ≫ 1 because ηB = Sc−1/2η. This means that although the passive scalar

spectrum has a power (−5

3
) in the inertial-convective range and (−1) in the viscous-convective

range, the scalar flux in the wavenumber space 	θ(k), which is defined as the flux of the scalar

variance across k transferred to wavenumbers higher than k, is independent of the wavenumber

in both ranges. In other words, the scalar flux has a single scaling range ηB ≪ r ≪ Lθ which is

wider than the case of the scalar alone.

One of the most important issues in turbulence research is intermittency. When the

Reynolds number is sufficiently large, the intermittency of the velocity field builds up with

decrease of scale, and the probability distribution of the velocity field changes shape. If
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Kolmogorov scaling holds, the scaling exponent of the structure function for the velocity

increments defined by 〈(δu)q〉 ∝ rζq is given by ζq = q/3, but experimental and DNS data have

shown that ζq is a non-decreasing function of q rather than a linear function of q [23]–[31].

The passive scalar transported by turbulence also exhibits intermittency, and its strong

fluctuations are in general related to important and/or serious practical problems such as mixing

in chemical reactions and localized high concentration of air pollutants and so on. Studies have

shown that the scaling exponent of the passive scalar is smaller than that of the velocity, meaning

that the intermittency of the scalar field is stronger than the velocity field. There has been

considerable progress in understanding the statistical properties of the Kraichnan model for the

passive scalar, where the scalar is convected by a Gaussian random-velocity field with very

short correlation time [13, 14], [32]–[37]. Anomalous scaling exponents have been derived

analytically for some limiting cases and saturation of the scaling exponents at higher order

is suggested [38, 39]. However, since the velocity field in the Kraichnan model is artificial, it is

uncertain whether a similar behaviour of the anomalous scaling exponents holds for the case of the

passive scalar convected by a generic Navier–Stokes turbulent flow [5], [40]–[42]. Furthermore,

the importance of ramp–cliff structures and anisotropy effects on intermittency have been

recognized when a mean scalar gradient exists. Ramp–cliff structures effectively produce large

scalar gradients with strong scalar dissipation, and such structures induce anisotropy lingering

at scales below which the velocity field remains isotropic. These factors enhance intermittency.

It is, however, not known whether such ramp–cliff structures exist when a mean uniform scalar

gradient is absent.

High-resolution DNS of the passive scalar provides us with a very useful method to study

various aspects of the scalar problem. Regarding DNS study for the passive scalar problem,

it is important to note the following facts. Since Pe = Sc Re, an asymptotic state Pe ≫ 1 implies

three regimes: regime 1, Re = O(1) or moderate and Sc ≫ 1; regime 2, Re ≫ 1 and Sc = O(1)

or moderate; regime 3, Re ≫ 1 and Pe ≫ 1. Regime 1 has been extensively analysed in detail,

especially with emphasis on the scalar spectrum and intermittency of the scalar gradients,

because there is almost no ‘bump’ in the passive scalar spectrum in the crossover region between

the viscous-convective and diffusive ranges, and most of the wavenumber range in DNS for

the passive scalar is effectively assigned to resolve the viscous-convective range; thus a well-

developed scalar spectrum Eθ ∝ k−1 has been obtained easily when compared with regime 2. In

regime 1, several authors have computed the Batchelor constant B of equation (6) and examined

the asymptotic form of Eθ(k) in the far diffusive range [13]–[21]. The Batchelor constant B

is found to be between 3 and 6, and Kraichnan’s spectral form Eθ(k) ∝ exp(−ckηB) is found

in three dimensions, where c is a non-dimensional constant. Schumacher et al [43, 44] studied

analytically the Schmidt-number dependence of derivative moments under a mean scalar gradient

and found that the upper bound for the nth-order moments of the scalar gradient grows as Scn/2

at large Sc. They also found an increasing tendency to isotropy with increase in Sc [20].

Regime 2 has been studied by many experimentalists [2, 5, 8] and recent high-resolution

DNS results were quite interesting. The central feature here is the intermittency of the scalar

increments in the inertial-convective range. The resolution requirement is restrictive in this case,

and the number of DNS studies in this regime is limited. Chen and Cao [45] have computed the

scaling exponents of the passive scalar by using DNS with resolution up to 5123 and found that

they are smaller than the velocity field. However, since the width of the inertial-convective range

is not wide enough to observe a clear scaling behaviour, the scaling exponents computed must

be understood carefully. Wang et al [46] studied the passive scalar statistics from the viewpoint
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of the refined self-similarity with resolution N = 5123 up to Rλ = 195 and Sc = 0.7 and 1,

but the actual time span for the time average was very short. They found that COC = 0.87 and

the intermittency exponent 0.43–0.77. Log-normal distribution of the spatially averaged scalar-

dissipation rate was observed.Yeung et al [20] found that COC is ∼0.67 at Rλ = 240 and Sc = 1

under a mean scalar gradient. However, as stated below equation (6), when the non-locality of

the scalar transfer in the scale space is strong, there are possibilities that anisotropy at large

scales remains at small scales and that the lower end of the inertial-convective range is masked

by the excitation of the scalar amplitudes in the viscous-convective range prior to roll-off of the

scalar spectrum due to the molecular diffusivity. This occurs when the resolution range in DNS

is not sufficient, and may lead to a spurious wider inertial-convective range, so that the scaling

exponent in the inertial-convective range thus computed may suffer from systematic deviation.

To avoid such possibilities, it is desirable to compute the structure functions with sufficient width

of scale range such that the lower end of the inertial convective range is clearly discriminated

from other scaling ranges when Sc � 1. In this context, the present DNS study is the first, and

is capable of analysing the scaling behaviour of the passive scalar in detail. Also this DNS

provides data which enable us to determine the scalar flux transferred from the inertial-

convective range to scales smaller than that.

Regime 3 is far beyond the scope of DNS by present day computers including Earth

Simulator [47]. Only an experimental approach is available.

Our purpose here is to present new statistical data on the passive scalar by using very-

high-resolution DNS, especially focusing on the small scales, and to analyse them from the

viewpoint of their scaling behaviour and intermittency with special emphasis on the inertial-

convective range. We explore regime 2 and the reason is two-fold. First, in the comparison of

the velocity and scalar statistics, Sc = 1 means that the contributions of the molecular

dissipation and diffusion to the scalar transfer in the scale space and to the intermittency

become equal. Then the difference between the two statistics can be interpreted as due to the

pressure term and to the incompressibility of the velocity field. We can examine the effects of the

Schmidt number on the various statistics of the scalar by comparing with the case of Sc = 1 as a

reference.

Secondly, in the literature, there are no systematic DNS data for the structure functions,

local scaling exponents and probability distribution functions (PDFs) of scalar increments in

the inertial-convective range. We have already made a high-Reynolds-number DNS, Rλ = 460

[4]. The results and experience of the velocity statistics by that DNS are used effectively in

many ways to study regime 2. The present DNS provides such data in detail. We analyse them

carefully, compare their statistics with those of the velocity and try to understand the properties

of the intermittency of the passive scalar convected by turbulence. Also, the statistics of the

scalar variance flux are examined, and the fields of the scalar and scalar dissipation are visualized

and their structure examined.

2. Numerical simulation

The Navier–Stokes and continuity equations,

∂u

∂t
+ u · ∇u = −∇p + ν∇2u + f , ∇ · u = 0, (8)
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and the passive scalar equation

∂θ

∂t
+ u · ∇θ = κ∇2θ + gθ, (9)

were numerically integrated under the periodic boundary condition with periodicity 2π. The

pseudo-spectral method was used for the non-linear and convective terms, and the time integration

was done by the fourth-order Runge–Kutta–Gill method. The Gaussian random solenoidal force

f and scalar source gθ are delta-correlated in time and added in the low wavenumber range,

1 � k � 2. The Schmidt number is unity. Spectra of kinetic energy and scalar variance are

defined by

E =
1

2
〈u2

i 〉 =
3

2
u2

rms =

∫ ∞

0

E(k) dk, Eθ =
1

2
〈θ2〉 =

θ2
rms

2
=

∫ ∞

0

Eθ(k) dk. (10)

The integral scales are defined by

Lu =
3π

4

∫ ∞

0
k−1E(k) dk

∫ ∞

0
E(k) dk

, Lθ =
π

2

∫ ∞

0
k−1Eθ(k) dk

∫ ∞

0
Eθ(k) dk

, (11)

the average energy dissipation rate and scalar dissipation rate by

ǭ =
ν

2

〈

(

∂ui

∂xj

+
∂uj

∂xi

)2
〉

, χ̄ = κ〈(∇θ)2〉, (12)

the skewness for the velocity and scalar by

Su =
〈(∂1u1)

3〉

〈(∂1u1)2〉3/2
, Sθ =

〈(∂1u1)(∂1θ)
2〉

〈(∂1u1)2〉1/2〈(∂1θ)2〉
, (13)

the Taylor microscale for the velocity and the scalar by

λ =

(

〈u2
1〉

〈(∂1u1)2〉

)1/2

, λθ =

(

〈θ2〉

〈(∂1θ)2〉

)1/2

, (14)

and microscale Reynolds and Péclet numbers by

Rλ =
urmsλ

ν
, Pλ =

urmsλ

κ
= Sc Rλ. (15)

The spatial resolutions are N = 5123 for run 1 and N = 10243 for run 2. Rλ = Pλ = 258

for run 1 and 427 for run 2, respectively. The initial conditions for the velocity and

scalar are Gaussian random fields which have the same initial spectra E(k, 0) = Eθ(k, 0) ∝

k4 exp(−2(k/kp)
2) at low resolution N = 2563 but are statistically independent of each other.
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Table 1. DNS parameters.

Velocity Scalar

Run 1 Run 2 Run 1 Run 2

ν 6 × 10−4 2.4 × 10−4 κ 6 × 10−4 2.4 × 10−4

Rλ 258 427 Pλ 258 427

N 5123 10243 N 5123 10243

E 1.74 1.97 Eθ 1.01 0.99

ǫ 0.507 0.591 χ 0.558 0.598

ǫ̂ 0.478 0.464 χ̂ 0.301 0.311

−Su 0.535 0.558 −Sθ 0.454 0.443

η 4.55 × 10−3 2.20 × 10−3 ηB 4.55 × 10−3 2.20 × 10−3

Kmaxη 1.10 1.06 KmaxηB 1.10 1.06

λ 0.144 0.0895 λθ 0.0806 0.0488

Lu 1.18 1.18 Lθ 0.814 0.826

Tav 6 2.5 Tav 6 2.5

After reaching a steady state, (Rλ, Pλ) and the resolution were increased to Rλ = Pλ = 258

with N = 5123 for run 1. For run 2, we used the velocity field with Rλ = 460 of Gotoh et al

[4] but with a slightly bigger viscosity and the scalar field of run 1 as the initial condition.

This reduced the computational cost. After a transient, a statistically steady state was obtained.

Statistical averages were taken as time averages during the steady state, Tav = 6Teddy for run 1

and 2.5Teddy for run 2, where Teddy = Lu/urms. The numerical parameters are listed in table 1. A

measure of the accuracy of the present DNS is given by Kmaxη = KmaxηB ≈ 1 which is slightly

smaller than that commonly used in other studies [18, 20, 46]. The spatial resolution of DNS will

be discussed in section 6.

3. Fundamental statistics

3.1. One-point statistics

Time evolution of the total energy, total variance, mean rates of the kinetic energy and scalar

dissipation were monitored throughout the computation and used to define the steady state.

Figure 1 shows the time evolution of the normalized energy and scalar dissipation, ǫ̂ = ǭLu/u
3
rms

and χ̂ = χ̄Lu/(urmsθ
2
rms). It is seen that a statistically steady state is established after t = 6 for

run 1 and t = 1 for run 2.

As in the case of the energy dissipation, it is expected that, when Pλ → ∞, χ̄ remains

finite [47]. The normalized value χ̂ = χ̄Lu/(urmsθ
2
rms) for various Rλ is compared with the data

from DNS [46] and experiments [10, 48] in figure 2. Note that Rλ = Pλ because Sc = 1. It

is interesting to see that, although the number of data points is small, there appear to be two

groups of values of χ̂ for Sc = 1 and 0.7, and each stays approximately at the same constant

level. The average value is 0.318 for Sc = 1 and 0.472 for Sc = 0.7, respectively. The ratio of the

former to the latter, 0.318/0.472 = 0.67 is very close to 0.7. It is important to examine whether

χ̂ tends to an asymptotic value.
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Figure 1. Time evolution of the normalized energy and scalar dissipation rate for

runs 1 and 2. The time average starts at t = 6 for run 1 (black and grey lines) and

at t = 1 for run 2 (coloured lines).
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Figure 2. Comparison of the normalized mean rates of scalar dissipation. M and

W are the experimental data of Mydralski and Warhaft [10], W et al is the DNS

data of Wang et al [46].

3.2. Spectra

Figure 3 shows the compensated three-dimensional spectra of the kinetic energy and scalar

variance normalized using Kolmogorov–Obukhov–Corrsin variables. Note that η = ηB because

Sc = 1. Both E(k) and Eθ(k) increase in the range kη � 1, implying that those scales are not

well resolved. This is due to the finiteness of the wavenumber domain, but the statistics of the

two fields at wavenumbers below kη = 1 do not suffer significant contamination of numerical
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Figure 3. Compensated spectra normalized in the Kolmogorov units,

(kη)5/3ǭ−2/3E(k) and (kη)5/3ǭ1/3χ̄−1Eθ(k). The Kolmogorov constant K =

1.61 ± 0.09 and Obukhov–Corrsin constant COC = 0.68 ± 0.04 are computed

in the range of 0.008 � kη � 0.03.

error. See section 6 for more discussion about the resolution requirement. For 0.008 � kη �

0.03, we can clearly observe horizontal portions with finite width for the curves of run 2.

The Kolmogorov and Obukhov–Corrsin constants read from the plots are

K = 1.61 ± 0.09, COC = 0.68 ± 0.04. (16)

The value K = 1.61 is consistent with the experimental value Kexp = 1.62 and the DNS

value KDNS = 1.64 [3, 4], and COC = 0.68 agrees well with the recommended value 0.68

by Sreenivasan who examined carefully the values reported from many experiments [9]. The

value COC = 0.68 is also consistent with COC = 0.75–0.92 (Sc = 0.7, Rλ = 582, Pλ = 407)

obtained from wind-tunnel experiments with uniform temperature gradient by Mydlarski and

Warhaft [10]. When compared with other DNS results, Wang et al [46] performed DNS with low-

band forcing and found COC = 0.75 (Sc = 1, Rλ = Pλ = 195), and Yeung et al [20] obtained

0.67 (Sc = 1, Rλ = Pλ = 240) with uniform mean scalar gradient. However, in the calculation

of Wang et al, the range of forcing overlaps the −5

3
range, and in the calculation of Yeung

et al, the uniform mean gradient may induce some degree of anisotropy of the scalar field

in the inertial-convective range. However, in the present DNS, the k−5/3 spectrum exists for

wavenumbers higher than the forcing range. We conclude that the horizontal portion of the

curves in the present DNS certainly shows the inertial-convective range spectrum of the passive

scalar. When compared with the curves for E(k), the curves for Eθ(k) have large bumps at

kη ≃ 0.2, and their peaks shift towards higher wavenumbers compared with the velocity case.

This implies that, even when Sc = 1, the non-locality of the scalar variance transfer is stronger

than in the velocity case, and the large bump is understood as a precursor of a k−1 spectrum in the

viscous-convective range for the passive scalar [49].
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Figure 4. Comparison of the energy and scalar dissipation spectra. The peak

values of the normalized scalar dissipation spectra are 1.56 at kη = 0.16 for

the velocity and 2.29 at kηB = 0.25, respectively, which are the same as those

computed by Wang et al [46].

Figure 4 shows comparison of the energy and scalar dissipation spectra 2νk2E(k)/ǭη

and 2κk2Eθ(k)/χ̄ηB normalized by the Kolmogorov variables. The curves are smooth and

collapse well at wavenumbers below kη < 0.8, and the peak points of the spectra are about

2.3 at kη ≈ 0.16 for the velocity and about 1.56 at kη ≈ 0.25 for the scalar, which are the same

as those found in figure 2 of Wang et al [46] (note that our definition of D(k) is twice as large as

that of Wang et al). On the other hand, the curves at kη > 0.8 slightly rise and do not collapse,

suggesting that those scales are not resolved properly.

The energy and scalar variance transfer functions are defined by

(

d

dt
+ 2νk2

)

E(k, t) = T(k, t) + F(k, t), (17)

(

d

dt
+ 2κk2

)

Eθ(k, t) = Tθ(k, t) + Fθ(k, t), (18)

where F(k) and Fθ(k) are the spectra of the random force and scalar source, respectively.

Transfer fluxes of the energy and the scalar variance across the wavenumber k are defined by

	(k) =

∫ ∞

k

T(q) dq, 	θ(k) =

∫ ∞

k

Tθ(q) dq. (19)

Figure 5 shows the fluxes of the energy and scalar variance normalized by the dissipation rates

	(k)/ǭ and 	θ(k)/χ̄. The curves are very close to unity for wavenumbers 0.008 � kη � 0.03
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their dissipation rates, 	(k)/ǭ and 	θ(k)/χ̄. The horizontal portions close to

unity correspond to the inertial convective range.

over which E(k) and Eθ(k) both have a slope of − 5

3
, and the constancy of the curves for those

wavenumbers means that the turbulent and scalar fields are really in Kolmogorov’s equilibrium

state. Note that flat regions of 	θ curves extend to wavenumbers higher than in the velocity case.

3.3. Second-order structure functions

The structure functions for longitudinal velocity increments δur, transverse velocity increments

δvr and the scalar increment δθr are defined by

SL
q (r) = 〈|δur|

q〉, ST
q (r) = 〈|δvr|

q〉, Sθ
q(r) = 〈|δθr|

q〉. (20)

In the Kolmogorov theory, these three structure functions scale as rq/3. Figure 6 shows the

second-order structure functions ǭ−2/3r−2/3S
L,T
2 (r) and χ̄−1ǭ1/3r−2/3Sθ

2(r). As found in [4], the

scaling exponent of the velocity at the second order is about 0.696, which is larger than 2

3
,

and the curves for the velocity compensated by multiplying by r2/3 are slightly increasing as

r increases. The wavenumber range 0.008 � kη � 0.03 over which Eθ(k) ∝ k−5/3 corresponds

to the scale range 209 � r/η � 785, and in fact we see that the compensated curve for Sθ
2 is

almost horizontal. When r decreases, the curve for the scalar in run 2 changes slope slowly

over the range 100 � r/η � 200 and reaches a peak and then quickly decreases. The crossover

range 100 � r/η � 200 corresponds to the wavenumber range 0.03 < kη < 0.06 over which

the crossover of Eθ(k) to the bump occurs. These observations show that there is a one-

to-one correspondence between the spectrum and the second-order structure function of the

passive scalar.

The isotropy of the velocity field in the present type of DNS was well established at the

level of the second- and third-order moments at scales below about half the integral scale Lu [4].
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2 for run 2.

For example, examination of the longitudinal and transverse structure functions reveals that they

satisfy the relation ST
2 (r) = SL

2 (r) + (r/2)∂SL
2 (r)/∂r (figure not shown), which is derived under

the constraints of incompressibility and isotropy. Since the incompressibility condition is well

satisfied in our DNS to the order of machine precision, we conclude that the isotropy of the

velocity field is also well achieved, as in the simulations of Gotoh et al [4].

The local scaling exponents of the structure functions are defined by

ζα
q =

∂ ln Sα
q (r)

∂ ln r
, (21)

where α denotes L, T or θ. Figure 7 presents the variation of the local scaling exponents as

functions of r/η. The curves for the velocity have flat regions at about 0.696, whereas for ζθ
2(r)

there is one local minimum 0.58 at about r/η = 60 and one local maximum 0.66 at about
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5
- and 4

3
-laws. Curves are plotted for

−〈δu3
r 〉/(ǭr) and −〈δθ2

r δur〉/(χ̄r) for runs 1 and 2, respectively.

r/η = 300. Although it is not certain whether the flat portion in the ζθ
2(r) curve emerges

at the level of those local minimum and maximum values as Péclet number increases, the

local maximum value 0.66 is already within the 5% error bound of the velocity scaling

exponent 0.696. If the Kolmogorov theory does not apply to the second-order scaling exponents,

there seems no reason to expect ζθ
2 = ζL

2 = ζT
2 . The local maximum and minimum in ζθ

2(r)

imply the existence of two scaling ranges.

3.4. 4

3
-law for the scalar variance

Kolmogorov’s 4

5
-law is an asymptotically exact result for turbulence, and the corresponding

formula for the passive scalar was derived by Yaglom [22]. When the Reynolds number and

Péclet number are very large, the scalar field in a steady state obeys the equation

〈δurδθ
2
r 〉 = −

4

3
χ̄r + 2κ

d

dr
〈δθ2

r 〉 + Fθ(r), (22)

where Fθ(r) is the input term from the random scalar source acting at large scale. When the

separation distance r is much smaller than the macroscale Lθ and much larger than the diffusive

scale ηB, the second and third terms in (22) are negligible, thus the 4

3
-law is obtained as

〈δurδθ
2
r 〉 = −4

3
χ̄r. (23)

It is important to notice that the lower end of the range for the 4

3
-law to hold is not at η but

at ηB. Since ηB = Sc−1/2η for Sc � 1, the above 4

3
-law is valid for both inertial-convective and

viscous-convective ranges when Sc ≫ 1. Figure 8 presents curves of −〈δu3
r 〉/(ǭr) for the 4

5
-law

and −〈δθ2
r δur〉/(χ̄r) for the 4

3
-law [4, 10, 20, 48, 50, 51]. When Rλ and Pλ increase, the width

of the plateau of the curves becomes wider and their values approach 4

5
and 4

3
, respectively. The

plateau of the curves for the scalar extends to scales slightly smaller than those of the velocity
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T1 = T2 = T3 = T4 = T5 = 0.5Teddy are five successive time spans, and the total

length of the time average is 2.5Teddy.

field, which is consistent with theoretical expectations and with observation in figure 5. This can

be compared with the results ofYeung et al [20] since the 4

3
-law is approached when Sc increases

from 1 to 64 with Rλ = 38. These observations are consistent with the above statement about

the effective range of the 4

3
-law.

To see the degree of the fluctuations in the curves, it is useful to compare the curves

for −〈δurδθ
2
r 〉/(χ̄r) averaged over five successive time spans Ti = 0.5Teddy (i = 1, . . . , 5) in

figure 9. If we take the curve for total average T = 5Teddy as a reference, then we find that

the fluctuation level is about 10% and stronger than in the velocity case. Since the third-order

moment is given by the difference between the positive and negative contributions of the PDF

for δurδθ
2
r , where the sign change is due to change of sign of δur, the fluctuation level is larger

than it is in a positive-definite case such as 〈δθ2
r 〉.

4. Probability distribution function

The intermittency in hydrodynamic and scalar turbulence is characterized by the growth of the

tail of the PDF of the velocity and scalar increments. Figure 10 shows the one-point PDFs for

the velocity in the x-direction and the passive scalar. The PDF P(ux) is very nearly Gaussian.

For normalized scalar amplitudes smaller than 4, P(θ) is also very close to Gaussian, but for

larger amplitudes it decays smoothly and faster than the velocity PDF. From our experience

with DNS for the scalar we feel that in order to obtain a reliable one-point PDF for the scalar

amplitude, averages must be taken over a sufficiently long time period, and we must be careful

to resolve the tail of P(θ). The asymptotic form of the PDF for large scalar amplitudes is difficult

to determine.

The one-point PDFs for the gradient fields of the velocity and scalar are shown in

figure 11. The PDF for the longitudinal velocity gradient ∂u/∂x is negatively skewed, whereas

that for the transverse velocity gradient ∂u/∂y is symmetric and has a tail longer than in

the longitudinal case. The PDF for the scalar gradient is higher than those of P(∂u/∂x)
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Figure 11. One-point PDFs for the velocity and passive scalar gradients for run 2.

and P(∂u/∂y) for the normalized amplitudes between 5 and 25, but the far tail region decays

faster than the velocity gradient PDFs.

To see how the distributions of the velocity and scalar field change with decrease in scale,

we plot in figures 12–14 the PDFs for the longitudinal velocity increment δur, transverse

velocity increment δvr and the scalar increment δθr for run 2 at the separation distances

rn/η = 2n−1(dx/η), n = 1, 2, . . . , 10, where dx = 2π/N.

When the separation distance r becomes smaller, the tails of the PDFs become longer;

P(δθr, r) is almost symmetric. The PDF tails for the velocity increments are concave, whereas

those for the scalar increments become convex at large amplitudes. This feature of the

PDF of the scalar is consistent with the experimental and DNS observations, but our PDF
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represents the Gaussian; Rλ = Pλ = 427.

curves continue smoothly to the order of 10−10. The scaling exponents of δθr in the range

30 < r/η < 60 are seen to be approximately saturated as q becomes large as discussed in

section 5.2 [41, 42]. This suggests that the tail of P(δθr, r) in this range is of the form of

P(δθr, r) = θ−1
rms

(

r

η

)ζ
θ,VCP
∞

Q

(

δθr

θrms

)

for δθr ≫ 〈δθr
2〉1/2, (24)
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Figure 15. Normalized PDF for the scalar increment with the separation

rn/η = 2n−1(dx/η) = 22.4, 44.6, 89.2 for n = 4, 5, 6, in the viscous-convective

precursor range. ζθ,VCP
∞ ≈ 1.5 and Rλ = Pλ = 427.

where Q(x) is a non-dimensional function and ζθ,VCP
∞ ≈ 1.5 is a value of ζθ

q extrapolated to large

q. The scaled PDF curves are plotted in figure 15, where rn/η = 2n−1dx/η = 22.3, 44.6, 89.2

for n = 4, 5, 6 are well within the range 20 < r/η < 90. Collapse of the PDF tails is very

satisfactory, which means that the large scalar increment scales as θrms in this range.
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5. Higher-order statistics

5.1. Skewness and flatness

The change of the distributions of the velocity and scalar fields with decrease in scale is also

characterized by the structure functions. The skewness and flatness of the scalar increment

defined by

K3 =
〈δθ3

r 〉

〈δθ2
r 〉

3/2
, K4 =

〈δθ4
r 〉

〈δθ2
r 〉

2
, (25)

and those of the velocity increments are plotted in figures 16 and 17. When the separation

r/Lα decreases, the skewness of δuL
r becomes more negative, which is consistent with the
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4

5
-law, but that of the transverse velocity is zero. The skewness of the scalar for run 1 is nearly

zero, while it is a small positive constant at all scales for run 2. This is due to the large-scale

anisotropy, and when a longer time average is taken, the skewness vanishes. This can be compared

with the fact that when there is a uniform scalar gradient, the skewness of the scalar increment

parallel to the mean scalar gradient is positive and increases with decrease of r [10, 20, 43, 44].

As for the flatness, all the curves increase from 3, the Gaussian value, when r/Lα decreases,

meaning that the intermittency of the scalar increment becomes stronger. The value of the scalar

flatness and its rate of increase are greater than those of the velocities. The value of the scalar

flatness for run 2 at the smallest value of r/Lθ ≈ 5 × 10−3 (which corresponds to r/η ≈ 3) is

20, and close to the experimental value of ≈20 [10] and to the DNS value 21.2 for the scalar

difference along the mean scalar gradient [20].

5.2. Structure functions at high order

Figures 18 and 19 show SL
q (r), and ζL

q (r), and figures 20 and 21 show ST
q (r) and ζT

q (r), respectively.

As found by Gotoh et al [4], there are flat regions of finite width in the scaling exponents for the

velocity. On the other hand, figures 22 and 23 show Sθ
q(r) and ζθ

q(r), respectively, from which

there appear to be two scaling regions in which the local scalar scaling exponent takes a local

minimum and a local maximum. The crossover occurs at about 100 < r/η < 200. The difference

between the local maximum and minimum in the range 20 � r/η � 600 is small when the

order of the moments is small, but gradually increases with the order. In the scaling range

300 � r/η � 600, the local maximum values of ζθ
q(r) increases with the order but the rate of

increase becomes smaller, while for 20 < r/η < 90, ζθ
q(r) (or local minimum values) approaches

an asymptotic value about ζθ,VCP
∞ ≈ 1.5. The former range is the inertial-convective range.

Although Sc = 1 is too low for the viscous-convective range to appear, our observation in

figures 22 and 23 indicates that the scaling behaviour of Sθ
q(r) in the range 20 < r/η < 90 is
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Figure 20. Variation of ST
q (r) against r/η for run 2. Curves are for q = 1,

2, 3, 4, 6, 8, 10, 12, 14 from the lowermost curve.

different from the one in the inertial-convective range, and that Sθ
q(r) in this range has values

higher than those extrapolated from the lower end of the inertial-convective range to smaller

scales. These facts are interpreted as the non-local effects of scalar transfer in the scale space,

which are the essence of the dynamics in the viscous-convective range, and suggest that the non-

local effects of the passive scaler transfer are more significant than we would expect and they are

appreciable even when Sc = 1. For this reason, we call this short range the viscous-convective

precursor range in this paper. It is highly probable that macroscale conditions such as anisotropy
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Figure 22. Variation of Sθ
q(r) against r/η for run 2. Curves are for q = 1,

2, 3, 4, 6, 8, 10, 12, 14 from the lowermost curve.

will affect the small scales of the scalar even when the macroscale effects on the velocity field

already vanish.

Although it is difficult to draw definite conclusions from these computations, it would be

safe to state that the scaling exponents of the passive scalar so far obtained in both DNS and

experiments should be examined with great care. Especially when Sc � 1 and the width of

the scaling range of the structure functions is not long enough, one might mistake ζθ
q in the

viscous-convective range for its value in the inertial-convective range, so that values at high q

would either be underestimated or misread as showing that the scaling exponent in the inertial

convective range becomes saturated.
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The mixed velocity scalar structure functions and their local scaling exponents are

defined by

SθL
q (r) = 〈(δur(δθr)

2)q〉, ζθL
q =

∂ ln SθL
q (r)

∂ ln r
. (26)

When SθL
q (r) and ζθL

q (r) are plotted against r/η in figures 24 and 25, the behaviour of the

curves are very similar to the longitudinal velocity case, i.e. there are neither local minima

nor maxima in the curves. The same is observed for the mixed transverse velocity-scalar

increments (figure not shown). Each ζθL
q (r) curve has a flat region of finite width in the range
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Figure 25. Variation of ζθL
q (r) against r/η for run 2. Curves are for q = 1, 2, 3, 4,

6, 8, 10, 12, 14. Horizontal lines indicate the values of 0.696, 1.0, 1.28 and 1.78.

of 60 < r/η < 400 at low order and its width gradually deceases with increase in q. In other

words, it appears that for a fixed q, when Sc � 1, SθL
q (r) scales with a single power regardless of

whether r lies in the inertial-convective or the viscous-convective precursor range. It is, however,

not certain whether such scaling behaviour of SθL
q (r) continues to prevail when Pλ and Sc become

very large.

As discussed in the subsection of the 4

3
-law, 〈δurδθ

2
r 〉 = −4

3
χ̄r holds in both the inertial-

convective and viscous-convective ranges. This reflects the fact that the scalar flux 	θ(r) ∼

〈δurδθ
2
r 〉/r is independent of r and equal to χ̄ in both ranges. If we estimate δurδθ

2
r in the

Kolmogorov theory, we have δur ∼ (ǭr)1/3 and (δθr)
2 ∼ ǭ−1/3χ̄r2/3 in the inertial-convective

range, giving 〈δurδθ
2
r 〉 ∝ χ̄r, while in the viscous-convective range we have δur ∼ (ǭ/ν)1/2r,

so that δθ2
r ∼ (ǭ/ν)−1/2χ̄ is independent of r. This is consistent with the k−1 spectrum of

the passive scalar because the Fourier transform yields 〈δθ2
r 〉 ∝ ln(r/η) and the logarithmic

dependence can be treated as constant for r/η ≫ 1. The decay of the velocity amplitude in the

far dissipation range is compensated by the constancy of the scalar increment δθ2 (r = η) for r

in the viscous-convective range. The above observation motivates the following conjecture: the

scalar transfer function at a given order has a single scaling exponent throughout the inertial-

convective and viscous-convective ranges. It seems less plausible that this conjecture would be

true at all orders, but it is possible that it holds approximately for low orders. Critical examination

by theory, DNS and experiments is certainly required to evaluate this conjecture.

Figure 26 presents ζα
6 for α = L, T, θ, θL and θT . The curves except ζθ

6 are almost

constant in the range 100 < r/η < 300 which corresponds to the inertial-convective range, and

their values are found to be

ζL
6 = 1.75 ± 0.01, ζθL

6 = 1.55 ± 0.01, ζθT
6 = 1.54 ± 0.01, (27)

from which we can compute the intermittency exponents as

µ = 2 − ζL
6 = 0.25, µθ = 2 − ζθL

6 = 0.45. (28)
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Figure 26. Comparison of the sixth-order local scaling exponents for run 2.

The values of curves at plateaux are ζL
6 = 1.75 ± 0.02, ζT

6 = 1.67 ± 0.02, ζθL
6 =

1.55 ± 0.01 and ζθT
6 = 1.54 ± 0.01.
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Figure 27. Change of ζθ
q against Rλ, Pλ. Red curves are for run 1 and green ones

for run 2. The curves are for q = 2, 3, 4, 6 from the lowermost.

The value for the velocity 0.25 is the same as the experimental value. On the other hand, the

value for the scalar 0.45 is within the range µ′
θ = 0.43–0.77 by DNS of Wang et al [46, 66]

where µ′
θ was defined by 〈χ2

r 〉 ∝ rµ′
θ and χr is the volume-averaged scalar dissipation rate, and

also within 0.35–0.72 surveyed by Sreenivasan et al [52]. The recent estimate for µ′
θ is about

0.35 [53, 54, 64].

5.3. Reynolds number and Péclet number effects

To see how fast the local scaling exponents approach asymptotic values when Rλ and Pλ are

increased, we plotted in figures 27 and 28 the variation of the local scaling exponents for runs

1 and 2 (for those of the velocity, readers may see figures 21–24 of Gotoh et al [4]). Both the
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Figure 28. Change of ζθL
q against Rλ and Pλ. Red curves are for run 1 and green

ones for run 2. The curves are for q = 2, 3, 4, 6 from the lowermost.

local minimum and maximum values of the ζθ
q curves for a fixed q tend to be smaller and their

positions shift towards larger separation distance. The curves for ζθL
q extend their horizontal

portions towards larger r as (Rλ, Pλ) increases, but the flat portions stay at the same values.

The rate at which the local maxima become flat seems to be very slow when compared with the

velocity case.

5.4. Scaling exponents

The scaling exponents are determined by taking averages of the values of the local scaling

exponent curves which are at a plateau. However, it is difficult to determine the scaling

exponents for the passive scalar, and we consider that it is not appropriate to evaluate them

by averaging over the single range of scales 20 < r/η < 600. Instead, we computed them in two

ranges separately, although the width is not long enough: one for the inertial-convective range

200 < r/η < 400 and the other for the range 30 < r/η < 60.

Figure 29 compares the scaling exponents. ζθ
q in the inertial-convective range is larger than

that of the viscous-convective precursor range. At the present level of resolution, no saturation

of the exponents is found in the inertial-convective range, and the rate of increase of the scaling

exponents in the viscous-convective precursor range becomes lesser and lesser as the order

q increases and the asymptotic value 1.5 is approached [38, 39, 41, 42, 57, 58, 63, 67]. The

scaling exponents found in [45] are between the two cases in the present study. When we take

global averages of the local scaling exponents over 30 < r/η < 400, the values are very close

to those found by Chen and Cao [45], which suggests that their scalar scaling exponents in the

inertial-convective range are underestimated.

We have seen that the mixed velocity-scalar structure function has a single exponent over

the scaling range of 60 < r/η < 400 for fixed q. This is related to the constancy of the mean

of the scalar flux in the global range. This motivates us to interpret ζL
q and ζθL

q as the scaling

exponents of the energy transfer and the scalar variance transfer [48, 56, 59, 65] i.e.,

〈|δur|
q〉 = 〈|r	(r)|q/3〉 ∝ rζL

q , 〈|δurδθ
2
r |

q〉 = 〈|r	θ(r)|
q/3〉 ∝ rζθL

q . (29)
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Figure 30 compares the scaling exponents ζL
q and ζθL

q for run 2 which were obtained by averaging

the values over the range 100 < r/η < 300. Both curves pass through the point ζL
3 = ζθL

3 = 1;

again we see ζL
q > ζθL

q . Also plotted are the curves for the She–Lévêque model

ξq = d0 + (1 − γ)
q

3
− d0

(

1 −
γ

d0

)q/3

, (30)

with parameters γ = 2

3
, d0 = 2 for the velocity; case 1: γ = 2

3
, d0 = 1; case 2: γ = 2

3
, d0 = 10

9

for the passive scalar. Agreement between the curves from the model for case 2 and from the

DNS data is satisfactory, as reported by Lévêque et al [55, 56]. The value d0 = 10

9
close to unity

suggests a sheet-like diffusive structure. The scaling exponents are listed in table 2.

5.5. Structure of the scalar and scalar dissipation fields

The energy and scalar dissipation rates ǫ(x) and χ(x) fluctuate in space and time. These

fluctuations are considered to cause intermittency of the turbulence and scalar fields. It is

therefore very interesting to see their spatial structures. Figures 31–33 show two-dimensional

slices through the scalar field, the energy and scalar dissipation fields at the same time. The side

of the square is 2π. The colour scale is determined by the following formula:

φ = sign(θ)

(

|θ(x)|

θrms

)1/2

,

ψA = sign

(

ln

(

A(x)

〈A〉

)) (

ln

(

A(x)

〈A〉

))1/2

, (31)
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represents values computed by the She–Lévêque model [55, 56].

Table 2. Scaling exponents.

Boratav and Lévêque et al

Present study Pelz [59] [56] Mydlarski [48]

DNS, local slope DNS, ESS Exp. ESS Exp. local slope

(Rλ, Pλ, Sc) = (427, 427, 1) (141, 141, 1) (300, 210, 0.7) (582, 407, 0.7)

q ζL
q ζθL

q ζθ
q ζθL

q ζθL
q ζθL

q

1 0.362 ± 0.002 0.383 ± 0.003 0.377 ± 0.005 – 0.393 –

2 0.692 ± 0.004 0.699 ± 0.005 0.659 ± 0.004 0.72 0.732 –

3 0.994 ± 0.007 0.962 ± 0.006 0.873 ± 0.008 1.0 1.0 1.0

4 1.27 ± 0.01 1.19 ± 0.01 1.04 ± 0.01 1.25 1.23 –

6 1.75 ± 0.01 1.55 ± 0.01 1.29 ± 0.02 1.61 1.61 1.52

8 2.14 ± 0.01 1.86 ± 0.03 1.47 ± 0.03 – – –

10 2.46 ± 0.01 2.13 ± 0.04 1.64 ± 0.03 – – –

12 2.72 ± 0.03 2.39 ± 0.05 1.79 ± 0.04 – – –

14 2.92 ± 0.08 2.64 ± 0.05 1.95 ± 0.04 – – –

where A stands for ǫ(x, t) or χ(x, t). The motivation for using these transformations is to see

the structure of the fields at both small and large amplitudes. If a linear transformation is used,

high-amplitude events dominate the colour level, so that field patterns with weak amplitudes are

difficult to observe.

The structure in the passive scalar and its dissipation field are clearly seen. We strongly

recommend that readers look at these figures by magnifying them on the online PDF version of

this paper. There are large domains with the integral scale Lθ in which the scalar amplitudes are
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Figure 31. Two-dimensional snapshots of θ(x) at z = π for run 2.

Figure 32. Two-dimensional snapshots of χ(x) at z = π for run 2.
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Figure 33. Two-dimensional snapshots of ǫ(x) at z = π for run 2.

roughly constant. The boundaries between those regions are very sharp and highly convoluted.

Also each large domain of high and low amplitudes contains smaller regions with weaker scalar

fluctuations, and their boundaries are also sharp and convoluted. Corresponding to this, the scalar

dissipation has large values at the boundary between the adjacent domains, as expected from the

definition of the scalar dissipation. This can be well understood when one-dimensional profiles

of the scalar amplitude and scalar dissipation are plotted in figures 34–36. In the figures, the

scalar dissipation curve is shifted upward by a constant 5 for clarity. The scalar amplitude has a

particular shape with a large scale plateau, sharp cliff and a deep valley, a mesa-canyon structure,

which can be compared with the ramp–cliff structure in the scalar field in the presence of a

mean scalar gradient. At the cliffs of the scalar field, large scalar dissipation occurs. At a first

approximation, the set of points where the scalar dissipation is intense is complementary to the

set of points where the scalar field is relatively smooth. The region of high scalar dissipation in

figure 32 is long, continuous and wrinkled. The width and length of the high scalar dissipation

domain are about 10ηB and O(Lθ) respectively. Note that Sc = 1.

When ǫ(x) is compared with χ(x), the correlation between the two fields is weaker than that

between the scalar and its dissipation. There are some domains in which the large structures in

both fields resemble each other (upper left quarter), but also domains in which no resemblance

is seen. This weak correlation can be seen also in small values of the correlation coefficients

between the kinetic energy and scalar variance dissipations

Cǫχ = 0.095, Clog ǫ log χ = 0.216. (32)

The latter value is comparable with the value Clog ǫ log χ = 0.16 computed by Vedula et al [60].

The χ(x) field has a very thin structure compared with ǫ(x), and the intense domains of χ(x) are

less space filling, indicating stronger intermittency of the passive scalar than the velocity.
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Figure 34. One-dimensional snapshots of θ(x, π/2, π) (red) and χ(x, π/2, π)

(green) for run 2. The χ curve is shifted by 5 for clarity.
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Figure 35. One-dimensional snapshots of θ(x, π, π) (red) and χ(x, π, π) (green)

for run 2. The χ curve is shifted by 5 for clarity.

6. Resolution

To properly resolve the smallest scales of motion of the velocity and passive scalar fields, it

is desirable for the value Kmaxη = KmaxηB to be larger than unity. Sreenivasan [61] argued

that since the intermittency produces a strong fluctuation of the energy and scalar dissipation,
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Figure 36. One-dimensional snapshots of θ(x, 3π/2, π) (red) and χ(x, 3π/2, π)

(green) for run 2. The χ curve is shifted by 5 for clarity.

the smallest scales of the velocity and scalar are locally ηmin = (ν3/ǫmax)
1/4 = 〈η〉(ǭ/ǫmax)

1/4,

and ηB,min = Sc−1/2ηmin = 〈ηB〉(ǭ/ǫmax)
1/4. Maximum value of the ratio ǫmax/ǭ read from the

PDF of ǫ by the present DNS is about 300 for run 2 (figure not shown). Thus we have ηmin =

ηB,min ≈ 〈η〉/4, meaning Kmaxηmin = KmaxηB,min = 4 in the fairest resolution. And Kmaxη =

KmaxηB = 5 would be safer for a perfect resolution of the smallest scale because the present DNS

tends to slightly underestimate ǫmax and χmax at the Reynolds numbers studied here.

There are two aspects about the spatial resolution of DNS. The first is that low resolution

of small scales may affect the dynamics of the velocity and scalar fields, so that the statistics

of the fields also are modified. To answer this question, one needs to compare the statistics

computed by DNS using large Kmaxη with those of low Kmaxη, but this is a very expensive

computation especially at the high Reynolds and Péclet numbers studied here. Our expectation

is that the affected scales are those having several times η. However, the modification of the

scalar dynamics due to Kmaxη ≈ 1 can be inferred by comparing the present DNS results with

those of previous studies. A comparison of the flatness of the scalar gradient with recent DNS and

experiments, although some of them have a mean scalar gradient, shows that the scalar flatness

is 14.0 for run 1 in the present DNS, 13.8 for Wang et al [46], 18.4 (perpendicular to the mean

scalar gradient) forYeung et al [20] and about 17 for Mydlarski and Warhaft [5, 10] at Rλ ≈ 200

and Pλ ≈ 200. There is no inconsistency among the data up to the fourth-order moments, which

strongly suggests that the scalar dynamics is not altered significantly. Of course, low-resolution

effects may be found at higher orders, and more studies are necessary. Currently, there seem no

systematic studies in this direction by using large and small Kmaxη.

The second point is that when Kmaxη and/or KmaxηB is equal to or smaller than unity,

importance of the numerical error due to the low resolution depends on quantities and scales

to be studied. For example, in the statistics of the scalar gradients, the second-order moments

are affected only slightly, but the higher-order moments would be underestimated significantly.
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Figure 37. Cumulative moments of the normalized scalar increments at q = 10

for run 2. The curves are for rn = 2n−1(dx/η), dx = 2π/N from the uppermost.

As found in figure 4 the dissipation spectra are contaminated at wavenumbers near kη ≈ 1,

nevertheless the body of the dissipation spectra is well-resolved and statistically converges. The

peak value 1.56 of the normalized scalar dissipation spectra is very close to 1.57 of that computed

by Wang et al for which Kmaxη = 2.96 and Rλ = Pλ = 195 [46]. This strongly suggests that

when scales of interest are larger than a few multiples of η and/or ηB, the low-resolution effects

in the present DNS to the second-order statistics are negligible. When the order of the structure

functions of the velocity and scalar increments becomes larger, the lower boundary of the range of

scales over which the statistics is free from the numerical error increases. Although it is difficult

to estimate the degree of error contamination due to the low resolution, the following arguments

would be meaningful. Figure 37 shows the cumulative moments

Cθ
q(z, r) = 2

∫ z

0

|z′|qP θ(z′, r) dz′ (33)

for run 2, where q = 10, z = δθ/
√

〈(δθ)2〉, P θ is the normalized PDF for the scalar increment.

The symmetry of the PDF is assumed. The curves converge well for large z even at r/η =

2.8 = dx/η, and the PDFs with separation distance larger than the upper end of the diffusive

range correspond to the curves with n � 4. Figures 14 and 37 indicate that strong convergence

of the structure functions for q = 10 and r/η > 10 is very encouraging for us to expect

that the results in the present DNS are reliable as far as the statistics up to the 10th-order

moments and at scales larger than about 10η are concerned.

Further quantitative studies about the resolution requirement of DNS are necessary.

However, it is not possible currently for us to resolve both the inertial-convective and

viscous-convective ranges simultaneously by using high-performance computers, not even using

the Earth Simulator. One must choose the range to be analysed, and needs to compromise between

the width of the inertial-convective range and the degree of faithfulness of the spatial resolution
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at scales near the finest grids. With this understanding, we have chosen to analyse the inertial-

convective range in detail because detailed studies have not been performed in this range for

DNS, and we have not quantitatively studied the statistics of the scalar derivatives.

To analyse properly the statistical quantities of turbulence, it is also required to obtain

well-converged statistics in the sense of sample size, as seen in figure 4. Tails of PDFs are

affected by sample size as well as by the spatial resolution. Usually, the time span of a few

large eddy turnover times for time average is necessary to obtain smooth curves of PDFs and

structure functions at higher order. This is relatively easier to do when compared to satisfying the

spatial resolution requirement. The length of time span of runs 1 and 2 exceeds two large eddy

turnover times.

7. Summary and discussion

We have numerically studied the statistics of a passive scalar convected by incompressible

turbulence when Sc = 1. The passive scalar spectrum in the inertial-convective range was found

to be Eθ(k) = COCǭ−1/3χ̄k−5/3 over a finite range of wavenumbers and the Obukhov–Corrsin

constant COC was found to be COC = 0.68 which is consistent with experimental values. The

spectral bump is more significant for the scalar than the velocity.

Yaglom’s 4

3
-law for the mixed velocity-scalar increment correlations is approached when

the Péclet number is increased. It was argued that the 4

3
-law holds over a wider range of scales

than the 4

5
-law for the velocity triple correlation when Sc � 1. This is because the average scalar

transfer flux has the same constant value throughout the inertial-convective and the viscous-

convective ranges. The structure functions for the velocity and passive scalar increments were

computed and compared. It was found that the structure functions for the passive scalar have

two different scaling ranges, one for the inertial-convective range and the other for the viscous-

convective precursor range. Although the Schmidt number 1 is not large, the non-locality of the

scalar transfer in the scale space is efficient for a narrow viscous-convective precursor range to

be observed.

The local scaling exponents of the velocity, scalar and mixed velocity-scalar structure

functions were computed as functions of the separation distance. In the inertial-convective range,

the scaling exponents of the passive scalar structure functions are found to be increasing functions

of the order and smaller than those of the velocity. But it is not certain whether saturation of

the exponents occurs or not when Rλ and q increase. On the other hand, those in the viscous-

convective precursor range appear to be saturated at about 1.5 as the order increases.

The structure function of the mixed velocity-scalar correlation, which is interpreted as the

flux of the passive scalar multiplied by r, behaves smoothly as if there was a single scaling range

of the separation r over the inertial-convective range and viscous-convective precursor range.

This is a new finding of the present high-resolution DNS. The local scaling exponent maintains

a constant value for each order, and is smaller than that of the energy transfer flux for q > 3,

indicating stronger intermittency of the scalar transfer flux.

More accurate determination of the scalar scaling exponents in the inertial-convective range

requires a longer scaling range, or equivalently higher Péclet numbers; we need larger DNS for

the passive scalar. However, it is certain that the intermittency of the passive scalar is stronger

than that of the velocity and the scalar dissipation has a more singular structure than the energy

dissipation. The mesa-canyon (or ramp–cliff) structure is generic for the passive scalar convected
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by the turbulence, regardless of whether the turbulent velocity field is synthetic or generic, and

whether or not a mean scalar gradient exists. These structures suggest a persistent interaction

between macro- and microscales of motion, which can be identified as a key ingredient in

understanding the intermittency of the scalar.

When compared with the velocity statistics, the fluctuation level in the passive scalar is

stronger, which reflects the stronger intermittency of the passive scalar. The interactions in

wavenumber space are more non-local than the interactions in the velocity field. Even when

Sc = 1, this non-locality manifests itself as a precursor to the viscous-convective range. Since

there is no pressure term in the equation governing the passive scalar, the scalar field suffers from

a large scale deformation by convective action alone, and the local isotropization and mixing by

the pressure which are so important for the velocity field are entirely absent. Thus, the scalar can

be expelled from the body of the vortical motion and piled up at the periphery or at stagnation

points, leading to the mesa-canyon structure. These facts suggest that scalar statistics converge

more slowly than velocity statistics, requiring larger sample sizes and wider scale separation to

obtain accurate and reliable data.

It is also interesting to compare the passive scalar turbulence with the Burgers turbulence.

Although there is a difference between them in that the velocity field of the Burgers turbulence is

not passive, they share common features that both have no pressure term, ramp–cliff (mesa-

canyon) structure, and localized structure (thin shell structure in three dimensions) of high

dissipations [62]. As an outcome of these similarities, the intermittency of two fields is stronger

than that of the incompressible fluid turbulence. At the same time, strong intermittency puts

more severe conditions on the spatial resolution and statistical convergence required for their

DNS studies. Therefore, DNS study of the passive scalar is more difficult than in the case of the

velocity, and remains a major challenge to turbulence theory and computational science.

Acknowledgments

We thank Drs Sreenivasan, Schumacher,Yakhot,Yeung and Warhaft for their valuable comments

and suggestions. Dr Rubinstein is acknowledged for useful suggestions which helped us to

improve the paper. The authors thank the Nagoya University Computation Center and the

Computer Center of the National Fusion Science of Japan for providing the computational

resources. TG’s work was partially supported by Grant-in-Aid for Scientific Research (Grant

No. 14654073) from JSPS.

References

[1] Kolmogorov A N 1941 Dokl. Akad. Nauk SSSR 30 9

Kolmogorov A N 1941 Dokl. Akad. Nauk SSSR 32 16

[2] Monin A S and Yaglom A M 1975 Statistical Fluid Mechanics vol II (Cambridge, MA: MIT Press)

[3] Sreenivasan K R 1995 Phys. Fluids 7 2778

[4] Gotoh T, Fukayama D and Nakano T 2002 Phys. Fluids 14 1065

[5] Warhaft Z 2000 Ann. Rev. Fluid Mech. 32 203

[6] Obukhov A M 1949 Izv. Akad. Nauk SSSR Geophr. Geofiz. 13 58

[7] Corrsin S 1951 J. Appl. Phys. 22 469

[8] Sreenivasan K R 1991 Proc. R. Soc. A 434 165

[9] Sreenivasan K R 1996 Phys. Fluids 8 189

New Journal of Physics 6 (2004) 40 (http://www.njp.org/)

http://www.njp.org/


35 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

[10] Mydlarski L and Warhaft Z 1998 J. Fluid Mech. 358 135

[11] Batchelor G K 1959 J. Fluid Mech. 5 113

[12] Batchelor G K, Howells I D and Townsend A A 1959 J. Fluid Mech. 5 134

[13] Kraichnan R H 1968 Phys. Fluids 11 945

[14] Kraichnan R H 1974 J. Fluid Mech. 64 737

[15] Oakey N S 1982 J. Phys. Oceanogr. 12 256

[16] Kaneda Y 1986 Phys. Fluids 29 701

[17] Gotoh T 1989 J. Phys. Soc. Japan 58 2365

[18] Bogucki D, Domaradzki J A and Yeung P K 1997 J. Fluid Mech. 343 111

[19] Gotoh T, Nagaki J and Kaneda Y 2000 Phys. Fluids 12 155

[20] Yeung P K, Xu S and Sreenivasan K R 2002 Phys. Fluids 14 4178

[21] Antonia R A and Orlandi P 2003 Phys. Fluids 15 2084

[22] Yaglom A M 1949 Dokl. Akad. Nauk SSSR 69 743

[23] L’vov V S, Podivilov E and Procaccia I 1997 Phys. Rev. Lett. 79 2050

[24] He G, Chen S, Kraichnan R H, Zhang R and Zhou Y 1998 Phys. Rev. Lett. 81 4636

[25] Dhruva B, Tsuji Y and Sreenivasan K R 1997 Phys. Rev. E 56 R4948

[26] Van de Water W and Herweijer J A 1999 J. Fluid Mech. 387 3

[27] He G, Doolen G D and Chen S 2001 Phys. Fluids 11 3743

[28] Nelkin M 1999 Phys. Fluids 11 2202

[29] Shen X and Warhaft Z 2002 Phys. Fluids 14 370

[30] Kurien S and Sreenivasan K R 2001 Phys. Rev. E 64 056302

[31] Gotoh T and Nakano T 2003 J. Stat. Phys. 113 855

[32] Kraichnan R H 1994 Phys. Rev. Lett. 72 1016

[33] Gawedzki K and Kupiainen A 1995 Phys. Rev. Lett. 75 3834

[34] Chertokov M, Falkovich G, Kolokolov I and Lebedev V 1995 Phys. Rev. E 51 5609

[35] Chertokov M and Falkovich G 1996 Phys. Rev. Lett. 76 2706

[36] Shraiman B I and Siggia E D 2000 Nature 405 639

[37] Falkovich G, Gawedzki K and Vergassola M 2001 Rev. Mod. Phys. 73 913

[38] Chertkov M 1997 Phys. Rev. E 55 2722

[39] Balkovsky E and Lebedev V 1998 Phys. Rev. E 58 5776

[40] Chen S and Kraichnan R H 1998 Phys. Fluids 10 2867

[41] Celani A, Lanotte A, Mazzino A and Vergassola M 2000 Phys. Rev. Lett. 84 2385

[42] Celani A, Lanotte A, Mazzino A and Vergassola M 2001 Phys. Fluids 13 1768

[43] Schumacher J, Sreenivasan K R and Yeung P K 2003 J. Fluid Mech. 479 221

[44] Schumacher J and Sreenivasan K R 2003 Phys. Rev. Lett. 91 174501

[45] Chen S and Cao N 1997 Phys. Rev. Lett. 78 3459

[46] Wang L P, Chen S and Brasseur J G 1999 J. Fluid Mech. 400 163

[47] Kaneda Y, Ishihara T, Yokokawa M, Itakura K and Uno A 2003 Phys. Fluids 15 L21

[48] Mydlarski L 2003 J. Fluid Mech. 475 173

[49] Hill R J 1978 J. Fluid Mech. 88 541

[50] Danaila L, Anselmet F, Le Gal P, Dusek J, Brun C and Pumir A 1997 Phys. Rev. Lett. 79 4577

[51] Danaila L and Mydlarski L 2001 Phys. Rev. E 64 016316

[52] Sreenivasan K R, Antonia R A and Danh H Q 1977 Phys. Fluids 20 1238

[53] Prasad R R, Meneveau C and Sreenivasan K R 1988 Phys. Rev. Lett. 61 74

[54] Sreenivasan K R and Antonia R A 1997 Ann. Rev. Fluid Mech. 29 435
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