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In describing the first-order properties of laser speckle under polarized illumination conditions, it is almost an
article of faith that the contrast is unity. In many processing schemes, however, the contrast defined as the
quotient of the standard deviation and the mean is calculated over a localized spatial region. In such cases, this
local contrast displays a distribution of values that can depart substantially from unity. Properties of this dis-
tribution depend on details of the data acquisition and on the size of the local neighborhood over which the
contrast is calculated. We demonstrate that this local contrast can be characterized in terms of a log-normal
distribution. Further, we show that the two defining parameters of this model can in turn be expressed in
terms of the minimum speckle size and the extent of the local neighborhood. Performance of the model is il-
lustrated with some typical optical coherence tomography data. © 2007 Optical Society of America

OCIS codes: 030.6140, 110.4500, 110.6150, 120.3890, 120.4290, 120.6150.

1. INTRODUCTION

For a sum of complex field amplitudes with uniformly dis-
tributed phases, Goodman [1,2] and others have shown
that the intensity, I, displays a negative exponential prob-
ability density function. As such, the contrast commonly
defined as

c =
�I

�I

, �1�

is identically equal to unity. In practical applications, e.g.,
laser speckle imaging (LSI) [3–6], the contrast is calcu-
lated [in the manner of Eq. (1)] over a small neighborhood
of p�p pixels. We call this the local speckle contrast. Spe-
cifically in LSI, any motion of the speckle pattern during
the image acquisition results in a decrease in contrast.
Subsequent image segmentation between moving versus
stationary, or between regions moving at different veloci-
ties, is performed on the basis of differential contrast.
Typically, the statistical variation of the local contrast is
ignored, and the choice of the size of the local neighbor-
hood is made in an ad hoc fashion [7]. Herein we demon-
strate that this local speckle contrast can display values
substantially exceeding unity. Further, the local contrast
can also exhibit very low values. This should come as no
surprise since the theoretical value is based on an ana-
lytic distribution that is approached only in the limit of a
very large number of samples. In this study we quantify
these statistical variations using a series of synthetic
speckle patterns.

2. THEORY

A spatially band limited speckle pattern can be synthe-
sized easily by the following algorithm (see Fig. 1): fill a
circular region of diameter D of a square matrix of dimen-
sion L�L with complex numbers of unity amplitude and

with phases uniformly distributed over �−� ,��. Upon
Fourier transforming of the L�L array, and multiplying
point-by-point by the complex conjugate, one arrives at a
synthetic speckle pattern with exponential probability
distribution. The position of the circular region within the
larger array is irrelevant as the Fourier shift theorem at-
tests. The ratio of L to D sets the minimum size of the
speckles. For example if D=L, the Nyquist criterion is
met and the smallest speckle is two pixels wide. A speckle
pattern generated by this procedure for L /D=2 is shown
in Fig. 2. For this array of dimension 256�256, the cal-
culated contrast is 1.0013. The estimated probability den-
sity function (PDF) along with the exponential distribu-
tion having the same mean is shown in Fig. 3.

The reason for interest in simulating a band limited
speckle pattern is that, in a variety of subsequent process-
ing approaches, one desires that the implicit sampling by
the pixels meets the Nyquist criterion, or in a measure-
ment that the minimum speckle size equals the dimen-

Fig. 1. Illustration of a synthetic speckle algorithm.
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sion of the detector [8]. In an experimental situation, vari-
ous geometrical factors can be manipulated to meet this
requirement [1].

Now suppose that we calculate the local speckle con-
trast over a small local neighborhood, say of 7�7 pixels.
The resulting local contrast image is shown in Fig. 4. One
notes that the values span the interval (0.234, 1.98). The
corresponding contrast probability distribution is shown
in Fig. 5. Also shown in this figure is the log-normal dis-
tribution defined in terms of the first two moments of the
contrast.

fC�c� =
1

�2�c ln �g

exp�−
ln2�c/cm�

2 ln2 �g
�;

E�Cv� = cm
v exp�v2

2
ln2 �g� , �2�

where cm is the median (not the mean or the mode) of the
distribution and �g is the dimensionless width parameter
(not the standard deviation). Note that the normalized
variation about the mean contrast (the contrast of the
contrast) depends only on the width parameter,

�C

�C

= �exp�ln2 �g� − 1	1/2. �3�

Explicitly, our calculation of local contrast is the quo-
tient of the sample statistics for the mean and standard
deviation:

C =
S

M
,

M =
1

Ns


i=1

Ns

Ii,

S2 =
1

Ns − 1

i=1

Ns

�Ii − M�2. �4�

It is easily shown that M and S are unbiased estimators
[9], and in the limit of a large number of samples, one
would expect convergence to the quotient of the distribu-
tion mean and standard deviation,

S

M
→

Ns→�

�

�
, �5�

which for an exponential distribution is unity. The calcu-
lations of local contrast as described in Eq. (4) are per-
formed easily using the following vectorized MATLAB com-
mands:

% img is the 2-D speckle image to be filtered

kernel = ones(5,5);% These dimensions are

% arbitrary

Nk = sum(kernel(:));

mu_img = filter2(kernel,img,�valid’)/Nk;

img_sq = filter2(kernel,img.^2, �valid’;

sig_img=sqrt((img_sq-Nk*mu_img.^2)/(Nk-1));
C = sig_img./mu_img;% local contrast

Note that the above is, in effect, a convolutional filtering
operation with a nonlinear kernel.

In the preceding equations, and in the subsequent re-
sults, we denote random variables with upper case sym-
bols and their realizations with the corresponding lower
case symbols. As an example, we use C to denote the con-
trast random variable and c to denote a particular value
(i.e., a number) that the contrast takes on.

3. RESULTS

Ordinarily in establishing the PDF of a sample statistic,
one would assume statistically independent (SI) draws
from the underlying random variable, in this case the in-
tensity, Ii. In our case, however, these draws are not inde-
pendent as the low-pass speckle pattern ensures that ad-
jacent pixels are not SI. In fact, it is easily demonstrated

Fig. 3. (Color online) PDF of example speckle pattern and expo-
nential distribution with same mean.

Fig. 2. Example of a synthetic speckle pattern.

10 J. Opt. Soc. Am. A/Vol. 25, No. 1 /January 2008 Duncan et al.



that the width of the autocorrelation function of a speckle
pattern is on the order of the size of the smallest speckle.
Moreover, our situation guarantees that there will be a
speckle size dependence on the statistics of the local con-
trast.

Rather than attempting a theoretical solution to this
problem, we take an empirical approach. Specifically, for a
series of speckle pattern realizations, we inspect the sta-
tistics of the local contrast as calculated over various
neighborhood sizes. From a practical standpoint, the size
of these local neighborhoods runs from a minimum of nine
(for a 3�3 neighborhood) on up. As such, one could rea-
sonably invoke the central limit theorem, and in the case
of a non-negative statistic, the log-normal distribution.

We show in the following two figures the results for SI
draws from an exponential distribution. These are the re-

sults expected in the limit of no speckle size dependence.
Figure 6 shows the median contrast value as a function of
the number of samples in a square neighborhood, and Fig.
7 shows the corresponding width parameter. Also shown
in these figures are the least squares power law fits.

We note in passing that the normalized variation about
the mean contrast for the power law fit in Fig. 7, in the
limit of a large number of samples, is [from Eq. (3)]

�C

�C

� 0.86Ns
−0.46, �6�

which is on the order of 1/�Ns as one would expect for in-
dependent samples.

Repeating this process for speckle realizations at one,
two, and three times the Nyquist sampling rate gives the

Fig. 4. (Color online) Speckle contrast computed over a 7�7 pixel region.

Fig. 5. (Color online) PDF of local contrast and log-normal dis-
tribution having same mean and standard deviation (not a fit).

Fig. 6. (Color online) Median parameter of contrast distribution
for SI draws from an exponential distribution.
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results shown in Fig. 8. As suggested by the results for SI
draws from an exponential distribution, the model for
each of the fit curves in Fig. 8 is

cm = 1 − �Ns
�. �7�

Through a bit of trial and error we find that a model that
incorporates neighborhood and speckle sizes is of the form

cm = 1 − ��p/Ns�
1/�p, �8�

where p is the number of pixels in the smallest speckle. A
Monte Carlo study based on 50 speckle pattern realiza-
tions and inspecting a variety of neighborhood sizes yields
the two-parameter model,

cm = 1 − 0.734�p/Ns�
1/�p. �9�

Repeating the above process for the width parameter
gives the results shown in Fig. 9. Again, as suggested by
the results for SI draws from an exponential distribution,
the model incorporated in each of these fits is

�g = 1 + �Ns
�. �10�

As in the results for the median, the exponent, �, dis-
plays no appreciable variation with the number of pixels,
p, in the smallest speckle, while the constant parameter,
�, has a weak dependence on p. Monte Carlo simulations
suggest a good two-parameter model to be

�g = 1 + 0.454p0.672Ns
−0.373. �11�

In many coherent imaging modalities, the intensity
variations display a Rayleigh distribution instead of an
exponential. Such is the case for laser speckle with unpo-
larized illumination [1]. In this case the theoretical con-
trast is 1/�2 as one would expect for the variance reduc-
tion by the number of independent samples in Eq. (2). The
previous approach is easily adapted to account for such a
situation. Resulting global models for the median and
width parameters are the following:

cm = asymptote�1 − 0.769�p/Ns�
1.09/�p	,

�g = 1 + 0.457p0.697Ns
−0.382, �12�

where asymptote=1 and 1/�2, respectively, for exponen-
tial and gamma intensity distributions (e.g., polarized
and unpolarized speckle). The global model for the width
parameter is within ±2% for all cases inspected, and the
model for the median parameter is within +3% and −13%.
This 13% model underestimate for the median parameter
is observed for the smallest local regions �3�3�, but for
larger local regions, the errors are within ±3%. Note that
the numerical values in Eq. (13) differ slightly from the
corresponding values in Eqs. (9) and (11) because of the
global fit for both polarized and unpolarized speckle pat-
terns.

Up to this point, there has been no consideration of any
additive noise that may accompany the imagery. This is
easily accounted for in a practical application with the

Fig. 7. (Color online) Width parameter of contrast distribution
for independent draws from an exponential distribution.

Fig. 8. (Color online) Median parameter of contrast distribution
as a function of local neighborhood and speckle size. Dashed
curve denoted “exponential” is the result from Fig. 6, shown here
for comparison.

Fig. 9. (Color online) Width parameter for contrast distribution
as a function of local neighborhood and speckle size. Dashed
curve denoted “exponential” is the result from Fig. 7, shown here
for comparison.
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addition of a multiplicative factor on the median param-
eter of

F =
Cempirical

Ctheoretical

, �13�

where the denominator is the theoretical global contrast,
1, or 1/�2, for polarized or unpolarized speckle, respec-
tively, and the numerator is the calculated global contrast
of the image.

Equations (12) and (13) are the principal results of this
study. They give the relationship between the parameters
of the local contrast PDF as a function of the size of the
neighborhood over which the contrast is estimated and

the size of the speckles with respect to the pixels. With
these scaling laws, it is possible to optimize an image seg-
mentation that is based on differential contrast. Of course
part of this optimization process involves consideration of
the trade-off between resolution and neighborhood size.
These results provide a logical means of specifying the
speckle size for the data acquisition, a local neighborhood
size for speckle contrast estimation, and the thresholds to
be used in the image segmentation step. Next we illus-
trate these concepts with a particular example.

As an example of some typical speckle imagery, we
present in Fig. 10 a single frame of an optical coherence
tomography (OCT) movie of an embryonic chick heart.
The gray level PDF is a Rayleigh distribution as one

Fig. 10. Single frame of OCT movie of a chick embryo.

Fig. 11. (Color online) Local contrast computed over a 7�7 neighborhood.
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would expect for an unpolarized speckle. The global con-
trast of the entire image is found to be 0.627. This value
reflects not only the structure due to speckle, but also the
structure due to the differential scatter within the em-
bryo. A more realistic value for the global contrast due to
speckle can be calculated by inspection of the lower por-
tion of the image displaying no image structure; the re-
sulting value of the multiplicative constant [Eq. (13)] is
F=0.517. Shown in Fig. 11 is the local contrast computed
over a 7�7 region. The PDF of the speckle was found to
have a median value of 0.206 and a width parameter
value of 1.42. Inspection of the spatial power spectral den-
sity of this image shows that the smallest speckle is ap-
proximately 8.5 pixels. Equations (12) predict median and
width parameters of 0.220 and 1.46, respectively, which
are in good agreement with the observed parameters.

4. DISCUSSION AND CONCLUSIONS

Through the use of a Monte Carlo simulation we have
demonstrated that the PDF of local contrast displays a
log-normal behavior. This analytic form depends on me-
dian and width parameters, which we parameterized on
the minimum speckle size, and the number of elements in
the local neighborhood over which the contrast is calcu-
lated. Next, we discuss the conceptual application of this
model to segmentation of an image.

Suppose we have a speckle image as illustrated in Fig.
12. By “speckle image” we mean one acquired by means of
some coherent imaging modality. This may be an image
that has been acquired with an integration time that is
long compared to the motion of the blood within the ves-
sels. As a result, the vessel displays a lower speckle con-
trast than that of the background. Further suppose that
we wish to segment this image into two categories, vessel
and background. It makes sense to base this segmenta-
tion on the local speckle contrast. The respective speckle
contrast distributions may be as illustrated in Fig. 13.
From this illustration, it seems obvious what the segmen-
tation threshold should be. However, the subject often oc-
cupies a small portion of the image while the majority is
background. In such a case the net speckle contrast dis-
tribution, for a subject occupying 20% of the image, might
look like that shown in Fig. 14. In this case it is not at all
obvious what to choose for the threshold. A parametric
model of the distribution of the background speckle con-

trast, however, allows an easy choice of such a threshold.
Moreover, this model for the median and width param-
eters allows one to choose the parameters of the data ac-
quisition (minimum speckle size), and processing (local
neighborhood size) to precisely control the properties of
the background contrast PDF.

We view this image segmentation step to be the precur-
sor to many problems in which relative motion is to be es-
timated, for example in LSI [also known as laser speckle
contrast analysis (LSCA), or laser speckle spatial contrast
analysis (LSSCA)], or its many variants such as laser
speckle temporal contrast analysis (LSTCA) [10], or
speckle-visibility spectroscopy [8]. Note that Bandyo-
padhyay et al. [8] correct a long-standing error in the ex-
pression for the temporally integrated contrast that
seems to date to Fercher and Briers [11] and point out
that the assumption of a Lorentzian profile is strictly
valid only for Brownian motion.

Once this segmentation step is accomplished, a more
detailed analysis can be performed of the statistical varia-
tion that takes into consideration the temporal [12] as
well as the spatial statistics of the speckle pattern. In this
subsequent analysis step, a statistical description of con-

Fig. 12. Image to be segmented.

Fig. 13. (Color online) Background and subject contrast PDFs.

Fig. 14. (Color online) Global contrast distribution compared to
that of background.
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trast that takes into consideration both the temporal and
spatial variations can be useful. In such a spatiotemporal
case, the local speckle contrast is easily calculated with a
simple generalization of the previously noted vectorized
MATLAB commands:

% cube is the 3-D spatio-temporal speckle

image cube to be filtered

%

Ns = 3;% spatial dimension of region of

% interest

Nt = 15;% temporal dimension of region of

% interest

kernel = ones(Ns,Ns,Nt);

Nk = sum(kernel(:));

mu_cube = imfilter(cube,kernel)/Nk;

cube_sq = imfilter(cube.^2,kernel);
sig_cube=sqrt((cube_sq-Nk*mu_cube.^2)/(Nk-1));
C = sig_cube./mu_cube;

Note that the models discussed herein describe the spa-
tial contrast of a single speckle image while the comple-
mentary work described in Kirkpatrick et al. [12] deals
strictly with temporal contrast. Ongoing efforts are di-
rected at development of a compressive statistical model
of contrast that accounts for both the temporal and spa-
tial variation.
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