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Abstract—The modal group delays (GDs) are a key property

governing the dispersion of signals propagating in a multimode
fiber (MMF). An MMF is in the strong-coupling regime when the

total length of theMMF ismuch greater than the correlation length

over which local principal modes can be considered constant. In
this regime, the GDs can be described as the eigenvalues of zero-

trace Gaussian unitary ensemble, and the probability density func-

tion (pdf) of the GDs is the eigenvalue distribution of the ensemble.

For fibers with two to seven modes, the marginal pdf of the GDs is

derived analytically. For fibers with a large number of modes, this

pdf is shown to approach a semicircle distribution. In the strong-

coupling regime, the delay spread is proportional to the square root

of the number of independent sections, or the square root of the

overall fiber length.

Index Terms—Modal dispersion, mode-division multiplexing,

multimode fiber, semicircle distribution.

I. INTRODUCTION

M ULTIMODE fiber (MMF) is widely used in short-range

optical links [1]–[3], where it is often favored over

single-mode fiber (SMF) because of relaxed connector align-

ment tolerances and reduced transceiver component costs.

MMF supports propagation of multiple spatial modes having

different group velocities, and thus different group delays

(GDs), an effect called modal dispersion [4], [5]. Even if a

signal is launched into one spatial mode, bends, index imper-

fections, and other perturbations cause the signal to couple into

multiple modes [4], [6]–[8], making the signal subject to modal

dispersion. Modal dispersion limits current commercial MMF

links to 10 Gb/s per fiber up to about 300 m long [1], [9], and

next-generation 100 Gb/s Ethernet MMF systems use ten fibers

per link [10]. Techniques to increase the bit rate per fiber are

desired.

SMF, which is free from modal dispersion, is the dominant

medium for longer transmission distances. Emerging long-haul

systems use dual-polarization quaternary phase-shift keying

and coherent detection to achieve a spectral efficiency of 2

bits/s/Hz [11], [12]. Usage of higher order modulation formats
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[13] can at least double the spectral efficiency, but further

increases are expected to become increasingly difficult [14],

because of limits posed by optical amplifier noise and fiber

nonlinearity [15], [16]. Techniques to further increase spectral

efficiency are desired.

Mode-division multiplexing (MDM) in an MMF [17], [18],

a form of multi-input, multi-output transmission, is a potential

means to increase transmission capacity in both short- and long-

distance optical networks. Like multipath propagation in wire-

less systems, the plurality of modes in anMMFwas long viewed

as a strictly negative, bandwidth-limiting effect requiring miti-

gation, but is now seen as creating additional degrees of freedom

in which to transmit information [19]–[23]. Modal dispersion in

an MMF typically leads to a larger GD spread than that caused

by chromatic dispersion. This GD spread determines the re-

quired cyclic prefix length in MDM systems using orthogonal

frequency-division multiplexing [21] or the required number of

equalizer taps in MDM systems using single-carrier modulation

[23]. In other words, receiver complexity increases in propor-

tion to the GD spread caused by modal dispersion.

Effective mitigation of modal dispersion or optimal use of

MDM requires a detailed understanding of modal dispersion,

especially the effect of mode coupling on the modal GDs.

Models for mode coupling were developed more than 30

years ago [4], [5], [7], when MMF links used spatially and

temporally incoherent light-emitting diodes. Virtually all the

models ignore phase effects, and consider only power coupling

between modes. Power coupling models are able to qualita-

tively explain some observations, such as the scaling of delay

spread with fiber length. Delay spread scales linearly with fiber

length in the weak-coupling regime (e.g., short glass MMF),

and with the square root of fiber length in the strong-coupling

regime (e.g., plastic MMF) [24]. However, most modern MMF

systems use spatially and temporally coherent laser sources,

and power coupling models are not able to explain certain

observations, such as a sensitivity of the impulse response to

launched polarization [25].

SMF supports propagation in two polarizations, and polar-

ization-mode dispersion (PMD) has long been modeled using

electric field coupling models [26], [27]. Field coupling models

have been used to demonstrate the existence of principal states

of polarization (PSPs), which have well-defined GDs to first

order in frequency [27]–[29]. In long SMFs, polarization modes

are strongly coupled. In this regime, the differential GD (DGD)

between the PSPs scales with the square root of fiber length

and follows a Maxwellian distribution [28]–[31]. PSPs form the

basis of techniques for optical PMD compensation in direct de-

tection systems.
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Recently, field coupling models have been extended to MMF

[32], [33]. These models explain the polarization sensitivity

of mode coupling and demonstrate the existence of principal

modes (PMs). The PMs have well-defined GDs to first order in

frequency, and form the basis for optical techniques to compen-

sate modal dispersion [34]. The GD differences between PMs

scale linearly with fiber length in the weak-coupling regime,

and with the square root of fiber length in the strong-coupling

regime [33]. To date, however, the statistical properties of the

GDs, which are of particular interest in the strong-coupling

regime, have not been studied.

Here, the statistics of the GDs are derived analytically for

MMF in the strong-coupling regime, considering a number of

modes ranging from two to infinity1. In this regime, regardless

of the number of modes or the GDs in the absence of coupling,

the GDs scale with the square root of fiber length or the square

root of the number of independent fiber sections, similar to PMD

in SMF in the strong-coupling regime [28]. End-to-end modal

dispersion effects are described, at each single frequency, by a

random complex Gaussian Hermitian matrix or Gaussian uni-

tary ensemble [35]. From such a model, the joint probability

density function (pdf) of GDs can be derived analytically. Here,

closed-form expressions for the GD distributions are derived for

small number of modes. For a large number of modes, the GD

distribution asymptotically approaches a semicircle distribution

with a radius or upper limit equal to twice its standard deviation.

The remaining parts of this paper are organized as follows.

Section II describes the random matrix model for MMF propa-

gation. Section III provides closed-form analyses of the GD dis-

tribution in fibers with two to seven modes. Section IV presents

asymptotic expressions for the GD distribution in the limit of a

large number of modes. Sections V and VI presents discussion

and conclusions, respectively.

II. RANDOM MATRIX MODEL FOR MMFS

The propagation characteristics of an MMF, in particular, the

local PMs and their GDs, can be considered invariant over a cer-

tain correlation length. Because bends, mechanical stresses, and

manufacturing tolerances inducemodecoupling, the localPMsin

sections separated by distance longer than the correlation length

can be considered independent of each other. Throughout this

paper,weconsider the regimeof strongmodecoupling,where the

total length of the MMF far exceeds the correlation length. The

theory presented here is valid regardless of the actual correlation

length or the modal GD profile within the correlation length.

An MMF may be divided into sections, with propagation

in each section modeled as a random matrix. The length of each

section should be at least slightly longer than the correlation

length, so that the local PMs in the different sections can be

considered independent. Although the approach used here is ap-

plicable even if each section has different properties, for conve-

nience, we assume that all sections are statistically equivalent.

In an MMF with modes, modal propagation in the th sec-

tion can be modeled as a matrix as a function

of frequency . Here, we are only interested in the statistical

1Throughout this paper, “modes” include both polarization and spatial de-
grees of freedom. For example, the two-mode case can describe the two polar-
ization modes in the SMF.

properties of the modal GD, so for simplicity, we ignore any

mode-dependent gain or loss. With strong mode coupling, the

th section may be represented by the product of three

matrices

(1)

where denotes Hermitian transpose, and are random

unitary matrices representing the mode coupling at the input

and output, respectively, and is the diagonal matrix de-

scribing the uncoupled modal GDs, i.e.,

(2)

where , are the uncoupled

GDs in the sections.

In the absence of mode-dependent gain or loss

and are all unitary matrices, such that

, where is the identity matrix. With

strong random coupling, both and can be assumed to

be independent random unitary matrices, such that both input

and output are randomly oriented. The model (1) is similar to

the matrix model of PMD described in [31] and [36].

The model here is valid regardless of whether or not the vec-

tors , have the

same statistical properties. The vector may even be a deter-

ministic vector, identical for each section. For convenience and

without loss of generality, we assume that , i.e., we

ignore the mode-averaged delay of each section, as it does not

lead to modal dispersion.

Using and to denote the input and output modes,

respectively, we have

(3)

and . Similar to the analysis of PMD

[27], [29], [36], the GDs correspond to the eigenvalues of

where . With only a

single section, we may verify that

(4)

with as the local PMs in the th section, and where

(5)

is a diagonal matrix of their GDs in the th section. With

, we have and

(6)

Physically, the th local PM experiences an uncoupled GD

without mixing with other modes. Because the diagonal ma-

trices are real matrices, all matrices

, are Hermitian.

When sections of MMF are cascaded together, the overall

propagation matrix becomes

(7)
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The overall PMs and their GDs correspond to the eigenvectors

and eigenvalues of [32], [33]

(8)

Because

(9)

we obtain

(10)

From (10), the overall matrix is the summation

of random matrices. All those matrices have eigen-

values statistically identical to those of (4) and (5). However,

their eigenvectors are independent of each other. The first

matrix has eigenvectors derived from .

The second matrix has

eigenvectors derived from . Matrices and

are both unitary matrices and are obviously

independent of each other. All the matrices summed to form

are independent of each other with eigenvalues given by the

vectors . Even for the case that all vectors

are deterministic and identical, all the matrices summed

to form are independent, owing to the different directions of

their independent eigenvectors.

The matrix elements of should be identically distributed

Gaussian random variables from the central limit theorem

(CLT). The matrix elements of , are the

summation of identically distributed random variables, as

seen from (10). If is very large, are Gaussian random

variables from the CLT. Because all component matrices in

(10) are Hermitian, is a Hermitian matrix. The diagonal ele-

ments , are all real Gaussian random variables

with variance equal to . All nondiagonal elements ,

are complex Gaussian random variables with independent real

and imaginary parts, which have variance equal to . Thus,

the elements has variance . The value depends

on the number of modes , the number of sections , and the

variances of the uncoupled GDs described by . If the

vectors in given by (4) are assumed to be independent of

each other, it can be shown that

(11)

where , are the variances of the GDs in the

sections. If all sections have the same modal GD profiles, we

have

(12)

where are the GD variances in all sections.

In random matrix theory, the matrix is described as

a Gaussian unitary ensemble ([35], Sec. 2.5). Typically, a

Gaussian unitary ensemble does not have any constraint aside

from the variance of its Gaussian elements. However, in (10),

the matrix components have zero trace so that

(13)

In other words, is a zero-trace Gaussian unitary ensemble. The

GDs in an MMF are statistically described by the eigenvalues

of the zero-trace Gaussian unitary ensemble.

The assumption that the diagonal and off-diagonal elements

of have the same variance (12) is valid only if the or-

thogonal vectors in are independent of each other. How-

ever, the condition of orthogonality implies that the th vector

is determined by the other vectors. Using numerical simu-

lation, we have found that all diagonal elements of have equal

variance of , all off-diagonal elements of have

equal variance of , and the average variance

of all elements of is (12). The theory of ([35], Sec. 14.3) is

able to describe a random Hermitian matrix in which different

elements have different variances. Numerical simulations of the

zero-trace Gaussian unitary ensemble with unequal variances

that is considered here show no observable differences from an-

alytical results derived assuming all matrix elements have equal

variance ([35], Sec. 3.3).

III. MODAL DISPERSION IN FEW-MODE FIBERS

In the regime of strongmode coupling, the PMs and their GDs

are given by the eigenvectors and eigenvalues of the zero-trace

Gaussian unitary ensemble described by (10) and (13). Without

loss of generality, after normalization, the elements of may

be assumed to be zero-mean identically distributed Gaussian

random variables with variance , similar to the classic

normalization of Mehta [35]2. Before normalization, is given

by either (11) or (12). The diagonal elements of are real with a

variance of . The off-diagonal elements of are com-

plex Gaussian distributed with independent real and imaginary

parts, each having a variance of . From (12), each section can

be taken to have a normalized standard deviation of GD given

by . With this normalization, the notation in this

section is similar to that in Mehta [35].

A. Joint Probability Density

The joint pdf for a Gaussian unitary ensemble without the

zero-trace constraint is well known. The ordered joint pdf of

the eigenvalues of a Gaussian unitary ensemble is ([35],

Sec. 3.3) [37]

(14)

where the eigenvalues possess the order constraint

and are all real valued, and is a constant such

that the joint pdf integrates to unity. The eigenvalues are the

normalized GDs. An analytical expression for can be found

in ([35], Theorem 3.3.1). Because a permutation with a different

2In some mathematical literature, which is relevant to Gaussian orthogonal
ensembles but not Gaussian unitary ensembles, the matrix elements are assumed
to have unit variance. Proportionality constants are ignored in some of those
references.
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ordering of eigenvalues is equivalent to any other permutation,

the unordered joint pdf is just of (14) but without the order

constraint ([35], ch. 5).

With zero trace

(15)

the ordered joint pdf of becomes

(16)

with the order constraint

(17)

where the constant is determined by requiring (16) to inte-

grate to unity, but is not the same as the in (14). The un-

ordered joint pdf is the same as (16) but is a factor of

smaller and does not have the order constraint (17). The statis-

tical properties of GD are fully specified by the joint pdf (16)

with the constraint (15).

B. Two-Mode Fiber

Two-mode fiber is the simplest case, and may correspond

to the two polarization modes in an SMF, i.e., the well-known

PMD problem. The purpose here is not to derive new properties

of PMD, but to verify that the general random matrix model is

applicable to PMD.

With , the pdf (16) for becomes

(18)

As in the PMD literature, we define and find

, obtaining

(19)

which is the well-known Maxwellian distribution with normal-

ized mean DGD of . Random matrix

models specialized to the two-mode case were used to derive

the Maxwellian distribution in [29] and [31]. The second mo-

ment of both and is 3/4.

C. Three-Mode Fiber

Three-mode fiber is the next simplest case, with

. The joint pdf (16) for of (17) is

(20)

Without the order constraint (17), the marginal pdf of the GDs

is

(21)

Fig. 1. Statistics of the normalized GDs for three-mode fiber, including the
marginal pdf , the pdf of the smallest delay, and the pdf

of the middle delay. To facilitate comparison, both and
are scaled by a factor of .

Some algebra3 yields the constant and

(22)

Fig. 1 plots the marginal pdf , which exhibits three

peaks, corresponding to the values where and are

concentrated. The pdf is symmetrical with respect to

due to the symmetric nature of the three eigenvalues for

the 3 3 random matrix . The middle eigenvalue is con-

centrated near zero. The variance of is .

The pdf of the eigenvalue , corresponding to the smallest

delay, can also be found using (16) with the order constraint

(17). The condition is required in order to conform to

the zero-trace constraint (15). The pdf of the smallest eigenvalue

is

(23)

(24)

Due to symmetric nature of and , we have

. Fig. 1 also shows where the pdf is

scaled by a factor such that given by (24) is nearly

the same as given by (22) near the first peak of .

3All the calculations performed for require three steps. In the first
step, is linearly trans-
formed to . In the second step, the linear
transform is substituted into , which may be expanded to

a summation of terms in the form of , where
are the exponents and are the corresponding coefficients.

The last step is the integration over using ([38], Sec. 3.461).
These calculations are tedious, but can be performed using symbolic mathemat-
ical software, such as Maple or MuPAD.
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TABLE I
STATISTICAL PARAMETERS FOR THE NORMALIZED GDS OF A

THREE-MODE FIBER

Similarly, the pdf of the middle eigenvalue can be found

by

(25)

(26)

Comparing (22), (24), and (26), the marginal pdf

(22) is found to be the combination of , and

(27)

Fig. 1 also shows and that are

concentrated near the corresponding peaks of the marginal pdf

, confirming that each peak of the marginal pdf

corresponds to an individual eigenvalue. The statistical param-

eters of the normalized GDs of a three-mode fiber are presented

in Table I. In Fig. 1, the peak for the middle delay is nar-

rower than those for the maximum and minimum delays and

. In Table I, the variance of is smaller than the variance of

or .

The difference between the maximum and minimum eigen-

values is the normalized delay spread of the MMF. The pdf of

the delay spread for three-mode MMF is

(28)

(29)

The statistical parameters of the delay spread are also given

in Table I. For three-mode fiber, many properties of the eigen-

values or normalized GDs can be computed analytically in

closed form.

Fig. 2. Marginal pdf of the normalized GDs for a four-mode fiber, comparing
analysis and simulation.

D. Four-Mode Fiber

Four-mode fiber is a particularly simple case beyond the two-

mode fiber, as it represents a fiber with two spatial modes and

two polarizations. Fibers with two spatial modes have been used

for dispersion compensation [39] or fiber sensors [40]. We note,

however, that a weakly guiding fiber with circular core cannot

support exactly two spatial modes [41].

The pdf (16) for becomes

(30)

with the zero trace constraint .

Using the unordered joint pdf, the marginal pdf of is

(31)

After some calculations, we obtain

(32)

which has a variance of 15/8.

Fig. 2 shows the marginal pdf of the normalized GDs in a

four-mode fiber given by (32). The marginal pdf has four peaks,

corresponding to the GD of four different PMs.

To verify the marginal pdf in Fig. 2, the modal dispersion of a

four-modeMMF has been simulated. The fiber has in-

dependent sections. In each section, the four modes are chosen

to have deterministic delays of , and where

to ensure that the elements of have a variance of

. This particular choice could describe a fiber where,

in each section, the DGD between the two polarization modes is

negligible compared to that between the two spatial modes. The

random unitary matrices and , are first

initialized by 4 4 random complex Gaussianmatrices and then

converted to unitary matrices using the Gram–Schmidt process
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([42], Sec. 5.2.8). All sections have independent matrices

and . A total of 400 000 eigenvalues are used in the curve

shown in Fig. 2.

In Fig. 2, the simulation results show excellent agreement

with the analytical pdf (32). Although the modes in each section

have only two GDs, with strong mode coupling, a pdf having

four peaks is obtained. In the strong-coupling regime, similar

results would be obtained using any uncoupled GDs in each sec-

tion, provided that the four GDs sum to zero and have a variance

of . For example, the four modes may have modal delays

of , and with . Similar results

may also be obtained if the GDs in each section are, for example,

, where follows a statistical distribution

with second moment .

The marginal pdf of the smallest or largest eigenvalues

and may be found by suitable integration of (30). Unlike the

case of a three-mode fiber, it does not seem possible to obtain

closed-form expressions for the individual marginal pdf’s of the

ordered eigenvalues.

E. Other Few-Mode Fibers

The marginal pdf’s of the GDs in an MMF with larger

number of modes may also be obtained analytically. Following

the aforementioned procedure, the marginal pdf’s of fiber with

five, six, and seven modes are

(33)

(34)

(35)

respectively. The variances of these distributions are 12/5,

35/12, and 24/7, respectively. For all the cases of from two

to seven modes, the variances are given by ,

a reduction by a factor of compared with the case

without the zero-trace constraint.

Fig. 3 shows the marginal pdf of the normalized GDs of fibers

with five, six, and seven modes. The number of peaks in the

marginal pdf is the same as the number of modes. In general,

the peaks closer to are both higher and narrower than

Fig. 3. Marginal pdf of normalized GDs for fibers with five, six, and seven
modes.

those farther from the origin. Those peaks cause ripples to ap-

pear in the marginal pdf, and the ripples are still significant in a

seven-modeMMF.As the number ofmodes increases, the peaks

in the marginal pdf move closer together and merge. As the

peaks become indistinguishable for fibers having many modes,

the marginal pdf should approach a limiting distribution.

Numerical simulations, similar to those in Fig. 2, have been

used to verify the analytical pdf’s in Fig. 3. In all the cases,

simulation and theory match with each other.

Numerical simulations have been conducted to further verify

the variance reduction factor of , which is most signifi-

cant for . Random realizations of zero-trace matrices of

the form (10) exhibit no observable variance reduction, although

the empirically estimated pdf’s, when scaled by this reduction

factor, are found to match with (19) and (22).

The reduction of variance may be seen as related to degrees

of freedom. A randomHermitian matrix without zero-trace con-

straint has degrees of freedom, corresponding to

complex off-diagonal elements and real diagonal ele-

ments. The zero-trace constraint reduces the degrees of freedom

by one, proportionally affecting a fraction of matrix ele-

ments. The zero-trace constraint from (14)–(16) reduces de-

grees of freedom to degrees of freedom, proportionally

affecting a fraction ofmatrix elements.While analytical re-

sults scaled to the same variance are consistent with numerical

simulations, the variance reduction factor of requires

further study.

In the simplest case of , a zero-trace Gaussian uni-

tary ensemble can be generated numerically by three methods.

The first method is based on given by the summation (10),

for example, with . The second method is based on

a random 2 2 Hermitian matrix but with replaced by

. The third method is based on generating random 2 2

Hermitian matrix , finding its eigenvalues and , and se-

lecting those with smaller than a small number. In the

second and third methods, the elements of the matrix have

variance of 1/2. The first two methods give eigenvalues with

the same variance but the third method gives eigenvalues with

a variance 3/4 time smaller than the first two methods. In the

third method, the variance of the diagonal elements is 1/4 and
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the off-diagonal elements have variance of 1/2. The zero-trace

constraint on the eigenvalues (15) reduces the variance of the

matrix elements but the pdf maintains the same shape.

The variance reduction of the diagonal elements is due to

the zero-trace constraint (15), which selects those matrices with

smaller diagonal elements (in the general case, a factor of

smaller). The average variance among all elements is a

factor smaller, the same as the reduction factor for the

variance of the eigenvalues.

As the average variance for all matrix elements of is

given by (12), for all MMF studies in this section, and without

normalization, the variance of the GD is

(36)

with defined by (12). If the GD is characterized by its stan-

dard deviation , it is always proportional to the square root

of the number of independent MMF sections.

IV. MODAL DISPERSION IN MANY-MODE FIBERS

With a large number of modes, a Gaussian unitary ensemble

without the zero-trace constraint is described by a semicircle

distribution with radius ([35], Sec. 4.2). With the normal-

ization used in Section III, the variance of the eigenvalues is

. This semicircle law was first derived by Wigner for large

random matrices [43], [44]. The Wigner semicircle law is uni-

versally valid for many different types of large random ma-

trices [45], [46]. A Gaussian unitary ensemble, even with the

zero-trace constraint (15), should follow the semicircle distri-

bution. As an alternative to considering as a Gaussian unitary

ensemble, a more straightforward derivation using the CLT for

free random variables is given in a later part of this section.

In free probability theory, free random variables are equiv-

alent to statistically independent large random matrices [47],

[48]. The CLT for the summation of free random variables gives

the semicircle distribution [47], [49]. The matrix (10) is the

summation of many independent random matrices. The CLT

for free random variables states the following: Let

, be identically distributed independent zero-mean free

random variables with unit variance. The summation

(37)

is described by semicircle distribution with radius of two and

unit variance

(38)

as approaches infinity.

In the aforementioned theorem, when free random variables

are represented by large random matrices, the distribution of

a free random variable is equivalent to the distribution for the

eigenvalues of the random matrices. When the CLT of free

random variables is applied to given by (10), if the variance

of the zero-mean GD per section is for all sections, the

eigenvalues of are described by a semicircle distribution with

radius and variance . Equivalently, the GD of the

Fig. 4. Simulated marginal pdf of normalized GDs (ripply blue curves) com-
pared with semicircle distribution (smooth red curves) in an MMF with (a) 16,
(b) 64, and (c) 512 modes.

MMF has a semicircle distribution with variance . Note

that the normalization used in this section based on the eigen-

values of and in (37) is customary in free probability

theory. However, the normalization used in Section III is based

on the matrix elements of , similar to that in Mehta [35].

Fig. 4 compares the simulated marginal pdf of MMFs having

, and modes to the semicircle distribution. Each

MMF is comprised of sections. In each section, the

GDs are deterministic, with the first modes with a delay

of and the other modes with a delay of . The simu-

lated curves are obtained from 1 600 000, 640 000, and 102 400

eigenvalues for , and , respectively, using a step

size of 0.025 along the -axis. The normalization is

made to facilitate comparison with a semicircle distribution with

radius of 2. The model here is valid as long as the component

matrices in (10) may be modeled as free random variables [47].

In Fig. 4, the simulated distributions match the semicircle dis-

tribution well for and modes. For a fiber having
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modes, the distribution is close to a semicircle dis-

tribution, but has an obvious periodic structure with 16 peaks.

The ripples become less obvious as increases from 16 to 64 to

512. Upon close examination of the curve for , the rip-

ples seem periodic, similar to those in an MMF having

modes, but much smaller.

The semicircle distribution, describing the GDs in an MMF

with an infinite number of modes, has strict upper and lower

limits, and, thus, a strictly bounded GD spread. In designing

systems for MMF with a finite but large number of modes , it

will be sufficient to provide a GD tolerance just slightly larger

than the maximum GD spread of the semicircle distribution,

which is given by .

The GD relationship (36) remains valid when the number of

modes is vary large. With a large number of modes, the re-

lationship can be derived directly from free proba-

bility theory.

V. DISCUSSION

The scaling of modal dispersion with fiber length in an MMF

is similar to the scaling of PMD in an SMF. In an MMF shorter

than the correlation length over which the local PMs can be con-

sidered constant, the GD increases linearly with fiber length. By

contrast, in an MMF much longer than the correlation length,

the number of independent sections is large, and strong mode

coupling can be assumed. In the strong-coupling regime, a pa-

rameter describing GD per unit length may be defined as

, where is the fiber length per section, measured in

kilometers. The overall GD, if characterized by given by

(36), is equal to , where is the total fiber

length.

In practice, there are advantages of introducing strong

mode coupling in order to reduce the modal delay spread. In

direct-detection systems, this can reduce intersymbol interfer-

ence, whereas in systems using coherent detection, this can

reduce the temporal memory required in digital compensation

of modal dispersion. Recent MDM experiments [21]–[23],

performed in short spans of an MMF, were probably not in

the strong-coupling regime. Future long-distance systems are

likely to be operated in the strong-coupling regime, especially

if strong mode coupling is used to reduce the overall GD

spread. In an MMF, spatial mode coupling is governed, in part,

by mode groups [50]. Typically, coupling between modes in

different groups is weak, with coupling length as long as 25

km [6], while coupling between modes in the same group is

strong, with coupling length less than 1 km [17]. In order to

reduce the GD spread in an MMF, coupling between modes

in different groups should be enhanced. In manufacturing of

an SMF, spinning is used to reduce the polarization coupling

length below 100 m, thereby reducing the DGD due to PMD

[26]. Manufacturing processes for an MMF may perhaps be

modified to increase spatial mode coupling in order to reduce

the GD spread.

As seen in Figs. 3 and 4(a), in the marginal pdf of GD, the

number of peaks is the same as the number of modes, and the

separation betweens adjacent peaks (relative to the semicircle

radius) decreases with an increasing of number of modes. In

the absence of the zero-trace constraint (15), ripples can be ob-

served in Gaussian unitary ensembles up to at least 51 51

([35], Fig. 6.1). With a zero-trace constraint, the ripples are

larger than those without the constraint. In Fig. 4(b) with

modes, ripples are observable and seems to be very regular.

As the number of modes increases, the ripples becomes nar-

rower, similar to the Gibbs phenomenon [51], [52] for Fourier

series.

Higher order modal dispersion effects are outside the scope of

this paper. In higher order modal dispersion, the PMs and their

GDs can vary with frequency [53]. These effects are analogous

to polarization-dependent chromatic dispersion and depolariza-

tion observed in an SMF with PMD [54], [55]. In the case of an

SMF with PMD, the properties of PMD to arbitrary order de-

pend on a single parameter, which may be taken to be the GD

standard deviation. In the case of an MMF with modal disper-

sion and strong coupling, the higher order properties of modal

dispersion depend on the number of modes and a single param-

eter, which may be taken to be the GD standard deviation

given by (36), and may also depend on chromatic dispersion pa-

rameters, when they are spatial-mode-dependent.

In this paper, we have studied the distribution of GDs, but

not the impulse response of an MMF. At a single frequency,

the impulse response of a -mode fiber consists of narrow

pulses with GDs described by the distribution (16) [33], and

with weights depending on the PMs excited by the transmitter

launch conditions. Considering a modulated signal occupying

a finite bandwidth, because of higher order effects [53], those

narrow pulses broaden and may merge with each other. The

overall duration of the impulse response is described by the du-

ration of the pdf of the GD, as shown in Figs. 1–4. In a fiber

with many modes, where the pdf is the semicircle distribution

shown in Fig. 4, the impulse response duration is just .

VI. CONCLUSION

In the regime of strong mode coupling, anMMFmay bemod-

eled as the cascade ofmany independent sections, which are de-

scribed by statistically independent random matrices. The GDs

are given by the eigenvalues of Gaussian unitary ensemble with

zero-trace constraint. Marginal pdf’s of the GDs in fibers with

two to seven modes have been derived analytically. Numerical

simulations of the pdf’s are in excellent agreement with ana-

lytical results. In a fiber with many modes, the GD is shown

to follow a semicircle distribution from free probability theory.

Numerical simulations have been conducted for fibers having

, and modes to compare to the semicircle distri-

bution.
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