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Abstract

The proliferation of low-cost infrared cameras gives us

a new angle for attacking many unsolved vision problems

by leveraging a larger range of the electromagnetic spec-

trum. A first step to utilizing these images is to explore the

statistics of infrared images and compare them to the cor-

responding statistics in the visible spectrum. In this paper,

we analyze the power spectra as well as the marginal and

joint wavelet coefficient distributions of datasets of indoor

and outdoor images. We note that infrared images have no-

ticeably less texture indoors where temperatures are more

homogenous. The joint wavelet statistics also show strong

correlation between object boundaries in IR and visible im-

ages, leading to high potential for vision applications using

a combined statistical model.

1. Introduction

The statistics of natural images have been extensively

studied in recent years. The key observation being that im-

ages are not a random collection of pixel values and learning

the statistics of the data can lead to significant advances in

vision applications, as well as further our understanding of

biological vision systems.

Olshausen and Field [10] suggest a sparse representation

as an efficient coding of natural images and link it to the

design of the biological vision system. Ruderman [14] dis-

cusses the approximate scale invariance property of natural

images. Simoncelli [1] found significant dependencies of

the wavelet coefficients in natural image statistics. Huang

and Mumford [7] conducted a large scale experiment on the

statistics of natural images that allowed them to fit mathe-

matical models to some of these statistics and explain others

in terms of local image features.

This analysis has led to significant advances in the fields

of image processing and image analysis. In the field of im-

age processing, one can consider applications such as cod-

ing, restoration, texture synthesis, de-blurring, de-noising

or super-resolution [12, 16, 11], while in the field of im-

age analysis one can consider applications such as provid-

ing context for object detection [17], or image forensics [8].

There has been some work on the statistics of other im-

age representations and modalities. For example, Dong

and Atick [2] have considered the statistics of natural time-

varying images, showing that the power spectra relies non-

separably both on spatial and temporal frequencies. Weiss

[18] used a prior that assumes that illumination gives rise to

a sparse filter output and this in turn allows him to recover

both the reflectance image and the illumination images from

a sequence of natural visible images. Dror et al. [3] studied

the statistics of real-world illumination and found that they

share many properties with the statistics of natural images.

However, their power spectra differ significantly. This dif-

ference is attributed to strong localized light sources such

as sun. Huang et al. [6] studied the statistics of range im-

ages. To the best of our knowledge a study of the statistics

of infrared (IR) images has not been published to date.

In the next section we examine the image formation pro-

cess for infrared images and explain our image acquisition

process. Then we analyze the power spectra of infrared im-

ages compared to visible spectra images. Next, we examine

the marginal and joint distributions of IR datasets and con-

trast them to the visible spectrum statistics. We also exam-

ine the joint distributions between infrared wavelet coeffi-

cients and the corresponding visible coefficients. Then we

show how the marginal statistics can be re-mapped, altering

the structure and texture of images. Finally we present our

conclusions.

2. Infrared Imaging

Before we analyze the statistics of infrared images, it is

important to understand the image formation process. In

this work, when we refer to infrared, we are specifically

referring to wavelengths on the electromagnetic spectrum

from 4 to 12 microns in contrast to wavelengths in the visi-

ble spectrum, which roughly lie between 0.4 to 0.7 microns.

This infrared wavelength spectrum is often referred to as

far infrared (FIR) and we must be careful not to confuse it

with near infrared (NIR) which covers wavelengths between

0.7 to 1 micron and can be captured by most CCD arrays.

NIR exhibits significantly different properties from FIR and
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is much closer to the visible spectrum in appearance. Al-

though some literature further divides FIR into sub-spectra

[15], we make no such distinctions since our imaging device

and common thermal cameras continuously capture the en-

tire FIR spectrum.

Infrared radiosity depends on the imaged object’s tem-

perature, the object’s thermal emissivity as well as the

reflected thermal radiance from other objects or thermal

sources [9]. Several observations can be made about the

appearance of infrared images. First, thermal conduction

is prominently visible, as objects with different tempera-

tures that touch each other visibly conduct and spread out

energy at the point of contact. The relatively slow temporal

nature of this phenomenon is also apparent, e.g. hot finger-

prints remain for several seconds after the finger has left.

We also note that man-made objects generally have consis-

tent emissivity. If they are not thermal sources, their tem-

perature becomes homogenous through conduction across

the object. Second, the difference in wavelength between

the visible and infrared spectra causes dramatic changes in

transmission and reflection as electromagnetic waves in the

infrared spectrum interact with media. Infrared waves are

much more easily blocked than their visible counterparts

with all but the thinest glass sheet being impervious. In

our experiments, even clear plastic CD cases allowed no

infrared transmission, although transparent bubble wrap al-

lowed most infrared energy to pass through. Due to their

relatively long wavelength, surface roughness is proportion-

ally less significant a detractor to infrared reflection. This

becomes obvious as matte, tarmac pavement can act as a

specular reflector of infrared radiation.

In this investigation we captured data using a single axis,

multiple parameter (SAMP) camera that combined an in-

frared camera (Thermoteknix Miricle 110KS) with a visible

light camera (Basler A601fc). Figure 1 shows how the two

cameras were aligned perpendicularly with a gold dichroic

beam-splitter reflecting the IR radiation from the scene to-

wards the IR camera, while allowing the visible radiation to

be transmitted to the visible light camera. The images were

then further aligned using a manually specified homogra-

phy. The following sections compare the statistics of sets of

these image pairs. Since the cameras had different capture

resolutions we scaled all images down to 320 × 240 pixels.

While much of the previous work on image statistics has

focussed on natural scenes, infrared images tend to be more

meaningful in urban environments where there is a greater

thermal variation. Using the above acquisition system, we

captured over 400 image pairs of indoor and outdoor scenes.

We captured 70 indoor image pairs, 290 outdoor urban day-

time image pairs as well as about 30 country side daytime

image pairs and about 30 urban nighttime image pairs1.

1We will make the IR and visible image collection available online at

http://www.dgp.toronto.edu/˜nmorris/IR/
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Figure 1. SAMP Camera apparatus

In the following sections we focus on the indoor images

and the outdoor urban daytime images.

Indoors VisibleIndoors IR

Outdoors urban IR Outdoors urban Visible

Figure 2. Exemplar image pairs taken from our dataset

3. Power Spectra Analysis

In the 50’s, television engineers discovered the power

law for image power spectrum decay. It says that the spec-

tral power decays at the rate of: 1/f2−η where f is the spa-



tial frequency and η depends on the image but is generally

small. This analysis method has been applied to natural im-

ages [4, 13] and found to fit both the power spectra of both

the logarithm of image intensities as well as the raw image

intensities. We analyzed the average spatial power spectra

for each of our four datasets using both the raw intensities

and the logarithm of the intensities.

For the raw intensities, we found that, while the power

law fits most of our data well, the DC component does not

fit well. This effect is especially noticeable in the IR spec-

trum and can be explained by the relative lack of texturing

as we would expect in infrared images. Since our visible

images are strictly of urban scenes rather than natural envi-

ronments, that would also explain an increased DC compo-

nent in the visible spectrum. We found that a generalized

Laplace distribution gave a better fit for the whole power

spectrum where the power can be described as:

P(x) ∝ exp(−|x/s|α). (1)

Figure 3 shows the raw intensity spatial power spectra on

log-log axes along with the Laplace distribution fits for each

dataset. There is a small local maximum close to the high-

est frequency in the IR power spectrum. This is caused by

structured noise in our infrared imaging device and appears

in almost every image.
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Figure 3. Spatial power spectra for raw image intensities. The

dotted lines show the fitted Laplacian distributions.

We found that the power spectrum for the log of image

intensities of the visible dataset fit the power law well, but

the IR data fit was modeled more effectively by a Gaussian.

There are noticeable non-linearities at the highest and low-

est spatial frequencies that do not fit the power law (Figure

4).
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Figure 4. Spatial power spectra for log image intensities. The dot-

ted lines show the fitted Gaussian distribution for the IR power

spectrum on the left and the fitted power law for the visible spec-

trum on the right.

4. Wavelet Statistics

Wavelet coefficient statistics are a powerful tool for mea-

suring the characteristics of images. Distributions of coef-

ficients at various scales and orientations provide us with

statistical dependencies that can be leveraged in many ap-

plications [3, 12, 16]. In order to better approximate the

human visual system as in previous work [3, 6], we use the

log of the image intensities in our wavelet analysis. We

use ‘Haar’ wavelets as commonly used in the natural image

statistics literature [3, 6].

All figures of wavelet coefficient distributions show the

log probability since this reveals the non-Gaussian nature

of the distributions. All distributions shown have been nor-

malized before applying the logarithm so that the area under

the curve sums to one.

4.1. Marginal distributions

We first present the results and analysis of the marginal

wavelet distributions. Figure 5 shows a comparison of the

marginal statistics of wavelet coefficients at three scales for

the four image groups. We fit each distribution to a gen-

eralized Laplace distribution (Equation 1) as described in

[7, 16]. We estimate the parameters using least squares er-

ror as in [7]. The estimated values for the fitted Laplace

distribution parameters α and s are also shown at the top

right of each histogram. The visible spectrum distributions

fit very well to the Laplace curves as expected. The IR dis-

tributions also closely fit the Laplace distribution although

there is some discrepancy around the mean. It has been

reported [16] that natural images are generally fit with an

exponent parameter α in the range of [0.5, 0.8]. The visible



spectrum distributions tend to fit this prediction with the in-

door distribution exponents just under 0.5. We noted that IR

distribution exponent parameters tend to fall in the range of

[0.25, 0.5]. The IR distribution curves exhibit significantly

stronger kurtosis and have more predominant peaks than the

corresponding visible spectrum fits. Recall that this is con-

sistent with our observation in Section §2 that man-made

objects have homogenous emissivity and texture that would

appear in the visible spectrum does not show up in the in-

frared images. For example, indoor scenes tend to have

more homogenous temperatures since indoor air tempera-

ture is regulated and conduction reduces the temperature

variation within the scene. On the other hand, outdoor im-

ages also tend to cross a larger scale, capturing objects with

more diverse emissivity and temperature. This would sug-

gest that the marginal outdoor images statistics should have

less kurtosis and have heavier tails than indoor image dis-

tributions. However, weather conditions also play a major

role in the statistics of outdoor scenes. The relatively high

kurtosis in the outdoor marginal statistics can be attributed

to cool, overcast weather conditions during capture. This

weather would negate many of the textural effects caused

by shadows and infrared reflectance of the sun.

4.2. Joint distributions

Another set of statistical measures commonly used to ex-

amine natural images is joint distributions of wavelet coef-

ficients between orientations, scales and space. In Figure

6 the same set of joint distributions shown in [7, 3] are dis-

played alongside each other for all four sets of data (the final

distribution is omitted due to space constraints). The fig-

ure shows contour plots of the log probability for each joint

distribution. Horizontal, vertical and diagonal component

labels indicate the three primary orientation bands from the

wavelet decomposition. Each pixel in the data has a wavelet

coefficient response at each orientation and the top two rows

in Figure 6 show joint distributions of these responses for

pairs of orientations. The histogram for horizontal orien-

tation coefficients versus vertical orientation coefficients is

computed as follows:

H(Wh
l (i, j),W v

l (i, j)), (2)

where Wh
l (i, j) is the wavelet coefficient value for the hor-

izontal orientation band at scale l and pixel position (i, j)
and W v

l (i, j) is the corresponding coefficient on the verti-

cal orientation band.

We also show joint distributions of spatial relationships

where neighboring pixels are indicated as ‘brother’. For

example the distribution between the horizontal component

and its ‘left brother’ indicate a joint spatial distribution be-

tween the set of horizontal wavelet coefficients and the set

of horizontal coefficients one grid place to the left:

H(Wh
l (i, j),Wh

l (i − 1, j)). (3)

The ‘parent’ relationship indicates a joint distribution

with the corresponding coefficient one step up in scale

within the wavelet decomposition pyramid:

H(Wh
l (i, j),Wh

l+1(i, j)). (4)

The fact that the joint statistics of the visible spectrum

is not Gaussian is mirrored by the corresponding infrared

statistics with all the striking polyhedral shapes also oc-

curring in the IR distributions. Huang and Mumford [7]

show that the non-Gaussian features of the joint distribu-

tions correspond to the presence of simple geometric fea-

tures present in natural images. It is not surprising that the

same features are also present in infrared images, since ob-

ject discontinuities are generally preserved while object tex-

tures are generally not. We therefore suggest that these joint

statistical structures are caused by object shapes rather than

surface texture.

There is a noticeable difference in scale between the IR

joint distributions and the visible ones. This is caused by

the relatively small contrast between objects in the infrared

spectrum. Generally, objects have small temperature differ-

ences resulting in smaller wavelet coefficient responses than

the corresponding intensity changes in the visible spectrum

images. If the infrared images are normalized, then the scale

matches the visible images more closely. However, this in-

troduces significant noise and we have decided to present

the raw image data.

4.3. Joint infrared and visible statistics

Finally we present results of wavelet statistics of the IR

coefficients directly compared to the aligned coefficients in

the visible spectrum (Figure 7). We computed these statis-

tics using a subset of 141 of the outdoor urban images.

These distributions take the following form:

H(W IR
l (i, j),WV is

l (i, j)), (5)

where W IR
l (i, j) is the wavelet coefficient in the IR im-

age and WV is
l (i, j) is the corresponding coefficient at the

same image position in the paired visible spectrum image.

The figure, as in the previous section, shows joint distribu-

tions across different orientation bands, scales and also in

space. The bottom row also shows the distribution between

the IR and visible coefficients for the same orientation and

scale. The IR axis has been scaled to compensate for the

reduced contrast and to facilitate comparison between dis-

tributions. The plots show that there is a high correlation

between wavelet coefficients in the direct orientation com-

parisons as well as the inter-orientation, spatial and scale

distributions.
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Figure 5. Marginal log distributions of horizontal wavelet coefficients for a) indoor infrared images, b) indoor visible, c) outdoor urban

infrared and d) outdoor visible. Three scales of coefficients from coarsest (top) to finest (bottom) are shown along with the corresponding

fitted general Laplacian distributions. The estimated parameters for the distributions are shown in order at the top right of each histogram.

5. Wavelet distribution re-mapping

One of the advantages of working with the wavelet statis-

tics of an image is that it becomes relatively easy to remap

the image to a new set of distributions using a pyramid type

scheme as in [5]. For instance, this allows us to map a

lightly-tailed distribution to a heavily-tailed one. In order to

do the re-mapping we need to perform the following steps:

1. Decompose the image into its wavelet components

2. For each component, W , at each pyramid level:

• Create a histogram, H1, of the wavelet coeffi-

cients

• Create the CDF, C1, from H1

• For a given target histogram, H2, create another

CDF, C2

• For each coefficient W (j) at image position j:

– Find P(W (j)) from C1(W (j))

– The new coefficient value W ′(j) =
C−1

2 (P(W (j))

3. Reconstruct the new image using the modified wavelet

components W ′

Instead of a target set of histograms H2, we can fit H1

to our distribution model (1) and then remap to an adjusted

version of H1. This is done by fitting the general Laplace

distribution parameters α and s to H1, then rescaling them

to obtain a new distribution H′. Then we can merely replace

H2 with H′ and continue to step 2 of the above algorithm.

Figure 8 illustrates the results of this modified version of our

re-mapping algorithm on a single infrared image. It shows

the re-mapped images after the fitted distribution parame-

ters α and s have been rescaled by rα and rs. The α pa-

rameter adjusts the peakiness of the distribution while the s
parameter provides a more global scaling of the curve. The

effect of a heavy tailed distribution can clearly be seen in

this figure, causing the image details to stand out.

6. Discussion and Conclusions

We have investigated the statistics of IR images and

made a several observations. We found that IR power spec-

tra, as opposed to visible image power spectra, are better

fitted with a generalized Laplace curve. This is primarily

caused by the lack of texture in IR images. As expected,

we found that our analysis of the marginal wavelet statistics

confirmed this observation. It was also evident that IR im-

ages are less useful in scenes where temperature variation

is low. This is often true for indoor scenes and can be true

for outdoor scenes where weather may be a factor. On the

other hand, the joint statistics of the wavelet coefficients are

very similar to those reported for visible images, albeit on a

smaller scale, probably due to lower contrast in IR images.

The close matching of joint statistics to the visible spectrum

suggests that IR images do indeed capture the shape of ob-

jects while discarding much of their texture. This suggest

that IR images may closely resemble intrinsic images and

provide a computationally free method for obtaining imme-

diate intrinsic images for use with other vision algorithms.

The results from our investigation into the joint statistics of

visible and IR images also highlight the strong correlation

between object boundaries in IR and visible images.

There appears to be high potential for the application

of IR image statistics, especially when combined with an

aligned visible light camera. The absence of object texture

in IR images should improve image de-noising algorithms

and enhance compression. Supplementing the visible spec-

trum with the additional statistical information in the in-

frared spectrum should also benefit statistics-based segmen-

tation and categorization algorithms.
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Figure 6. Joint log distributions of wavelet coefficients
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