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ABSTRACT

Low-order equal-time statistics of a barotropic flow on a rotating sphere are investigated. The flow is

driven by linear relaxation toward an unstable zonal jet. For relatively short relaxation times, the flow is

dominated by critical-layer waves. For sufficiently long relaxation times, the flow is turbulent. Statistics

obtained from a second-order cumulant expansion are compared to those accumulated in direct numerical

simulations, revealing the strengths and limitations of the expansion for different relaxation times.

1. Introduction

Many geophysical flows are subject to the effects of

planetary rotation and to forcing and dissipation on

large scales. For example, the kinetic energy of atmo-

spheric macroturbulence is generated by baroclinic in-

stability and then partially transferred to mean flows,

whose energy dissipation can often be represented by

large-scale dissipation. Statistically steady states of such

flows can exhibit regions of strong mixing that are

clearly separated from regions of weak or no mixing,

implying that the mixing is nonergodic in the sense that

flow states are not phase space filling on phase-space

surfaces of constant inviscid invariants, such as energy

and enstrophy (Shepherd 1987). As a consequence,

concepts from equilibrium statistical mechanics, which

rely on ergodicity assumptions and can account for the

statistics of two-dimensional flows in the absence of

large-scale forcing and dissipation (e.g., Miller 1990;

Robert and Sommeria 1991; Turkington et al. 2001;

Majda and Wang 2006), generally cannot be used in

developing statistical closures for such flows.

In this paper, we investigate the inhomogeneous sta-

tistics of what may be the simplest flow subject to ro-

tation, large-scale forcing, and dissipation that exhibits

mixing and no-mixing regions in statistically steady

states: barotropic flow on a rotating sphere driven by

linear relaxation toward an unstable zonal jet. Depend-

ing on a single control parameter, namely the relax-

ation time, this prototype flow exhibits behavior in the

mixing region near the jet center that ranges from criti-

cal-layer waves at short relaxation times to turbulence

at sufficiently long relaxation times. This behavior per-

mits systematic tests of nonequilibrium statistical clo-

sures in flow regimes ranging from weakly to strongly

nonlinear.

We study a nonequilibrium statistical closure based

on a second-order cumulant expansion (CE) of the

equal-time statistics of the flow. The CE is closed by

constraining the third and higher cumulants to vanish,

and the resulting second-order cumulant equations are

solved numerically. The CE is weakly nonlinear in that

nonlinear eddy–eddy interactions are assumed to van-

ish. We show that for short relaxation times, the CE

accurately reproduces equal-time statistics obtained by

direct numerical simulation (DNS). For long relaxation

times, the CE does not quantitatively reproduce the

DNS statistics but still provides information (e.g., on

the location of the boundary between the mixing and

the no-mixing region) that local closures (e.g., diffusive

closures) do not easily provide.

Section 2 introduces the equations of motion for the

flow and discusses their symmetries and conservation

laws. Section 3 describes the DNS, including the accu-

mulation of low-order equal-time statistics during the
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course of the simulation. The CE and its associated

closure approximation are outlined in section 4. Section

5 compares DNS and CE. Implications of the results are

discussed in section 6.

2. Barotropic jet on a rotating sphere

a. Equations of motion

We study forced-dissipative barotropic flow on a

sphere of radius a rotating with angular velocity �.

Though not crucial for this paper, we prefer to work on

the sphere and not in the �-plane approximation, as the

sphere can support interesting phenomena not found

on the plane (e.g., Cho and Polvani 1996). The absolute

vorticity q is given by

q � � � f

� �2� � f, �1�

where � is the relative vorticity, � is the streamfunction,

	2 is the Laplacian on the sphere, and

f��� � 2� sin� �2�

is the Coriolis parameter, which varies with latitude 
.

The time evolution of the absolute vorticity is governed

by the equation of motion (EOM)

�q

�t
� J ��, q� �

qjet  q

�
, where �3�

J ��, q� �
1

a2 cos���
���

��

�q

��


��

��

�q

��
� �4�

is the Jacobian on the sphere and � is longitude. Forcing

and dissipation are represented by the term on the

right-hand side of Eq. (3), which linearly relaxes the

absolute vorticity q to the absolute vorticity qjet of a

zonal jet on a relaxation time �.

The zonal jet is symmetric about the equator and is

characterized by constant relative vorticities �� on the

flanks far away from the apex and by a rounding width

�
 of the apex,

qjet��� � f���  	 tanh� �


�
�. �5�

The meridional profile (5) in our simulations is shown

below (in Fig. 5). In the limiting zero-width case �
 →

0 of a point jet,

�jet��� � qjet���  f��� � 	 sgn���, �6�

and the jet velocity has zonal and meridional compo-

nents

ujet��� � 	a tan� |� | �2  ��4�,

jet��� � 0. �7�

For � � 0, the zonal velocity attains its most negative

value �a at the equator.

For � � 0, the gradient of the absolute vorticity (5)

changes sign at the equator, so the jet satisfies the Ray-

leigh–Kuo necessary condition for inviscid barotropic

instability. Lindzen et al. (1983) showed that the linear

stability problem for the barotropic point jet on a �

plane is homomorphic to the Charney problem for

baroclinic instability. The analog of the horizontal sign

change of the absolute vorticity gradient in the baro-

tropic problem is the vertical sign change of the gener-

alized potential vorticity gradient in the baroclinic

problem (with the generalized potential vorticity gradi-

ent including a singular surface contribution from the

surface potential temperature gradient). The meridio-

nal coordinate in the barotropic problem corresponds

to the vertical coordinate rescaled by the Prandtl ratio

in the baroclinic problem.

The analogy to the baroclinic Charney problem mo-

tivated extensive study of the barotropic point–jet in-

stability and its nonlinear equilibration, with the forcing

and dissipation on the right-hand side of Eq. (3) as a

barotropic analog of radiative forcing by Newtonian

relaxation and Rayleigh drag (e.g., Schoeberl and

Lindzen 1984; Nielsen and Schoeberl 1984; Schoeberl

and Nielsen 1986; Shepherd 1988). Building on this

body of work, we focus here on the statistically steady

states of the flow and study their dependence on the

relaxation time �. This allows us to test nonequilibrium

closures systematically in two-dimensional barotropic

flows that exhibit phenomena similar to analogous

three-dimensional baroclinic flows—with the caveat, of

course, that additional degrees of freedom in three-

dimensional baroclinic flows, such as adjustment of the

static stability, make the equilibration of baroclinic in-

stabilities different from that of barotropic instabilities.

b. Symmetries and conservation laws

Because the jet to which the flow relaxes is symmet-

ric about the equator, steady-state statistics of the flow

are hemispherically symmetric. Deviations from hemi-

spheric symmetry can be used to gauge the degree of

convergence toward statistically steady states. They will

also highlight a qualitative problem with the statistics

calculated by the CE (see section 5 below).

The EOM, Eq. (3), is invariant under a rotation of
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the azimuth, � → � � �, and under an inversion of the

coordinates,

� → �,

� → �,

q → q, and

qjet → qjet. �8�

Furthermore, the vorticities change sign under a north–

south reflection about the equator,

� → �,

� → �,

q → q, and

qjet → qjet. �9�

These symmetries are reflected in the statistics dis-

cussed below.

As a consequence of the constancy of the relaxation

time �, statistically steady states satisfy two constraints

that can be obtained by integrating the EOM over the

domain. Kelvin’s circulation and Kelvin’s impulse of

long-time averages �·� in a statistically steady state are

both equal to those of the jet to which the flow relaxes,

� �q�r, t�� dr � � qjet dr, �10�

� �q�r, t�� sin� dr � � qjet sin� dr, �11�

where r � (
, �) is a position vector. Conservation of

circulation (10) is trivially satisfied because vorticity in-

tegrals vanish at each moment in time,

� q�r, t� dr � � ��r, t� dr � � qjet�r, t� dr � 0. �12�

However, conservation of impulse (11), which is

equivalent to conservation of the angular momentum

about the rotation axis, is not trivial and must be re-

spected by statistical closures.

3. Direct numerical simulation

a. Parameters and implementation

All vorticities and their statistics can be expressed in

units of �, but to give a sense of scale, we set the

rotation period to 2�/� � 1 day. We use Arakawa’s

(1966) energy- and enstrophy-conserving discretization

scheme for the Jacobian on an M � N grid. For all

results reported below, there are M � 400 zonal points

and N � 200 meridional points. The lattice points are

evenly spaced in latitude and longitude, apart from two

polar caps that eliminate the coordinate singularities at

the poles. Each cap subtends 0.15 rad (8.6°) in angular

radius and, following Arakawa, consists of a union of

triangles radiating from the pole that match the grid

along their base; scalar fields are constrained to be con-

stant in each cap. At the initial time t � 0, we set q �

qjet plus a small perturbation that breaks the azimuthal

symmetry and triggers the instability. The time integra-

tion is then carried out with a standard second-order

leapfrog algorithm using a time step of �t � 15 s. The

accuracy of the numerical calculation was checked, in

the absence of the jet, against exact analytic solutions

that are available for special initial conditions (Gates

and Riegel 1962). The jet parameters are fixed to be

� � 0.6� and �
 � 0.05 rad (2.9°). Though unphysi-

cally fast for Earth, the jet illustrates the strengths and

shortcomings of the CE. The code implementing the

numerical calculation is written in the Objective-C pro-

gramming language because its object orientation and

dynamic typing are well suited for carrying out a com-

parison between DNS and the CE.

Figure 1 shows the zonal velocity of the fixed jet

ujet(
 ) and the mean zonal velocity of the flow �u(
 )�

for two different relaxation times. The rounding of the

jet due to mixing is evident. The absolute vorticity dur-

ing the evolution of the instability and in the statisti-

cally steady state eventually reached in a typical DNS

are shown in Fig. 2. Figure 3 displays snapshots of the

absolute vorticity in the steady-state regime for six dif-

ferent choices of �. At the limit of vanishingly short

relaxation time � → 0 and strong coupling to the un-

derlying jet, the fixed jet dominates, and q � qjet with

FIG. 1. Mean zonal component of the velocity �u(
 )� on a unit

sphere of radius a � 1. Relaxation times of � � 0 [corresponding

to the profile of the fixed jet ujet(
 )], 3.125 days, and 25 days are

plotted.
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no fluctuations in the flow. For � � 0, instabilities de-

velop and irreversible mixing begins to occur in critical-

layer waves, which form Kelvin cats’ eyes that are ad-

vected zonally with the local mean zonal flow (e.g.,

Stewartson 1981; Maslowe 1986). At sufficiently large

relaxation times (� � 12 days), the jet becomes turbu-

lent, and as � increases further, turbulence increasingly

homogenizes the absolute vorticity in a mixing region in

the center of the jet. The dynamics are strongly out of

equilibrium and nonlinear for intermediate values of �,

yet continue to be statistically steady at long times. At

the limit of long relaxation time � → � and weak cou-

pling to the underlying jet, and upon addition of some

small viscosity to the EOM, the system reaches an equi-

FIG. 3. Snapshots of absolute vorticity in statistically steady states in a cylindrical projection.

The relaxation times are � � (a) 1.5625, (b) 3.125, (c) 6.25, (d) 12.5, (e) 25, and (f) 50 days. As

in Fig. 1, deep red (blue) corresponds to q � �104 s1.

FIG. 2. Absolute vorticity q as calculated by DNS for a relaxation time of � � 25 days. The

left and right hemispheres are shown in each panel; each is inclined by 20° to make the poles

visible. Deep red (blue) corresponds to q � �104 s1. (a) Initial state with equatorial zonal

jet, (b) early development of instability, (c) a statistically steady state, and (d) mean absolute

vorticity q1(r) � �q(r)� in a statistically steady state, showing the effect of turbulence on the

mean absolute vorticity profile and the recovery of azimuthal symmetry in the statistic.
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librium configuration at long times (Salmon 1998;

Turkington et al. 2001; Weichman 2006; Majda and

Wang 2006), and again the fluctuations vanish. Here we

restrict attention to the geophysically most relevant

case of short and intermediate relaxation times.

Part of what makes this flow an interesting prototype

problem to test statistical closures is that, except in the

extreme limits of vanishing or infinite relaxation time,

irreversible mixing is confined to the center of the jet

and does not cover the domain. An estimate of the

extent of the mixing region can be obtained by consid-

ering the state that would result by mixing absolute

vorticity in the center of the jet such that it is, in the

mean, homogenized there and continuous with the un-

modified absolute vorticity of the underlying jet at the

boundaries of the mixing region. Because of the sym-

metry of the jet, this state would have mean absolute

vorticity

�q� � �0 for |� | � �c , and

qjet for |� | � �c ,
�13�

and the boundaries of the mixing region would be at the

latitudes at which qjet � 0, which, given our parameter

values, are 
c � �/(2�) � 17° (cf. Schoeberl and

Lindzen 1984; Shepherd 1988).1 The meridional gradi-

ent of the resulting mean absolute vorticity does not

change sign, so the corresponding flow would be stable

according to the Rayleigh–Kuo criterion. It represents

a zonal jet that is parabolic near the equator. However,

while the mean absolute vorticity satisfies the circula-

tion constraint (10) not only in the domain integral but

also when integrated over the mixing region between

�
c, it does not satisfy the impulse constraint (11). To

satisfy the impulse constraint, the mixing region in a

statistically steady state extends beyond the latitudes 
c

(see Fig. 3 and discussed below). Statistical closures

must account for the structure of the transition between

the mixing and no-mixing regions in this flow.

b. Low-order equal-time statistics

The first cumulant (or first moment) c1 of the relative

vorticity depends only on latitude 
, reflecting the azi-

muthal symmetry of the EOM,

c1�r� � ���r�� � c1���. �14�

It is also convenient to define the first moment of the

absolute vorticity, q1(
 ) � �q(r)� � c1(
 ) � f(
 ). The

calculation of the time averages �·� commences once the

jet has reached a statistically steady state. As the ad-

justment of the mean flow is controlled by the relax-

ation time �, reaching a statistically steady state takes

longer for larger �. Statistics are then accumulated ev-

ery 100 min for a minimum of 100 days of model time,

until adequate convergence is obtained. We have veri-

fied that the long-time averages thus obtained are typi-

cally independent of the particular choice of initial con-

dition; see, for instance, Fig. 4. (The one exception is

the case of � � 3.125 days, in which, depending on

initial conditions, critical-layer waves of wavenumber 3

or 4 are present in the statistically steady states. Be-

cause the wavenumber-3 mode has slightly lower ki-

netic energy and is reached from strongly perturbed

initial conditions, we focus on it here.) As expected,

azimuthal symmetry is recovered in such long-time av-

erages, as can be seen, for instance, in Fig. 2d. In addi-

tion, the first cumulant changes sign under reflections

about the equator,

c1��� � c1���, �15�

a consequence of the reflection symmetry (9).

The second cumulant of the relative vorticity, given

in terms of its first and second moments by

c2�r, r�� � ���r���r���C � ���r���r���  ���r�����r���,

�16�

depends on the latitude of both points r and r�, but only

on the difference in the longitudes,

c2�r, r�� � c2��, ��, �  ���. �17�

It is essential to take advantage of the azimuthal sym-

metry of the second cumulant, Eq. (17), to reduce the

amount of memory required to store the second cumu-

lants by a factor of M, from M2N2 to MN2 scalars. In

the DNS, the reduction is realized by averaging the

second cumulant over �� for each value of �� � �  ��.

The averaging also improves the accuracy of the statis-

tic.

By definition, the second cumulant is symmetric un-

der an interchange of coordinates, c2(r, r�) � c2(r�, r). It

also possesses the discrete symmetry

c2��, ��, 
�� � c2��, ��, 
��, �18�

a consequence of the reflection operation (9).

4. Second-order cumulant expansion

The jets considered here are inhomogeneous and

possess nontrivial mean flows. As a consequence, the

leading-order nonlinearity is the interaction between

1 In the analogy to the Charney problem, the meridional scale

a�/(2�) � �/� with � � 2�/a is the barotropic analog of the

vertical Held (1978) scale over which quasigeostrophic potential

vorticity fluxes associated with unstable baroclinic waves extend.
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the mean flow and eddies (fluctuations about the mean

flow), and already the mean flow, a first-order statistic,

is of interest in closure theories (e.g., Schoeberl and

Lindzen 1984). In contrast, the leading-order nonlinear-

ity in homogeneous flows is the interaction of eddies

with each other, and only higher-order statistics are of

interest in closure theories. Many higher-order closure

approximations impose a requirement of homogeneity

(e.g., Holloway and Hendershott 1977; Legras 1980;

Huang et al. 2001) and are not directly applicable to

systems with inhomogeneous flows.

The second-order closure we consider is based on an

expansion of vorticity statistics in equal-time cumu-

lants. The cumulant expansion can be formulated either

by the Hopf functional approach (Frisch 1995; Ma and

Marston 2005) or by a standard Reynolds decomposi-

tion of each scalar field into a mean component plus

fluctuations or eddies (denoted with a prime):

q�r� � ���r�� � f��� � ���r�, and

��r� � ���r�� � ���r�. �19�

The EOMs for the first and second cumulants may be

written most conveniently by introducing the following

auxiliary statistical quantities:

p1�r� � ���r��, and

p2�r, r�� � ���r���r���C

� ����r����r���. �20�

These quantities contain no new information as c1 �

	2p1 and c2 � 	2p2, where it is understood that

unprimed differential operators such as 	2 and J [, ] act

only on the unprimed coordinates r. Substituting Eq.

(19) into Eq. (3) and applying the averaging operation

�·� yields the EOM for the first moment or cumulant:

FIG. 4. Different initial conditions yield the same low-order equal-time statistics. The case

of relaxation time � � 25 days is illustrated. (a) Lightly perturbed initial absolute vorticity

(from Fig. 1). (b) Second cumulant obtained from the lightly perturbed initial condition with

reference point (orange square) positioned along the central meridian (�� � 0) and at latitude


� � 18°. Deep red (blue) indicates �1010 s2 correlation with respect to the reference point.

(c) Highly perturbed initial condition. (d) Second cumulant obtained from the highly per-

turbed initial condition. (e) Comparison of the zonally averaged mean absolute vorticity in the

central jet region.
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�c1�r�

�t
� J �c1�r� � f���, p1�r��

� � J ��2�r  r��, p2�r, r��� dr� �
�jet���  c1�r�

�
.

�21�

Here, partial integration over r� has been used to group

�� and ��, which appear as separate arguments of the

Jacobian operator, into the statistical quantity p2. Simi-

larly, multiplication of Eq. (3) by ��(r�) followed by

averaging yields the EOM for the second cumulant,

which, upon discarding the cubic term in the fluctua-

tions, may be written as

�c2�r, r��

�t
� J �c1�r� � f���, p2�r, r��� � J �c2�r, r��, p1�r��


c2�r, r��

�
� �r ↔ r��, �22�

where (r ↔ r�) is shorthand notation for terms that

maintain the symmetry c2(r, r�) � c2(r�, r). Closure has

been achieved at second order in the expansion by con-

straining the third and higher cumulants to be zero

c3 � ���r���r����r���C � 0, etc. �23�

Otherwise, an additional term that couples the second

and third cumulants would appear in Eq. (22). The clo-

sure approximation c3 � 0 amounts to neglecting eddy–

eddy interactions while retaining eddy–mean flow in-

teractions (e.g., Herring 1963; Schoeberl and Lindzen

1984).

The EOMs for the two cumulants are integrated nu-

merically using the same algorithms and methods as

those employed for DNS, starting from the initial con-

ditions c1(r) � �jet(r) and c2(r, r�) � c �2(r  r�)  c/4�,

with small positive c. The cumulants evolve toward the

fixed point

�c1�r�

�t
�

�c2�r, r��

�t
� 0. �24�

As a practical matter, we consider that the fixed point

has been reached when the cumulants do not change

significantly with further time evolution. It is essential

for the second cumulant to have an initial nonzero

value as otherwise it would be zero for all time, corre-

sponding to axisymmetric flow, which is unstable with

respect to nonaxisymmetric perturbations.

The programming task of solving the equations of

motion for the cumulants is simplified by implementing

the CE as a subclass of the DNS class, inheriting all of

the lattice DNS methods without modification. The azi-

muthal symmetry of the statistics [Eqs. (14) and (17)]

and the discrete symmetries [Eqs. (15) and (18)] are

exploited to reduce the amount of memory required to

store c2 and p2. The symmetries also speed up the cal-

culation and help thwart the development of numerical

instabilities. The time step �t is permitted to adapt,

increasing as the fixed point is reached. Various con-

sistency checks on the numerical solution are per-

formed during the course of the time integration. For

instance, we verify that

c2�r, r� � c2��, �, 
� � 0� � 0 �25�

at all lattice points r. Furthermore, from Eq. (12) it

must be the case that

� c1�r� dr � �c2�r, r�� dr � 0. �26�

Likewise, as the second-order cumulant expansion con-

serves Kelvin’s impulse, it follows from the impulse

constraint (11) that

� c1�r� sin��� dr � � qjet��� sin��� dr and �27�

� c2�r, r�� sin��� dr � 0. �28�

Finally, the local mean kinetic energy,

�E�r�� � p2�r, r�  p1�r�c1�r� � 0, �29�

is nonnegative, because the statistics governed by Eqs.

(21) and (22) are realizable—they can be obtained from

a linear equation of motion for the vorticity that is

driven by Gaussian stochastic forcing (Orszag 1977;

Salmon 1998). The total kinetic energy obtained by CE

compares well to that determined by DNS.

5. Comparison between DNS and CE

The equal-time statistics accumulated in the DNS can

be directly compared to the results of the CE because

both calculations are based on the same jet model with

the same finite-difference approximations on the same

M � N lattice. Thus, any differences between the DNS

and CE statistics may be ascribed solely to the closure

approximation. Results similar to those below are ob-

tained on a coarser 200 � 100 lattice.

Figure 5 shows the mean absolute vorticity calculated

with the two approaches. The closest agreement be-

tween DNS and the CE is found at the shortest relax-

ation time of � � 1.5626 days. The CE is accurate for

short relaxation times because fluctuations are sup-

pressed by the strong coupling to the fixed jet. The

second cumulant is reduced in size, and errors intro-

duced by the closure approximation that neglects the
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third cumulant are small. For longer relaxation times,

the CE systematically flattens out the mean absolute

vorticity in the center of the jet too strongly. The largest

absolute discrepancy in the mean vorticity appears at

an intermediate relaxation time of � � 3.125 days. At

longer relaxation times, the mean absolute vorticities in

the DNS and CE become small in the central jet region;

however, their fractional discrepancy increases, and the

second cumulants show increasing quantitative and

even qualitative discrepancies.

Comparison of the second cumulants for � � 1.5625

days (Fig. 6) reveals a qualitative discrepancy. The two-

point correlations as calculated in the CE exhibit wave-

number-3 periodicity, in contrast with the wavenum-

ber-4 periodicity of the critical-layer wave dominating

the fluctuating flow component in DNS (Fig. 3). In this

regard, the CE mimics the wavenumber-3 periodicity

found in DNS at the longer relaxation times. In both

DNS and CE, the correlations are strongest in absolute

value when one of the two points of the second cumu-

lant is located near the equator. Interestingly, the sec-

ond cumulant from the DNS exhibits a near-exact sym-

metry that is not a symmetry of the EOM,

c2��, ��, 
�� � c2��, ��, 
��, �30�

in addition to the symmetries of Eqs. (15) and (18). This

approximate symmetry, which holds exactly for the sec-

ond-order CE, may be attributed in the case of the DNS

FIG. 5. (a) Mean absolute vorticity q1 as a function of latitude for different relaxation times.

Zonally averaged results from DNS (solid lines) are compared to those from the CE (dashed

lines). The black line (� � 0) is the absolute vorticity of the fixed jet qjet(
 ). (b) Magnified

view of central jet region. Note the antisymmetry of the mean absolute vorticity (the first

cumulant) under equatorial reflections.
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to the small size of the third cumulant. The fixed point

of the second-order CE as described by Eqs. (21), (22),

and (24) possesses an artificial symmetry, because un-

der the north–south reflection 
 → 
 the Jacobian

operator (4) changes sign, as do both c1(
 ) and p1(
 ),

and the fixed point equations remain unchanged pro-

vided that the second cumulant obeys Eq. (30). The

artificial symmetry would, however, be broken in gen-

eral by any coupling of the second cumulant to a third

(nonzero) cumulant or, equivalently, by the inclusion of

eddy–eddy interactions, which can redistribute eddy

enstrophy spatially. Thus, the artificial symmetry (30) is

an artifact of the closure (23).

Other qualitative discrepancies appear at longer re-

laxation times (Fig. 7). For � � 25 days, the second

cumulant calculated by DNS no longer shows the arti-

ficial symmetry (30), whereas the symmetry continues

to be present in the CE because of the closure approxi-

mation. In contrast to the � � 1.5625 case, the largest

two-point correlations occur when one of the two

points is away from the equator, reflecting the fact that

correlations are washed out by the strong turbulence

near the jet center. Finally, the second cumulant as cal-

culated by CE shows a wavenumber-3 periodicity, with

excessively strong correlations at large separations as a

result of the neglect of eddy–eddy interactions, which

strongly distort the eddy fields in the DNS. Nonethe-

less, even for relatively long relaxation times for which

the differences between the CE and the DNS at the

center of the jet are apparent, the CE does capture the

structure of the transition from the mixing region in the

center of the jet to the nonmixing region away from the

center, where the mean absolute vorticity in the DNS

and the absolute vorticity of the underlying jet coincide.

Figure 8 compares the eddy diffusivity � of absolute

vorticity in the meridional direction as calculated by

DNS and CE for the two cases of � � 3.125 and 25 days.

The diffusivity is defined by second-order statistics:

���� � � ��r�q��r�����q�r��

��a��
�

1

�DNS�

�
1

cos�

�p2��, �, 
��

��
��
��q1���

����
�

1

�CE�. �31�

The diffusivities calculated by the two methods are

qualitatively similar. Diffusion is largely confined to the

FIG. 6. The second cumulant of the relative vorticity field, c2(
, 
�, �  ��), for relaxation time � � 1.5625 days.

The reference point (orange square) is positioned along the central meridian (�� � 0) and at latitudes of 
� � (a)

0° (DNS), (b) 18° (DNS), (c) 36° (DNS), (d) 0° (CE), (e) 18° (CE), and (f) 36° (CE). Deep red (blue) indicates

�1010 s2 correlation with respect to the reference point.
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mixing region of the jet, and it is negative near critical

layers within the mixing region (cf. Schoeberl and

Lindzen 1984). However, there are significant quanti-

tative differences between DNS and CE, as might be

expected given that second-order statistics will gener-

ally be poorly reproduced in a second-order closure.

6. Discussion and conclusions

The barotropic flows considered here attain statisti-

cally steady states after sufficient time has passed. They

are out of equilibrium on large scales because the fixed

zonal jet to which they relax is both a source and a sink

of energy. Statistical approaches that have been devel-

oped to describe the equilibrium states of geophysical

flows in the absence of large-scale forcing and dissipa-

tion therefore are not applicable here. For example,

approaches that are based on maximizing an entropy

functional subject to constraints on energy, enstrophy,

and possibly higher-order inviscid invariants (Miller

1990; Robert and Sommeria 1991; Salmon 1998; Turk-

ington et al. 2001; Weichman 2006; Majda and Wang

2006) assume ergodic mixing and therefore produce

statistical equilibrium states with mixing throughout the

domain, rather than with mixing confined to the region

in the center of the jet.

One-point closures likewise are generally not ad-

equate for the inhomogeneous flows we considered.

For example, as one ingredient of a diffusive one-point

closure one might postulate a linear relationship be-

tween an eddy diffusivity �(
 ) and rms fluctuations in

the streamfunction ���2(r)�  ��(r)�2, which has the

same physical dimension (Holloway and Kristmanns-

son 1984; Holloway 1986; Stammer 1998). Figure 8 re-

veals that fluctuations in the streamfunction persist to

much higher latitudes, owing to Rossby wave dynamics

outside the mixing region. A diffusive closure in which

the diffusivity is a linear function of rms streamfunction

fluctuations would therefore also lead to mean states

with mixing in an overly large fraction of the domain.

We have tested the simplest nontrivial two-point clo-

sure approximation based on a cumulant expansion of

vorticity statistics, obtained by discarding the third and

higher cumulants. This corresponds to neglecting eddy–

eddy interactions while retaining eddy–mean flow in-

teractions. The second-order CE is realizable, has no

adjustable parameters (such as eddy damping terms),

and is not restricted to homogeneous flows. For short

FIG. 7. Same as Fig. 5 but for a relaxation time of � � 25 days. The reflection symmetry about the equator seen

in the CE, an artifact of the closure truncation, is not present in the DNS.
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relaxation times, the expansion reproduces the first mo-

ment fairly accurately. For longer relaxation times, it is

quantitatively less accurate, but it still captures the tran-

sition from a mixing region at the center of the jet to a

no-mixing region away from the center.

The steady-state statistics from the CE can be found

with much less computational effort than that required

to calculate time-averaged statistics using DNS because

the partial differential equations governing the fixed

point (24) are time independent. This is especially true

if a good initial guess is available for the cumulants c1

and c2, because the fixed point can then be reached

rapidly by iteration. Furthermore, because the statistics

vary much more slowly in space than in any given re-

alization of the underlying dynamics (see Fig. 2), it may

be possible to employ coarser grids without sacrificing

accuracy. Thus, the CE realizes a program envisioned

by Lorenz (1967) long ago by solving directly for the

statistics, but it does so at the cost of a closure approxi-

mation that compromises the accuracy of the statistics,

especially for flows with more strongly nonlinear eddy–

eddy interactions. There is evidence, however, that

nonlinear eddy–eddy interactions in the earth’s atmo-

sphere are weak (Schneider and Walker 2006).

O’Gorman and Schneider (2007) have shown that sev-

eral features of atmospheric flows, such as scales of jets

and the shape of the atmospheric turbulent kinetic en-

ergy spectrum, can be recovered in an idealized general

circulation model in which eddy–eddy interactions are

suppressed. In particular, baroclinic jets form sponta-

neously and are maintained by eddy–mean flow inter-

actions even in the absence of nonlinear eddy–eddy

interactions. Thus, a second-order CE may be worth

exploring for more realistic models. Extensions of the

CE to multilayer models governed by either quasigeo-

strophic dynamics or the primitive equations are

straightforward. The storage requirement for the sec-

ond cumulant grows as the square of the number of

layers, but it remains feasible so long as the models

retain azimuthal symmetry. The incorporation of to-

pography and other symmetry-breaking effects is more

problematic because of the much larger storage re-

quirement.

Whether more sophisticated closures can be devised

that are more accurate and yet only require comparable

computational effort remains an open question. In the

case of isotropic turbulence, renormalization group–

inspired closures show some promise (McComb 2004),

but these typically make extensive use of translation

invariance in actual calculations. Investigation of more

sophisticated approximations for nonisotropic and in-

homogeneous systems, such as the barotropic flows we

considered, may be warranted in view of the partial

success of the cumulant expansion reported here.
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