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Statistics of radiation at Josephson parametric resonance
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Motivated by recent experiments, we study theoretically the full counting statistics of radiation emitted below
the threshold of parametric resonance in a Josephson-junction circuit. In contrast to most optical systems, a
significant part of emitted radiation can be collected and converted to an output signal. This permits studying
the correlations of the radiation. To quantify the correlations, we derive a closed expression for full counting
statistics in the limit of long measurement times. We demonstrate that the statistics can be interpreted in terms of
uncorrelated bursts, each encompassing 2N photons; this accounts for the bunching of the photon pairs produced
in the course of the parametric resonance. We present the details of the burst rates. In addition, we study the time
correlations within the bursts and discuss experimental signatures of the statistics deriving the frequency-resolved
cross-correlations.
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I. INTRODUCTION

Parametric resonance1 is one of the most fundamental and
frequently applied nonlinear phenomena. If a nonlinear oscil-
lator with the resonant frequency �0 is ac driven at frequency
2� � 2�0, a coherent resonant response at frequency �

emerges provided the driving amplitude exceeds an instability
threshold set by the nonlinear parameters of the oscillator.
While the coherent response is absent below the threshold,
the parametric resonance is manifested there by enhanced
fluctuations with frequencies close to �. In the quantum realm
(h̄� � kBT , with T the temperature), these fluctuations can be
regarded as an emission of radiation. An elementary radiation
event is an emission of a pair of photons of the frequency
�� caused by absorption of a single photon of the frequency
2�. In quantum optics, the corresponding phenomenon is
called down-conversion2 since a single photon is converted
into two photons. The down-conversion is a base of optical
quantum-information applications.3 The phenomenon has
been employed to produce squeezed states of light4 and pairs
of quantum-entangled photons.5

It seems natural to assume that the statistics of the radiation
is that of uncorrelated elementary events, each event being
the emission of a correlated or entangled pair. In most optical
experiments, this assumption is correct and practical. However,
it relies on the fact that only a minor fraction of emitted pairs is
actually detected. Detected events are separated by large time
intervals and thus do not show any correlation. Recently, a set
of pioneering experiments6 has advanced quantum nonlinear
optics into the microwave frequency range. Thereby, atoms
are replaced by superconducting qubits made using Josephson
junctions, and the radiation is confined to transmission lines
and electrical oscillators. The latter represents a large technical
advantage in comparison with an optical experiment due to
the fact that the radiation is not lost and concentrated. This
enhances the nonlinearities of the system.

Very recently, accurate measurements of the radiation
emitted by a dc voltage-biased Josephson junction embedded
in a microwave resonator have been reported.7 The Josephson
generation frequency ωJ = 2eV/h̄ can be tuned to twice the
resonant frequency, fulfilling the conditions of parametric

resonance. Importantly, up to 50% of the emitted radiation can
be detected and the fluctuations of the detector signal can be
quantified as well.8 This motivated us to study the statistics of
the radiation in this setup. The full photon counting statistics of
the degenerate optical parametric oscillator has been addressed
in Ref. 9 for a specific case when the driving frequency
is precisely 2�0. Since the observation of non-Poissonian
features of these statistics requires collection efficiency not
achievable in optical setups, this work has not attracted the
attention it deserves.

Let us note that the measurements of statistics do not require
the detector to be an actual counter giving the output signal
in terms of discrete numbers of counts. While such counters
are readily available for optical photons, they are very hard
to realize for the microwave frequency range. Fortunately,
a continuous detector output would suffice. Any measuring
device that produces an output signal that is proportional
to the intensity of the radiation in a certain time and
frequency window can be implemented to quantify cumulants
of the radiation intensity fluctuations and thereby characterize
the statistics and experimentally check the effects predicted
in the manuscript. One can also think of threshold detectors
that produce a signal when the intensity averaged over a time
interval exceeds the threshold value. Such detectors can be
implemented to quantify large and therefore less probable
fluctuations of the radiation intensity that are directly related
to the full counting statistics (FCS).

In this paper, we revisit the FCS of radiation below the in-
stability threshold, bringing this to the context of the Josephson
circuit. This regime is interesting since, despite the fact that the
field correlations are entirely Gaussian under these conditions,
the statistics are highly nontrivial. We restrict our attention to
FCS in the limit of the long measurement times. We recover
the results of Ref. 9 in a different conceptual framework that is
directly based on the Keldysh-action treatment of dissipative
Josephson dynamics. We extend the results to the case of an
arbitrary mismatch between driving frequency and 2�0. We
provide an interpretation of the statistics. In this interpretation,
an elementary event is a radiation burst that encompasses
correlated emission of N pairs, rather than an emission of
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a single pair. This is a manifestation of photon bunching.
We outline the similarities with the results10concerning the
bunching in a single-photon regime. The rate of N burst
does not diverge upon approaching the threshold. However,
larger N are favored closer to the threshold. This results in
a divergence of the average radiation intensity and its higher
moments. We support this interpretation by investigating time
correlations of the emission events. Further, we quantify the
frequency-resolved fluctuations of the radiation. The corre-
lations of the spectral-resolved intensity permit a relatively
easy experimental observation and we present several relevant
formulas to facilitate those.

The structure of the paper is as follows. We describe the
setup in Sec. II. We discuss the Keldysh action of the setup
and introduce the counting field required for computing the
statistics in Sec. III. We evaluate the FCS in Sec. IV and
present the results for the photon Fano factor and big deviations
from the equilibrium. In Sec. V we give the interpretation in
terms of bursts computing the partial rates of corresponding
2k-photon processes. We discuss two limiting cases of the
FCS described in Sec. VI. We analyze the time-dependent
fluctuations of radiation intensity in Sec. VII making use of
the Keldysh propagator of the fields. In Sec. VIII we discuss the
experimental significance of the frequency-resolved intensity
correlations and quantify those. We conclude in Sec. IX and
give details of the field propagator in the Appendix.

II. SETUP

We concentrate on a setup similar to Ref. 7. Mainly,
it comprises a Josephson junction biased by a dc voltage
source that is connected to a high-quality (that is, quality
factor Q � 1) microwave resonator (Fig. 1). We describe
the resonator losses by the damping rate �. All photons
leaving the resonator are absorbed by a detector. The detector
counts the photons producing an output proportional to the
intensity of the radiation. We stress that this does not imply
that the output is a discrete number of counts; the output can
be continuous. The detection is characterized by an efficiency

FIG. 1. Setup. The Josephson junction with Josephson energy
EJ (cross in the figure) is connected to a resonator represented with
an inductor and a capacitor. All resonator losses are absorbed by a
detector and converted to a measurable signal with efficiency f . Right
top: the impedance of the resonator in the vicinity of the resonant
frequency �0. Right bottom: the emission intensity from the resonator
as a function of EJ ; Et corresponds to the instability threshold.

f , a fraction of photons that are successfully counted. The
impedance near the resonant frequency �0 reads

Z(ω � �0) = Z0�0

−iν + �/2
, (1)

ν ≡ ω − �0 � �0 being the frequency mismatch. We will
mostly concentrate on the quantum limit of vanishing tem-
perature kBT � h̄�. In this case, no photons come from the
environment and the detector reading is the number of photons
emitted from the resonator. The setup is characterized with a
single quantum variable φ(t), related to the voltage across the
inductor by means of Josephson relation φ̇ = 2eV (t)/h̄. The
superconducting phase difference across the junction, φJ , is
contributed by φ(t) and the voltage source, φJ = φ + 2eVbt .

We will assume that the impedance far from the resonance,
Z0, is sufficiently small at the quantum scale, that is, Z0GQ �
1, GQ ≡ e2/πh̄. Under this assumption, the junction is effec-
tively in a low-impedance environment, and the contributions
to the quantum fluctuations of φ(t) coming from frequencies
far from �0, δφ � √Z0GQ, can be safely neglected. Since
practical impedances are in the range of tens of Ohms, this
assumption is well justified. We stress that the assumption
does not restrict the impedance near �0, Z � Z0(�0/�) that
can exceed the quantum scale at sufficiently big quality factors
Q ≡ �0/�. This however is not needed for our approach to
be valid: we only require Q � 1.

There is another less obvious assumption that we have to
make. We would like to concentrate on completely coherent
Josephson oscillations. In fact, the line of Josephson emission
is broadened by low-frequency noise. This broadening can
be estimated as � kBT Z(0)GQ. We can disregard the effect
provided the broadening is much smaller than the resonator
width, kBT Z(0)GQ � �. Assuming that Z(0) � Z0, this is
equivalent to kBT � h̄�/ZGQ. If Z does not exceed the
quantum scale, this condition is always satisfied at kBT � h̄�.
Otherwise it becomes more stringent.

III. KELDYSH ACTION

Quantum dynamics of the Josephson junction are well
explored.11 The most general and adequate quantum descrip-
tion of the setup is provided11 by a Keldysh-type path integral
over the variables φ±(t); ± refers to the c values of the quantum
variable φ(t) at the forward (backward) part of the Keldysh
contour. The “partition function” Z that is identically 1 in
the traditional Keldysh approach is given by the path integral
over the configurations of φ±(t) weighted with the factor eiS ,
S being the quantum action expressed in Keldysh variables
(from now on, we set h̄ = 1):

Z =
∫

D[φ+(t)]D[φ−(t)]eiS. (2)

The whole action is composed from Josephson and environ-
mental parts, S = Senv + SJ .

The action of the Josephson junction is simply given by its
energy E(φJ ) = −EJ cos(φJ ) and reads

SJ = −EJ

∫
dt [cos φ+

J (t) − cos φ−
J (t)]. (3)
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The superconducting phase difference across the junction is
contributed by the dc bias voltage Vb applied, so we substitute

φJ (t) = 2e

h̄
Vb t + φ(t) (4)

into this part of the action.
The action of the environment for a general frequency-

dependent impedance Z(ω) reads

Senv = i

8πGQ

∫
dω

2π

∑
α,β=±

(
φα

ω

)∗
Mαβ(ω)φβ

ω, (5)

with φα
ω = ∫ dt eiωtφα(t), and

M(ω) = ω

(
ImY (ω)

[
1 0

0 −1

]
+ ReY (ω)

[
0 −1

1 0

]
+

× (2n(ω) + 1) ReY (ω)

[
1 −1

−1 1

])
, (6)

where n(ω) = (exp(ω/kBT ) − 1)−1 gives the Bose-Einstein
filling factor at temperature T and the admittance Y (ω) ≡
Z−1(ω). Variation of the action S with respect to φ+ − φ− at
φ+ � φ− � φ reproduces the “classical” equation of motion
that disregards thermal and quantum fluctuations of φ,∫

dω

2π
Y (ω)(−iω)

φ(ω)

2e
e−iωt + 2eEJ sin φ(t) = 0, (7)

and is equivalent to the condition of current conservation. The
admittance Y (ω) here determines the time-dependent response
of current on voltage φ̇/2e.

We specify to the case of a single resonance mode, such
that the impedance near the resonant frequency �0 is given by
Eq. (1). To achieve the conditions of the parametric resonance,
we tune the dc bias voltage to Vb = h̄�/e corresponding to the
Josephson frequency 2� close to the double of the resonant
frequency �0. The detuning ν0 ≡ � − �0 is assumed to be
much smaller than �0. To implement this assumption, we
introduce a slow complex variable ϕ(t), an amplitude of the
resonant field, and express the original variable φ as

φ±(t) = 2�t + Re[e−i�tϕ±(t)], (8)

thereby disregarding its Fourier components far from ±�. This
is equivalent to a rotating-wave approximation.

We substitute φ(t) to Eq. (3) in the form of Eq. (8) and
average it over the period of resonant oscillations to obtain
local-in-time action for the slow variable ϕ(t):

SJ =
∫

dt{S̄J [ϕ+(t)] − S̄J [ϕ−(t)]}, (9)

S̄J (ϕ) = EJ

2

J2(|ϕ|)
|ϕ|2 (ϕ2 + (ϕ∗)2). (10)

We also express the environment part of action in terms of the
slow variable:

Senv = i

8πGQ

∫
dω

2π

∑
α,β=±

(
φα

ω

)∗
Mαβ(ω)φβ

ω, (11)

with

Z0M(ν) = −i(ν + ν0)

(
1 0

0 −1

)
+ (12)

�

(
n� + 1

2 −n�

−(n� + 1) n� + 1
2

)
, (13)

where we introduce integration over “low” frequencies ν. The
above expression can be rewritten in local-in-time form, that
contains local time derivatives of the fields only:

Senv = i

16πGQZ0

∫
dt
[
ϕ+∗∂tϕ

+ − ϕ−∗∂tϕ
−

− iν0(ϕ+∗ϕ+ − ϕ−∗ϕ−)

+�
(
n� + 1

2

)
(ϕ+∗ϕ+ + ϕ−∗ϕ−)

−�(n�ϕ+∗ϕ− + (n� + 1)ϕ−∗ϕ+)
]
. (14)

This form of the (part of the) action comes in useful to establish
a relation with traditional optical techniques. If we rescale the
variable φ, b = φ/(4

√
GQZ0), the rescaled variables b∗,b will

provide path-integral representation of creation or annihilation
operators b̂†,b̂ satisfying the standard commutation relations.
Since the action is local in time containing the derivatives only,
the path integral can be solved with an evolution equation. In
the case under consideration, this evolution equation is the
Bloch equation in the rotating-wave approximation for the
density matrix in b̂†,b̂ variables. It assumes the standard form
implemented, for instance, in Ref. 9. We do not outline this
equation here since we proceed with a different method.

Within this approximation, the “classical” Eq. (7) that
corresponds to the saddle-point solution of the action can be
written as

dϕ

dt
=
(

iν0 − �

2

)
ϕ + i(8πEJ GQZ0)

×
(

ϕ∗ 2J2(|ϕ|)
|ϕ|2 − ϕ[(ϕ∗)2 + ϕ2]

J3(|ϕ|)
2|ϕ|3

)
(15)

(see, e.g., Ref. 12). Equation (15) has stationary stable
nontrivial solutions ϕ �= 0, provided the Josephson energy
exceeds a threshold EJ � Et, Et = �/4πGQ|Z(�)| = (�2 +
4ν2

0 )1/2/(8πGQZ0). These solutions give coherent emission at
the frequency �. Below the threshold, quantum fluctuations
enable emission of photon pairs resulting in incoherent
radiation with linewidth � �.

We will restrict our consideration to the situation below
the threshold. It is essential to note that the typical quantum
fluctuation of ϕ remains small below the threshold, [δϕ(t)]2 �
1. This is guaranteed by the fact that the impedance Z0 is
small, [δϕ(t)]2 � Z0GQ. The fluctuations eventually grow
at approaching the threshold. However, they will become
of the order of 1 only in a narrow crossover region close
to the transition estimated as |EJ − Et | � (Z0GQ)Et � Et .
Therefore, almost everywhere below the threshold we may
expand SJ in Taylor series in ϕ keeping the leading quadratic
term only:

SJ = EJ

16

∫
dt[(ϕ+)2 − (ϕ−)2 + c.c.]. (16)

We conclude that below the threshold the total action is
quadratic describing Gaussian fluctuations of the field. One
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could get an impression of rather trivial statistics. Indeed, if
we consider the statistics of the field itself, as it has been done
in Ref. 13 for a general linear electric circuit, we would end up
with normal distributions. The point is that we are interested
in the statistics of the photon flow, a variable that is quadratic
in field. This leads to a nontrivial non-Gaussian statistics.

Our goal is thus to describe the full counting statistics
of photons emitted from the resonator. The most general
characteristic function of these statistics is expressed as9,14,15

Z({χ (t)}) = Tr

[
Texp

(
−i

∫
dt Î (t)

χ (t)

2

)
ρ̂−∞

× T̄exp

(
−i

∫
dt Î (t)

χ (t)

2

)]
, (17)

where T (T̄ ) denotes (anti)time ordering of the exponents;
Î ≡ ∂t N̂ is the operator of photon flow from the resonator,
N̂ being the photon number operator; and ρ̂−∞ is the density
matrix. Indeed, expansion of Eq. (17) in powers of χ (t)
delivers the time-dependent correlators of the operators Î . The
characteristic function can be presented by a path integral over
the field configurations with the Keldysh action modified by
the counting field χ (t) (see Refs. 14,16 for the fermion case and
Ref. 10 for the photon case). With this, the only modified term
in the action is the third one in Eq. (12), and the modification
reads

�

(
n� + 1

2 −n�

−(n� + 1) n� + 1
2

)

	→ �

(
n� + 1

2 −n�e−iχ(t)

−(n� + 1)eiχ(t) n� + 1
2

)
. (18)

This form of the modification is suggestive and can be derived
heuristically. The fact that the counting field enters the action
in the form of exponents guarantees the integer number of
counts. If one rewrites the action in the form of master or
Bloch equation for an extended density matrix,15,17,18 the
modification concerns the terms that describe transitions with
emission [� exp(iχ )(n� + 1)] or absorption [� exp(−iχ )n�]
of a single-photon filling factor of the environment photons
entering the rates of these transitions in an expected way.

The time-dependent counting field in the action is a
parameter, that can be chosen at will. A common choice
is a piecewise-constant χ (t), χ (t) = χ with a time interval
(0,τ ). Computed Z(χ ) becomes in this case the characteristic
function of the probability distribution of emitting N photons
within this time interval:

P (N ) =
∫

dχ

2π
Z(χ ) e−iχN , (19)

and the cumulants of N are obtained via the differential
relation:

〈〈Nm〉〉 = ∂m
iχ ln(Z(χ ))|χ=0. (20)

In this work, we will concentrate on the low-frequency limit of
the FCS assuming τ to be much bigger than the typical waiting
time of the phonon emission and disregarding the contribution
associated with the ends of the interval that does not depend

on τ . With this,

ln[Z(χ )] = −λ(χ )
�

2
τ, (21)

all information about the statistics being incorporated into a
dimensionless function λ(χ ). The advantage of this assump-
tion is that one can disregard the time dependence of χ (t) in
the action that automates the evaluation of the path integral.

So far we have assumed an ideal efficiency of counting. If
the statistics in this limit are known, one can easily obtain the
results for any efficiency f . The method is to replace in all
expressions for characteristic functions

exp(iχ ) 	→ 1 + f [exp(iχ ) − 1]. (22)

It is simple to justify this heuristically. One can split the whole
damping rate � into undetectable losses �1 and losses detected,
�2, f = �2/(�1 + �2). �1 and �2 both provide independent
additive contributions to the action, and only the second one
is modified with the counting field.

IV. FULL COUNTING STATISTICS

To represent the resulting action in a compact form, we
introduce four independent scalar real fields corresponding to
the complex fields ϕ for positive and negative ν at the forward
or backward part of the contour. We group those in a four-
vector ψν = [ϕ+

ν ,ϕ−
ν ,(ϕ+

−ν)∗,(ϕ−
−ν)∗]T , such that the modified

action can be expressed compactly as a 4 × 4 quadratic form
in ψν and ψ∗

ν :

S = i

16πGQZ0

∫
dν

2π

(
ψα

ν

)∗
Aαβ

ν ψβ
ν , (23)

Aν =
(

M(ν,χ ) �

� MT (−ν,χ )

)
, (24)

where a 2 × 2 matrix M(ν,χ ) is given by Eq. (12) with the
modification Eq. (18), and

� = i
E�

2

(
1 0

0 1

)
, (25)

where we have introduced a convenient dimensionless measure
of Josephson energy E = 8πGQZ0(EJ /�).

We take the path integral. Since it is Gaussian, the
computation amounts to an evaluation of the determinant
of the quadratic form. Since χ is assumed to be time
independent, the quadratic form separates for each frequency.
It is convenient to introduce discrete frequencies spaced with
2π/τ . Then, the integrals over the fields at each discrete
frequency are Gaussian integrals proportional to the inverse
of the determinant of matrix Aν . We transform the resulting
product of determinants into the exponent of a sum and go to
the continuous limit in this sum recovering the integral over
the frequencies. The result in the integral form reads

Z(χ ) = exp

(
−τ

∫ ∞

0

dν

2π
ln

(
det (Aν(χ ))

det (Aν(χ = 0))

))
. (26)

It is convenient to introduce dimensionless variables: ν̃ =
2ν/�, ν̃0 = 2ν0/�, and a dimensionless parameter d = 1 +
ν̃2

0 − E2. The latter is important and enters most results
presented below. The parameter d is positive, d = 0 at the
instability threshold, d = 1 + ν̃2

0 > 1 at EJ = 0, that is, in the
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absence of the parametric driving. With this, the statistics are
expressed in a simple integral form:

λ(χ ) =
∫ ∞

0

dν̃

2π
ln

(
1 + 4z(χ )

p(ν̃)

)
, (27)

z(χ ) = E2n2
�(1 − e−2iχ ) + E2(1 + n�)2(1 − e2iχ ), (28)

p(ν̃) = ν̃4 + ν̃2 2(2 − d) + d2. (29)

We take the integral over the frequencies to arrive at

λ(χ ) = −1 +

√√√√
1 − d

2
+
√(

d

2

)2

+ z(χ ). (30)

This gives the FCS at arbitrary temperatures. The structure of
z(χ ) suggests that photons are emitted or absorbed in pairs
[exp(±i2χ ) factors]. Each emission or absorption probability
is affected with the filling factors as expected: absorption
probability is proportional to n2

� (two photons), while emission
is stimulated with a factor (1 + n�)2. In the limit of small
E � d one can expand λ in terms of z to arrive at

λ(χ ) = −E2

2d
n2

�(e−2iχ − 1) − E2

2d
(1 + n�)2(e2iχ − 1). (31)

This limit corresponds to the independent pair emission or
absorption acts, that can be thus regarded as uncorrelated
events. This gives the Poissonian distribution of pair counts.
The rate of pair emission (absorption) is �e = �(E2/4d)(1 +
n�)2 [�a = �(E2/4d)n2

�] and is much smaller than � un-
der assumptions made. Upon increasing E, the correlations
between the pair events set in. No event would take place at
zero E.

It may seem strange that at finite temperature no single-
photon events are manifested in the FCS we present. Such
events do take place, even in the absence of the parametric
drive E: photons from the environment are randomly absorbed
or emitted by or from the resonator. The point is that we
concentrate here on the statistics in the zero-frequency limit
and count all photons emitted or absorbed. In terms of
cumulants of counts within a finite time interval τ , we thus
concentrate on the part of a cumulant that grows ∝ τ . Such
parts are absent for the single-photon statistics mentioned, and
therefore these events do not contribute to the FCS we describe.
An alternative way to understand this is to notice that without
parametric drive the detector is in thermal equilibrium with
the resonator. It is known that in this case it will not produce
any (count) signal.

From now on we will focus on the quantum limit,
that is, on the case of vanishing temperature kBT � h̄�,
so that n� 	→ 0. In this case, z(χ ) = E2(1 − e2iχ ). This
indicates that in this limit only pair emissions take place. The
FCS expression reduces to

λ(χ ) = −1 +

√√√√
1 − d

2
+
√(

d

2

)2

+ E2(1 − e2iχ ). (32)

This is one of the main results of this paper. In the limit of
zero detuning d = 1 − E2 and τ → ∞ this coincides with the
results of Ref. 9.

A. Average intensity and Fano factor

Let us evaluate the first two moments of the statistics
derived: the average intensity Ī = 〈N〉/τ and the intensity
noise SI = 〈〈N2〉〉/τ . Expanding Eq. (32) in χ gives

〈N〉
τ

= −�

2

∂λ(χ )

∂(iχ )

∣∣∣∣
χ=0

= �

2

E2

d
(33)

(illustrated in Fig. 1) and

〈〈N〉〉
τ

= − ∂2λ(χ )

∂(iχ )2

∣∣∣∣
χ=0

= 2
〈N〉
τ

+ �

2
E4 (4 + d)

d3
. (34)

From this we can determine the Fano factor F =
〈〈N2〉〉/〈N〉 = SI /Ī . This number is significant in electron
or photon counting statistics giving an estimate of a number
of particles that correlate with each other. We obtain

F = 2 + E2 4 + d

d2
. (35)

We see that the Fano factor is 2 in the limit of weak parametric
driving and diverges upon approaching the instability threshold
d → 0. It is instructive to rewrite this expression in terms of
the average number of photons in the resonator N̄ = Ī / � =
E2/2d and detuning ν̃0:

F = 2 + 2N̄

[
1 + 4(2N̄ + 1)

1 + ν̃2
0

]
. (36)

The increased Fano factor is surely due to photon bunching.
A naive picture of such bunching would presume that N pho-
tons (in the resonator) stimulate emission of one another, that
is F ∝ N̄ . The Hanbury-Brown-Twiss relation also supports
such an estimate. In the limit of large detuning ν̃0 → ∞ we
indeed recover F = 2(1 + N̄ ). However, generally it is not
so: near the instability threshold (N̄ → ∞) F = 16N̄2/(1 +
ν̃2

0 ) � N̄2. The number of photons correlated exceeds by far
the number of photons present in the resonator. This is specific
for the parametric resonance.

If only a fraction of the emitted photons is measured by the
detector, the correlation decreases. With the aid of Eq. (22) the
Fano factor measured can be expressed in terms of the Fano
factor at absolute efficiency:

F (f ) = 1 + f (F − 1) = (1 + f ) + E2 4 + d

d2
f. (37)

It approaches 1 in the limit of small efficiency.
The dependence of the Fano factor on the parametric drive

is illustrated in Fig. 2.

B. Big deviations

The FCS expression Eq. (32) can be employed to find with
the exponential accuracy the probability of big deviations of I

from its expectation value Ī (see, e.g., Ref. 10). To do this, one
evaluates the integral in Eq. (19) at N = Iτ in the saddle-point
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FIG. 2. (Color online) Fano factor vs Josephson energy EJ . The
energy Et corresponds to the instability threshold. Left: dependence
on detuning ν̃0. The curves from bottom to top correspond to
ν̃0 = 0,0.5,1,2,∞, solid curves corresponding to the extreme values
ν̃0 = 0,∞. Absolute efficiency f = 1 is assumed. Right: dependence
of F on detection efficiency f at ν̃0 = 0. The curves from top to
bottom correspond to the efficiencies f = 1,0.5,0.25,0.1,0, solid
curves corresponding to the extreme values f = 1,0.

approximation to obtain

P (I ) =
∫

dχ

2π
e−iχIτ− �τ

2 λ(χ) ∝ e− �τ
2 L(I ), (38)

with

L(x) = min
μ

[
I

�/2
μ + λ(−iμ)

]
. (39)

For any FCS expression, L(Ī ) = 0 and achieves a minimum
there. The quadratic expansion near the minimum corresponds
to a Gaussian distribution of small deviations from the
expectation value. The probability of big deviations is not
Gaussian although exponentially small.

A typical dependence of ln P on I is shown in Fig. 3 along
with its Gaussian approximation. The probability is lower than
the Gaussian approximation at I < Ī and higher otherwise.

A feature worth discussing is that the probability to emit no
photons (I = 0) is finite and given by

− 2

�τ
ln P = λ(i∞) = −1 +

√√√√
1 − d

2
+
√(

d

2

)2

+ E2.

(40)

Rather counterintuitively, this probability remains finite even
at approaching the threshold where Ī → ∞:

− ln P → �τ

2

(− 1 +
√

1 −
√

1 + ν̃2
0

)
. (41)

Another feature worth discussing is the probability at I �
Ī . The log of the probability appears to be proportional to I :

− ln P = Iτμ0, (42)

where −iμ0 gives the position of the singularity of λ(χ ) in
the plane of complex χ . The singularity comes either from
the inner or outer square root in Eq. (32). Owing to this, μ0

FIG. 3. (Color online) Probability of big deviations of I for E =
0.7, ν0 = 0 [Ī ≈ 0.96(�/2)]. Dashed line: Gaussian approximation
valid for small deviations from the expectation value.

exhibits a peculiarity (discontinuity of the second derivative)
at d = 2 where the square roots merge into a 1/4 singularity
(Fig. 4):

μ0 =
{

1
2 ln
(
1 + d2

4E2

)
if d < 2

1
2 ln
(
1 + d−1

E2

)
if d > 2

. (43)

The condition d = 2 or, equivalently, E =√
ν̃2

0 −1 gives thus
a “transition” line that separates the parameter regions with
large and zero detuning (Fig. 4).

It is also possible to find the next-to-the-leading term in the
asymptotic expression Eq. (42), an offset of linear asymptotics
visible in Fig. 4, so the asymptotics become

− ln P = Iτμ0 − C,

C =
{

1 − √
(1 − d/2) if d < 2

1 if d > 2
. (44)

V. INTERPRETATION: BURSTS

To understand better the FCS Eq. (32), let us give an
interpretation of these statistics. Let us note that the integral
form of λ(χ ), Eq. (27), permits an expansion in powers of e2iχ :

λ(χ ) =
∫ ∞

0

dν̃

2π
ln

(
1 + 4E2

p(ν̃)

)

−
∞∑

k=1

e2ikχ

k

∫ ∞

0

dν̃

2π

(
4E2

p(ν̃) + 4E2

)k

(45)

We rewrite it in the form

− �

2
λ(χ ) =

∞∑
k=1

�k[exp(i2kχ ) − 1]. (46)
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FIG. 4. (Color online) Probability of big deviations I � Ī [Eq. (42)] exhibiting a peculiarity at d = 2. Left: The “transition” line d = 2 in
the plane of parametric drive E and detuning ν̃0 separating the plane into the regions of small and large detuning. Right: The coefficient μ0

plotted along the dotted line in the left pane. To make the peculiarity visible, the dashed curve gives the analytical continuation from d < 2 to
d > 2.

This suggests that photons are emitted in the course of
uncorrelated events, bursts, each accompanying k photon pairs.
The rate of a k burst is given by

�k = �

2k

∫ ∞

0

dν̃

2π

(
4E2

p(ν̃) + 4E2

)k

. (47)

Analytical expressions for �k become increasingly compli-
cated with increasing k and we do not give them here. Their
dependence on E is illustrated in Fig. 5. At small E, �k � E2k

as expected for the rate of an event encompassing 2k photons.
Note that the rates do not diverge at the threshold: rather,

they saturate at finite value that decreases with increasing k.
To reconcile this with divergence of the radiation intensity at

FIG. 5. (Color online) Rates of the bursts. Right: The curves from
top to bottom giving the rates �1 through �5 at ν0 = 0 vs E; E = 1
is the threshold. The rates are plotted as a function of Josephson
energy scaled with respect to the energy Et, corresponding to the
instability threshold. Left: The dependence of �k (normalized on
the power law k−3/2) on the number of photon pairs in a burst. The
curves from top to bottom correspond to Josephson energies EJ /Et =
1,0.75,0.5,0.25,0.1. Integer values of k are marked by squares.

the threshold, let us determine the asymptotic behavior of �k

in the limit of large k. The integral in Eq. (47) is contributed
by minima of p(ν) and can be approximated by a Gaussian
integral. There is a single minimum at ν̃ = 0 if d < 2 and two
minima at ν̃ = ±√

d − 2. The integration gives

�k�1 ∼ �

8
√

π

1

k3/2
exp (−2μ0k) ξ0, (48)

where

ξ0 =
⎧⎨
⎩
√

d2+4E2

2(2−d) if d < 2

2
√

d−1+E2

d−2 if d > 2
. (49)

Comparing this with the probability of big deviations, we
conclude that the big deviation is most likely a result of a single
burst encompassing k = Iτ photons during the observation
interval.

Near the threshold, these asymptotics read

�k�1 ∼ Et

�

8
√

π

exp
(−k E

N̄2

)
k3/2

. (50)

We see that at the threshold the relative probabilities of k bursts
satisfy power law k−3/2. Although the probability of big bursts
is low, their contribution to the radiation intensity is high such
that the average intensity diverges. Below the threshold, the
power-law distribution is cut at k � N̄2. This gives an estimate
of the typical burst size contributing to the intensity, which is
in agreement with an earlier estimation obtained from the Fano
factor [Eq. (35)].

The k dependence of the rates at not-so-big k is illustrated
in Fig. 5. We see that the asymptotics is reached at rather low k.

We have understood the statistics up to the threshold.
Naively, one would expect some continuity and assume
somewhat similar statistics right above the threshold. This
is not the case. Above the threshold, the parametric resonance
equations have a classical solution in a form of a spontaneously
emerging oscillation with frequency close to �0. This classical
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solution can be approximated with a quantum coherent state.
This implies a well-known19 Poissonian statistics for single-
photon counts. This is absolutely incompatible with the picture
of the bursts presented and indicates a drastic change of
statistics in the narrow crossover region at the threshold where
quantum fluctuations of the phase become of the order of 1
[recall that the width of this crossover region is estimated as
|EJ − Et | � (Z0GQ)Et ].

VI. LIMITS

We consider here two specific cases of the FCS under
consideration: the limits of large detuning ν̃0 � 1 (large d)
and small d (the vicinity of the threshold).

A. Large detuning

In this case, one can assume d � 1 almost everywhere in
the subthreshold region except a close vicinity (Et − E)/Et �
ν̃−1

0 of the threshold, and E �
√

d . In this case, the inner
square root in Eq. (32) can be expanded in E2. The resulting
FCS depends only on N̄ and reads

λ(χ ) = −1 +
√

1 + N̄ (e2iχ − 1). (51)

It corresponds to the “naive” estimation of the Fano factor F =
2(N̄ + 1). This form is very similar to FCS of incoherent light
with a Lorentz-shaped spectral intensity10,19 with N̄ replaced
by the maximum filling factor of the photons in the light. The
difference is that in our case the photons come in pairs rather
than one by one [exp(iχ ) → exp(i2χ )].

The origin of this similarity is understood if we consider
the spectral intensity of the pairs emitted. This is given by the
inverse of p(ν) and in the limit of large detuning consists of
two narrow Lorentz-shaped lines centered at ν̃ = ±√

d. In the
course of pair emission, each constituent of the pair appears
in a separate line. Since the lines do not overlap, the photon
bunching takes place separately within each line and has the
same form as in the single-photon case.

B. Vicinity of the threshold

The distance to the threshold is parametrized by d � 1,
d = 0 precisely at the threshold. We need to expand λ(χ ) in
d. The formal expansion, however, does not work resulting
in expressions that are singular at χ = 0 and therefore cannot
be associated with any probability distribution. To preserve
analyticity in χ , we need to explicitly address small χ � 1.
To this end, we may expand exp(2iχ ) in χ up to the first order.
This disregards the discreteness of the photon flow, which is a
valid approximation at time scales exceeding Ī . We rearrange
terms to arrive at

λ(χ ) = −1 +
√

1 − d

2
(1 −

√
1 − 8iχ E2/d2). (52)

From this it is clear that small χ ∼ d2/4E2 eventually
determine the statistics. Now we can expand in d to recover a
simpler FCS expression:

λ(χ ) = d

4
(−1 +

√
1 − 8iχ E2/d2). (53)

To find the probability P (I ) of big deviations, we take the
integral in the saddle-point approximation:

P (N ) ∼ exp

[
−τ�d

16

(
I

Ī
+ Ī

I
− 2

)]
. (54)

This form has been discussed previously in the context of
photon counting statistics.10 The expression for the probability
is valid only if exponentially small, that is, for the observation
times τ � (�d)−1). This suggests the relevance of a long time
scale � (�d)−1 � �−1 in the vicinity of the threshold.

VII. TIME-DEPENDENT CORRELATIONS

The burst interpretation outlined above would have been
fine if the uncorrelated bursts could be regarded as instant
events. In fact, the events are not instant: it takes time to emit
k pairs composing a burst. If N̄ � 1 and k � 1, this time is of
the order of �−1. Close to threshold, N̄ � 1 and the typical
waiting time between pair emissions is short, � Ī−1 � �−1.
However, a typical burst in this case encompasses N̄2 photons.
This implies that the time required for a burst is actually long,
� �−1N̄ , in agreement with the final remark in Sec. VI B.
The bursts are thus overlapped in time. Moreover, even in
the limit of N̄ � 1 when the events are pair emissions that
are well separated in time, the constituents of the pair do not
have to be emitted simultaneously. The low-frequency FCS
computed does not provide direct information about such time
correlations.

Here, we will investigate the time correlations restricted
to a simple case where we can proceed perturbatively. Let us
choose the time-dependent counting field in the form

χ (t) = χ1�(t1,t1 + dt1) + χ2�(t2,t2 + dt2), (55)

where �(ta,tb) ≡ �(tb − t)�(t − ta). The counting field is
thus piecewise constant, that is, nonzero in two time intervals.
If the duration of these time intervals is small, dt1,dt2 � Ī−1,
the chance to have photon emissions within these intervals is
small and can be computed perturbatively. In this case, the
unperturbed action corresponds to χ = 0 and we expand in
terms of the perturbation:

Sint = − i�

16GQZ0

∫
dt{exp[iχ (t)] − 1}ϕ+∗(t)ϕ−(t) (56)

[see Eqs. (14) and (18)]. We assume that the time distance
between the intervals τ ≡ t2 − t1 � dt1,2 is much bigger than
the interval durations.

Expansion of the cumulant-generating function lnZ(χ ) up
to the second order gives

lnZ(χ ) = C1[exp(iχ1) − 1]dt1 + C2[exp(iχ1) − 1]dt1

+C11[exp(iχ1) − 1]2(dt1)2

+C22[exp(iχ2) − 1]2(dt2)2

+C12(τ )[(exp(iχ1) − 1][exp(iχ2) − 1]. (57)

It is clear that C1,2 give a chance of photon emission in the
intervals, so that C1,2 = Ī . C12 is of interest for us since it gives
correlations between the emissions separated by time τ : if an
emission has occurred within the time interval (t1,t1 + dt1),
this increases a chance of emission within (t2,t2 + dt2). We
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express this increased chance in terms of a time-dependent
excess intensity Iex(τ ), C12(τ ) = Ī Iex(τ ).

On the other hand, the perturbations give

C12 = �2

210(GQZ0)2
〈〈φ+(τ )φ−(τ )∗φ+(0)φ−(0)∗〉〉. (58)

Since the fluctuating field ϕ is Gaussian, all correlators can be
readily expressed in terms of the field propagator:

Gαβ(t,t ′) = 〈ψ∗
α (t)ψβ(t ′)〉, (59)

that depends on time difference only, Gαβ(t,t ′) = Gαβ(t − t ′).
The quantity of interest is expressed as

C12 = �2

210(GQZ0)2
(〈φ+(t)φ−(0)∗〉〈φ−(t)∗φ+(0)〉

+ 〈φ+(t)φ+(0)〉〈φ−(t)∗φ−(0)∗〉)
= �2

210(GQZ0)2
[G34(t)G21(t) + G31(t)G24(t)]

= �2

16
(A1 + A2) . (60)

The evaluation of the propagator is straightforward but
cumbersome, so we present the details in the Appendix.

We calculate the correlation function of photon emission
events separated by a time t .

Two contributions to the correlator read (γ± = 1 ±√
1 − d)

A1 = E4

d2(1 − d)
(γ−e−γ+�|τ |/2 − γ+e−γ−�|τ |/2)2,

A2 = E4

d2(1 − d)

[(∑
±

γ±e−γ±�|τ |/2

)2

− 4ν̃2
0d

E2
e−�|τ |

]
.

The resulting excess intensity is therefore expressed as

Iex = �

4

E2d

(1 − d)

[∑
±

e−γ±�|t |

(γ±)2 − 2ν̃2
0e−�|t |

E2d

]
. (61)

It is instructive to introduce the number of excess photons
nex(τ ) emitted within the time interval −|τ |,|τ | and obtained
by the integration of the excess intensity Iex(τ ) over the time,
nex(0) = 0:

nex = n∞ − E2d

2 (1 − d)

[∑
±

e−γ±�|τ |

γ±
− 2ν̃2

0e−�|τ |

E2d

]
, (62)

where the total number of excess photons n∞ ≡ nex(∞) is
related to the Fano factor [Eq. (35)]:

n∞ = F − 1. (63)

In the limit of small parametric drive E → 0, n∞ = 1. This
implies that each photon correlates with strictly one extra
photon forming a pair. The time dependence of the correlations
in this limit is given by

nex(τ ) = 1 − exp(−�τ ), (64)

not depending on the detuning.

FIG. 6. (Color online) Time correlations of emissions: the number
of excess photons emitted in the time interval (−τ,τ ) provided
the emission of a photon took place at t = 0. From uppermost
to lowermost, the curves correspond to Josephson energies E =
0.75,0.5,0.25,0.1 at zero detuning. The dotted line marks the value
nex = 1, one excess photon. The curve at small E exceeds 1 only
slightly, manifesting the fact that emissions occur in pairs. Emissions
of pair constituents are separated by time interval � �−1.

In the vicinity of the threshold, the correlations are big and
mainly build up at the slow time scale � (�d)−1:

nex(τ ) = F

[
1 − exp

(
−�dτ

2

)]
. (65)

The time dependence of nex(τ ) is illustrated in Fig. 6.

VIII. FREQUENCY-RESOLVED CORRELATIONS

Experiments on FCS in Josephson parametric amplifier are
plausible but, as all experiments on FCS, are difficult and
long, requiring long times of data accumulation and careful
characterization of extrinsic noises in measurement setups.
The first experiments would most likely concern intensity
noise, the second cumulant of FCS. However even in this case
the measurement may be difficult since the measured signal has
to be amplified and the amplifier brings in a substantial extra
noise. A common way to avoid such difficulties in the context
of low-temperature measurement20 is to split a noisy signal
into two parts and amplify them by independent amplifiers.
The cross-correlation of two outputs will not be affected by
the amplifier noise.

In our setup, it is convenient to split the signal in the fre-
quency domain. We introduce two detectors absorbing emitted
photons with frequency-dependent efficiencies f1,2(ν). This
results in two intensity signals:

I1,2 =
∫

dν

2π
f1,2(ν)

(
dI

dν

)
, (66)
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dI/dν being intensity per frequency interval. For our setup,
the average intensity per frequency interval reads [see Eq. (27)]

dĪ

dν
= 4E2

4ν̃2 + (ν̃2 − d)2
. (67)

To describe the FCS of the two signals, we introduce two
counting fields χ1,2. With this, the χ -dependent part of the
action reads

S = −i�

16πGQZ0

∫
dν

2π
[(eiχ1 − 1)f1(ν)

+ (eiχ2 − 1)f2(ν)](ϕ−
−ν)∗ϕ+

−ν . (68)

We need only the cross-correlation of the intensities generally
defined as

S12 = − ∂lnZ
∂χ1∂χ2

τ−1 (69)

at χ1,2 → 0. Employing perturbations in χ1,2 we find

S12 =
∫

dν1

2π

dν2

2π
f1(ν1)f (ν2)S(ν1,ν2), (70)

where the intensity correlator is expressed in terms of the field
averages as

S(ν1,ν2) = �2τ−1

28(πGQZ0)2
〈〈(ϕ−

−ν1
)∗ϕ+

−ν1
(ϕ−

−ν2
)∗ϕ+

−ν2
〉〉. (71)

Expressing the correlator in terms of the field propagator, we
find

S(ν1,ν2) = 2[
4ν̃2

1 + (ν̃2
1 − d)2

]2 [E2
(
1 + E2 + ν̃2

1 − 2ν̃0 − ν̃2
0

)2
× δ(ν1 + ν2) + 4E2δ(ν1 − ν2)

]
. (72)

This defines the general form of the spectral-resolved cor-
relations below the instability threshold. The correlations
are delta-functional and persist only for exactly equal or
exactly opposite frequencies. This seems to naturally describe
bunching of the photons in the same frequency mode as well as
emission of pairs with frequencies opposite owing to energy
conservation. However, delta-functional correlations are an
artifact of Gaussian approximation: taking nonlinearities into
account would result in a smooth frequency dependence. Since
we integrate over relatively wide frequency windows, the exact
shape of the smoothed delta-functional peaks is not important
for us.

The most comprehensive choice of the frequency-
dependent efficiencies is as follows:

f1 = �(ν − ωs), f2 = �(ωs − ν). (73)

The first signal is thus collected from all frequencies above
the separating frequency ωs , while the second one comes
from all frequencies below ωs . The dimensionless normalized
cross-correlation s12 ≡ S12/

√
Ī1Ī2 is plotted in Fig. 7 versus

E at zero detuning and for several values of ωs . At low E, the
correlations are formed by emission of photon pairs at opposite
frequencies. At ωs = 0, the numbers of photons emitted in
two windows are precisely the same; this results in ideal
shot-noise correlation s12 = 1. At ωs �= 0 only a part of the
pairs is separated into different windows, so the correlation is
smaller. The cross-correlation grows with increasing E owing

FIG. 7. Normalized cross-correlation of intensities in two fre-
quency windows [Eq. (73)] vs E (ν0 = 0). The separating frequency
ωs takes values 0,0.1,0.2,0.3,0.4,0.5 � from the uppermost to
lowermost curve.

to photon bunching. At ωs = 0, the cross-correlation diverges
at the threshold. At ωs �= 0, the growth changes to decrease and
the normalized cross-correlation vanishes at the threshold. The
reason for that is the narrowing of the spectral intensity upon
approaching the threshold, so that the correlated emissions
concentrate in one of the windows.

IX. CONCLUSIONS

To conclude, we have studied full counting statistics of
the Josephson-junction circuit in the regime of parametric
resonance. This is important in view of recent experiments that
enable the detection of full power dissipated. We present the
interpretation of statistics in terms of bursts of multiple pairs
of photons. We support this interpretation by investigating the
time-dependent and frequency-resolved correlations.

So far our results are restricted to the parameter region
below the threshold where the field correlations are Gaussian.
It is very interesting to address full counting statistics and time-
dependent correlations in the narrow crossover region at the
instability threshold where the nonlinear effects are important.
We expect there to be a drastic change of statistics from the
burst picture of the pairs outlined in the article to the well-
known Poissonian statistics of single photons. This will be the
subject of future research.
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APPENDIX: PROPAGATOR

For the perturbative calculations presented in the main text,
we need the propagator of the fields ϕα or, equivalently, fields
ψ , defined as

Gαβ (t,t ′) = 〈ψ∗
α (t)ψβ(t ′)〉 (A1)
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at χ = 0. We rewrite the action at χ = 0,n� = 0 with the aid
of a dimensionless matrix Ãν :

S = i

32πGQZ0

�2

4

∫
dν̃

2π

(
ψα

ν

)∗
Ãαβ

ν ψβ
ν ,

Ãν =

⎛
⎜⎜⎜⎝

a(ν̃,ν̃0) 0 iE 0

−2 a(−ν̃, − ν̃0) 0 −iE

iE 0 a(−ν̃,ν̃0) −2

0 −iE 0 a(ν̃, − ν̃0)

⎞
⎟⎟⎟⎠ ,

a(x,y) = 1 − i(x + y). (A2)

The propagator in the frequency domain is readily obtained by
inverting Ãν :

G(ν) = 27πGQZ0�
−2Ã−1(ν). (A3)

The determinant of the action matrix

det(Ã) = (ν̃2 + γ 2
+)(ν̃2 + γ 2

−) (A4)

has four (generally complex) roots at dimensionless frequen-
cies ±iγ±, where γ± = 1 ± √

1 − d .
The propagator in the time domain is obtained by the inverse

Fourier transform. We separate advanced (t > t ′) and retarded
(t < t ′) parts of the propagator. For the advanced part,

GA = G+
A e−γ +(t−t ′)�/2 + G−

A e−γ −(t−t ′)�/2, (A5)

where 4 × 4 matrices G±
A read

G+
A = 16πGQZ0

γ+
√

1 − d

⎛
⎜⎜⎜⎝

G11 −E2 G13 G14

G11 −E2 G13 G14

G∗
14 G∗

13 −E2 G∗
11

G∗
14 G∗

13 −E2 G∗
11

⎞
⎟⎟⎟⎠ (A6)

with temporary notations

G11 = E2 + 2(1 − iν̃0)(
√

1 − d − iν̃0),

G13 = −iE(
√

1 − d − iν̃0),

G14 = iE(2 + iν̃0 + √
1 − d),

and

G−
A = 16πGQZ0

γ−
√

1 − d

⎛
⎜⎜⎜⎝

G11 E2 G13 G14

G11 E2 G13 G14

G∗
14 G∗

13 E2 G∗
11

G∗
14 G∗

13 E2 G∗
11

⎞
⎟⎟⎟⎠ , (A7)

with temporary notations

G11 = −E2 + 2(1 − iν̃0)(
√

1 − d + iν̃0),

G13 = −iE(
√

1 − d + iν̃0),

G14 = −iE(2 + iν̃0 − √
1 − d).

For the retarded part,

GR = G+
R e−γ +(t ′−t)�/2 + G−

R e−γ −(t ′−t)�/2, (A8)

where 4 × 4 matrices G±
R read

G+
R = 16πGQZ0

γ+
√

1 − d

⎛
⎜⎜⎜⎝

−E2 −E2 G∗
41 G∗

41

G21 G21 G∗
31 G∗

31

G31 G31 G∗
21 G∗

21

G41 G41 −E2 −E2

⎞
⎟⎟⎟⎠ , (A9)

with temporary notations

G21 = E2 + 2(1 + iν̃0)(
√

1 − d + iν̃0),

G31 = −iE(2 − iν̃0 + √
1 − d),

G41 = iE(
√

1 − d + iν̃0),

and

G−
R = 16πGQZ0

γ−
√

1 − d

⎛
⎜⎜⎜⎝

E2 E2 G∗
41 G∗

41

G21 G21 G∗
31 G∗

31

G31 G31 G∗
21 G∗

21

G41 G41 E2 E2

⎞
⎟⎟⎟⎠ , (A10)

with temporary notations

G21 = −E2 + 2(1 + iν̃0)(
√

1 − d − iν̃0),

G31 = iE(2 − iν̃0 − √
1 − d),

G41 = iE(
√

1 − d − iν̃0).
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