SAND - $98-8481 \mathrm{C}$ Statistics of Flame Displacement CONF-980804-Speeds from Computations of 2-D Unsteady Methane-Air Flames

N. Pcters ${ }^{1}$ and P. Terhocyen
Itraltut filir Technische Mechanik, KWTH Aachen, Germany
Thone (49)-241-804609
FAX (49)-241-8888223
c-mail: n.petersolitm.rwth-anchen.de
Járqueline H. Chen and Tarck Echekki

MR 27 1938
OSTI

Combustion IResearch Facility, Sandia Notional Laboratories, Livermore, CA 91501 0969, USA

A mamscript for the 27th Symposium on Combustion
Colloguinm topic: Turbulent Premixed and Fartinlly Premixer Combustion
Kcy words: displacement apeeds, thin reaction zones
Thtal word count: 2400 text, 2400 in figures, 175 in nomenclature and 441 in equations $=5416$ words total

December 8, 1997

[^0]DISTRIBUTION OF THIS DOCLMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned tights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

JResults of two-dimensional numerical eomputations of turbulent methame flames using dotailed and reduced chemistry are analyzed in the context of a mew theory for promixced turbulent: combnstion for high turbulence intensit.y. 'This thoury defines the thin reactiom mones regime, where the Kolnogorov scale is smaller than the preheat zone thickness, but, larger than the roaction zone thickness. The two mumerical compatations comsidered in i,his paper fall clearly within this regine. A lean and a stoichiometric flane are considered. The former is characterized by a large ratio of the turbulence intensity to the laminar burning velocity and che lather by a smaller value of that ratio.

The disflacement speed of the reaction mone relative to the flow is defined us the displacument speced of the iso-soalar line at a fuel mass lraction corresponding to 10% of the upstream value. 'lhe three differenk mechanisms that are contributing to the displacemant of the reantion zone, nkmoly momall and tangential diffusion und reaction, are amalyed and their probability density functions are evaluated. Although thesc contributions flucturte considerably, the mean value of the overall displasement speed is found to be only around 40% larger thetn the burning volocity of a plane premixed fance at the satue equivalence natio. Furthermore, the rontributhon ol tangential diffusion, which can be expressed as a curvature tern, catmeels an far as the mean overall displacerrette speed is eoncerned, while the coutributions of normal diffusion and reaction are large buth have opposite eigns. These sontributions depoud implicilly on curvature. This depordence is small for the lean flame, but comsiclerable for the stoichionctric thane where it leads to an enhanced diffusivity. This cliffusivity is compared to the Marksieen diflusivity that dencribes the equivalunt ourvature effect in the corrugated Hamelet regime.

NOMENCLATURE

1)	mass diffusion coerlicient or CHF_{4}
G	dishance function
ℓ	integral length scale
ℓ_{H}	luminar thane thickriess
ℓ_{δ}	reaction mone thickness
n?	normal vector
s	arclongth
${ }^{2} \mathrm{H}$	displawernemi apeerd
s_{L}	laminar burning volocity
V_{n}, V_{r}	displacemont speed contributions due to normal diffuston and reaction, respactivety
v^{\prime}	turbulence intensity
\vec{v}	flow velocity verior
rr, γ	coordinates in the 2D simulation
Y	mast fraction

Greek Symbols
$\theta=\ell_{b} / f_{F}$ non-dimensional reaction zone thickness
ϕ fuel-t.c-air equivalence ratio
κ curvature of the reaction zonc, defined as positive if the front is convex towards the unburnt mixture
f) elensit.y
r) Kolmogorov langth scalc
$\dot{\omega}$ reaction rate

Indices
0 at the thin reaction cone
u in the nuburns.
(3.H. methanc

1 Introduction

There have bean different, views almot, the physical mechazisme that are important in the regirne of turbulent premixed sombustion whert the Kolmogoroy seale η is smailer than the Hame thickncss ℓ_{F}. Borghi [1] has called it the regine of "thickened-wrinkled flame with possilite: extinction", Petcrs [2] calls it the "distributed reaction zones" ragime and Poinsot et, al. [3] osnsider it to be part of the ftamelel reginte. Poinsot of al. have performed divect. 2 D numerical sinulations of vortiecs interacting with fame structures and find thal these "are more resistant to quenching" and that therefore the flamelet region extends by "inore than an order of magnitude" into the regime where the Koimogorov scale is smaller then the flame thickness.

Recontly, I'eters \{1\} defined an regime called the "thin remelion mones reginge" by

$$
\begin{equation*}
\ell_{d}<\eta<\ell_{F} \tag{I}
\end{equation*}
$$

where Kolmogorov eddies can penetrate into the preheat zone of size f_{f} but not into the reaction rame of si\%e $?_{8}$. The thiskunss of the thin reaction zonc is typically one temith of that of the proheat
 [5]. The thin reaction zones reginc is shown in a diagran, Fig. 1, where the velocitiy ralio v^{\prime} / s_{L} is ploted as a function of the length scate ratio. The conditions that will bo analyzed here correspond to thethanc-air Hames; a lean fiame [6] deroted by LF and a stoichiometric Hame [7] demoded by $S F$.

Vor the lean flame a detailed mechaniam based on C_{1} chemistry [8] and for 1 ,hat stoichiometric Ilame a four-step reduced mechanism [9] has been employed. For eomputational efticiency at preheat lemperature of $800 k$ was ensumed. The turbulent velocity field is super-imposed on the evolving scalar ficlds and decays with time It is prosoribed by an initial liwn-dimemsiomal
turbulent kinetic encrgy spectrum function. Note that the points indicated in Fig. 1 correspond to the initial condition, while the ovaluations are performod after 2.11 turnover times for the ham llame end one turnover time for the stoichiometric flames. At those times the turbulence intensity het derayed by 5% for both Hlames.

2 Formulation

Since small eddies are able to penetrate into the prehent zone of the fiame structure in the thin reastion zones regime, the scalar field in front of the reaction zone is perturbed by turbulence and a quasi-steady state flame structure does not exist. Molewar crunsport betweon the thin reaction \%one and the upstream temperature and concentration fiedris is an unstemady process and the notion of a laminar burning velocity has no physical moaning. We may, however, define a displacement sped of the thin reaction zone relative to the fow by considering a sealar isosurfuce in the vicinity of the reaction zone. Since the fucl is entirely consumerl in the inner layer of methane flames and it decreases monotonically between the unburnt eonditions upstream and the itner layer, an iscocontour of 10% of the wel mass faction $Y_{\text {cha }}$ was considered to be the most. representative choice. Soveral levcle of $Y_{\mathrm{CH}_{4}}$ wore examined and it was found that withint the range between 5% and 30% of the upstrenm value the results did not clepend very mush on that choice.

Censider the balance equation of the fuel

$$
\begin{equation*}
\rho\left(\frac{\partial Y_{\mathrm{OH}_{4}}}{\partial t}+\bar{v} \cdot \nabla Y_{\mathrm{CH}_{4}}\right)=\nabla \cdot\left(p D \nabla Y_{\mathrm{CH}_{4}}\right)+\dot{\omega}_{\mathrm{CH}_{4}} \tag{2}
\end{equation*}
$$

where D is its diffusion cocfficient und $\dot{\omega}_{\text {cha }}$ its demical source term. The ismaceatar surface
$Y_{\mathrm{SH}_{4}}(\ddot{x}, t)=Y_{0}$, where Y_{10} denotcs $0.1 Y_{\mathrm{OH}_{4}, \text { w }}$ must satisfy the condition

$$
\begin{equation*}
\frac{\partial Y_{\mathrm{CH}_{4}}}{\partial t}+\left.\nabla Y_{\mathrm{CLL}} \cdot \frac{d \sqrt{x}}{d t}\right|_{11}-0 . \tag{3}
\end{equation*}
$$

Replacingy $\partial Y_{\mathrm{CH}} / \partial t$ from Eq. (2) this leads to

$$
\begin{equation*}
\left.\frac{d \vec{x}}{d \vec{t}}\right|_{0}=\vec{v}_{0}-\left[\frac{\nabla \cdot\left(\rho!D \nabla Y_{\mathrm{CH}_{1}}\right)+\dot{\omega}_{C \mathrm{CH}_{4}}}{\rho\left|\nabla Y_{\mathrm{UH}_{4}}\right|}\right]_{0} \vec{n}=\vec{v}_{0}+s_{d} \vec{r} . \tag{4}
\end{equation*}
$$

Here the term in muare hrankets is the displacemont speed s_{d} of the thin reachion yome. For diffusive sculary with $\dot{\Delta}=0$ Eq. (1) was first derived in [10]. The mormal vecher on the int-massfraction surface points towards the unburnt mixture and is defined as

$$
\begin{equation*}
\left.\vec{n}=\frac{\nabla Y_{\mathrm{CH}_{4}}}{\mid \nabla Y_{\mathrm{Cm}}^{4}} \right\rvert\, \tag{5}
\end{equation*}
$$

We want to use the analogy hetween the laminar burning velority of a gitanisteady fiame structure and the displacemont speed for the thin reaction aone and derive a G-cquation for the location of the thin reaction zone in analogy to the classical O-equation [11] where the flame Ineation is defined by the iso-surface $G(\vec{x}, t)=G_{0}$. Then the normal vector defined by Eq. (5) is alse equal to

$$
\begin{equation*}
\vec{n}=-\frac{\nabla G}{|\nabla G|} \tag{6}
\end{equation*}
$$

and also points towards the umburnt mixture. Using the evolution equation for the iso-scular surface $G(r, t)=\mathbf{G}_{0}$

$$
\begin{equation*}
\frac{\partial G}{\partial t}+\left.\nabla G \cdot \frac{d \vec{x}}{d t}\right|_{G-c_{0}}=0 \tag{7}
\end{equation*}
$$

whether with Eq. (1) leads to

$$
\begin{equation*}
\frac{\partial G^{\prime}}{\partial t}+\dot{v}_{1} \cdot \nabla G=-\left[\frac{\nabla \cdot\left(\rho D \nabla Y_{\mathrm{CH}_{4}}\right)+\dot{\omega} \dot{\mathrm{CH}}_{4}}{\rho\left|\nabla Y_{\mathrm{CH}} \mathrm{H}_{4}\right|}\right]_{\Omega}\left|\nabla C_{i}\right| . \tag{8}
\end{equation*}
$$

Echekki and (hen [12] show that the diffusive term appearing on the r.h.s of Erf. (8) may bo split into one term nccounting for curvature and another for diffusion mormal to the ian-surface

$$
\begin{equation*}
\nabla \cdot\left(\rho D \nabla Y_{\mathrm{CH}_{4}}\right)=\rho D\left|\nabla Y_{\mathrm{CH}_{4}}\right| \mu+\vec{n} \cdot \nabla\left(\rho D n \cdot \nabla Y_{\mathrm{CH}_{4}}\right) \tag{9}
\end{equation*}
$$

where the definition Eq. (5) has been userl. When Ecq. (9) is introduced into Eid. (8) it can be writtent as

$$
\begin{equation*}
\frac{\partial G}{\partial t}+\bar{v}_{0} \cdot \nabla G=-D x|\nabla G|+\left(V_{n}+V_{\tau}\right)|\nabla C| \tag{10}
\end{equation*}
$$

Here the nurvature κ may be cxpressed by Eq. (11) in tarms of the Gefleld as

$$
\begin{equation*}
\kappa=\nabla \cdot \vec{n}=\nabla \cdot\left(-\frac{\nabla G}{|\nabla G|}\right)=-\frac{\nabla^{2} G-\vec{n} \cdot \nabla(\bar{n} \cdot \nabla C)}{|\nabla G|} . \tag{I1}
\end{equation*}
$$

The quantities V_{n} und V_{r} arc contributions due to normal diffusion and reaclion to the displacement speed of the thin reatetion mone and are defined as in [13] as

$$
\begin{align*}
& V_{n}=-\frac{\pi \cdot \nabla\left(\rho D \vec{n} \cdot \nabla Y_{\left(H_{4}\right)}\right)}{\rho\left|\nabla Y_{C H_{4}}\right|} \tag{12}\\
& V_{r}=-\frac{\dot{\omega}\left(\mathrm{H}_{4}\right.}{\rho\left|\nabla Y_{\mathrm{CH}_{4}}\right|} . \tag{13}
\end{align*}
$$

 velocity s_{l}. ITere, however, the unsteady mixing and diffision of all the chemical specien and the temperature in the regions aheart and behind the thin reaction zones will infuence the loc:al displamement spered. Therefore the sum of V_{π} and V_{r} cannot be preseribed, but is a fluetuating quantity, that couples the G-cquation to the solution of the balame aquations of the reactive scalars.

Iinally, in vicw of Eqs. (4), (9), (12) and (13) it should be noted that the three contributions tor the disphasement spoed add up as

$$
\begin{equation*}
s_{d}=-D \kappa+V_{n}+V_{r} \tag{14}
\end{equation*}
$$

where - Dro is the contribution due to survaturc.
In Jig. 2 iso-mass-fraction lines and iso-scalar lince of G are plotted for a thame montom taken from lite lean farme [6], The flame propagates from right to loft. The coordinales an ancl y were normalized by the flame thirkneas for a plane laminur letrn methane flame at $\phi=0.7$. The dark black line in Figs. 2 a and 2 b denote the location of the thin reaction anne at $\mathrm{Y}_{\mathrm{t}} \mathrm{H}_{4}=0.1 \mathrm{Y}_{\mathrm{c}} \mathrm{H}_{4}, \mathrm{n}$. In Jig. 2a, in tudition, iso-mass-fraction contours of $Y_{\mathrm{CH}_{4}}=0.5 \mathrm{Y}_{\mathrm{CH}_{1}, \mathbf{u}}$ und of $0.9 \mathrm{Y}_{\mathrm{Cl}}^{2}, \mathrm{u}$ are shown. Contorrs of the distance function $G=-0.5$ and $G=-1.0$ are shown in tig. 2h. They corrempond to lines with a distance of one half und one Hante thiskness ahand of the reaction mone. The comparison between the two plots shows that except for regions where the reaction zone is strongly eurved, the $Y_{\mathrm{CH}_{4}}=0.5 Y_{\mathrm{CH}_{4}, 4}$ line and the $\mathrm{C}=-0.5$ tine do not differ very much from cuch other. For the stoichiometric flame the isomass fraction line at $Y_{\mathrm{CH}_{4}}=0.1 Y_{\mathrm{ceH}}^{4, \mathrm{u}}$ is shown in Fig. 3. The coordinates are normalized by the corresponding flane thickncss.

3 Statistical Evaluation

We have evaluated the dillerent contributions to the displacement spewed at the 10% fuel massfraction iso-line und nomalized it by the displacement sperd $s_{L, 0}$ of the reaction zone in a one-dimensional normal Hane

$$
\begin{equation*}
s_{L,, \mathrm{~B}}=\frac{\rho_{4} s_{t, t_{2}}}{\rho_{0}} \tag{15}
\end{equation*}
$$

where ρ_{n} and $s_{l, 12}$ are the unburat valucs for a plane laminar flane at the corresponding equivalence vatio. Figs. 4 a and 4 , show for both flatnes the normalized displacement speed s_{d} as well as the contributions V_{r}, V_{72} and $-D r$ that appear in Eq. (14). They are plottect over the arclength nomalized by the Hame thickness. The arclenglh is combed from lower entry to the upper oxit in Figs, '2a and 3, respentively. The maximum displacement speed of the lean tame
(Fig. 4a) we:curs at $s / g_{F} \pm 52$ which correaponds to the strongly curved region far ou the riglt, in Figs. 2a. There are soveral maxima in the sioichiometric flume (Fig. 4h). The oscillations of s_{d} are quite substantial, with part of the jao-line at yalues below $s_{d} / s_{L, q}=1$, but strong positive excursions. The positive excursfons are mainly che to an addition of contributions fiont reaction and curvature, while the contribution of normul diffusion seems to be negatively corrclated with thed of the curvature. All contributions to the sisplisument. speed tuctinate very strongly. Since CH_{4} is mange consumed at the location $\mathrm{YOH}_{4}=0.1 Y_{\mathrm{CII}_{4}, u}$ the vontribubion due to remation is andiay positive. Its magniturle at this locetion is still very large because the llamea are preheated to 800K. It is interesting to note that the contribution due to normal diffinion is aiways negntive and thial due to curvature fluctuates around \%ero. Note that the mean curvature is zero due to cyclic lumonary anditions imposed on the lower and upper aide in Vigs. 2a and is.

The probability density functions (jedfs) of the different contributions for both flames are shown in Figs. 5 and 6. 'Ihe pdfs of the contributions due to nommed diffusion, rantiam and curvature are shown in Fig. Wor both Hames. Agein it is sect thet the pdf of V_{i} lics at nogative. values with a mean valuc at -4.71 [or the lean fame and at -1.74 for the stoichiometric flame. The pall of V is at positive values with a mean at, 6.06 for the lean Hame and at 2.93 for the stotichometric flamo. The pdf of $-D \kappa$ is mearly symmetric around the origin for both flames.
 meatl values of s_{d} and of the surn of $V_{0}+V_{n}$ are both cqual to 1.36 for the lomillame amd 1.45 for the stoidtionetric flame. It is seon that, within the wcendey of the limited amome of dats, the two pdis noarly coincide for both flames. The sum of V_{r} and V_{n} would be equal to sd in a nommal harre, but it can be secn from Fig- 4 h hasi. V_{r} and V_{n} do not locally add up to sd aknig the arelength. 'Iherefore it is interesting to note that their stishishical distribution is nearly the
same.
In the theory developed in [4] the importance of the curvature term for turbulent flame propagation in the thin reaction zones regime was emphasized. Highly curved regions are due to the interantion of the reaction cone with very small eddien. Theroby the surface aren of the reaction zone is strongly increased. In Fiq. (10) the displacment spead duc to curvature has bom separated from those due to normal diffision and reaction. It is interesting to analyze, bowewer, whether there are interdependencies between these terms; in particular whether V_{r} and V_{n} implicitly also depend on curviture. Fig. 7 presents scatwer plots of the different contributinns to s_{d} sa a function of the curvature normalized with ℓ_{F} for both flames. Th. is sear that the displacement speod duc to the curvature $-D_{6}$ must correspond to strajint bines through the origin with a negative slope in these plots. In Fig. 7 a and 7 b the curvature has been normalized by the thermal flame thickness. Since the slope of the momalimed contribution due to curvature is mintus one ia Fig. 7a. but - 0.24 in Fig, 7 , the flame thickness is related to the difusivily as

The negative correlation between the displacement speed due to normal diftuign and that due too enrvature that had been noted in the diseussion of Fig, 4 is clearly secn for positive values of x (negntive curvature displacement wpeds). There stow mot, sumen w be much correhation between V_{τ} and κ for positive values of κ, but for negative values of κ chey seem to be correlated. This corrclation is attributed to the enhaneed differential diftusion of light raclical species, which, hirough chemical nonlincarity cuhunces V_{r} indirectly [7].

Sicus the majority of points fall on top of each other in thexe scatter plots they tend to be mindeading as far ss mean tendenctes are concerned. If a linear fit through the data points in Fig. 6 is performed it turms out that for the lean tiame the displacement speeds are corredated

```
    O
```

as

$$
\begin{align*}
& V_{\mathrm{r}} / s_{L, 0}=-4.70+0.12 \kappa Z_{\Gamma} \tag{16}\\
& V_{r} / s_{L, 0}=6.08-0.28 \kappa \ell_{L}
\end{align*}
$$

Therefore the wimn

$$
\begin{equation*}
\left(V_{t}+V_{n}\right) / s_{L, 0}=1.37-0.14 \kappa R_{F} \tag{17}
\end{equation*}
$$

is tearly inderondent of enrature. On the contrary, for the stoichiometric flame the correlations are

$$
\begin{align*}
& V_{r h} / s_{L_{1} 0}=-1.47+0.09 \kappa \ell_{r} \tag{18}\\
& V_{r} / s_{L, 0}=2.91-0.55 \kappa \ell_{r}
\end{align*}
$$

with the sums

$$
\begin{equation*}
\left(V_{r}+V_{\pi}\right) / s \dot{L}, 0=1.44-0.44 \kappa \ell_{F} . \tag{19}
\end{equation*}
$$

This seems to justify the decomposition of the displacenent speed into a curvature term and o term comeaining the sum of $V_{n}+V_{r}$ in Eq . (10) for the lean fame, but not for the stoidthonctric Hame. Il che introduces Eq. 19 into Eq. 14 one obtains

$$
\begin{equation*}
s_{d}=-2.83 D \kappa+1.44 s_{L, 0} \tag{20}
\end{equation*}
$$

showing an effective diffusivity that is 2.83 times the mass diflisivity. The reasore for this onhanced diffusivity maty lis ithe fact that the atoichionmetric Hame is close to the cormgated Handet regime (cf. Fig. 2). In that regine the Marksiein diflusivity replaces lhe mass difitsivity. Since the Markstcin diffusivity is two to three limes larger than the mass diflusivily in stoichiometric methine Mames [14], one may argue that the increased effective diffusivity for this Hanne in due 1s Markstein effects.

Summary

The statistical equluation of the cliferent contributions to the displacement speed from two 2D simulations ahows that those tue to normal diffusion and reaction are rasponsible for flame displacement in the mean which is approximately 40% larger than in the corrcsponding lanninar flame. Although i.hey Hinctuate strongly when ghohted over arclength, their sum bas ncarly the sume probrability density function as the displanement speed. There is still a correlation between curvature and the diaplanement speeds due to reaction and normal diffusion, at loust for the stisichionutric Hame.

Acknowledgements

This work has been supported by the Deutsche Forschungsgemoinschaft and the Ui.S. Deparment of Encrgy's Olfice of Bagin Energy Sciences, Chemical Scionce Division.

R.eferences

[1] Borghi, R. W., In Recent Advances in the Aerospace Scionce (Ed. C.Casci), pp 117 138, 1'lenum Frcss, 1985,
[2] Peters, N., In Twenty-First Symposinm (International) on Cinmbustion, The Combustion Institute, Pittsburgh, PA, 1986, pp 1231-1250.
[3] Poimsol, T'., Veymante, D., and Candel, S., In Twenty-Third Symprasitm (International) on Gombustion, The Combustion Inetitute, 1A, 1990, pp 613-619.
[4] Peters, N., The Turbulent Burning' Velocity for Latrge Scale and Small Suale 'furhulence, subnithed to the J. of Fhind Mechatites, 1997.
[5] Peters, N., In Nuterided Approaches to Combustion Modeling (\$. Oran and J. I'. Boris, Exds.), Progr. Astronautics and Aeromantics 135:155-182, 1991.
[6] Shen, J. H. and Dehekkt, T., Pocket Formation in Timbulent Lom Promixed Mothanc-Air Flamos, sulninithed to Combust.Flarne (1997).
[7] Fohekki, T. and Chen, J. FT., Combust,Flame 106:184-202 (1996).
[8] Warnaty, J.; Mara, U. and Dibble, R., Combustion: Fhysitial and Chemical Fomantions, Modeling, Pollutant Formation, Mpringer-Verlag, Heidolborg, Germany, 1906.
[9] Petens, N., and Willianns, F. A., Combust.Flame 68:185-207 (1987).
[10] Gibson. C. H., I'hys.Fluids 11:2305-2315 (1968).
[1I] Willians, F. A., In The Mathematice of Combustion (J. D. Buelmmator, Ed.) Socicty for

[12] Echekki, T. and Chen, J. H., Analysis and Computation of Difforcnt Contributions to Flanc Fropagation in Turbulent Premixed Methata-Air Fhames, submither to Combust Flamm 1997.
[13] Gran, I. R., Eshekki, 'I', and Chen, J. H., In Twomty-Sixth Symposium (Intormational) ons Gombustion, 'l'he Combustion Imstitule, Pittaburgh, I'A, 1996, pp 323 329.
(14] Müller, U. C., Bollig, M., Peters, N., Combust. Flarre 108:349-356 (1997),

Figure 1:

Figure 2:

Figure 3:

Figure 4:

Figure 5:

Figite 6:

Figure 7:

List of Figures

1. Reginne diayram for premixed turbulent combustion.
2. Comparison of isomass-fraction lines of CH_{4} (Fig. 2 m) and isolincs of the distance function G (Fig. 2b) for the lean flame at 2.11 eddy thrmover times [6]. W'he C-isolines were constructed as iso-distance lincs from the flame contour defined by 10% of the mass fraction in the unburnt mixbire. G_{x} is normalized by ℓ_{F}.
3. Lso-mass fraction lines at 10% of the mass fraction in the mbume mixtare for the staichiomelric thame [7].
4. Displacemunt spered s_{d} and lis different oontributions due to reaction (V_{r}), normal dillusion (V_{n}) and tangential diffusion ($-D \kappa$). Fig. 4 a: Tann fanne, Fig. 4 b: Stoighomotric fame.
5. Probability donsity functions of the three contributions to the displacemant specd according lo Fa. (14): normal diftiasion V_{π}, reaction V_{r} and tangential diffusiom ($-D_{n}$). Fis. 5a: Tekn Ilame, Hig. 5b: Stoichiometric flame.
6. Probmbility density functions of the displacement syecd s_{2} and of the sum of the contributions $V_{r}+V_{n}$ duc to reaction and normal diffuston, rempentively. Fig. Bat: Lean flane, Jig. 6b: Stoichiomotric Hame.
7. Seater plot of the three eontributions to the displacoment, speed as a function of the curvathre \boldsymbol{r} normalized by the fame thinkness ℓ_{μ}. Fig. 7n: Lean flame, Fig, 7b: Stoichiometric \}(ame.

Report Number (14) SAND--98-8481C
COnF-980804--

[^0]: ${ }^{2}$ rorresponding multher

