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Abstract—The statistical distribution of negative bias temper-
ature instability (NBTI) in deca-nanometer p-channel FETs is
discussed. An exponential distribution of threshold voltage shifts
due to a single charge trapped in the gate oxide is observed,
resulting in single-charge shifts exceeding 30 mV in some of
the studied 35-nm-long and 90-nm-wide devices. The exponential
distribution is justified with a simple channel percolation model.
Combined with the assumption of the Poisson-distributed number
of trapped gate oxide charges, an analytical description of the total
NBTI threshold voltage shift distribution is derived. This allows,
among other things, linking its first two moments with the average
number of defects per device, which is found < 10 in the studied
devices.

Index Terms—MOSFETs, negative bias temperature instability
(NBTI), reliability, variability.

I. INTRODUCTION

A S CMOS devices scale toward atomic dimensions, device
parameters become statistically distributed. Similarly, pa-

rameter shifts during device operation, once studied in terms of
the average value only, will have to be described in terms of
their probability density function (PDF) or cumulative density
function (CDF).

The statistical aspects of the negative bias temperature in-
stability (NBTI), which is a critical reliability issue in mod-
ern CMOS technologies, have been already investigated in
downscaled devices [1]–[4]. The threshold voltage shift ΔVth

variation following NBT stress has been described analytically
by Skellam’s distribution [1], [2] or calculated in computation-
ally intensive atomistic device simulations [3]. In this letter,
we show that the NBTI ΔVth distribution can be described
analytically in an intuitive and compact manner if two simple
assumptions are considered: First, much like in the case of
random telegraph noise (RTN) [5]–[7], we observe the dis-
tribution of ΔVth due to individual discharging events to be
exponentially distributed. This distribution is confirmed by a
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Fig. 1. Cumulative distribution of ΔVth for 72 pFETs following stress and
relaxation at indicated times, shown in a Weibull plot. With (◦ → •) increasing
tstress, the average 〈ΔVth〉 increases, while the fraction of devices with
negligible ΔVth decreases. The opposite trends are observed during (• → Δ)
relaxation following the longest stress.

simplified channel percolation model [8]. Second, the number
of defects in each device is Poisson distributed [1]–[4]. We
find that, on average, less than ten oxide-trapped charges are
responsible for NBTI in our devices and stress conditions.

II. EXPERIMENTAL

pFETs with metallurgic length L = 35 nm, width W =
90 nm, and HfO2 dielectrics with EOT = 0.8 nm were used.
To account for the considerable variability in these aggres-
sively scaled devices, each DUT was stressed at VG 1.2 V
below its initial threshold voltage Vth0 using the extended
measure–stress–measure sequence (T = 125 ◦C) [4]. The re-
sulting ΔVth was found to be uncorrelated with the initial Vth0,
confirming that the NBTI mechanism is decoupled from the
sources of the Vth0 variation and can be studied separately.

III. RESULTS AND DISCUSSION

The distribution of ΔVth following NBTI stress at several
stress and relaxation times is shown in Fig. 1. As expected,
the mean of the distribution increases with the stress. Perhaps
surprisingly, Fig. 1 also shows that a fraction of devices exists
with negligible ΔVth ≤∼ 1 mV even after the longest stress.
As will become apparent, this is a direct consequence of the two
assumptions given before. The opposite trends are observed in
Fig. 1 when the devices are left to relax after the longest stress.

0741-3106/$26.00 © 2010 IEEE

Authorized licensed use limited to: Universitatsbibliothek der TU Wien. Downloaded on July 06,2010 at 15:34:33 UTC from IEEE Xplore.  Restrictions apply. 



412 IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 5, MAY 2010

Fig. 2. Histograms of NBTI transient step heights following two stress times
for 72 pFETs show an exponential distribution (1). (Inset) Example of two
NBTI relaxation transients corresponding to the same stress times. Individual
steps, as determined by the step-detection algorithm, are delineated. Only down
steps, overwhelmingly prevalent at trelax < 102 s, are counted.

An example of the NBTI relaxation transients collected on
one device is shown in the inset of Fig. 2. As already reported
[2], [4], abrupt ΔVth steps caused by single-hole discharge
events are visible in the transients. The down steps larger than
1 mV were detected in relaxation traces in all measured pFETs,
and a histogram of the step heights was constructed. The
histogram in Fig. 2 demonstrates that these NBTI relaxation
steps are exponentially distributed, with their PDF being

f1(ΔVth, η) =
1
η

e−
ΔVth

η (1)

where η is the mean ΔVth value for a single charge. The vari-
ance of this distribution is σ2 = η2. The CDF corresponding to
(1) is then

F1(ΔVth, η) = 1 − e−
ΔVth

η . (2)

The average Vth shift η corresponding to a single carrier
discharge is 4.75 ± 0.3 mV in our devices, with several steps
in Fig. 2 exceeding 30 mV(!). Note that a simple charge sheet
approximation predicts ΔVth of less than 2 mV. The observed
ΔVth values are significantly larger than those reported for
NBTI earlier [2], [4]. As will be discussed hereinafter, the cause
lies in the deeply scaled dimensions of the pFETs used.

The exponential distribution of single-charge ΔVth can be
understood if the nonuniformities in the pFET channel due to
random dopant fluctuations (RDFs) are considered [5]–[8]. The
threshold voltage of such a FET corresponds to carrier energy
sufficient to generate a conduction (percolation) path in the
random dopant potential between source and drain. To zeroth
order, depending on the position of the NBTI-stress-generated
oxide charge, the conduction path could be either unaffected or
obstructed by the new charged defect. In the latter case, the drop
in the current has to be compensated by an increase of the gate
voltage, resulting in the observed ΔVth.

The essence of this process can be qualitatively captured
in a simplified channel percolation model without the need
of a full device simulation with RDF [3], [7]. In the model
(inset of Fig. 3), a mesh of “elementary” FETs with random
Vth’s, representing variations in the local potential, is set up to
represent the channel of our pFETs. For the sake of simplicity, a

Fig. 3. Cumulative ΔVth distributions generated for an increasing number
of gate oxide defects n by the simplified channel percolation model shown
schematically in the inset. For a single-charged defect (n = 1), the model well
reproduces the observed exponential distribution from Fig. 2, now plotted as a
CDF in the inset.

uniform distribution of the random “elementary” Vth’s (voltage
source in series with gate) is used, and short-channel effects
are not considered. A script is used to generate 400 instances
of the randomized mesh, to call SPICE to solve them, and to
extract the Vth0’s of the simulated pFETs. The resulting Vth0’s
are normally distributed, and their variance scales reciprocally
with the FET area [8].

A number n of “charged defects” are then inserted, each rep-
resented by an additional Vth shift of one random “elementary”
FET in the netlist, and a new Vth is calculated, resulting in
ΔVth for each instance. For a single additional charged defect,
the simplified model shows the ΔVth distribution to be Weibull
distributed with β = 0.8 for a range of dimensions of the chan-
nel mesh (Fig. 3). This confirms that the previously described
process can be responsible for the observed exponential distri-
bution (i.e., Weibull with β = 1; inset of Fig. 3) of step heights.
We also note that the exponential distribution of the step heights
has been repeatedly reported for RTN amplitudes [5]–[7].

The simplified model predicts [8] that η scales inversely with
both W and L, i.e., the smaller the device, the larger the steps,
thus explaining the large observed value of η. A more thorough
discussion of the dependence of η on W , L, EOT, and channel
doping in the framework of RTN is given in [7], which infers
η ∼ L−1/2 for short devices.

The simplified model also predicts the total ΔVth distri-
bution for the number of defects n > 1 (Fig. 3). Since the
subsequent charge lateral locations are uncorrelated, the overall
ΔVth distribution can be readily expressed as a convolution of
individual exponential distributions (1), and the PDF and CDF
are respectively described by

fn(ΔVth, η) =
e−

ΔVth
η

(n − 1)!
ΔV n−1

th

ηn
(3)

Fn(ΔVth, η) = 1 − Γ(n,ΔVth/η)
(n − 1)!

. (4)

The CDF in (4) well describes the result in Fig. 3 for β = 1.
An actual population of stressed devices will consist of

devices with a different number n of oxide defects in each
device. That number will be Poisson distributed [1]–[4]. The
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Fig. 4. Equation (6) for several values of the (lines) average number defects
N compared with (symbols) a Monte Carlo calculation with 1000 samples.
(a) Weibull plot emphasizes the fraction of devices with ΔVth ∼ 0 V; cf. Fig. 1.
(b) Same results in a probit plot, as shown, for example, in [1]–[3].

total ΔVth distribution can be therefore obtained by summing
the distributions Fn weighted by the Poisson probability

PN (n) =
e−NNn

n!
. (5)

In (5), N is the mean number of defects in the FET gate oxide
and is related to the oxide trap (surface) density Not as N =
WLNot (note that N is not an integer). This results in a CDF
given by

FN (ΔVth, η) =
∞∑

n=1

e−NNn

n!
Fn(ΔVth, η). (6)

The corresponding PDF is

fN (ΔVth, η)=e−N

[
δ(ΔVth)+N

e−
ΔVth

η

η
0F1

(
2;N

ΔVth

η

)]
(7)

where 0F1(2;x) is the hypergeometric function. The Dirac
δ(ΔVth) term represents the fraction of devices with 0-V shift
[6], which decreases with increasing N .

The CDF of (6) is shown in Fig. 4(a) for several values of
N . We can see that it has the same properties as the distribu-
tions obtained on the limited population in Fig. 1; specifically,
the fraction of devices showing negligible ΔVth varies with
〈ΔVth〉. For completeness, the CDF is also compared with
a simple 1000-sample Monte Carlo calculation assuming the
following: 1) exponentially distributed individual ΔVth steps
and 2) Poisson distributed in number. Fig. 4(b) then shows the
same data in a probit plot, such as that used in [1]–[3].

The mean of the previously derived distribution is

〈ΔVth〉 = Nη (8)

i.e., it should be independent of FET gate area WL provided
that N and η are directly and inversely proportional to WL,
respectively. The variance of the distribution is then

σ2 = 2Nη2 (9)

i.e., it increases with a decreasing gate area.
With the value of η extracted in Fig. 2, we can use (8) to

convert 〈ΔVth〉 to the average number of trapped defects N . In
our devices, N increases from 2.6 (tstress = 0.24 s; Fig. 1) to
6.9 (tstress = 1900 s) and then decreases to 3.4 (trelax = 10 s).
These values correspond to the effective trap densities of 1 −
2 × 1011 cm−2, typically observed for NBTI in large devices.

Finally, we note that obtaining the value of η as in Fig. 2
could be rather laborious. However, (8) and (9) allow us to
express both N and η in terms of 〈ΔVth〉 and σ2, i.e., the first
two moments of the measured NBTI distributions. This way,
we independently obtain N , increasing from 1.9 to 4.6 with
stress, and η, varying between 7 and 9 mV. For the limited
population of devices measured, these values are very close
to those obtained directly by counting individual ΔVth step
heights in Fig. 2.

IV. CONCLUSION

We have laid out the two main causes of the statistical dis-
tribution of NBTI in deeply scaled MOSFETs. The analytical
description derived for this distribution should prove useful for
both reliability data analysis and simulations of deeply scaled
CMOS circuitry.
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