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Statistics of Co-Channel Interference in a Field of

Poisson and Poisson-Poisson Clustered Interferers
Kapil Gulati, Student Member, IEEE, Brian L. Evans, Fellow, IEEE, Jeffrey G. Andrews, Senior Member, IEEE,

and Keith R. Tinsley, Senior Member, IEEE

Abstract—With increasing spatial reuse of radio spectrum, co-
channel interference is becoming a dominant noise source and
may severely degrade the communication performance of wireless
transceivers. In this paper, we consider the problem of statistical-
physical modeling of co-channel interference from an annular
field of Poisson or Poisson-Poisson cluster distributed interferers.
Poisson and Poisson-Poisson cluster processes are commonly
used to model interferer distributions in large wireless networks
without and with interferer clustering, respectively. Further, by
considering the interferers distributed over a parametric annular
region, we derive interference statistics for finite- and infinite-
area interference region with and without a guard zone around
the receiver. Statistical modeling of interference is a useful tool
to analyze outage probabilities in wireless networks and design
interference-aware transceivers. Our contributions include (1)
developing a unified framework for deriving interference models
for various wireless network environments, (2) demonstrating
the applicability of the symmetric alpha stable and Gaussian
mixture (with Middleton Class A as a particular form) distri-
butions in modeling co-channel interference, and (3) deriving
analytical conditions on the system model parameters for which
these distributions accurately model the statistical properties
of the interference. Applications include co-channel interference
modeling for various wireless networks, including wireless ad hoc,
cellular, local area, and femtocell networks.

Index Terms—Co-channel interference, Poisson processes, im-
pulsive noise, probability, stochastic approximation.

I. INTRODUCTION

Current and future wireless communication systems require

higher spectral usage due to increasing demand in user data

rates. One of the principal techniques for efficient spectral

usage is to implement a dense spatial reuse of the available

radio spectrum. This causes severe co-channel interference,

which limits the communication system performance. Knowl-

edge of interference statistics is integral to analyzing per-

formance of wireless networks, including outage probability

and throughput, and can also be used to design transceivers

with improved communication performance [1]–[6]. We have

released a freely distributed software toolbox for statistical

modeling and mitigation of radio frequency interference [7].
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A. Motivation and Prior Work

Co-channel interference statistics in wireless networks are

affected by the following key factors: (i) the spatial distribution

of interferers, (ii) the spatial region over which the interferers

are distributed, and (iii) propagation characteristics including

the power pathloss exponent and fading. Regarding (i), the

distribution of active interferers in large random wireless

networks is generally assumed to be a homogeneous spatial

Poisson point process [6], [8]–[11]. While this assumption may

be valid for certain wireless networks (e.g. wireless sensor and

ad hoc networks), it may be common for interfering users to

cluster in space due to geographical factors (e.g. gathering

places or femtocell networks [12], [13]), or medium access

control (MAC) layer protocols [6], [14]. Regarding (ii), the

spatial region containing the interferers is commonly assumed

to be an infinite plane [8]–[11]. Many wireless networks,

however, employ contention-based MAC protocols (e.g. car-

rier sense multiple access and multiple access with collision

avoidance) or other local coordination techniques to limit

the interference, thereby creating a guard zone around the

receiver (e.g. in wireless ad hoc networks [15] and in dense

Wi-Fi networks [6], [16]). Guard zones around the receiver

can also occur due to scheduling-based MAC protocols, such

as in cellular networks in which the users in the same cell

site are orthogonal to each other and all interfering users

are outside the cell site in which the receiver is located.

Further, receivers in many wireless networks may experience

interference from finite-area regions (e.g. interference from a

cell cite in cellular networks with reuse factor greater than one)

[17]. This motivates characterizing the interference statistics in

Poisson and Poisson-Poisson clustered interferers distributed

over a parametric annular region. For each of the interferer

distributions, the finite- and infinite- area with and without

a guard zone around the receiver can then be studied as

particular cases of the parametric annular interference region.

The statistical techniques used in modeling interference

include empirical methods and statistical-physical methods.

Empirical approaches fit a mathematical model to measured

received signals, without regard to the physical generation

mechanisms behind the interference. Statistical-physical mod-

els, on the other hand, model interference based on the phys-

ical principles that govern the generation and propagation of

the interference-causing emissions. Statistical-physical models

are thus more widely applicable than empirical models [18],

[19].

Statistical-physical modeling of co-channel interference in
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random Poisson interference fields has been extensively stud-

ied in literature [17], [20]–[24]. In [20], it was shown that

interference from a homogeneous Poisson field of interferers

distributed over the entire plane can be modeled using the

symmetric alpha stable distribution [25]. This result was later

extended to include channel randomness [21] and second-order

statistics capturing the temporal dependence [22]. Recently,

the authors in [17] investigated extensions for a finite-area

field and derived the interference moments. Closed form

approximations to the interference distribution, however, were

not investigated. In our prior work [23], [24], we presented a

unified framework from which we derived the co-channel in-

terference statistics in a Poisson field of interferers distributed

on a parametric circular annular region. In this paper, we

extend the work in [24] for wider range of interferer topologies

and Poisson-Poisson cluster field of interferers.

Other key statistical-physical models for co-channel inter-

ference in random Poisson interference fields include Middle-

ton Class A, B, and C models [19]. Middleton models are

useful because they characterize a wider range of physical

conditions, including narrowband and broadband interference

emissions, transients at the receiver, and background thermal

noise [18], [19]. Middleton models, however, have not been

widely used to characterize co-channel interference in wireless

network environments.

Statistical-physical modeling of co-channel interference in

random Poisson clustered interference fields was recently

studied in [26]. The focus of the work was to characterize

the network performance (outage probability and transmission

capacity) and the interferer clusters were assumed to be

distributed over the entire plane. Closed form interference

statistics, however, were not derived.

The problem considered in this paper is also closely related

to the problem of deriving the amplitude distribution of shot

noise processes [27]. Co-channel interference in a planar

network of nodes distributed according to any point process

can be modeled as a generalized shot noise process [27], [28].

The shot noise process is studied in detail in [27] and existence

of generalized shot noise process for any point process was

shown in [28]. Properties of the shot noise processes, such as

characteristic function for power-law shot noise process [29],

are commonly used to evaluate bounds on outage probabilities

in wireless networks [13], [30]. To the best of our knowledge,

closed form expression of the amplitude distribution for shot

noise process are not known for the interferer topologies

considered in this paper.

B. Contribution, Organization, and Notation

In this paper, we derive the interference statistics from

a field of Poisson and Poisson-Poisson clustered distributed

interferers. Further, for each of the interferer distributions,

we derive the statistics for interferers or interferer clusters

distributed over (i) the entire plane, (ii) finite-area annular

region, and (iii) infinite-area annular region with a guard zone

around the desired receiver. One of the key contributions of

this paper is to develop a unified framework to derive the

co-channel interference statistics in different wireless network

TABLE I: Summary of Notation

Symbol Description

Π = {Ri} point process of active interferers
K (random) number of active interferers
Γ region containing interferers

Rm receiver location
r = ‖R−Rm‖ (random) distance of interferer from receiver

X = Bejφ amplitude and phase of interferer emissions
γ > 2 power pathloss exponent

g = hejθ amplitude and phase of narrowband fading
Y = YI+jYQ (complex) sum interference at receiver

Y , {YI ,YQ} inphase and quadrature phase components

ω = [ωI , ωQ]T frequency variables for characteristic function of Y

|ω|, ωφ ,
√

ω2
I + ω2

Q, , − tan−1(ωQ/ωI)

Φ
Y
(ω),Ψ

Y
(ω) joint characteristic, log-characteristic function of Y

Λ(|ω|) =O(|ω|4) as |ω|→0 correction term given by (18)
λ intensity of Π for a Poisson interferer field
λc intensity of Poisson process for cluster centers
λf intensity of Poisson process for nodes in a cluster

rl, rh inner, outer radii of annular interferer region
Rl, Rh inner, outer radii of region with cluster centers
α, σ parameters of symmetric alpha stable model

A,Ω2A parameters of Middleton Class A model

pl, σ
2
l parameters of Gaussian mixture model, l ≥ 0

environments and establish the applicability of the symmetric

alpha stable and Gaussian mixture model (with Middleton

Class A model as a particular form). Analytical constraints

on the system model parameters for which these distributions

accurately model the statistical properties of the interference

are also derived. When exact statistics cannot be derived in

closed form, the paper focuses on accurately modeling the tail

probability of the interference distribution.

The paper is organized as follows. Section II discusses the

system model. Section III derives the interference statistics

for interferers distributed according to a homogeneous spatial

Poisson point process. Section IV derives the interference

statistics for a interferers distributed according to a homo-

geneous spatial Poisson-Poisson clustered process. Section V

summarizes the interference models derived in this paper.

Section VI presents results from numerical simulations to

corroborate our claims. Appendix A contains a brief discussion

on the statistical properties of the interference models derived

in the paper.

Throughout this paper, random variables are represented us-

ing boldface notation, deterministic parameters are represented

using non-boldface type, EX {f(X)} denotes the expectation

of the function f(X) with respect to the random variable X,

P(·) denotes the probability of a random event, and ‖·‖ denotes

the Euclidean norm. Table I summarizes the notation used in

this paper.

II. SYSTEM MODEL

At each sampling time instant n, the locations of the

active interferers are assumed to be distributed according to

a homogeneous spatial point process Π = {R1,R2, · · · }
over the space Γ, where Ri are the random locations of

the interferers. This model is sufficient to capture both the

emerging interferers, whose contributions arrive at the receiver

for the first time at the time instant n, and interferers that first
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emerged at some prior sampling time instant m < n but are

still active till the sample time n [22].

The baseband model for the sum interference Y at any time

instant can then be represented as

Y =

K
∑

i=1

r
− γ

2
i giXi (1)

where K is the random number of active interferers at that

time instant, i is the interferer index, ri = ‖Ri − Rm‖ are

the random distances of active interferers from the receiver,

γ is the power pathloss exponent, gi is the independent and

identically distributed (i.i.d.) random fast fading experienced

by each interferer emission, and Xi are the random interferer

emissions.

We assume that all potential interferers have i.i.d. symmetric

narrowband emissions of the form [18]

Xi = Bie
jφi = Bi cos(φi) + jBi sin(φi) (2)

where Bi is the i.i.d. envelope, and φi is the i.i.d. random

phase of the emissions. Further, we assume that the emerging

times of the interferers are uniformly distributed between the

sampling times at the receiver. Thus the phase φi of the emis-

sions at the sampling instants can be assumed to be uniformly

distributed on [0, 2π]. The assumption of i.i.d. emissions is

valid for wireless communication networks without power

control and may not be true for modeling interference from

diverse types of interferers with unequal transmit power (e.g.

base stations and mobile users).

The fast fading experienced by the interferer emissions is

also assumed to be narrowband of the form

gi = hie
jθi (3)

where hi is the random amplitude scaling and θi is the random

phase variation due to fading. The in-phase and quadrature-

phase components of the emissions are assumed to experience

uncorrelated fading and thus θi is uniformly distributed on

[0, 2π]. The sum interference can be expressed as

Y =
K
∑

i=1

r
− γ

2
i hiBi cos(φi+θi) + j

K
∑

i=1

r
− γ

2
i hiBi sin(φi+θi)

(4)

III. CO-CHANNEL INTERFERENCE IN A POISSON FIELD OF

INTERFERERS

Consider a scenario, as shown in Fig. 1, in which the spatial

point process Π in (1) is a homogeneous spatial Poisson point

process with intensity λ and the interferers are distributed

over the space Γ(rl, rh). The parametric interference space

is defined as

Γ(rl, rh) =
{

x ∈ R
2 : rl ≤ ‖x‖ ≤ rh

}

. (5)

From (4), the joint characteristic function of the in-phase and

quadrature-phase components of the sum interference Y =
YI + jYQ can be expressed as

ΦYI ,YQ
(ωI , ωQ)

= EYI ,YQ

{

ejωIYI+jωQYQ
}

= E

{

ej
∑

K

i=1 r
−

γ
2

i hiBi(ωI cos(φi+θi)+ωQ sin(φi+θi))

}

= E

{

ej|ω|∑K

i=1 r
−

γ
2

i hiBi cos(φi+θi+ωφ)

}

(6)

=

∞
∑

k=0

E

{

ej|ω|
∑k

i=1 r
−

γ
2

i hiBi cos(φi+θi+ωφ)
∣

∣k in Γ(rl, rh)

}

× P (k in Γ(rl, rh)) (7)

where ω = [ωI , ωQ]
T , |ω| =

√

ω2
I + ω2

Q, and ωφ =

− tan−1
(

ωQ

ωI

)

. The expectation in (7) is with respect to the

set of random variables {ri,hi,Bi,φi,θi}.

Conditioned on the number of interferers present in the

space Γ(rl, rh), the interferer locations are mutually inde-

pendent and uniformly distributed across this space [25].

Henceforth, we remove the conditioning on the number of in-

terferers from the expectation by noting that the interferers are

uniformly distributed over Γ(rl, rh). Further, in the absence of

power control, the interferer emissions can be assumed to be

i.i.d.. The characteristic function can then be expressed as

Φ
Y
(ω) =

∞
∑

k=0

[

E

{

ej|ω|r−
γ
2 hB cos(φ+θ+ωφ)

}]k

×
[

λπ
(

r2h − r2l
)]k

e−λπ(r2h−r2l )

k!
(8)

= e
λπ(r2h−r2l )

(

E

{

e
j|ω|r

−
γ
2 hB cos(φ+θ+ωφ)

}

−1

)

(9)

where Y is the set {YI ,YQ}. By taking the logarithm of

Φ
Y
(ω), the log-characteristic function is

ψ
Y
(ω) , log Φ

Y
(ω)

= λπ
(

r2h − r2l
)

(

E

{

ej|ω|r−
γ
2 hB cos(φ+θ+ωφ)

}

− 1
)

.

(10)

By using the identity

eja cos(φ) =

∞
∑

k=0

jkǫkJk(a) cos(kφ) (11)

where ǫ0 = 1, ǫk = 2 for k ≥ 1, and Jk(·) denotes the

Bessel function of order k, the log-characteristic function can

be expressed as

ψ
Y
(ω) = λπ

(

r2h − r2l
)

(

E

{

∞
∑

k=0

jkǫkJk

(

|ω|r− γ
2 hB

)

×

cos (k(φ+ θ + ωφ))
}

− 1

)

. (12)

Since φ and θ are assumed to be uniformly distributed on

[0, 2π], Eφ,θ {cos (k(φ+ θ + ωφ))} = 0 for k ≥ 1, and (12)

reduces to

ψ
Y
(ω) = λπ

(

r2h − r2l
)

(

Er,h,B

{

J0

(

|ω|r− γ
2 hB

)}

− 1
)

.

(13)

The log-characteristic function derived in (13) holds in general

for narrowband interferers distributed over the parametric

space Γ(rl, rh), governed by the parameters rh and rl and
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Fig. 1: Interference space and receiver location for different network topologies in a field of Poisson distributed interferers categorized by the region containing
the interferers.

the receiver location Rm. The receiver location Rm affects

the expectation in (13). We now consider the following three

cases and further simplify the log-characteristic function.

A. Case I: Interferers distributed over the entire plane (rl =
0, rh → ∞)

Consider a wireless network, as shown in Fig. 1, where

the interfering sources are distributed according to a spatial

Poisson point process over the entire plane. Note that ‖Rm‖
can be assumed to be zero without any loss in generality

of the result. This scenario corresponds to a decentralized

network in which nodes do not employ any contention-based

MAC protocol, and has been widely studied [3], [9], [20]–

[24]. We consider the interference space Γ(0, rh) and take the

limit on the log-characteristic function as rh → ∞ [9], [20].

Recall that the expectation in (13) is conditioned such that the

interferer locations are uniformly distributed over Γ(rl, rh).
The distance of each interferer from the receiver thus follows

the distribution

fr|K(r|K) =

{

2r
r2
h

if 0 ≤ r ≤ rh,

0 otherwise.

Expanding the expectation in (13), we have

ψ
Y
(ω) = lim

rh→∞
λπr2h

( rh
∫

0

Eh,B

{

J0

(

|ω|r− γ
2 hB

)} 2r

r2h
dr

− 1

)

. (14)

Integrating the above by parts, noting that

limrh→∞ Eh,B

{

r2h

(

J0

(

|ω|r−
γ
2

h hB
)

− 1
)}

= 0 for

γ > 2, and d
dx
J0(x) = −J1(x), we have

ψ
Y
(ω) = −|ω| 4γ λπEh,B

{

h
4
γ B

4
γ

}

∞
∫

0

J1(x)

x
4
γ

dx. (15)

Equation (15) is the log-characteristic function of an isotropic

symmetric alpha stable distribution centered at zero such that

ψYI ,YQ
(ωI , ωQ) = −σ

∣

∣

∣

√

ω2
I + ω2

Q

∣

∣

∣

α

(16)

where α = 4
γ

is the characteristic exponent (0 < α < 2), and

σ = λπEh,B {hαBα}
∫∞
0

J1(x)
xα dx is the dispersion parameter

(σ>0) of the symmetric alpha stable distribution [25]. Hence,

the sum interference in a Poisson field of interferers distributed

over the entire plane follows a symmetric alpha stable distri-

bution.

B. Case II: Interferers distributed over a finite-area annular

region (0 ≤ rl < rh <∞, Rm /∈ Γ(rl, rh))

Consider a wireless network, as shown in Fig. 1, where

the interferers are distributed over a finite-area annular region.

When rl > 0 and ‖Rm‖ < rl, this corresponds to a scenario

where all the interferers are outside a guard zone around

the receiver and within a maximum distance (rh < ∞)

beyond which they do not generate significant interference.

When ‖Rm‖ > rh, this corresponds to a scenario where the

interferers are distributed over a finite-area circular or annular

region with the receiver exterior to this region. The former

scenario is applicable for wireless networks with contention-

based or scheduling-based MAC protocols creating a guard

zone around the receiver (e.g. cellular networks with reuse

factor of one and ad hoc networks with guard zones [15]).

The latter scenario is useful in characterizing the interference

from a hotspot (e.g. interferers localized in space around a

cafe) and in cellular networks with reuse factor greater than

one. In cellular networks with reuse factor greater than one, the

interferers are distributed within a regular pattern of isolated

cell sites and the sum interference is thus a sum of the

interference from these isolated finite-area cell sites.

In [18], Middleton proposed an approximation of the log-

characteristic function for |ω| in the neighborhood of zero.

From Fourier analysis, the behavior of the characteristic func-

tion for |ω| in the neighborhood of zero governs the tail prob-
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ability of the random envelope. The proposed approximation

is based on the following identity [18]:

Er,h,B

{

J0

(

|ω|r− γ
2 hB

)}

= e−
|ω|2Er,h,B{r

−γ
h
2
B

2}
4 ×
(1 +Λ(|ω|)) (17)

where Λ(|ω|)) indicates a correction term with the lowest

exponent in |ω| of four and is given by

Λ(|ω|)) =
∞
∑

k=2

(EZ {Z})k |ω|2k
22kk!

EZ

{

1F1

(

−k; 1; Z

EZ {Z}

)}

(18)

where the random variable Z = r−γh2B2, and 1F1 (a; b;x) is

the confluent hypergeometric function of the first kind, such

that Λ(|ω|) = O(|ω|4) as |ω| → 0.

Using this identity, and approximating Λ (|ω|) << 1 for |ω|
in the neighborhood of zero, the log-characteristic function in

(13) can be expressed as

ψ
Y
(ω) ≈ λπ

(

r2h − r2l
)

(

e−
|ω|2Er,h,B{r

−γ
h
2
B

2}
4 − 1

)

. (19)

Equation (19) is the log-characteristic function of a Middleton

Class A distribution such that

ψYI ,YQ
(ωI , ωQ) = A

(

e−
(ω2

I
+ω2

Q)Ω2A

2A − 1

)

(20)

where A = λπ
(

r2h − r2l
)

is the overlap index that indi-

cates the amount of impulsiveness of the interference, and

Ω2A =
A×Er,h,B{r−γ

h
2
B

2}
2 is the mean intensity of the

interference [19]. Hence, the co-channel interference from a

field of Poisson distributed interferers over the finite-area space

Γ(rl, rh) with Rm /∈ Γ(rl, rh) follows the Middleton Class A

distribution. It should be emphasized that the correspondence

to the Middleton Class A distribution is particularly valid for

modeling the tail probabilities.

The approximation in (17) and the subsequent interference

model in (20) is valid for Rm /∈ Γ(rl, rh), since Ω2A → ∞
as ‖Rm‖ → rl or as ‖Rm‖ → rh. This is unlike Case I in

Section III-A where the interference was modeled for rl = 0.

This is the key difference between the symmetric alpha stable

and Middleton Class A models for interference.

Next, we quantify the range of the system model parameters

over which the Middleton Class A model provides an accurate

approximation to the co-channel interference in this scenario.

From (17), a first-order measure of the accuracy of the

approximation can be expressed by comparing the coefficient

of |ω|4 term in e−
|ω|2Er,h,B{r

−γ
h
2
B

2}
4 against the coefficient

of |ω|4 in the correction term Λ(|ω|). Using the fact that

1F1 (−2; 1;x) =
1

2
(x2 − 4x+ 2), (21)

the coefficient of |ω|4 in the correction term (i.e., c4) can be

expressed as

c4 =
EZ

{

Z2
}

− 2 [EZ {Z}]2
128

. (22)

Thus, the Middleton Class A model provides a good approx-

imation when the system parameters, such as rh, rl, Rm, and

γ, satisfy
∣

∣

∣

∣

∣

EZ

{

Z2
}

− 2 [EZ {Z}]2
128

∣

∣

∣

∣

∣

<<
[EZ {Z}]2

32
(23)

⇒
∣

∣

∣

∣

∣

Er,h,B

{

r−2γh4B4
}

4× [Er,h,B {r−γh2B2}]2
− 1

2

∣

∣

∣

∣

∣

<< 1. (24)

To provide some intuition about the above result, for a non-

random h and B, the condition is satisfied when ‖Rm‖ << rl
and rl

rh
is greater than a fraction that depends on γ and Rm,

or when ‖Rm‖ >> rh. The conditions ‖Rm‖ << rl and

‖Rm‖ >> rh ensure that the interferers are not close to the

receiver and a lower bound on rl
rh

ensures that rh is not very

large compared to rl when ‖Rm‖ < rl.

C. Case III: Interferers distributed over infinite-area annular

region with guard zone (rl > 0, rh → ∞, and ‖Rm‖ < rl)

Consider a wireless network, as shown in Fig. 1, where

the interfering sources are distributed according to a spatial

Poisson point process on the entire plane, except within a

guard zone around the receiver. The applicability of Case II

for guard zone scenarios was limited to finite-area fields and

does provide a good approximation for a wide range of system

parameters. In this subsection, we allow the interference region

to have infinite area and is thereby more applicable to large

random wireless networks with guard zones [15]. We consider

the interference space Γ(rl, rh) and take the limit on the log-

characteristic function as rh → ∞. Conditioned on the number

of interferers in Γ(rl, rh), the interferer locations are mutually

independent and uniformly distributed in the space Γ(rl, rh).
Thus as rh → ∞, with high probability, the distance of an

interferer from receiver located at Rm can be approximated

as r = ‖R−Rm‖ ≈ ‖R‖, particularly for ‖Rm‖ << rl. The

distance of each interferer from the receiver thus follows the

distribution

fr|K(r|K) =

{

2r
r2
h
−r2

l

if rl ≤ r ≤ rh,

0 otherwise.

Expanding the expectation in (13), we have

ψ
Y
(ω)= lim

rh→∞
λπ(r2h−r2l )

( rh
∫

rl

Eh,B

{

J0

(

|ω|r− γ
2 hB

)}

×

2r

r2h − r2l
dr − 1

)

. (25)

Integrating the above by parts, reordering terms, and noting

that lim
rh→∞

λπr2h
(

Eh,B

{

J0

(

|ω|r−
γ
2

h hB
)}

−1
)

= 0 for γ >

2, we have

ψ
Y
(ω) = −λπr2l

(

Eh,B

{

J0

(

|ω|r−
γ
2

l hB
)}

−1
)

−

lim
rh→∞

λπ

rh
∫

rl

∂

∂r

(

Eh,B

{

J0

(

|ω|r− γ
2 hB

)})

r2dr. (26)
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Invoking the identity (17), and approximating Λ (|ω|) << 1
for |ω| in the neighborhood of zero, the log-characteristic

function can be expressed as

ψ
Y
(ω) ≈ − λπr2l

(

e−
|ω|2r

−γ
l

Eh,B{h
2
B

2}
4 − 1

)

−

lim
rh→∞

λπ

∫ rh

rl

∂

∂r

(

e−
|ω|2r−γ

Eh,B{h
2
B

2}
4

)

r2dr. (27)

Note that unlike (17), the approximation in (27) involves a

non-random r. Using Taylor series expansion of ex, the log-

characteristic function reduces to

ψ
Y
(ω) = λπr2l

[ ∞
∑

k=1

(−1)k|ω|2k
4kk!

(

E
{

h2B2
})k

r−γk
l

2

kγ − 2

]

(28)

valid for γ > 2. The 2
kγ−2 multiplicative factor inside

the summation prevents the log-characteristic function to be

expressed in closed form. We thus approximate the function
2

kγ−2 as ηeβk for k ≥ 1. The parameters η and β are chosen

to minimize the weighted mean squared error (WMSE)

{η, β} = argmin
η,β

∞
∑

k=1

(

2

kγ − 2
− ηeβk

)2

u(k) (29)

where u(k) are the weights. The weights should be chosen

such that penalty of error is large when k is small, since it

affects the coefficients of terms with lower order exponents

of |ω|. Equation (29) is an unconstrained nonlinear optimiza-

tion problem and can be solved efficiently using numeri-

cal techniques such as quasi-Newton methods [31]. Quasi-

Newton methods have superlinear convergence and require

O(ln(| ln(ǫ)|)) number of iterations and O(d2 ln(| ln(ǫ)|)) al-

gebraic computational effort, where d is the dimensionality of

the problem and ǫ is the maximum permissible error tolerance

in the result. Table II lists the values for {η, β} and the

associated WMSE for certain values of γ, using the weights

u(k) = e−k. By approximating 2
kγ−2 as ηeβk for k ≥ 1, the

log-characteristic exponent can be expressed as

ψ
Y
(ω) ≈ λπr2l η

(

e−
|ω|2r

−γ
l

eβEh,B{h
2
B

2}
4 − 1

)

. (30)

Equation (30) is the log-characteristic function of a Middleton

Class A distribution such that

ψYI ,YQ
(ωI , ωQ) = A

(

e−
(ω2

I
+ω2

Q)Ω2A

2A − 1

)

(31)

where A = λπr2l η is the overlap index that indi-

cates the impulsiveness of the interference, and Ω2A =
A×r

−γ
l

eβEh,B{h2
B

2}
2 is the mean intensity of the interference

[19].

The functional form of ηeβk to approximate 2
kγ−2 for

k ≥ 1 was chosen since, a) it provides a good approximation

and enables the log-characteristic function to be expressed in

closed form, and b) provides two parameters {η, β} such that

η affects only the impulsive index A, while β affects only

the variance σ2
m = m

A
Ω2A of individual components of the

Gaussian mixture form of Middleton Class A model.

TABLE II: Values for {η, β} and the associated weighted mean squared error
(WMSE), obtained by solving (29), for different values of the power pathloss
exponent (γ) and using the weighting function u(k) = e−k . Solution to (29)
was obtained by using the fminunc function in MATLAB, which uses the
BFGS quasi-Newton method [31].

γ {η, β} WMSE

2.5 {22.818,−1.741} 4.32× 10−3

3.0 {7.484,−1.321} 1.84× 10−3

3.5 {4.132,−1.132} 9.81× 10−4

4.0 {2.781,−1.025} 5.96× 10−4

4.5 {2.073,−0.954} 3.96× 10−4

5.0 {1.645,−0.905} 2.80× 10−4

Similar to Case II, a first-order measure of accuracy of the

approximation can be expressed by comparing the coefficient

of |ω|4 term in the true log-characteristic function (26) against

the the coefficient of |ω|4 term in the approximated log-

characteristic function (30). The two approximations involved

are using ηeβk to approximate the function 2
kγ−2 for k ≥ 1,

and approximating Λ (|ω|) << 1 for |ω| close to zero. Note

that the lowest order term affected by the former approxima-

tion is the coefficient of |ω|2 term. We assume, however, that

the approximation error is negligible due to the optimization

in (29). Using (17) and (18), the coefficient of |ω|4 term in

the true log-characteristic function (30) is

λπr−2γ+2
l

(

E
{

Z2
}

+ 2 [E {Z}]2
128

)

(

2

2γ − 2

)

where Z = h2B2. Comparing with the coefficient of |ω|4
term in (30), the Middleton Class A distribution provides a

good approximation to co-channel interference statistics in this

scenario when
∣

∣

∣

∣

∣

(

[E {Z}]2
64

)

(

2

2γ − 2
−2ηe2β

)

+

(

E
{

Z2
}

128

)

(

2

2γ − 2

)

∣

∣

∣

∣

∣

<<

∣

∣

∣

∣

∣

[E {Z}]2
32

ηe2β

∣

∣

∣

∣

∣

. (32)

Note that if ηe2β = 2
2γ−2 , then the above condition is same as

the one obtained for Case II in (23), with the exception that

Z = h2B2 in this case. The above condition is independent

of the parameter rl that governs the interference space and is

valid when the variance of h2B2 is low when compared to

[E{h2B2}]2. The above condition does not capture the error

due to the approximation r = ‖R−Rm‖ ≈ R, which is true

with high probability in this scenario and is particularly valid

for ‖Rm‖ << rl.

IV. CO-CHANNEL INTERFERENCE IN A POISSON-POISSON

CLUSTER FIELD OF INTERFERERS

Consider a scenario, as shown in Fig. 2, where the inter-

ferers are clustered in space. The center of the clusters are

assumed to distributed according to a spatial Poisson point

process Πc with intensity λc over the space Γ(Rl, Rh). For

each cluster center Rc ∈ Πc, interferers are assumed to be

distributed according to an independent spatial Poisson process

Πc,f with intensity λf over the space Γ(rl, rh) around the
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Fig. 2: Interference space and receiver location for different network topologies in a field of Poisson-Poisson cluster distributed interferers categorized by the
region containing the cluster centers.

center Rc. The point process Π in (1) is then a homogeneous

spatial Poisson-Poisson cluster process such that

Π =
⋃

Rc∈Πc

⋃

Rc,f∈Πc,f

{Rc +Rc,f} . (33)

Note that the cluster centers are themselves not included. The

parametric interference space Γ(·, ·) is defined in (5). When

rl = 0, Π is a Matern cluster process [32].

The joint characteristic function of the in-phase and

quadrature-phase components of the sum interference Y =
YI + jYQ can be expressed as

ΦYI ,YQ
(ωI , ωQ)

= EYI ,YQ

{

ejωIYI+jωQYQ
}

= E

{

ej|ω|∑Kc
i=1

∑Kc,f
m=1 r

−
γ
2

i,mhi,mBi,m cos(φi,m+θi,m+ωφ)

}

=

∞
∑

kc=0

E

{

ej|ω|∑kc
i=1

∑Kc,f
m=1 r

−
γ
2

i,mhi,mBi,m cos(φi,m+θi,m+ωφ)

∣

∣

∣kc in Γ(Rl, Rh)
}

× P (kc in Γ(Rl, Rh)) (34)

where Kc is the random number of active clusters, Kc,f is

the random number of active interferers per cluster, ω =

[ωI , ωQ]
T , |ω| =

√

ω2
I + ω2

Q, and ωφ = − tan−1
(

ωQ

ωI

)

.

The expectation in (34) is with respect to the set of random

variables
{

Kc,f , ri,m,hi,m,Bi,m,φi,m,θi,m

}

. The indexing

(·)i,m denotes the mth active interferer in the ith cluster.

Conditioned on the number of clusters present in the space

Γ(Rl, Rh), location of the cluster centers (Rc) are mutually

independent and uniformly distributed over this space [25].

Further, in the absence of power control, the sum interference

from each cluster can be assumed to be i.i.d., such that

Φ
Y
(ω)=

∞
∑

kc=0

[

E

{

ej|ω|
∑Kc,f

m=0 r
−

γ
2

m hmBm cos(φm+θm+ωφ)

}]kc

×
[

λcπ
(

R2
h −R2

l

)]kc
e−λcπ(R2

h−R2
l )

kc!
(35)

= e
Ac

(

E

{

e
j|ω|

∑
Kc,f
m=0 r

−
γ
2

m hmBm cos(φm+θm+ωφ)

}

−1

)

(36)

where Y is the set {YI ,YQ}, and Ac = λcπ
(

R2
h −R2

l

)

.

The expectation in (36) is with respect to the set of random

variables {Rc,Kc,f ,Rc,m,hm,Bm,φm,θm}. By taking the

logarithm of Φ
Y
(ω), the log-characteristic function is

ψ
Y
(ω) =

Ac

(

E

{

ej|ω|
∑Kc,f

m=0 r
−

γ
2

m hmBm cos(φm+θm+ωφ)

}

− 1

)

. (37)

The above equation can be expressed in the form

ψ
Y
(ω) = Ac

(

ERc

{

EYc,f

{

ej|ω|Yc,f

}}

− 1
)

(38)

where Yc,f is the sum interference from an interferer

cluster and is a function of the set of random variables

{Kc,f ,Rc,m,hm,Bm,φm,θm}, similar to (6). Thus Yc,f

is the sum interference from a field of Poisson distributed

interferers over the interference space Γ(rl, rh) around the

cluster center Rc. Using (13), the log-characteristic function

can then be expressed as

ψ
Y
(ω) = Ac

[

ERc

{

e
Af

(

ERc,f ,h,B

{

J0

(

|ω|r−
γ
2 hB

)}

−1
)
}

− 1

]

(39)

where Af = λfπ
(

r2h − r2l
)

, r = ‖Rc + Rc,f − Rm‖, Rc

is uniformly distributed in Γ(Rl, Rh), and Rc,f is uniformly

distributed in Γ(rl, rh).
The log-characteristic function derived in (39) holds in

general for a Poisson-Poisson clustered field of narrowband

interferers, where the cluster centers are distributed over the

parametric space Γ(Rl, Rh) and the interferers are distributed

over the parametric space Γ(rl, rh) around each cluster center.

The receiver location Rm affects the inner expectation in (39).

We now consider the same three cases, categorized by the

region containing the cluster centers, and further simplify the

log-characteristic function.
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A. Case I: Cluster centers distributed over the entire plane

(Rl = 0, Rh → ∞)

Consider a wireless network scenario, as shown in Fig. 2,

where the center of interferer clusters are distributed according

to a homogeneous spatial Poisson point process over the entire

plane. Similar to Case I for a Poisson field of interferers,

‖Rm‖ can be assumed to be zero without any loss in gener-

ality of the result. Conditioned on the number of clusters in

Γ(0, Rh), the distance of each cluster center from the origin

follows the distribution

fRc|Kc
(Rc|Kc) =

{

2Rc

R2
h

if 0 ≤ Rc ≤ Rh,

0 otherwise.

Thus as Rh → ∞, with high probability, the distance of an

interferer from the receiver can be approximated as r = ‖Rc+
Rc,f‖ ≈ ‖Rc‖. Expanding the expectation over Rc in (39),

and using the Taylor series expansion of ex, we have

ψ
Y
(ω)

= lim
Rh→∞

Ac





Rh
∫

0

e
Af

(

E

{

J0

(

|ω|R−
γ
2

c hB

)}

−1

)

2Rc

R2
h

dRc−1





= e−Af

∞
∑

k=0

Ak
f

k!

[

lim
Rh→∞

Ac

( Rh
∫

0

(

E

{

J0

(

|ω|R− γ
2

c hB
)})k

× 2Rc

R2
h

dRc − 1

)]

= e−Af

∞
∑

k=0

Ak
f

k!
Υ (40)

where

Υ= lim
Rh→∞

Ac





Rh
∫

0

(

E

{

J0

(

|ω|R− γ
2

c hB
)})k 2Rc

R2
h

dRc−1



 .

(41)

Integrating the above by parts, reordering terms, and noting

that lim
Rh→∞

Ac

[

(

E

{

J0

(

|ω|R− γ
2

h hB
)})k

−1
]

= 0 for γ >

2, we have

Υ= lim
Rh→∞

−λcπ
Rh
∫

0

∂

∂Rc

[

(

E

{

J0

(

|ω|R− γ
2

c hB
)})k

]

R2
cdRc.

(42)

Invoking the identity (17), and approximating Λ(|ω|)) << 1
for |ω| close to zero, we note that

[

E

{

J0

(

|ω|R− γ
2

c hB
)}]k

=e−
|ω|2kR

−γ
c E{h

2
B

2}
4 (1 +Λ(|ω|))k

(43)

≈E

{

J0

(

|ω|
√
kR

− γ
2

c hB
)}

.

(44)

Substituting (44) in (42), and noting that d
dx
J0(x) = −J1(x),

we get

Υ = −|ω| 4γ λcπ
(√

k
)

4
γ

Eh,B

{

h
4
γ B

4
γ

}

∞
∫

0

J1(x)

x
4
γ

dx. (45)

Using (45), the log-characteristic function in (40) reduces to

ψ
Y
(ω) = −|ω| 4γ

[

(

λcπEh,B

{

h
4
γ B

4
γ

}

∫ ∞

0

J1(x)

x
4
γ

dx

)

×

∞
∑

k=0

e−AfAk
f

(√
k
)

4
γ

k!

]

. (46)

Equation (46) is the log-characteristic function of an isotropic

symmetric alpha stable distribution centered at zero such that

ψYI ,YQ
(ωI , ωQ) = −σ

∣

∣

∣

√

ω2
I + ω2

Q

∣

∣

∣

α

(47)

where α = 4
γ

is the characteristic exponent (0 <

α < 2), and σ =
[

(

λcπEh,B {hαBα}
∫∞
0

J1(x)
xα dx

)

∑∞
k=0

e
−Af Ak

f(
√
k)

α

k!

]

is the dispersion parameter (σ > 0)

of the symmetric alpha stable distribution [25]. Hence, when

the center of interferer clusters are distributed according to a

spatial Poisson process on the entire plane, the co-channel

interference follows a symmetric alpha stable distribution.

Note that unlike Case I for a Poisson field of interferers,

the symmetric alpha stable distribution is not an exact model

due to approximation in (44), but accurately models the tail

probability of the interference.

B. Case II: Cluster centers distributed over finite-area annular

region (0 ≤ Rl < Rh <∞, and Rm /∈ Γ(Rl − rh, Rh + rh))

Consider a wireless network scenario, as shown in Fig. 2,

where the cluster centers are distributed over a finite-area

annular region. The receiver location is such that it does not

belong to the space of active interferers (Rm /∈ Γ(Rl −
rh, Rh+rh)). Similar to Case II for a Poisson field of interfer-

ers, this scenario is useful in characterizing interference from

a finite-area annular field when the receiver is located interior

to the region with a guard zone (when ‖Rm‖ < Rl − rh) or

at a point exterior to the region (when ‖Rm‖ > Rh + rh).

Using the identity (17), the log-characteristic function in

(39) can be expressed as

ψ
Y
(ω) = Ac

[

ERc

{

exp

(

Af

(

e
−|ω|2ERc,f ,h,B{r

−γ
h
2
B

2}
4 ×

(1 +Λ(|ω|))− 1

))}

− 1

]

(48)

where Λ(|ω|) is the correction term given by (18). For

notational simplicity, let F = ERc,f ,h,B

{

r−γh2B2
}

. F is

then a function of the random variable Rc. Approximating

Λ(|ω|)) << 1 for |ω| in the neighborhood of zero, and

using the Taylor series expansion of ex, the log-characteristic

function reduces to

ψ
Y
(ω) ≈ Ac

[

ERc

{

e−Af

∞
∑

k=0

Ak
f

k!
e

−k|ω|2F

4

}

− 1

]

(49)

= Ac

[

e−Af

∞
∑

l=0

(−1)l|ω|2lERc

{

Fl
}

4ll!

∞
∑

k=0

Ak
fk

l

k!
−1

]

.

(50)
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To express the log-characteristic function in closed form, we

approximate ERc

{

Fl
}

≈ (ERc
{F})l. This approximation

holds with equality for l = 0, 1 and hence does not affect the

coefficient of |ω|2 term. The coefficient of the lowest order

term affected by this approximation is the |ω|4 term. Thus

the log-characteristic function is not severely affected by this

approximation for |ω| in the neighborhood of zero, which is

desired for accurately modeling the tail probability, and can

be expressed as

ψ
Y
(ω) ≈ Ac

[

exp

(

Af

(

e
−|ω|2ERc

{F}

4 − 1

))

− 1

]

. (51)

Using the log-characteristic function, and using the Taylor

series expansion from ex, the characteristic function can be

expressed as

Φ
Y
(ω) = e−Ac

∞
∑

l=0

Al
f

l!

( ∞
∑

k=0

Ak
ck

le−kAf

k!

)

e
−l|ω|2ERc

{F}

4 .

(52)

Equation (52) is the characteristic function of an isotropic

Gaussian mixture model such that

ΦYI ,YQ
(ωI , ωQ) =

∞
∑

l=0

ple
−(ω2

I
+ω2

Q)σ2
l

2 (53)

where pl =
e−AcAl

f

l!

(

∑∞
k=0

Ak
ck

le
−kAf

k!

)

are the mixture prob-

abilities, and σ2
l =

l×ERc,Rc,f ,h,B{r−γ
h

2
B

2}
2 are the variance

of the individual Gaussian components, for l ≥ 0.

The two approximations involved in expressing the true log-

likelihood function (48) as (51) are approximating Λ (|ω|) <<
1 for |ω| in the neighborhood of zero, and expressing

ERc

{

Fl
}

as (ERc
{F})l. Using (18), the coefficient of |ω|4

term in the true log-characteristic function (48) can be ex-

pressed as

Ace
−Af

[

ERc

{

F2
}

32

∞
∑

k=0

k2Ak
f

k!
+ ERc

{c4}
∞
∑

k=0

kAk
f

k!

]

where c4 =
ERc,f ,h,B{r−2γ

h
4
B

4}−2(ERc,f ,h,B{r−γ
h

2
B

2})2
128 ,

and F = ERc,f ,h,B

{

r−γh2B2
}

. Comparing with the coef-

ficient of the |ω|4 term in the approximated log-characteristic

function (51), the Gaussian mixture distribution provides a

good approximation to the interference statistics in this sce-

nario when
∣

∣

∣

∣

∣

V ar(F)

32

∞
∑

k=0

k2Ak
f

k!
+ ERc

{c4}
∞
∑

k=0

kAk
f

k!

∣

∣

∣

∣

∣

<<

∣

∣

∣

∣

∣

(ERc
{F})2
32

∞
∑

k=0

k2Ak
f

k!

∣

∣

∣

∣

∣

(54)

where V ar(F) = ERc

{

F2
}

− (ERc
{F})2.

Intuitively, the above condition is satisfied when

the interferers are not close to the receiver

(i.e., ‖Rm‖ << Rl − rh or ‖Rm‖ >> Rh + rh) and Rh

is not very high compared to Rl when ‖Rm‖ < Rl − rh.

C. Case III: Cluster centers distributed over infinite-area

annular region with guard zone (Rl > 0, Rh → ∞, and

‖Rm‖ < Rl − rh)

Consider a wireless network, as shown in Fig. 2, where the

center of interferer clusters are distributed according to a ho-

mogeneous spatial Poisson point process over the entire plane,

except within a guard zone around the receiver. Analogous to

Case III for a Poisson field of interferers, the distance of each

cluster center from the origin follows the distribution

fRc|Kc
(Rc|Kc) =

{

2Rc

R2
h
−R2

l

if Rl ≤ Rc ≤ Rh,

0 otherwise.

Thus as Rh → ∞, with high probability, the distance of an

interferer from receiver located at Rm can be approximated

as r = ‖Rc +Rc,f −Rm‖ ≈ ‖Rc‖, particularly for Rm <<
Rl − rh. Analogous to Case I, on expanding the expectation

over Rc in (39), and using the Taylor series expansion for ex,

we have

ψ
Y
(ω) = lim

Rh→∞
Ac

[ Rh
∫

Rl

e
Af

(

E

{

J0

(

|ω|R−
γ
2

c hB

)}

−1

)

×

2Rc

R2
h −R2

l

dRc − 1

]

(55)

= e−Af

∞
∑

k=0

Ak
f

k!
Υ (56)

where

Υ = lim
Rh→∞

Ac

( Rh
∫

Rl

(

E

{

J0

(

|ω|R− γ
2

c hB
)})k

×

2Rc

R2
h −R2

l

dRc − 1

)

. (57)

Integrating the above by parts, reordering terms, and noting

that lim
Rh→∞

λcπR
2
h

[(

E
{

J0
(

|ω|R− γ
2

h hB
)})k −1

]

= 0 for γ >

2, we have

Υ = −λcπR2
l

(

(

Eh,B

{

J0

(

|ω|R− γ
2

l hB
)})k

− 1

)

−

lim
Rh→∞

λcπ

Rh
∫

Rl

∂

∂Rc

[

(

Eh,B

{

J0

(

|ω|R− γ
2

c hB
)})k

]

R2
cdRc.

(58)

Invoking the identity (17), approximating Λ (|ω|) << 1 for

|ω| in the neighborhood of zero, and using the Taylor series

expansion of ex, we have

Υ ≈ λcπR
2
l

[ ∞
∑

m=1

(−1)m|ω|2mkm
4mm!

(

E
{

h2B2
})m ×

R−γm
l

2

γm− 2

]

. (59)

Similar to Case III for Poisson field of interferers, the 2
γm−2

multiplicative factor inside the summation prevents Υ, and
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hence the log-characteristic function, to be expressed in closed

form. We thus approximate the function 2
γm−2 as ηeβm for

m ≥ 1, where {η, β} are chosen to minimize a weighted mean

squared error (WMSE) criterion as discussed in Section III-C.

Using this approximation, (59) reduces to

Υ ≈ λcπR
2
l η

(

e
−l|ω|2R

−γ
l

eβE{h
2
B

2}
4 − 1

)

(60)

Substituting the above equation in (56), the log-characteristic

function can be expressed as

ψ
Y
(ω)=λcπR

2
l η

[

exp

(

Af

(

e
−|ω|2R

−γ
l

eβE{h
2
B

2}
4 −1

)

)

−1

]

.

(61)

Using the log-characteristic function, and the Taylor series

expansion for ex, the characteristic function can be expressed

as

Φ
Y
(ω)=e−λcπR

2
l η

∞
∑

l=0

[

Al
f

l!

( ∞
∑

k=0

(

λcπR
2
l η
)k
kle−kAf

k!

)

×

e
−l|ω|2R

−γ
l

eβE{h
2
B

2}
4

]

. (62)

Equation (62) is the characteristic function of an isotropic

Gaussian mixture model such that

ΦYI ,YQ
(ωI , ωQ) =

∞
∑

l=0

ple
−(ω2

I
+ω2

Q)σ2
l

2 (63)

where pl =
e−λcπR2

l
ηAl

f

l!

(

∑∞
k=0

(λcπR
2
l η)

k
kle

−kAf

k!

)

are the

mixture probabilities, and σ2
l =

l×R
−γ
l

eβEh,B{h2
B

2}
2 are the

variance of the individual Gaussian components, for l ≥ 0.

Using (58), (17), and (18), the coefficient of |ω|4 term in

the true log-characteristic function (56) can be expressed as

λcπR
−2γ+2
l e−Af

[

(E {Z})2
32

∞
∑

k=0

k2Ak
f

k!
+ c4

∞
∑

k=0

kAk
f

k!

]

×
(

2

2γ − 2

)

. (64)

where Z = h2B2 and c4 =
E{Z2}−2(E{Z})2

128 . Comparing

with the coefficient of |ω|4 term in the approximated log-

characteristic function (62), the Gaussian mixture distribution

provides a good approximation to the interference statistics in

this scenario when
∣

∣

∣

∣

∣

(E {Z})2
32

(

2

2γ − 2
− ηe2β

) ∞
∑

k=0

k2Ak
f

k!
+

2c4
(2γ − 2)

∞
∑

k=0

kAk
f

k!

∣

∣

∣

∣

∣

<<

∣

∣

∣

∣

∣

(E {Z})2
32

ηe2β
∞
∑

k=0

k2Ak
f

k!

∣

∣

∣

∣

∣

. (65)

Analogous to Case III for a Poisson field of interferers,

the above condition is independent of the parameter Rl that

governs the interference space and is satisfied when the

variance of the random variable h2B2 is low when compared

to [E{h2B2}]2. Note that the above condition does not capture

the error due to the approximation r = ‖Rc +Rc,f −Rm‖ ≈

Rc, which is true with high probability and is particularly

valid for ‖Rm‖ << Rl − rh.

V. SUMMARY AND DISCUSSION

Tables III and IV summarize the key results derived in this

paper for a field of Poisson and Poisson-Poisson cluster dis-

tributed interferers, respectively. We now make the following

observations.

1. Narrowband emissions from interferers: The narrow-

band form of the interfering emissions is truly attributed

to the narrowband filtering done at the receiver. Hence

the interferer emissions can have a higher bandwidth

than the receiver, as long as the transients caused due

to interferer emissions at the receiver can be ignored

[19]. From [19], the analysis and results presented in this

paper are valid as long as the duration of the interfering

emissions (TI ) is much greater than the reciprocal of the

receiver bandwidth (∆fR), i.e., TI >>
1

∆fR
.

2. Extensions for finite-area interference fields with

arbitrary shape: The finite-area cases are studied for

Poisson and Poisson-Poisson clustered field of interferers

in Sections III-B and IV-B, respectively. For a finite-area

interference Γ with arbitrary shape, P {k in Γ} = λ|Γ|,
where |Γ| denotes the area of the space Γ in (7) and

(34). The remaining analysis does not change since we

do not expand the expectation over the random variable

r for finite-area cases. Hence it can be readily shown

that Middleton Class A and the Gaussian mixture models

are still applicable for interference spaces with arbitrary

shape using the following changes in the parameters. The

overlap index for Middleton Class A is expressed more

generally as A = λ|Γ| for finite-area field of Poisson

distributed interferers. For finite-area field of Poisson-

Poisson cluster distributed interferers, the parameters

Af = λf |Γf | and Ac = λc|Γc|, where Γc is the space

in which the cluster centers are distributed and Γf is the

space in which the interferers are distributed around each

cluster center.

VI. SIMULATION RESULTS

Using the physical model discussed in Section II, we apply

Monte-Carlo numerical techniques to simulate the co-channel

interference observed at the receiver in various wireless net-

work environments based on (1). At each sample instant, the

location of the active interferers is generated as a realization

of a spatial Poisson or Poisson-Poisson cluster point process.

Parameter values governing the interference space and the

receiver location change according to the wireless network

model under consideration. It should be noted that parameters

denoting distance are are treated as dimensionless quantities

as this does not influence the statistics of the resultant inter-

ference.

System model parameters used in the numerical simulations

are

γ = 4, h ∼ CN (0, 1), λ = 10−4, λc = 10−4, λf = 10−3.
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TABLE III: Statistical-physical modeling of co-channel interference in a field of Poisson distributed interferers categorized by the region containing the
interferers.

Poisson field of Interferers

Wireless Scenario Example Wireless Network Statistical Model Statistics Modeled

Case I: Entire Plane
(rl = 0, rh → ∞)

Sensor or Ad hoc networks

Symmetric Alpha Stable
Parameters:
α = 4

γ

σ = λπEh,B {hαBα}
∫∞
0

J1(x)
xα dx

exact statistics

Case II: Finite-area Annular
Region
(0 ≤ rl < rh < ∞, and
Rm /∈ Γ (rl, rh))

a. Cellular networks (out-of-cell
interference)

b. Interference from a hotspot
(e.g. cafe)

Middleton Class A
Parameters:
A = λπ

(

r2h − r2l
)

Ω2A =
A×Er,h,B{r−γ

h
2.B2}

2
where r = ‖R−Rm‖.

tail probability
when (24) is met

Case III: Infinite-area with
Guard Zone
(rl > 0, rh → ∞, and
‖Rm‖ < rl)

a. Cellular networks (out-of-cell
interference)

b. Decentralized networks with
contention-based MAC protocols

c. Dense WiFi networks

Middleton Class A
Parameters:
A = λπr2l η

Ω2A =
A×r

−γ
l

eβEh,B{h2.B2}
2

where {η, β} are obtained from (29).

tail probability
when (32) is met

TABLE IV: Statistical-physical modeling of co-channel interference in a field of Poisson-Poisson cluster distributed interferers categorized by the region
containing the cluster centers.

Poisson-Poisson Cluster field of Interferers

Wireless Scenario Example Wireless Network Statistical Model Statistics Modeled

Case I: Entire Plane
(Rl = 0, Rh → ∞)

a. Two-tier femtocell networks
(femtocell interference)

b. Sensor or ad hoc networks with
geographical or MAC induced
clustering

Symmetric Alpha Stable
Parameters:
α = 4

γ

σ =
[

(

λcπEh,B {hαBα}
∞
∫

0

J1(x)
xα dx

)

×
∞
∑

k=0

e
−Af Ak

f (
√
k)α

k!

]

where Af = λfπ
(

r2h − r2l
)

.

tail probability

Case II: Finite-area Annular
Region
(0 ≤ Rl < Rh < ∞, and
Rm /∈Γ (Rl−rh, Rh+rh))

a. Cellular networks (out-of-cell
interference) with user clustering

b. Interference from region with
multiple (random) hotspots
(e.g. market place, university)

Gaussian Mixture Model
Parameters:

pl =
e−AcAl

f

l!

(

∞
∑

k=0

Ak
ck

le
−kAf

k!

)

σ2
l =

l×ERc,Rc,f ,h,B{r−γ
h
2
B

2}
2

where Ac = λcπ
(

R2
h −R2

l

)

,

Af = λfπ
(

r2h − r2l
)

, and

r = ‖Rc +Rc,f −Rm‖.

tail probability
when (54) is met

Case III: Infinite-area with
Guard Zone
(Rl > 0, Rh → ∞, and
‖Rm‖ < Rl − rh)

a. Two-tier femtocell networks
(out-of-cell femtocell interference)

b. Cellular networks (out-of-cell
interference) with user clustering

Gaussian Mixture Model
Parameters:

pl=
e
−λcπR2

l
η
Al

f

l!

∞
∑

k=0

(λcπR2
l η)

k
kle

−kAf

k!

σ2
l =

l×R
−γ
l

eβEh,B{h2
B

2}
2

where Af = λfπ
(

r2h − r2l
)

, {η, β} are

obtained from (29).

tail probability
when (65) is met

The amplitude of the interferer emissions, B, was chosen

as a constant for a particular wireless environment such

that the tail probability, P(‖Y‖ > y), at an interference

threshold of y = 7, is of the order of 10−4. The probability

distribution of co-channel interference is empirically estimated

from 500000 time samples of the received interference using

kernel smoothed density estimators [33].

Accuracy of the statistical models is established by compar-

ing the empirical and interference model tail probabilities. We

compare the asymptotic decay rates of the tail probabilities

given by

ρ (y) = − log (P(‖Y‖ > y))

y
(66)

where ρ(y) is the asymptotic decay rate at interference ampli-

tude y. The decay rate is the rate at which the tail probability

asymptotically approaches zero. The decay rates are a useful

measure to compare the extreme value statistics of different

statistical models with respect to the empirically estimated

distribution.

Accuracy of fit of the statistical models is also quantified

using the Kulback-Liebler divergence (KLD) measure [34],

where a KLD of zero indicates an exact match of the densities.
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Fig. 3: Decay rates for tail probabilities of simulated co-channel interference
and the symmetric alpha stable (SAS) model for Case I (rl = 0, rh =
∞,B = 5) of Poisson field of interferers. The Middleton Class A and
Gaussian models are not suitable in this scenario as the mean intensity
Ω2A → ∞.
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Fig. 4: Decay rates for tail probabilities of simulated co-channel interference
and the symmetric alpha stable (SAS), Middleton Class A (MCA), and
Gaussian models for Case II (rl = 20, rh = 40, ‖Rm‖ = 4,B = 1400)
of Poisson field of interferers. MCA has the best match to the empirical
(simulated) co-channel interference.

Lower KLD, however, does not imply correspondence in tail

probabilities since the KLD is the relative error between two

distribution functions over their entire support. Thus, even

though a statistical model has a low KLD with respect to

the empirical distribution, it may be an inaccurate model for

modeling extreme statistics.

A. Co-channel interference in a Poisson field of interferers

Figs. 3, 4, and 5 show the decay rates of the empirical

distribution compared with the statistical models for Case

I, Case II, and Case III (see Fig. 1), respectively. In each

scenario, we compare the empirical distribution against the

symmetric alpha stable and the Middleton Class A distribution

with appropriate parameters (see Table III), and a Gaussian

distribution with equal variance.

For a Poisson field of interferers, the results demonstrate that

the tail probabilities of the co-channel interference in Case I
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Fig. 5: Decay rates for tail probabilities of simulated co-channel interference
and the symmetric alpha stable (SAS), Middleton Class A (MCA), and
Gaussian models for Case III (rl = 30, rh = ∞, ‖Rm‖ = 4,B = 2200)
of Poisson field of interferers. {η, β} = {2.781,−1.025} for γ = 4 and
u(k) = e−k from Table II. MCA has the best match to the empirical
(simulated) co-channel interference.
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Fig. 6: Decay rates for tail probabilities of simulated co-channel interference
and the symmetric alpha stable (SAS) model for Case I (Rl = 0, Rh =
∞, rl = 0, rh = 10,B = 100) of Poisson-Poisson cluster field of interferers.
The Gaussian mixture and Gaussian models are not suitable in this scenario
as the mean intensity Ω2A → ∞.

are well modeled using a symmetric alpha distribution, while

the Middleton Class A distribution provides a good fit to the

tail probabilities in Case II and Case III.

B. Co-channel interference in a Poisson-Poisson cluster field

of interferers

Figs. 6, 7, and 8 show the decay rates of the empirical

distribution compared with the statistical models for Case

I, Case II, and Case III (see Fig. 2), respectively. In each

scenario, we compare the empirical distribution against the

symmetric alpha stable and the Gaussian mixture distribution

with appropriate parameters (see Table IV). Further, we com-

pare the empirical distribution of co-channel interference to a

Gaussian distribution with equal variance for all scenarios.

For a Poisson-Poisson clustered field of interferers, the

results demonstrate that the tail probabilities of the co-channel
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Fig. 7: Decay rates for tail probabilities of simulated co-channel interference
and the symmetric alpha stable (SAS), Gaussian mixture (GMM), and Gaus-
sian models for Case II (Rl = 40, Rh = 80, rl = 0, rh = 10, ‖Rm‖ =
4,B = 6000) of Poisson-Poisson cluster field of interferers. GMM has the
best match to the empirical (simulated) co-channel interference.
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Fig. 8: Decay rates for tail probabilities of simulated co-channel interference
and the symmetric alpha stable (SAS), Gaussian mixture (GMM), and
Gaussian models for Case III (Rl = 30, Rh → ∞, rl = 0, rh =
10, ‖Rm‖ = 4,B = 4000) of Poisson-Poisson cluster field of interferers.
{η, β} = {2.781,−1.025} for γ = 4 and u(k) = e−k from Table II. MCA
has the best match to the empirical (simulated) co-channel interference.

interference in Case I are well modeled using a symmetric

alpha distribution, while the Gaussian mixture distribution

provides a good fit to the tail probabilities in Case II and

Case III.

C. Comments on simulation results

In all of the network models discussed above, the statis-

tics of co-channel interference are not modeled well by the

Gaussian distribution. The Gaussian distribution decays far too

quickly to accurately model the impulsive nature of co-channel

interference.

For Case II of Poisson and Poisson-Poisson cluster dis-

tributed interferers, accuracy of the Middleton Class A and the

Gaussian mixture models in approximating the tail probability

of co-channel interference depends on the interference space

based on (24) and (54), respectively. The results shown in

TABLE V: Kulback-Liebler divergence between empirical and statistical
model distribution (joint in-phase and quadrature-phase distribution) in Pois-
son and Poisson-Poisson cluster field of interferers for different wireless net-
work scenarios. Here SAS, MCA, and GMM stand for symmetric alpha stable,
Middleton Class A, and Gaussian mixture model, respectively. Parameter
values governing the interference space for each of the scenarios are listed in
caption to Figs. 3 through 8.

Poisson Field of Interferers

Wireless Scenario SAS MCA Gaussian

Case I 0.0154 − −
Case II 0.0953 0.0141 0.2275
Case III 0.1594 0.8869 0.2246

Poisson-Poisson Cluster Field of Interferers

Wireless Scenario SAS GMM Gaussian

Case I 0.1656 − −
Case II 0.1243 0.0182 0.2789
Case III 0.3309 3.2177 0.6234

Figs. 4 and 7 are when these conditions are met with moderate

accuracy. For example, the Middleton Class A and the Gaus-

sian mixture models provides a much closer approximation

to the simulated tail probabilities for ‖Rm‖ = 0, with the

remaining parameters held constant.

For Case III, even though the Middleton Class A and the

Gaussian mixture models closely approximate the tail proba-

bility of the simulated interference (see Figs. 5 and 8), Table V

shows that the KL-divergence form the empirical distribution

is significantly higher than the other statistical models. This

is because the approximations used for accurately modeling

the tail probabilities may introduce significant mismatch in

approximated distribution for near-zero amplitudes (discrete

probability mass of e−A and e−Ac(1−e
−Af ) at zero amplitude

in this case for Poisson and Poisson-Poisson clustered inter-

ferers, respectively).

VII. CONCLUSION

The results presented in this paper are applicable to a wide

variety of wireless network topologies, including user cluster-

ing, contention-based and contention-free MAC protocols, and

finite-area interference regions. Tables III and IV lists some

of the example wireless networks for which the results are

applicable. Knowledge of closed form amplitude statistics of

co-channel interference can be used to analyze and improve the

communication performance of wireless networks, including

both physical (PHY) layer algorithms and medium access

control (MAC) layer protocols.

To elaborate on the applications of the results, consider

the example of a wireless ad hoc network with contention-

based MAC protocol that creates a guard zone around the

receiver [15]. This corresponds to Case III in Fig. 1, in which

the Middleton Class A distribution was shown to accurately

model tail probability of the interference. Increasing the guard

zone size decreases the interference to the desired transmitter-

receiver pair, thereby improving the communication perfor-

mance for that pair. The density of such transmitter-receiver

pairs, however, is reduced due to increased guard zones in the

network. Thus an optimum guard zone size exists for which the

network throughput, defined as the product of the density of

active transmitter-receiver pairs and the probability of success

of a typical pair, is maximized.

Regarding the analysis and design of MAC protocol, the
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closed form Middleton Class A distribution derived for Case

III can be used to derive closed form expressions for com-

munication performance measures such as outage probability.

Further, the optimum guard zone size that maximizes the

network throughput for a desired communication performance

(e.g. upper bound on outages) can also be derived analytically.

The authors in [15] demonstrated 2−100× improvement in

network throughput by using optimal guard zone size over

non-contention based MAC protocols such as ALOHA [6].

PHY layer methods to improve the communication perfor-

mance include designing receiver filtering and detection rules

to mitigate the interference, by treating interference as noise.

For example, the authors in [4] derived the BER optimal

Bayesian detection rule in the presence of Middleton Class

A noise and demonstrated 10−100× reduction in BER. This

increases the network throughput by increasing the proba-

bility of success for any given density of users. Receiver

filtering and detection methods are generally designed using

the knowledge of the form of interference distribution only,

and ignore dependence of the distribution parameters on the

system model parameters (such as density of users). This is

because many of the system model parameters, such as user

density, may not be directly observable. The parameters of

the interference distribution can be estimated using parameter

estimation algorithm at the receiver on received interference

samples collected by listening to the environment.

APPENDIX A

STATISTICAL PROPERTIES OF THE SYMMETRIC ALPHA

STABLE, GAUSSIAN MIXTURE, AND MIDDLETON CLASS A

MODELS

A. Symmetric Alpha Stable Model

A complex random variable Y = YI + jYQ is said

to follow an isotropic symmetric alpha stable distribution

centered at zero if the joint characteristic function of its in-

phase and quadrature-phase components can be expressed as

[25]

ΦYI ,YQ
(ωI , ωQ) = e−σ|√ω2

I
+ω2

Q|α (67)

where α is the characteristic function with 0 < α ≤ 2, and σ
(σ > 0) is the dispersion parameter.

Closed form expressions for the probability distribution

function, however, do not exist except for the cases α = 2
(Gaussian distribution) and α = 1 (Cauchy distribution).

An isotropic symmetric alpha stable random variable Y can

be expressed in a sub-Gaussian form as Y = A
1
2 (G1 + jG2),

where G1 and G2 are i.i.d. zero-mean univariate Gaussian

random variables and A is a positive stable random variable

with characteristic exponent α
2 and dispersion cos2

(

πα
4

)

[25].

The tail probability of the envelope random variable ‖Y‖ can

then be expressed as

PSαS(‖Y‖ > y) = y−ασ
(

2 cos
(πα

4

))α

C
(α

2

)

Γ
(

1 +
α

2

)

(68)

as y → ∞, where

C(α) =

{ 2
π

when α = 1,
1−α

Γ(2−α) cos(πα
2 )

otherwise.

B. Gaussian Mixture Model

The joint probability density function of a complex random

variable Y = YI + jYQ centered at zero and distributed

according to an isotropic Gaussian mixture model can be

expressed as

fYI ,YQ
(yI , yQ) = p0δ(yI)δ(yQ) +

∞
∑

l=1

pl
1

σl
√
2π
e
−

y2
I
+y2

Q

2σ2
l

(69)

where pl are the mixture probabilities such that pl ≥ 0 and
∑∞

l=0 pl = 1, σ2
l is the variance of the individual Gaussian

components of the mixture density, and δ(·) represents the

Dirac delta functional.

From (69), the two dimensional characteristic function can

be expressed as

ΦYI ,YQ
(ωI , ωQ) = p0 +

∞
∑

l=1

ple
−(ω2

I
+ω2

Q)σ2
l

2 . (70)

Using (69), the tail probability of the random envelope for

the Gaussian mixture distribution with parameters pl and σ2
l

(σ2
l ≥ 0) for y ≥ 0 can be expressed as

PGMM (‖Y‖ > y) =

∞
∑

l=1

ple
− y2

2σ2
l . (71)

C. Middleton Class A Model

The Middleton Class A distribution is a particular form

of the Gaussian mixture distribution. The joint probability

density function of a isotropic complex random variable

Y = YI + jYQ distributed according to Middleton Class

A model (without an additive Gaussian component) can be

expressed as [19]

fYI ,YQ
(yI , yQ) = e−Aδ(yI)δ(yQ) +

∞
∑

m=1

e−AAm

m!
e
−

y2
I
+y2

Q
2mΩ2A

A

(72)

where A is the overlap index and Ω2A is the mean intensity

of the random variable.

From (72), the joint characteristic function of the in-phase

and quadrature phase components of the complex random

variable can be expressed as

ΦYI ,YQ
(ωI , ωQ) = e

A



e
−
(ω2

I
+ω2

Q)Ω2A

2A −1





. (73)

Note that as A→ ∞ while Ω2A is finite, the Middleton Class

A model converges to a Gaussian distribution with variance

Ω2A.

Using (72), the tail probability for the Middleton Class A

distribution with parameters A and Ω2A corresponding to an

amplitude threshold y ≥ 0 can be expressed as

PMCA(‖Y‖ > y) =

∞
∑

m=1

e−AAm

m!
e
− y2

2mΩ2A
A . (74)
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