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We investigate the estimation of the extreme value index when the data are subject to random censorship.
We prove, in a unified way, detailed asymptotic normality results for various estimators of the extreme value
index and use these estimators as the main building block for estimators of extreme quantiles. We illustrate
the quality of these methods by a small simulation study and apply the estimators to medical data.
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1. Introduction

Let X1, . . . ,Xn be independent and identically distributed (i.i.d.) random variables, distributed
according to an unknown distribution function (df) F . A question of great interest is how to
obtain a good estimator for a quantile

F←(1 − ε) = inf{y :F(y) ≥ 1 − ε},
where ε is so small that this quantile is situated on the border of, or beyond, the range of the data.
Estimating such extreme quantiles is directly linked to the accurate modeling and estimation of
the tail of the distribution

F(x) := 1 − F(x) = P(X > x)

for large thresholds x. From extreme value theory, the behaviour of such extreme quantile es-
timators is known to be governed by one crucial parameter of the underlying distribution, the
extreme value index. This parameter is important since it measures the tail heaviness of F . This
estimation has been widely studied in the literature: we mention, for example, Hill (1975), Smith
(1987), Dekkers et al. (1989) and Drees et al. (2004).

However, in classical applications such as the analysis of lifetime data (survival analysis, relia-
bility theory, insurance), a typical feature which appears is censorship. Quite often, X represents
the time elapsed from the entry of a patient in, say, a follow-up study until death. If, at the time
that the data collection is performed, the patient is still alive or has withdrawn from the study
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for some reason, the variable of interest X will not be available. A convenient way to model this
situation is the introduction of a random variable Y , independent of X, such that only

Z = X ∧ Y and δ = 1{X≤Y } (1)

are observed. The indicator variable δ determines whether or not X has been censored. Given
a random sample (Zi, δi), 1 ≤ i ≤ n, of independent copies of (Z, δ), it is our goal to make
inference on the right tail of the unknown lifetime distribution function F , while G, the df of Y ,
is considered to be a nonparametric nuisance parameter.

Statistics of extremes of randomly censored data is a new research field. The statistical prob-
lems in this field are difficult since, typically, only a small fraction of the data can be used for
inference in the far tail of F and, in the case of censoring, these data are, moreover, not fully
informative. The topic was first mentioned in Reiss and Thomas (1997), Section 6.1, where an
estimator of a positive extreme value index was introduced, but no (asymptotic) results were de-
rived. Recently, Beirlant et al. (2007) proposed estimators for the general extreme value index
and for an extreme quantile. That paper made a start on the analysis of the asymptotic proper-
ties of some estimators that use the data above a deterministic threshold and only under the Hall
model. In this paper, we consider the “natural” estimators (which are based on the upper order
statistics); our methodology is much more general and completely different to their approach.

For almost all applications of extreme value theory, the estimation of the extreme value index
is of primary importance. Consequently, it is the main aim of this paper to propose a unified
method to prove asymptotic normality for various estimators of the extreme value index under
random censoring. We apply our estimators to the problem of extreme quantile estimation under
censoring. We illustrate our results with simulations and also apply our methods to AIDS survival
data.

We consider data on patients diagnosed with AIDS in Australia before 1 July 1991. The source
of these data is Dr P.J. Solomon and the Australian National Centre in HIV Epidemiology and
Clinical Research; see Venables and Ripley (2002). The information on each patient includes
gender, date of diagnosis, date of death or end of observation and an indicator as to which of the
two is the case. The data set contains 2843 patients, of which 1761 died; the other survival times
are right-censored. We will apply our methodology to the 2754 male patients (there are only 89
women in the data set), of which 1708 died. Apart from assessing the heaviness of the right tail
of the survival function 1 − F by means of the estimation of the extreme value index, it is also
important to estimate very high quantiles of F , thus obtaining a good indication of how long very
strong men will survive AIDS.

Another possible application, not pursued in this paper, is to annuity insurance contracts. Life
annuities are contractual guarantees, issued by insurance companies, pension plans and govern-
ment retirement systems, that offer promises to provide periodic income over the lifetime of
individuals. If we monitor the policyholders during a certain period, the data are right censored
since many policyholders survive until the end of the observation period. We are interested in the
far right tail of the future lifetime distribution of the annuitants, since longevity is an important
and difficult risk to evaluate for insurance companies. In the case of life annuities, it needs to be
estimated as accurately as possible for setting adequate insurance premiums.

We will study estimators for the extreme value index of F , assuming that F and G are both
in the max-domain of attraction of an extreme value distribution. In Section 2, we introduce
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various estimators of this extreme value index and we establish, in a unified way, their asymptotic
behaviors. We also introduce an estimator for very high quantiles. Various examples are given
in Section 3 and a small simulation study is performed. Our estimators are applied to the AIDS
data in Section 4.

2. Estimators and main results

Let X1, . . . ,Xn be a sequence of i.i.d. random variables from a df F . We denote the order statis-
tics by

X1,n ≤ · · · ≤ Xn,n.

The weak convergence of the centered and standardized maxima Xn,n implies the existence of
sequences of constants an > 0 and bn and a df G̃ such that

lim
n→∞ P

(
Xn,n − bn

an

≤ x

)
= G̃(x) (2)

for all x where G̃ is continuous. The work of Fisher and Tippett (1928), Gnedenko (1943) and
de Haan (1970) answered the question on the possible limits and characterized the classes of
distribution functions F having a certain limit in (2).

This convergence result is our main assumption. Up to location and scale, the possible limiting
dfs G̃ in (2) are given by the so-called extreme value distributions Gγ , defined by

Gγ (x) =
{

exp
(−(1 + γ x)−1/γ

)
, if γ �= 0,

exp(− exp(−x)), if γ = 0.
(3)

We say that F is in the (max-)domain of attraction of Gγ , denoting this by F ∈ D(Gγ ). Here γ

is the extreme value index. Knowledge of γ is crucial for estimating the right tail of F .
We briefly review some estimators of γ that have been proposed in the literature. The most

famous is probably the Hill (1975) estimator

γ̂
(H)
X,k,n := M

(1)
X,k,n := 1

k

k∑
i=1

logXn−i+1,n − logXn−k,n, (4)

where k ∈ {1, . . . , n − 1}. However, this estimator is only useful when γ > 0. A generalization
which works for any γ ∈ R is the so-called moment estimator, introduced in Dekkers et al.
(1989):

γ̂
(M)
X,k,n := M

(1)
X,k,n + SX,k,n := M

(1)
X,k,n + 1 − 1

2

(
1 − (M

(1)
X,k,n)

2

M
(2)
X,k,n

)−1

, (5)

with

M
(2)
X,k,n := 1

k

k∑
i=1

(logXn−i+1,n − logXn−k,n)
2.
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The Hill estimator can be derived in several ways, a very appealing one being the slope of the
Pareto quantile plot, which consists of the points(

log
n + 1

i
, logXn−i+1,n

)
, i = 1, . . . , k.

This plot has been generalized in Beirlant et al. (1996) by defining UHi,n = Xn−i,nγ̂
(H)
X,i,n and

considering the points (
log

n + 1

i
, log UHi,n

)
, i = 1, . . . , k.

This generalized quantile plot becomes almost linear for small enough k, that is, for extreme
values. It follows immediately that the slope of this graph will estimate γ regardless of whether
it is positive, negative or zero. An estimator of this slope is given by

γ̂
(UH)
X,k,n := 1

k

k∑
i=1

log UHi,n − log UHk+1,n, (6)

where k ∈ {1, . . . , n − 2}.
A quite different estimator of γ is the so-called maximum likelihood (ML) estimator. (Note that

the classical, parametric ML approach is not applicable because F is not in a parametric family.)
The approach relies on results in Balkema and de Haan (1974) and Pickands (1975), stating
that the limit distribution of the exceedances Ej = Xj − t (Xj > t) over a threshold t , when
t tends to the right end-point of F , is given by a generalized Pareto distribution depending on
two parameters, γ and σ . In practice, t is replaced by an order statistic Xn−k,n and the resulting
ML-estimators are denoted by γ̂

(ML)
X,k,n and σ̂

(ML)
X,k,n .

In the case of censoring, we would like to adapt all of these methods. Actually, we will pro-
vide a general adaptation of estimators of the extreme value index and a unified proof of their
asymptotic normality; the four estimators above are special cases of this. We assume that both F

and G are absolutely continuous and that F ∈ D(Gγ1) and G ∈ D(Gγ2) for some γ1, γ2 ∈ R.
The extreme value index of H , the df of Z defined in (1), exists and is denoted by γ . Let
τF = sup{x :F(x) < 1} (resp., τG and τH ) denote the right endpoint of the support of F (resp.,
G and H ). In the sequel, we assume that the pair (F,G) is in one of the following three cases:⎧⎪⎪⎪⎨⎪⎪⎪⎩

case 1: γ1 > 0, γ2 > 0, in this case γ = γ1γ2

γ1 + γ2
,

case 2: γ1 < 0, γ2 < 0, τF = τG, in this case γ = γ1γ2

γ1 + γ2
,

case 3: γ1 = γ2 = 0, τF = τG = ∞, in this case γ = 0.

(7)

(In case 3, we also define, for convenient presentation, γ1γ2
γ1+γ2

= γ = 0.) The other possibilities
are not very interesting. Typically, they are very close to the “uncensored case”, which has been
studied in detail in the literature (this holds, in particular, when γ1 < 0 and γ2 > 0) or the “com-
pletely censored situation”, where estimation is impossible (this holds, in particular, when γ1 > 0
and γ2 < 0).
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The first important point that should be mentioned is the fact that all of the preceding esti-
mators (Hill, moment, UH or ML) are obviously not consistent if they are based on the sample
Z1, . . . ,Zn, that is, if the censoring is not taken into account. Indeed, they all converge to γ , the
extreme value index of the Z-sample, and not to γ1, the extreme value index of F . Consequently,
we must adapt all of these estimators to censoring. We will divide all these estimators by the
proportion of non-censored observations in the k largest Z’s:

γ̂
(c,·)
Z,k,n = γ̂

(·)
Z,k,n

p̂
, where p̂ = 1

k

k∑
j=1

δ[n−j+1,n],

with δ[1,n], . . . , δ[n,n] being the δ’s corresponding to Z1,n, . . . ,Zn,n, respectively. γ̂
(·)
Z,k,n could

be any estimator not adapted to censoring, in particular, γ̂
(H)
Z,k,n, γ̂

(M)
Z,k,n, γ̂

(UH)
Z,k,n or γ̂

(ML)
Z,k,n . It will

follow that p̂ estimates γ2
γ1+γ2

, hence γ̂
(·)
Z,k,n estimates γ divided by γ2

γ1+γ2
, which is equal to γ1.

It is our main aim to study in detail the asymptotic normality of these estimators.
To illustrate the difference between the estimators, adapted and not adapted to censoring, in

Figure 1(a), we plot γ̂
(UH)
Z,k,n (dashed line) and γ̂

(c,UH)
Z,k,n (full line) as a function of k for the AIDS

survival data. We see a quite stable plot when k ranges from about 200 (or 350) to 1200 and
a substantial difference between the two estimators. Similar graphs could be presented for the
other estimators.

Let us now consider the estimation of an extreme quantile xε = F←(1 − ε). Denoting by F̂n

the Kaplan–Meier (1958) product-limit estimator, we can adapt the classical estimators proposed

Figure 1. UH-estimator adapted (full line) and not adapted (dashed line) to censoring (a) for the extreme
value index and (b) for the extreme quantile with ε = 0.001 for the AIDS survival data.
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in the literature as follows:

x̂
(c,·)
ε,k = Zn−k,n + â

(c,·)
Z,k,n

((1 − F̂n(Zn−k,n))/ε)
γ̂

(c,·)
Z,k,n − 1

γ̂
(c,·)
Z,k,n

, (8)

where

â
(c,·)
Z,k,n = Zn−k,nM

(1)
Z,k,n(1 − SZ,k,n)

p̂
for M and UH,

with SZ,k,n defined in (5) and

â
(c,ML)
Z,k,n = σ̂

(ML)
Z,k,n

p̂
.

Note that these estimators are defined under the assumption that the two endpoints τF and τG are
equal, but possibly infinite. This is true for the three cases defined in (7). Also, note that we have
excluded the Hill estimator since it only works in case 1.

Again, to observe the difference between the adapted and non-adapted estimators, in Fig-
ure 1(b), we plot x̂

(UH)
0.001,k (dashed line) and x̂

(c,UH)
0.001,k (full line) for the AIDS data. The difference

between the two estimators (for k between 250 and 500) is about 10 years.
Beirlant et al. (2007) considered asymptotic properties of some of these estimators, when

Zn−k,n is replaced by a deterministic t in the preceding formulas and only under the Hall model.
Also, note that the asymptotic bias of these estimators has not been studied. Our aim in this paper
is to establish the asymptotic normality (including bias and variance) of all of the above estima-
tors of the extreme value index (based on k+1 upper order statistics or, equivalently, on a random
threshold Zn−k,n). We use a general approach that separates extreme value theory and censoring.
Therefore, in the proof, we can treat the above four estimators (and others) simultaneously.

To specify the asymptotic bias of the different estimators, we use a second-order condition
phrased in terms of the tail quantile function UH (x) = H←(1 − 1

x
). From the theory of gen-

eralized regular variation of second-order outlined in de Haan and Stadtmüller (1996), we as-
sume the existence of a positive function a and a second eventually positive function a2 with
limx→∞ a2(x) = 0, such that the limit

lim
x→∞

1

a2(x)

{
UH (ux) − UH (x)

a(x)
− hγ (u)

}
= k(u) (9)

exists for u ∈ (0,∞), with hγ (u) = ∫ u

1 zγ−1 dz. It follows that there exists a c ∈ R and a second-
order parameter ρ ≤ 0 for which the function a satisfies

lim
x→∞

{
a(ux)

a(x)
− uγ

}/
a2(x) = cuγ hρ(u). (10)

The function a2 is regularly varying with index ρ. As usual, we will assume that ρ < 0 and
we will also assume that the slowly varying part of a2 is asymptotically equivalent to a positive
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constant, which can and will always be taken equal to 1. For an appropriate choice of the function
a, the function k that appears in (9) admits the representation

k(u) = Ahγ+ρ(u), (11)

with A �= 0; c in (10) is now equal to 0. We denote the class of second-order regularly varying
functions UH (satisfying (9)–(11) with c = 0) by GRV2(γ,ρ;a(x), a2(x);A).

From Vanroelen (2003), we obtain the following representations of UH (see also the Appendix
in Draisma et al. (1999)):

• 0 < −ρ < γ : for UH ∈ GRV2(γ,ρ;�+xγ , a2(x);A),

UH (x) = �+xγ

{
1

γ
+ A

γ + ρ
a2(x)

(
1 + o(1)

)};

• γ = −ρ: for UH ∈ GRV2(γ,−γ ;�+xγ , x−γ �2(x);A),

UH (x) = �+xγ

{
1

γ
+ x−γ L2(x)

}
,

with L2(x) = B +∫ x

1 (A+o(1))
�2(t)

t
dt +o(�2(x)) for some constant B and some slowly varying

function �2;

• 0 < γ < −ρ: for UH ∈ GRV2(γ,ρ;�+xγ , a2(x);A),

UH (x) = �+xγ

{
1

γ
+ Dx−γ + A

γ + ρ
a2(x)

(
1 + o(1)

)}

(so D = 1
�+ limx→∞{UH (x) − a(x)/γ });

• γ = 0: for UH ∈ GRV2(0, ρ;�+, a2(x);A),

UH (x) = �+ logx + D + A�+
ρ

a2(x)
(
1 + o(1)

);
• γ < 0: for UH ∈ GRV2(γ,ρ;�+xγ , a2(x);A),

UH (x) = τH − �+xγ

{
1

−γ
− A

γ + ρ
a2(x)

(
1 + o(1)

)}
,

where �+ > 0,A �= 0,D ∈ R.
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In the statement of our results, we use the following notation, similar to that used in Beirlant
et al. (2005):

b(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Aρ[ρ + γ (1 − ρ)]
(γ + ρ)(1 − ρ)

a2(x), if 0 < −ρ < γ or if 0 < γ < −ρ with D = 0,

− γ 3

(1 + γ )
x−γ L2(x), if γ = −ρ,

− γ 3D

(1 + γ )
x−γ , if 0 < γ < −ρ with D �= 0,

1

log2 x
, if γ = 0,

Aρ(1 − γ )

(1 − γ − ρ)
a2(x), if γ < ρ,

− γ

1 − 2γ

�+
τH

xγ , if ρ < γ < 0,

γ

1 − 2γ

[
A(1 − γ ) − �+

τH

]
xγ , if γ = ρ

and

ρ̃ =
{−γ, if 0 < γ < −ρ with D �= 0,

ρ, if −ρ ≤ γ or if 0 < γ < −ρ with D = 0, or if γ < ρ,
γ, if ρ ≤ γ ≤ 0.

Before stating our main result, define

p(z) = P(δ = 1|Z = z).

It follows that

p(z) = (1 − G(z))f (z)

(1 − G(z))f (z) + (1 − F(z))g(z)
, (12)

where f and g denote the densities of F and G, respectively. Note that, in cases 1 and 2,
limz→τH

p(z) exists and is equal to γ2
γ1+γ2

=: p ∈ (0,1). Assume that, in case 3, this limit also

exists and is positive and again denote it by p. By convention, we also define γ2
γ1+γ2

= p for that
case.

In the sequel, k = kn is an intermediate sequence, that is, a sequence such that k → ∞ and
k
n

→ 0, as n → ∞. Our main result now reads as follows.

Theorem 1. Under the assumptions that, for n → ∞,⎧⎪⎪⎨⎪⎪⎩
√

ka2

(
n

k

)
→ α1 ∈ R, for the ML-estimator,

√
kb

(
n

k

)
→ α1 ∈ R, for the other three estimators,

(13)
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1√
k

k∑
i=1

[
p

(
H←

(
1 − i

n

))
− p

]
−→ α2 ∈ R (14)

and

√
k sup

{1−k/n≤t<1,|t−s|≤C
√

k/n,s<1}
|p(H←(t)) − p(H←(s))| −→ 0 for all C > 0, (15)

we have, for the four estimators (for the Hill estimator, we assume case 1 holds and for the
ML-estimator, that γ > − 1

2 ),

√
k
(
γ̂

(c,·)
Z,k,n − γ1

) d−→ N
(

1

p
(α1b0 − γ1α2),

σ 2 + γ 2
1 p(1 − p)

p2

)
,

where α1b0 (resp., σ 2) denotes the bias (resp., the variance) of
√

k(γ̂
(·)
Z,k,n − γ ).

This leads to the following corollary, the proof of which is rather straightforward. For the Hill
estimator, the asymptotic bias-term follows easily from direct computations and for the other
three estimators, it follows from the expressions for the asymptotic bias-terms of the correspond-
ing “uncensored” estimators: see Beirlant et al. (2005) and Drees et al. (2004).

Corollary 1. Under the assumptions of Theorem 1, we have

√
k
(
γ̂

(c,H)
Z,k,n − γ1

)
d−→N

(
μ(c,H),

γ 3
1

γ

)
in case 1;

√
k
(
γ̂

(c,M)
Z,k,n − γ1

)

d−→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N

(
μ(c,M),

γ 2
1

γ 2
(1 + γ1γ )

)
, in case 1,

N
(

μ(c,M),
γ 2

1 (1 − γ )2(1 − 2γ )(1 − γ + 6γ 2)

γ 2(1 − 4γ )(1 − 3γ )
+ γ 2

1

(
γ1

γ
− 1

))
, in case 2,

N
(
μ(c,M),p−2

)
, in case 3;

√
k
(
γ̂

(c,UH)
Z,k,n − γ1

)

d−→

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
N

(
μ(c,UH),

γ 2
1

γ 2
(1 + γ1γ )

)
, in case 1,

N
(

μ(c,UH),
γ 2

1 (1 − γ )(1 + γ + 2γ 2)

γ 2(1 − 2γ )
+ γ 2

1

(
γ1

γ
− 1

))
, in case 2,

N
(
μ(c,UH), p−2

)
, in case 3;
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√
k
(
γ̂

(c,ML)
Z,k,n − γ1

)
d−→ N

(
μ(c,ML),p−2[1 + γ (2 + γ1)]

)
, in cases 1, 3 and 2 with γ > − 1

2 ,

where

μ(c,H) := −γ1α2

p
+ α1

p

γ

ρ̃ + γ (1 − ρ̃)
;

μ(c,M) := −γ1α2

p

+ α1

p
·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 − ρ̃
, in case 1,

2γ − 1

ρ̃(1 − ρ̃)
, in case 2, if ρ < γ ,

1 − 2γ

(1 − γ )(1 − 3γ )

A(1 − γ )2 − (γ + 1)
�+
τH

A(1 − γ ) − �+
τH

, in case 2, if ρ = γ ,

1 − 2γ

1 − 2γ − ρ̃
, in case 2, if γ < ρ,

1, in case 3;

μ(c,UH) := −γ1α2

p
+ α1

p(1 − ρ̃)
;

μ(c,ML) := −γ1α2

p
+ α1

p

ρ(γ + 1)A

(1 − ρ)(1 − ρ + γ )
.

Proof of Theorem 1. We consider the following decomposition

√
k
(
γ̂

(c,·)
Z,k,n − γ1

) = 1

p̂

√
k
(
γ̂

(·)
Z,k,n − γ

) + 1

p̂

√
k(γ − γ1p̂)

(16)

= 1

p̂

√
k
(
γ̂

(·)
Z,k,n − γ

) + γ1

p̂

√
k

(
γ2

γ1 + γ2
− p̂

)
.

The asymptotic behavior of
√

k(γ̂
(·)
Z,k,n − γ ) is well known since this estimator is based on the

Z-sample, that is, on the uncensored situation; see Beirlant et al. (2005) and Drees et al. (2004).
First, note that in case 3, γ1 = γ = 0. Therefore, the second term in the decomposition (16) is

exactly 0 provided p̂ > 0. That means that this case follows, since p̂
P−→ p > 0. We now focus

in detail on the second term of the decomposition in (16) for the cases 1 and 2.
To this end, consider the following construction. Let Z be a random variable with df H . Let

U have a uniform(0,1) distribution and be independent of Z. Define

δ =
{

1, if U ≤ p(Z),
0, if U > p(Z)
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and

δ̃ =
{

1, if U ≤ p,
0, if U > p.

We repeat this construction independently n times. It is easy to show that the resulting pairs
(Zi, δi), i = 1, . . . , n, have the same distribution as the initial pairs (Zi, δi), i = 1, . . . , n, for all
n ∈ N, so we continue with the new pairs (Zi, δi).

Moreover, Z and δ̃ are clearly independent and satisfy

P(|δ − δ̃| = 1|Z = z) = |p − p(z)|.
Consider the order statistics Z1,n ≤ · · · ≤ Zn,n and denote the induced order statistics of the U ’s
by U[1,n], . . . ,U[n,n]. We can write p̂ as follows:

p̂ = 1

k

k∑
j=1

1{U[n−j+1,n]≤p(Zn−j+1,n)}

and, similarly,

p̃ := 1

k

k∑
j=1

δ̃[n−j+1,n] = 1

k

k∑
j=1

1{U[n−j+1,n]≤p}.

Clearly, U[1,n], . . . ,U[n,n] are i.i.d. and independent of the Z-sample.
We use the following decomposition:

√
k(p̂ − p) = √

k(p̂ − p̃) + √
k(p̃ − p). (17)

Since p̃
d= 1

k

∑k
j=1 1{Uj ≤p}, we have

√
k(p̃ − p)

d−→ N
(
0,p(1 − p)

)
.

Now, we are interested in
√

k(p̂ − p̃), which turns out to be a bias term. It can be rewritten as
follows:

√
k(p̂ − p̃)

d= 1√
k

k∑
j=1

[
1{Uj ≤p(Zn−j+1,n)} − 1{Uj ≤p}

]

= 1√
k

k∑
j=1

[
1{Uj ≤p(Zn−j+1,n)} − 1{Uj ≤p(H←(1−j/n))}

]

+ 1√
k

k∑
j=1

[
1{Uj ≤p(H←(1−j/n))} − 1{Uj ≤p}

]
=: T1,k + T2,k.
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Under the assumptions (14) and (15), the convergence in probability of T2,k to α2 then follows
from a result in Chow and Teicher (1997), page 356.

So we now need to show that T1,k
P−→ 0. To this end, write Vi = H(Zi) so that Zi = H←(Vi).

The Vi are i.i.d. uniform (0,1). Also, write r(t) = p(H←(t)). Then

T1,k = 1√
k

k∑
j=1

[
1{Uj ≤r(Vn−j+1,n)} − 1{Uj ≤r(1−j/n)}

]
.

By the weak convergence of the uniform tail quantile process, we have, uniformly in 1 ≤ j ≤ k,

Vn−j+1,n −
(

1 − j

n

)
= OP

(√
k

n

)
.

Let η > 0. Using (15), we have, with arbitrarily high probability, for large n,

|T1,k| ≤ 1√
k

k∑
j=1

∣∣1{Uj ≤r(Vn−j+1,n)} − 1{Uj ≤r(1−j/n)}
∣∣

d= 1√
k

k∑
j=1

1{Uj ≤|r(Vn−j+1,n)−r(1−j/n)|}

≤ 1√
k

k∑
j=1

1{Uj ≤η/
√

k}.

Using the aforementioned result in Chow and Teicher (1997), page 356, and the fact that η > 0

can be chosen arbitrarily small, T1,k
P−→ 0 follows.

Finally, combining (16) and (17) yields

√
k
(
γ̂

(c,·)
Z,k,n − γ1

) = 1

p̂

(√
k
(
γ̂

(·)
Z,k,n − γ

) − γ1
√

k(p̃ − p)
) − γ1α2

p̂
+ oP(1), (18)

with the two terms within the brackets independent since the first is based on the Z-sample and
the second on the U -sample. Therefore, under the assumptions (13)–(15), we have

√
k
(
γ̂

(c,·)
Z,k,n − γ1

) d−→ N
(

1

p
(α1b0 − γ1α2),

σ 2 + γ 2
1 p(1 − p)

p2

)
. �

3. Examples and small simulation study

In this section, we consider three examples: first, a Burr distribution censored by another Burr
distribution (hence an example of case 1), second a reverse Burr distribution censored by an-
other reverse Burr distribution (an example of case 2) and finally a logistic distribution censored
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by a logistic distribution (case 3). We show that these distributions satisfy all of the assump-
tions and calculate the bias terms explicitly. In particular, we will see how assumptions (13) and
(14) compare. We also provide simulations to illustrate the behavior of our estimators for these
distributions.

Example 1. X ∼ Burr(β1, τ1, λ1) and Y ∼ Burr(β2, τ2, λ2), β1, τ1, λ1, β2, τ2, λ2 > 0.

In that case,

1 − F(x) =
(

β1

β1 + xτ1

)λ1

= x−τ1λ1β
λ1
1 (1 + β1x

−τ1)−λ1 , x > 0;

1 − G(x) =
(

β2

β2 + xτ2

)λ2

= x−τ2λ2β
λ2
2 (1 + β2x

−τ2)−λ2 , x > 0.

We can infer that

UH (x) = H←
(

1 − 1

x

)
= (β

λ1
1 β

λ2
2 x)1/(τ1λ1+τ2λ2)

[
1 − γ η(β

λ1
1 β

λ2
2 x)ρ

(
1 + o(1)

)]
,

with

τ = min(τ1, τ2), ρ = −γ τ

and

η =
⎧⎨⎩

λ1β1, if τ1 < τ2,
λ2β2, if τ1 > τ2,
λ1β1 + λ2β2, if τ1 = τ2.

The parameters of interest are

γ1 = 1

λ1τ1
, γ2 = 1

λ2τ2
and γ = 1

λ1τ1 + λ2τ2
.

First, we check assumption (15). Using the above approximation of H←, it follows, for s ≤ t < 1
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and s large enough, that

|p(H←(t)) − p(H←(s))| ≤ C̃
(
(1 − s)γ τ − (1 − t)γ τ

)
for some C̃ > 0. It now easily follows that in the case γ τ ≥ 1, the left-hand side of (15) tends

to 0. In the case γ τ < 1, the left-hand side of (15) is of order
√

k(
√

k
n

)γ τ = √
k(n

k
)ρkρ/2, which

tends to 0 when (14) holds (see below).
The asymptotic bias of

√
k(γ̂

(·)
Z,k,n − γ ) can be explicitly computed (from Corollary 1) and is

asymptotically equivalent to

−η(β
λ1
1 β

λ2
2 )ρ

√
k

(
n

k

)ρ

·

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

γρ

1 − ρ
, for the Hill estimator,

ρ(1 + γ )(γ + ρ)

(1 − ρ)(1 − ρ + γ )
, for the ML-estimator,

ρ[ρ + γ (1 − ρ)]
(1 − ρ)2

, for the moment and UH-estimators.

They are all of the same order.
We obtain another bias term from assumption (14). Direct computations, using (12) and p =
γ2

γ1+γ2
, lead to

p(z) − p = γ 2

γ1γ2

[−β1z
−τ1

(
1 + o(1)

) + β2z
−τ2

(
1 + o(1)

)]
when τ1 �= τ2, or τ1 = τ2 and β1 �= β2. Consequently, assumption (14) is equivalent to

β
γ 2

γ1γ2
(β

λ1
1 β

λ2
2 )ρ

1

1 − ρ

√
k

(
n

k

)ρ

−→ α2,

with

β =
{−β1, if τ1 < τ2,

β2, if τ1 > τ2,
β2 − β1, if τ1 = τ2.

So both bias terms are of the same order. Only when τ1 = τ2 and β1 = β2 (in particular, when
F ≡ G) the biases of the estimators of γ dominate.

Example 2. X ∼ reverse Burr(β1, τ1, λ1, x+) and Y ∼ reverse Burr(β2, τ2, λ2, x+), β1, τ1,

λ1, β2, τ2, λ2, x+ > 0.
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In that case,

1 − F(x) =
(

β1

β1 + (x+ − x)−τ1

)λ1

= (x+ − x)τ1λ1β
λ1
1

(
1 + β1(x+ − x)τ1

)−λ1, x < x+;

1 − G(x) =
(

β2

β2 + (x+ − x)−τ2

)λ2

= (x+ − x)τ2λ2β
λ2
2

(
1 + β2(x+ − x)τ2

)−λ2, x < x+.

Define τ and η as in Example 1, but now set ρ = γ τ . We can infer that

UH (x) = H←
(

1 − 1

x

)
= x+ − (β

λ1
1 β

λ2
2 x)−1/(τ1λ1+τ2λ2)

[
1 − γ η(β

λ1
1 β

λ2
2 x)ρ

(
1 + o(1)

)]
.

The parameters of interest are

γ1 = − 1

λ1τ1
, γ2 = − 1

λ2τ2
, γ = − 1

λ1τ1 + λ2τ2
and τF = τG = τH = x+.

Note that we can easily prove (as in Example 1) that assumption (15) is satisfied if we as-
sume (14).

The asymptotic bias of
√

k(γ̂
(·)
Z,k,n − γ ) can be explicitly computed (again, from Corollary 1)

and is asymptotically equivalent to

• for the UH-estimator:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− γ 2τ(1 − γ )(1 + τ)

(1 − γ − γ τ)(1 − γ τ)
η(β

λ1
1 β

λ2
2 )ρ

√
k

(
n

k

)ρ

, if τ < 1,

γ 2

(1 − γ )(1 − 2γ )
(β

λ1
1 β

λ2
2 )ρ

[
−2η(1 − γ ) + 1

x+

]√
k

(
n

k

)ρ

, if τ = 1,

γ 2

(1 − γ )(1 − 2γ )x+
(β

λ1
1 β

λ2
2 )γ

√
k

(
n

k

)γ

, if τ > 1;

• for the moment estimator:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

− γ 2τ(1 − γ )(1 + τ)(1 − 2γ )

(1 − γ − γ τ)(1 − 2γ − γ τ)
η(β

λ1
1 β

λ2
2 )ρ

√
k

(
n

k

)ρ

, if τ < 1,

− γ 2

(1 − γ )(1 − 3γ )
(β

λ1
1 β

λ2
2 )ρ

[
2η(1 − γ )2 − γ + 1

x+

]√
k

(
n

k

)ρ

, if τ = 1,

− γ

(1 − γ )x+
(β

λ1
1 β

λ2
2 )γ

√
k

(
n

k

)γ

, if τ > 1;
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• for the ML-estimator, if γ > − 1
2 :

− γ 2τ(1 + γ )(1 + τ)

(1 − γ τ)(1 + γ − γ τ)
η(β

λ1
1 β

λ2
2 )ρ

√
k

(
n

k

)ρ

.

They are all of the same order if τ ≤ 1, otherwise the biases of the moment and UH-estimators
dominate that of the ML-estimator.

Similarly to Example 1, if τ1 �= τ2, or τ1 = τ2 and β1 �= β2, direct computations lead to

p(z) − p = γ 2

γ1γ2

[−β1(x+ − z)τ1
(
1 + o(1)

) + β2(x+ − z)τ2
(
1 + o(1)

)]
.

Consequently, assumption (14) is equivalent, in that case, to

β
γ 2

γ1γ2
(β

λ1
1 β

λ2
2 )ρ

1

1 − ρ

√
k

(
n

k

)ρ

−→ α2.

Again, this order is the same as the order of the asymptotic bias terms of all of the estimators in
case τ ≤ 1 and dominated by the one of the moment and UH-estimators otherwise. When τ1 = τ2

and β1 = β2, the biases of the estimators of γ dominate.

Example 3. X,Y ∼ logistic.
In that case,

1 − F(x) = 1 − G(x) = 2

1 + ex
, x > 0.

Hence,

UH (x) = log
(
2
√

x − 1
)
.

We have γ1 = γ2 = γ = 0. Since F ≡ G, we immediately obtain p(·) ≡ 1
2 and α2 = 0.

According to Corollary 1, the asymptotic bias of
√

k(γ̂
(·)
Z,k,n − 0) is asymptotically equivalent

to
√

k

log2 n/k
for the UH- or the moment estimator and to − 1

9
k√
n

for the ML-estimator.

In order to illustrate these three examples, we simulate 100 samples of size 500 from the
following distributions:

• a Burr(10,4,1) censored by a Burr(10,1,0.5);
• a reverse Burr(1,8,0.5,10) censored by a reverse Burr(10,1,0.5,10);
• a logistic censored by a logistic.

For the first two examples, p = 8
9 , meaning that the percentage of censoring in the right tail is

close to 11%. In the last example, p(·) ≡ p = 1
2 , that is, the percentage of censoring is as high as
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50%. In the first case, we have γ1 = 1
4 , γ = 2

9 and ρ = − 2
9 , in the second case γ1 = − 1

4 , γ = − 2
9

and, again, ρ = − 2
9 . In the third example, γ1 = γ = 0. In all three examples, panels (a) and (c) (in

Figures 2–4) represent the median for the index and the extreme quantile, respectively, whereas
panels (b) and (d) represent the empirical mean square errors (MSE) based on the 100 samples.
The small value of ε is 1

50 . All of these plotted estimators are adapted to censoring. The horizontal
line represents the true value of the parameter.

In the first example, we can observe, in the case of the estimation of the index, the superiority
of the Hill estimator adapted to censoring in terms of MSE, the three others being quite similar.
For the extreme quantile estimators, however, there is much less to decide between all of the

Figure 2. A Burr(10,4,1) distribution censored by a Burr(10,1,0.5) distribution: UH-estimator (dotted
line), moment estimator (full line), ML-estimator (dashed line) and Hill estimator (dashed-dotted line);
(a) median and (b) MSE for the extreme value index; (c) median and (d) MSE for the extreme quantile with
ε = 1

50 .
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Figure 3. A reverse Burr(1,8,0.5,10) distribution censored by a reverse Burr(10,1,0.5,10) distribu-
tion: UH-estimator (dotted line), moment estimator (full line), ML-estimator (dashed line); (a) median and
(b) MSE for the extreme value index; (c) median and (d) MSE for the extreme quantile with ε = 1

50 .

estimators: they are very stable and close to the true value of the parameter. A similar observation
can be made for the second and third examples, with a slight advantage for the UH-estimator,
only in the case of the estimation of the index.

4. Application to AIDS survival data

We return to our real data set presented in Section 1 and used in Section 2, that is, the Australian
AIDS survival data for the male patients diagnosed before 1 July 1991. The sample size is 2754.

First, we estimate p = limz→τH
p(z). In Figure 5, we see p̂ as a function of k. Clearly, there

is a stable part in the plot when k ranges from about 75 to 175; for higher k, the bias sets in.
Note that p̂ is the mean of 0–1 variables, so for a sample of this size, the estimator is already
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Figure 4. A logistic distribution censored by a logistic distribution: UH-estimator (dotted line), moment
estimator (full line), ML-estimator (dashed line); (a) median and (b) MSE for the extreme value index;
(c) median and (d) MSE for the extreme quantile with ε = 1

50 .

very accurate. Therefore, we estimate p with the corresponding vertical level in the plot, which
is 0.28.

We now continue with the estimation of the extreme value index γ1 and an extreme quantile
F←(1 − ε), using the UH-method (as in Section 2). We will again plot these estimators as
functions of k, but already replacing p̂ = p̂(k) with its estimate 0.28 in order to prevent that the
bias plays a dominant role for values of k larger than 200, say.

In Figure 6(a), the estimator of the extreme value index is presented, whereas Figure 6(b)
shows the extreme quantile estimator for ε = 0.001. The estimator of γ1 is quite stable for values
of k between 200 and 300. We estimate it with 0.14. We estimate the extreme quantile with k val-
ues in the same range because that range again gives a stable part in the plot. The corresponding
estimated survival time is as high as about 25 years. So, although the estimated median survival
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Figure 5. Estimator of p for the Australian AIDS survival data for the male patients.

time has the low value 1.3 years, we find that exceptionally strong males can survive AIDS for
25 years.
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Figure 6. UH-estimator (a) for the extreme value index and (b) for the extreme quantile with ε = 0.001,
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