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In the 1950’'s, after the 1953 flood, the statistical problem of how to determine
a safe height of the Dutch sea-dikes on the basis of observed high-tide water
levels was studied extensively. Now, thirty years later, both the number of
observations and the statistical methodology have grown considerably. This
led to a new investigation. | shall report about some theoretical aspects of this
work.

1. INTRODUCTION: PROBAB

[he following 1s mainly a theoreucal exposition but I shall

specific application mentioned above.

[he basic problem is the following: suppose X;,X,, ..., X, are indepen-

dent observations (e.g. high-tide water levels observed in the past) from an

unknown probability distribution with distribution function F, that 1s
posmve number

often refer to the

F(x)=P(X;<x) for xeR, i=1,2, ...
(P <l/n )' Determine a real number xp
lem) such that

F(x ) 1—p, (1)

i.e. find the (1 —p)-quantile of F.

Firstly it is clear that we have to estimate x,, i.e., we have to determin
function X, (X4, ...,X,) such that F (x,,)=1—p is approximately true.
Secondly it is clear that since in our problem p<1/n we cannot do anything
without some additional assumptions on F (otherwise extrapolation outside the
sample is not possible). The additional assumption on ¥ can be parametric,
i.e., we assume the function known apart from a few real parameters, or semi-
parametnc i.e., we do not assume anything about F except for its behaviour
near its upper end point, that is the value x"=<<oco such that F(x")=1,
F(x™ —e¢)<1 for all e>0.

Our assumption is of the latter type: Suppose there exist norming constants
a.>0 and b,(r=1,2,...) such that the normed sample extreme converges 1n
distribution, 1i.e.

) _ I'IlaX(Xl,.Xz, c . . er)_br ,
im(F(a,x+b,)Y = IimP{— 222700 T s} (2)

r— o0 F— Q0 ay

G(x)
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all x , where G 1s the distribution function of a non-de genera te pPro babilit Y
distribution and X, X,,... a sequence of independent random variables with
distribution function F. It is well known (Gnedenko [6]) that for a proper
choice of {a,} and {b,} the limitin g distributions in (2) are all from th

{ G v }T -r With
G,(x) := exp(—(1 +yx)" V") (3)

those x for which 1+vyx>0. In the special case y=0 one should read the
ght-hand side of (3) as exp(—e ™*) for all real x.
One says that F is in the domain of attraction of G, (notation FeD(G,))
for some fixed yeR if there are {a,,b,} such that (2) holds with G(x) replaced
by G,(x). Conditions for F eD(G,) and expressions for a, and b, in terms of
F are well known. What is of interest to us now is that FeD(G,) if and only

if for some positive function a

A —F(txa(t)) _ —log G (x) = (1+vyx)~ (4)

(1x” 1—F(@)

for all x with x >0, 1+yx>0. This has the following probabilistic interpreta-

tion: for a random variable X with distribution function F
: X—1t
e
for all x>0, 1+vyx>0. The class of distributions whose tails are given 1n the
right-hand side of (5) are called residual life-time distributions.

The relations (2) and (5) have closely related interpretations, as we shall now
explain. One can generalize (2) to the limiting distribution of the upper k order
statistics (n—oco0, k fixed). Recall that, if the observations X 1X9,...,X, are
ordered by size, they are called n-th order statistics and denoted as
XamSXon< - <X (n,n)- S0 (2) says that the joint distribution of all
observations in the sample larger than a fixed order statistic X (n —k, n) 18
approximately one of a small class of known distributions and (5) says that all
observations in the sample exceeding some fixed high level ¢ follow approxi-
mately one out of a small class of distribution functions: 1—(14+yx)" Y. In
the first case the number of observations considered is fixed, Xk —1, in the
second case the number is random. Both interpretations can be used for sta-
tistical purposes as we shall see.

A third equivalent form of (2) also has a probabilistic interpretation:
+#eD(G,) if and only if for all x,y >0, y5£1

lim @) —UQ@) _ x¥—1 (6)
£ 500 U(ty)“"U(t) ),Y_...._l

1 .
where U: =( T F)*'“ (the arrow denoting the generalized-inverse function). In

the case y=0 one should read the right-hand side of (6) as (logx)/ (logy).
Moreover (2) holds with b = U(r) and a,={UQr)— U(r)}y/(2*—1). An
Interpretation of (6) is that high quantiles of the distribution (U(tx) with x > 1)

>x|X>t) = (1+yx)~ VY (5)
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= 1+ (s—00)

A (b — U(r))/ a, ——-)»0 r—»00.

the converse is similar. Note that a,~a(U (r )) an

In the application to the heigh t of Dutch sea-dikes we have in mind, the obser-
vations X ,X,, ..., X, are th 1igh-tide water levels during a large
number of years. Clearly these observations are not independent. Moreover
they do not all come from the same probability distribution. The last difficulty
can be resolved (approximately) by using only the observations taken during a
few months in the winter (the storm season). The first difficul ty 1S more seri-
ous.
[he above-mentioned results have been extended to stationary stochastic
processes with a weak dependence structure (Leadbetter, Lindgren and
Rootzén [9]). In fact these results go through in this case without change.
However the dependence in our case is stronger. In order to introduce such a
stronger dependence structure from a theoretical point of view 1 shall now
explain briefly the connection between extreme-value theory and Poisson point
processes.
Let X,;,X,,... be a sequence of independent random variables with distribu-

tion function F for which (2) holds. Consider the random set

X
{(““’ —)[k=1,2,...}
an
in R®. For each set of the form A,, , := [a,b]X(x,x") let N,,;,. be the
number of points of Q, in A,,,. Then clearly N, ,;, has a binomial
(n,(b —a){1—F(b,+xa,)}) distribution. Since by either (2) or (5)

imn{l—F(b,+xa,)} = (1+vyx)~ 1>

n-—» Q
(provided 1+vyx>0), N, ., , has a limiting Poisson (a —5)-(1 +yx) Y distri-
bution (n—o0). Further, it can easily be seen that N, ,,, and N, p . are
asymptotically independent if 4,,, and A4, , ., are disjoint. This means thgt
the two-dimensional point processes @, of the observations converge In
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Xl 3X23X27X39X3""

with probability 1/2. Then Y,,Y,,... is a stationary sequence, i.e., for all L the
distribution of (Y;4,,Y54,,...,Y, +,) does not depend on r. Clearly the point
process convergence still holds for the set

Yk mbn
a,

k. _
(¢ ) k=1,2,...}

with the exception that each point in the limiting point process occurs twice.
This is a primitive form of a point process with clustering that in its general
form can be described as follows. The set of the projections of all the points
on the horizontal axis forms a homogeneous Poisson point process as before.
Each projected point on the horizontal line corresponds to a random number
of points on the vertical line through that projected point: the cluster. Since
we still assume stationarity for the original sequence of random variables, in
the himiting point process there is a fixed probability distribution for the
number of points on a horizontal line.

An mmportant extra parameter describing the amount of clustering is then
the mean number of points 1/6 on a vertical line through a projected point.
The parameter 6 is called the ‘extremal index’ by Leadbetter ([10], the

phenomenon has been studied before by O’Brien [12]). If 0<<f#<1, a satisfac-
tory theory can be developed.

In the apphication we consider here the above-mentioned clusters are inter-
preted as the high-tide water levels obtained during one severe windstorm.

The example given above suggests that one can choose between two
equivalent ways of performing the computations: applying the theory of the
extremal index itself or selecting the largest observation per cluster (wind-

storm) and treat those as independent observations whereby the total number
of observations is reduced by a factor 8. We choose for the latter.

2. STATISTICAL THEORY: ESTIMATION OF v

I now turn to the problem of how to estimate v using independent observa-
tions XI,XQ, . . ,.X,, from F.

A traditional method uses ‘yearly maxima’, i.e., breaks the sample into
blocks of equal size and uses maximum likelihood estimation under the
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follows exact{y distrib

A less tm ditional meth
uons fm Xth, .

a. Pickands’ estimator

Relation (6) specializ

hm —= \l) _ <71 sy
i —Tay ~ 1— = 2 (8)

it relation (6) holds locally unij

Jm U(t) U(t/q(t))
prOVidCd 1 {00 q (t ) = 2. Our aim
side of (9) by approximating ras
vy 1s obtained. Let

= 27 (9)

m 1S to replace the quantities on the left-hand
idom quantities so that a consistent estimate of

Yaomy<Yomn< " SY@a

be n-th order statistics from the distribution with distribution function
1—1/x (x=1). Then

UYanm))<UYom)< - <UY(n)

are distributed hke the n-th order statistics from the distribution function F.
Now 1t 1s well known (Smurnov [15]) that, if k=k(n)eN, k(n)—oo and,

k(n)/n—0 (n—o0),

hm——mly(n —k(n)+1,n) = 1 . - ' | (10)

n-—» Q0

in probability, so that .
bm Y, —kn)+1,n) = 0

n-—» Qoo

and

bm Y, —2kmy+ 1,0/ Y (n —k()y+1,n) = 2 (11)

n—» Q0

In probability.
Combining (9) and (11) we get
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U(Y,, _ —U(Y (0 —2k¢ 3
im 2 Yo k1) TV ey tm) oy o pabiliey.

U( Y(n — 2k (n)+ l,n))w U( Y(n — 4k (n)+ l,n))
| ~ P
Define vy, by

~P

— X(n-k(n)+],n)mX(rz-~2k(n)+1,n)
Yo := (log2) " 'log———————"———"

X(n —2k(n)+1,n) X(n —4k(n)+1,n)

where X < -+ <X, . are the n-th order statistics from the distribution F.
R
my, = v

n-—QQ

in probability, provided k(n)—oo, k(n)/n—o0 (n—o0). This estimator has
been introduced by J. Pickands III [14]. It can be proved with considerably
more effort (Dekkers and de Haan [3]) that under a natural strengthening of
condition (2) and a further upper bound on the growth of the sequence k(n)
(depending on F)

Vk (1) (¥n —7)

has asymptotically (n—o0) a normal distribution with mean zero and known
varnance so that a confidence interval for y can be constructed.

b. A moment estimator

In order to introduce this estimator we first consider the case y>0 of (2). Then
(4) sumplifies to

. 1—F@x _
hm———-‘g-——)— — 17y
oo 1—F(1)

for x>0 and this relation i1s equivalent to

f (log x —log t)dF(x) -
! . 1“’“‘“"F!tll! du y; —1/y du
I SESSSSS——_———_. — e 1
1—F(t) !’ 1—F(t) u ~ 1 “ u = (12)

(see e.g. Geluk and de Haan [5]). The extra factor 1/u in the two integrals on
both sides of ‘-’ 1s necessary since otherwise the last integral may diverge. A
sample analogue of the first integral in (12) provides an estimation for v:

Q0
f (logx —log X, — k (n),n))dEF(x)
MO = e
1 an(X(n mk(n),n))

]
— 1 oo —1 o
k (") i§0 OgX(n i,n) ogX(n k(n),n). (13)

Here
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n)—oo, k(n)/n—-0 (n—o00),

n (Mason [11]) that,

in probability. In order to extend th 1S estimator to one that 1s valid

eal vy we note that (2) holds for y= 0 if and onl y if (Balkem

{ [(x — )Y’ dF (x)}{1—F (1)}
im—t———————————— = 2. (14)

thx x
([ (x —0dF(x))’

[n view of the use of (14) as an extension of (12) we first have to make a ver-

sion of (14) involving logarithms. Indeed implies

{ 7(1ogx —logt)*dF (x)}{1—F ()}
‘ = 2, (15)

{ 7 (log x —log t)dF(x)}2

‘ , Y=0
T 1@—2yy/(1—-2y) , v<O

in probability provided k(n)—, k(n)/n —0 (n—00), with

1 k(n)—1
MP = S (108X (n —iny — 108X (5 — ke (mym) } - (17)

k(n) =o

Moreover one can prove that under (2) for k(n)—o0, k(n)/n—0 (n—0)

lim MY = max(0,v) (18)

n-—» Q0

in probability. Combination of (16) and (18) leads to the estimator
M= MO F1— S (1= (MDR/ MP) T

which is clearly weakly consistent. It can be proved (Dekkers, Einmahl and de
Haan [4]) that under a natural strengthening of condition (2) and a further

upper bound on the growth of the sequence k (n) (depending on F')

VE®) T —7)
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OWIl

ha s asymptot 1call y (n— ©0) a norm al distribution
ariance so that a confidence interval for y can be constructed.

It turns om that the asymp&oﬂc pmpemes of the estimators yn and y,, are

not much different, but in practice Y » behaves more nicely, apparently due to

the fact that much more observations are used in the definition of v,, .

~ M

3. LARGE QUANTILE ESTIMATION

Next we want to solve equation (1), 1.e., we want to construct an estimator for
high quantile of the unknown dis mbu tion function F. Once again we have to

use asymptotic theory and assume (2). Let us proceed in an intuitive way.

Relation (2) 1s stll true if we replace n by n/k(n), provided n/k(n)—co

(n—o00). Hence (with k =k (n))

p = F(xp) ""“--'Gk/"'((-’C brnsk)! Gnyi)

j X """bn
l—exp | — “l(l-l-y—-L-—-——-—)““*

Qnsk

x,—b
~ kn “1(1 +Y__E_.__"_”‘_)“1/Y_

Ansk
That 1s,

<y —1

n
x, ~ ——E————-—Y @y +b, k. (19)

We already know how to estimate vy, so it remains to construct estimators for
a,,x and b, ;. Also, since we are after asymptotic properties for x,, we must be

P?
able to replace k/(np) asymptotically by a constant. In the application we con-

sider here (as in many other ones) we have p<<1/n, so for the asymptotic
theory we have to assume that in fact p depends on n (p:=p,), p,—0 and
np,—c, finite and positive (n—o0). We then take k>c fixed (not depending
on n).

I remark that one can also consider the case p,—0, np,— o (n—o0). In that
case x, 1s best approximated by b,,, with k(n):=[np,], but one still needs to
estimate a,,; in order to find the asymptotic properties of the estimator.

Let us now turn to the question how to estimate a,,, and b,,.. We recall
that (2) holds with b, =U(r) and a,={UQ2r)—U(r)}y/(2¥—1). One can also
prove that an alternative form for a, is

a, = nU(n){1—min(0,v)} } {logx —logU(n)}dF(x).
U(n)

Replacing these qu}g.ntlues by their s}ample analogues we get two estimators for
X,, one based on y, one based on v, :

k_\3.

. (np )" —1
A n

Xp, = T A Xp—k+1m T Xp—2+1,m) } T X —k + 1)

1—27"
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be constructed.

[ M NSEONAL [H ORY

likelin ood of a flood at two . fferent places simultan eously..
theory in a simple but representative case.

Suppose (X1,Y),(X,,Y,),... are independent observations from some distri-
bution function F(x,y).
[he distribution function of (max,¢;<,X;,MaX;|<;<, Y;) 1S F"(x,y). Suppose
for simplicity that the marginal distributions of X; and that of Y, are stan-

dard exponential (this can be achieved by preliminary transformation). Sup-
pose

F'(x +logn, y +logn)—>G(x,y) (n—c0), (20)

a proper distribution function. Note that logn is the proper normalization for
convergence of the marginal distributions.
The analogue of (4) 1s here

im —FaD og G (x,y) (21)

for all continuity points (x,y) of G. Since the left-hand side represents the
measure of a set (note that the upper index ¢ denotes the complement of a set)

A

sy = {(s0)|s<x, s<y}°,

this must also be true for the right-hand side, i.e., there is a measure v such
that for all x,y

G(x,y) = exp(—u(dy,))-
Moreover one sees easily that G satisfies

G"(x +logn, y +logn) = G(x,y) for all neN, xeR,
hence

n-w(A +logn) = v(A)
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A 0E5 Inore genef 1 y

. It follows that

B 1s any Borel set of R measure on [—oo,+ o]
— o0 m}

a collection of (say) proba bili

—logG(x,y) = v{(y,v) |usx, v<y}°
= v{(u,v) |+ v)+(u—v)<2x,(ut+v)—(u—v)<}°
— v{(u,v) ‘ ¥+ v > mun (2x ‘“"’""(u —= V), 2}’ + (u — V))}

— f e“min(2x-r,2y +t)w.(dt)

[— o0, 0]

| max(e™™ e " yr(dr)

[— o0, 00]

|

(de Haan and Resnick, [7]).

The question is how to estimate 7. As in th dimensional situation one
only considers ‘high’ observations, since it foﬂows from (21) that for all

P{X\—t,Y,—t)ed,, | (X, Y )ed,,}—
—logG(x,y) = U(Ax,y) (t—00).

One can prove that also the following variant holds: for each

Borel set C
P{(X\—Y,—eC|X,+Y>t}->C) (—>x)

hence, 1n particular (cf. (22))
P{X,—Y,eB|X,+Y,>t}>v{st)|ls—teB} = #(B)

for each Borel set B.

[his shows how one can estimate #: Consider only those observatmns
{((X.,,Y, )} k=1 for which the sum of the components exceeds a certain level L,
1.€. X i + Y, >L, for all kK where lim,_, L, =o00. The empirical dlstribution
function of X; —Y;,...,X; —Y, is the required estimate of the probability
measure 7 (de Haan [8]).

[hus procedure has not yet been applied to the water-level data.

5. SOME RESULTS

In this section we give some results of the theory above applied to 1577
extreme high-tide water-levels observed at the Dutch station Hoek van Holland
during the winters 1887/88 until 1984/85 (about 100 years).

We want to estimate a quantile with exceedance probability 5-10 ™% per year.

In the first step of the estimation procedure y is estimated using both the
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more or iess constan
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Dotted curves: for each k the 95% confidence interval of the estimation

6 0y
0 500 1000 1500

FiGURE 1. Pickands’ estimator for iy against number of used upper order
statistics

In Figure 2 the moment estimates are plotted with again the 95% confidence
intervals. As one would expect the curve doesn’t fluctuate as much as the pre-
vious one because all k upper order statistics are used for the estimations. The
solid curve has many very small fluctuations due to the many ties in the
(discrete) observations. At the right-hand end of the curve again the bias takes
OVer.
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FIGURE 4. Hoek van Holland: high-tide water levels 1887/88...1984/85
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in b in Fig The estimates are about 70
that both scales are different here.
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FIGURE 5. Hoek van Holland: high-tide water levels 1887/88...1984/85
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