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Abstract—Threshold and ambiguity phenomena are studied in

Part I of this paper where approximations for the mean-squared

error (MSE) of the maximum-likelihood estimator are proposed

using the method of interval estimation (MIE), and where ap-

proximate upper and lower bounds are derived. In this part, we

consider time-of-arrival estimation and we employ the MIE to

derive closed-form expressions of the begin-ambiguity, end-am-

biguity and asymptotic signal-to-noise ratio (SNR) thresholds

with respect to some features of the transmitted signal. Both

baseband and passband pulses are considered. We prove that

the begin-ambiguity threshold depends only on the shape of the

envelope of the ACR, whereas the end-ambiguity and asymptotic

thresholds only on the shape of the ACR. We exploit the results on

the begin-ambiguity and asymptotic thresholds to optimize, with

respect to the available SNR, the pulse that achieves the minimum

attainable MSE. The results of this paper are valid for various

estimation problems.

Index Terms—Maximum likelihood estimator, mean-squared-

error, nonlinear estimation, optimal signal design, signal-to-noise

ratio, threshold and ambiguity phenomena, time-of-arrival.

I. INTRODUCTION

N ONLINEAR deterministic parameter estimation is sub-

ject to the threshold effect [2]–[9]. Due to this effect the

signal-to-noise ratio (SNR) axis can be split into three regions

(see Fig. 1(a) in Part I of this work [1]):

1) A priori region: Region in which the estimator becomes

uniformly distributed in the a priori domain.

Manuscript received October 20, 2013; revised April 07, 2014 andAugust 16,

2014; accepted August 26, 2014. Date of publication September 08, 2014; date

of current version October 07, 2014. The associate editor coordinating the re-

view of this manuscript and approving it for publication was Dr. Petr Tichavsky.

This work has been supported in part by the Belgian IAP network Bestcom

funded by Belspo, the PEGASO project funded by the Walloon region Skywin

pole, the FNRS, and the European Commission in the framework of the FP7

Network of Excellence in Wireless COMmunications NEWCOM # (Contract

no. 318306). S. Gezici’s research was supported in part by the Young Scientists

Award Programme of Turkish Academy of Sciences (TUBA-GEBIP 2013).

A.Mallat and L. Vandendorpe are with the Institute for Information and Com-

munication Technologies, Electronics and Applied Mathematics (ICTEAM In-

stitute), Université Catholique de Louvain, Louvain-la-Neuve 1348, Belgium

(e-mail: Achraf.Mallat@uclouvain.be; Luc.Vandendorpe@uclouvain.be).

S. Gezici is with the Department of Electrical and Electronics Engineering,

Bilkent University, Ankara 06800, Turkey (e-mail: gezici@ee.bilkent.edu.tr).

D. Dardari is with DEI, CNIT, University of Bologna, Bologna 40126, Italy

(e-mail: davide.dardari@unibo.it).

Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2014.2355776

2) Threshold region: Region of transition between the a priori

and asymptotic regions.

3) Asymptotic region: Region in which an asymptotically

efficient estimator, such as the maximum likelihood es-

timator (MLE), achieves the Cramer-Rao lower bound

(CRLB). Otherwise, the estimator achieves its own asymp-

totic mean-squared-error (MSE) (e.g, MLE with random

signals and finite snapshots [10], [11]).

When the autocorrelation (ACR) with respect to (w.r.t.) the

unknown parameter is oscillating, five regions can be identified

(as can be seen in Fig. 1(b) in Part I [1]): 1) the a priori region,

2) the a priori-ambiguity transition region, 3) the ambiguity re-

gion where the envelope CRLB (ECRLB) is achieved [1], 4)

the ambiguity-asymptotic transition region, and 5) the asymp-

totic region.

As the evaluation of the statistics of most estimators such

as the MLE is often unattainable in the threshold region, many

lower bounds have been proposed [12], [13] for both determin-

istic (the unknown parameter has only one possible value) and

Bayesian (the unknown parameter follows a given a priori dis-

tribution) estimation in order to be used as benchmarks and to

describe the behavior of an estimator in that region.

Threshold computation is considered in [4], [5] where the a

priori, begin-ambiguity, end-ambiguity and asymptotic thresh-

olds are computed based on the Ziv-Zakai lower bound (ZZLB);

the ZZLB evaluates accurately the asymptotic threshold and de-

tects roughly the ambiguity region. Thresholds are also com-

puted in [6], [7] using the Barankin lower bound (BLB); the ob-

tained thresholds are much smaller than the true ones. Closed-

form expressions of the asymptotic threshold are derived in [14]

for frequency estimation and in [15] for angle estimation by em-

ploying the method of interval estimation (MIE). The method in

[14] is based on the MSE approximation (MSEA) in [16] and is

valid for cardinal sine ACRs only, whereas that in [15] is based

on the probability of non-ambiguity and can be used with any

ACR shape. The approaches in [14], [15] are discussed in de-

tails and compared to our approach in Section IV.

Optimal power allocation for multicarrier systems with in-

terference is considered in [17]; the approach followed therein

minimizes the CRLB for TOA estimation without taking into

account the threshold and ambiguity effects. Optimal pulse de-

sign for TOA estimation is studied in [18] based on the BLB; the

authors study the reduction of the asymptotic threshold by con-

sidering different ACR shapes. The optimization of the time-
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bandwidth product for frequency estimation is investigated in

[19] based on the MIE. The approach in [19] is discussed and

compared to ours in Section VI.

In Part I of this work [1], an approximate upper bound and

various MSEAs for the MLE are proposed by using the MIE

[12], [15], [16], [18]–[26]. Some approximate lower bounds

(ALB) are proposed as well by employing the binary detection

principle first used by Ziv and Zakai [2].

In Part II (current paper), we have three main contributions.

The first contribution is that we utilize an MIE-MSEA (pro-

posed later in Section III-A) to derive analytic expressions of

the begin-ambiguity, end-ambiguity and asymptotic thresholds.

The obtained thresholds are very accurate (in particular the end-

ambiguity and asymptotic thresholds of oscillating ACRs). To

the best of our knowledge, our approach is the first utilizing an

MIE-based MSEA (very accurate approximation) and that can

be used with any ACR shape. The equations established in this

paper are obtained by considering TOA estimation. However,

our method can be applied on any estimation problem satisfying

the system model of Part I.

The second contribution is that we demonstrate some prop-

erties of the thresholds. We prove that the begin-ambiguity

threshold only depends on the shape of the ACR envelope

(e.g., cardinal sine, Gaussian, raised cosine with fixed roll-off)

regardless of other parameters (e.g., a priori domain, band-

width, mean frequency), and the end-ambiguity and asymptotic

thresholds only depend on the ACR shape (which can be

described by the envelope shape and the mean frequency to

bandwidth ratio, together) regardless of other parameters (e.g,

the bandwidth and the mean frequency if their ratio is constant).

The thresholds of the different SNR regions are also evaluated

numerically using an MSEA and two ALBs (derived in Part

I). We show that the a priori threshold depends on both the a

priori domain and the shape of the ACR envelope.

The third contribution is that we make use of the obtained

results about the thresholds to propose a method to optimize,

w.r.t. the available SNR, the spectrum of the transmitted pulse

in order to achieve the minimum attainable MSE. The proposed

method is very simple and very accurate. To the best of our

knowledge, this is the first optimization problem addressing the

minimization of theMSE subject to the threshold and ambiguity

phenomena.

The rest of the paper is organized as follows. In Section II we

describe the system model. In Section III we introduce some

MIE-based MSEAs and ALBs. In Section IV we consider the

numerical and analytical computation of the thresholds and an-

alyze their properties. In Section V we present and discuss some

numerical results about the thresholds when baseband and pass-

band pulses are employed. In Section VI we derive the MLE of

the SNR and propose a method to optimize the spectrum of the

transmitted pulse w.r.t. the available SNR.

II. SYSTEM MODEL

In this section we describe our system model. Let be

the transmitted signal, and the positive gain and the time

delay introduced by an additive white Gaussian noise (AWGN)

channel, and the noise with two-sided power spectral den-

sity (PSD) of . We can write the received signal as:

We assume that is deterministic with repre-

senting its a priori domain.

From Part I, the MLE of is given by

where is the CCR of and

with being the ACR of

and a zero-mean colored Gaussian

noise of covariance

From Part I, we can express the CRLB, the ECRLB and the

maximum MSE of as:

(1)

(2)

(3)

where denotes the SNR, and and stand for the

mean quadratic bandwidth (MQBW) and the envelope MQBW

(EMQBW) of , respectively. We have:

(4)

where denotes the second derivative of ,

and represent the energy

and the mean frequency of , with being the Fourier

transform of .

We have seen in Part I, that for a signal occupying the whole

band from 3.1 to 10.6 GHz1 ( , bandwidth

), we have , so . Therefore,

the estimation performance seriously deteriorates if the ECRLB

is achieved instead of the CRLB due to ambiguity.

As , the super accuracy associated with is

mainly due to the mean frequency . To benefit from this super

accuracy at sufficiently high SNRs, the sufficient condition to

satisfy is that the phase of the transmitted signal should not

be modified across the channel (e.g, due to fading), regardless

whether the signal is pure impulse-radio UWB (carrier-less),

carrier-modulated with known phase (e.g, in monostatic radar),

or carrier-modulated with unknown phase (e.g, in most com-

munication systems). With the latter, we have to use the time

difference of arrival (TDOA) technique.

III. MSEAS AND ALBS

In this section we introduce someMSEAs and ALBs that will

be used later in Sections IV and V to compute the thresholds.

A. MIE-Based MSEAs

We have seen in Part I that by splitting the a priori domain

of into intervals , ,

( , ), we can write the MSE of as:

(5)

1The ultra wideband (UWB) spectrum authorized for unlicensed use by the

US federal commission of communications in May 2002 [27].
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where denotes the interval probability, and

and represent, respectively,

the mean and the variance of the interval MLE

( and stand for the probability and expectation opera-

tors). For oscillating (resp. non-oscillating) ACRs, we consider

an interval around each local maximum (resp. split into

equal duration intervals); always contains the maximum of

the ACR.

Different approximations of , and were proposed

in Part I. Below, we only present the approximations that will

be used later in this paper for the numerical and the analytic

evaluation of the thresholds.

1) An MSEA for Numerical Threshold Computation: We

present in this paragraph the MSEA

(6)

based on (5) and that we will use later in Section V for the

numerical evaluation of the different thresholds; is the

most accurate approximation proposed in Part I.

For both oscillating and non-oscillating ACRs, in (5)

is approximated by where

denotes one of Genz’s algorithms written based on

[28]–[31] to compute the multivariate normal probability with

integration region specified by a set of linear inequalities (see

Part I for more details), and represents a testpoint in ;

is selected as the abscissa of the th local maximum (resp.

the center of ) for oscillating (resp. non-oscillating) ACRs;

(abscissa of the maximum) for both ACR types.

For oscillating (resp. non-oscillating) ACRs, and

are approximated by and

(resp.

and ) where ,

, and

, with

being the function and .

2) An MSEA for Analytic Threshold Computation: The

MSEA proposed in this paragraph will be used later

in Section IV-B to express analytically the end-ambiguity and

asymptotic thresholds; employs the probability upper

bound proposed by McAulay in [18]. It evaluates the achieved

MSE in the intervals , and , which means that the

SNR is supposed to be relatively high.

By approximating in (5) by , approximating by ,

neglecting ( ), taking and

with for oscillating ACRs (

are the approximate abscissa of the two local maxima around

the global one) and for non-oscillating ACRs ( are

empirically chosen, see Section V-B in Part I for more details),

and adopting the McAulay probability upper bounds

and with denoting

the normalized ACR, becomes

(7)

Let us now explain why is appropriate for the evalu-

ation of the end-ambiguity and asymptotic thresholds. Assume

for the moment that the CRLB is achieved (i.e., the SNR is suffi-

ciently high). In the course of decreasing the SNR, the threshold

(resp. ambiguity) region begins for non-oscillating (resp. oscil-

lating) ACRswhen the estimates of the unknown parameter start

to spread along the ACR (resp. the local maxima of the ACR)

instead of falling in the vicinity of the maximum (resp. global

maximum). Therefore, the estimates only fall at the end of the

threshold and ambiguity regions (if we start from low SNRs)

in the interval and the intervals and (at the left and

the right of ) so the achievedMSE can be approximated using

.

B. Binary Detection Based ALBs

By using the principle of binary detection, we have derived

in Part I the following ALBs ( , 2):

(8)

(9)

where and

; denotes the

valley-filling function. We have seen in Part I that and are

very tight and that is tighter than ; and are, respec-

tively, tighter than and when .

IV. THRESHOLD COMPUTATION

We consider in this section the computation of the thresholds

of the different SNR regions w.r.t. some features of the trans-

mitted signal.

Similarly to Part I, we define the a priori , begin-ambi-

guity , end-ambiguity and asymptotic thresholds

as [5]:

(10)

(11)

(12)

(13)

We take , , and .

The considered features of the transmitted signal are the a

priori time bandwidth product (ATBW) and the inverse frac-

tional bandwidth (IFBW) defined as:

(14)

(15)

where ( a priori time) is the width of the a priori

domain of and the bandwidth of the transmitted signal.

In Section IV-A, we consider the numerical calculation of the

thresholds. We derive in Section IV-B analytic expressions of

the begin-ambiguity, end-ambiguity and asymptotic thresholds,

and discuss in Section IV-C the properties of the thresholds ob-

tained in Section IV-B.

A. Numerical Computation

As mentioned above we consider here the numerical compu-

tation of the thresholds. To find , , and w.r.t.
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(resp. ) numerically, we vary (resp. ) by fixing (resp.

) and varying (or vice versa) and compute for each value

of (resp. ) the achieved MSE along the SNR axis. Then, the

thresholds are then obtained by making use of (10)–(13).

Theoretically, the thresholds should be computed from the

MSE achieved in practice. As the exact expression of theMSE is

not obtainable in most estimation problems, the thresholds can

be calculated using a MSEA, an upper bound or a lower bound.

In Section V, the a priori, begin-ambiguity and end-ambiguity

thresholds are computed numerically using the MSEA

in (6). The asymptotic threshold is computed using and

the ALBs in (8) and in (9).

B. Analytic Expressions of the Begin-Ambiguity,

End-Ambiguity and Asymptotic Thresholds

In this subsection, we derive analytic expressions of the

begin-ambiguity, end-ambiguity and asymptotic thresholds by

making use of the MSEA in (7).

1) Asymptotic Threshold for Oscillating and Non-Oscillating

ACRs: Let:

(16)

Using (1), (7) and (16) we can write from the asymptotic

threshold definition in (13):

(17)

where

(18)

denotes a constant; is the solution of (17).

To find an analytic expression of we consider the fol-

lowing approximation of the function

(19)

obtained from the inequality

, in [22, pp. 83]. Let:

(20)

From (18), (19) and (20), we can write (17) as:

(21)

with

(22)

so the asymptotic threshold in (21) can be expressed as:

(23)

where denotes the branch “ ” (because is

negative) of the Lambert function defined as a solution

(more than one solution may exist) of the equation .

Like the other non-elementary functions (e.g, function, error

function), the Lambert function has Taylor series expansion

and can be computed recursively; it is also implemented in

MATLAB; hence, the solution in (20) can be considered as an

analytic solution since it can directly be obtained.

We recall that in the evaluation of in (18), in (22)

and in (23), we take for non-oscillating ACRs and

for oscillating ACRs.

2) End-Ambiguity Threshold for Oscillating ACRs: From the

end-ambiguity threshold definition in (12) we can write using

(1), (2), (4), (7) and (16):

(24)

where

(25)

Using (19), (20) and (25), we can write (24) as:

(26)

where

(27)

so the end-ambiguity threshold in (26) can be expressed as:

(28)

We recall that in the evaluation of in (25), in (27)

and in (28), we take .

3) Begin-Ambiguity Threshold for Oscillating ACRs: To

compute the begin-ambiguity threshold, we cannot employ the

MSEA in (7) because the estimates fall now, not only in ,

and , but around all the local maxima in the vicinity

of the maximum of the envelope of the ACR. Therefore, by

considering the envelope of the normalized ACR

instead of itself, and the ECRLB in (2) instead of the

CRLB in (1), we can approximate the MSE in the vicinity of

the maximum of by:

(29)

where, similarly to the case of non-oscillating ACRs, we take

( is replaced by because the EMQBW is equal

to the MQBW of the envelope). Let:

(30)

(31)

From (2), (29), (30) and (31) we can write the definition of the

begin-ambiguity threshold in (11) as:

(32)

where

(33)

Using (19), (32) becomes:

(34)
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where

(35)

so we can express the begin-ambiguity threshold from (34) as:

(36)

We recall that in the evaluation of in (33), in (35)

and in (36), we take .

4) About the End-Ambiguity and Asymptotic Thresholds for

Oscillating ACRs: Note that in the computation of the end-am-

biguity and asymptotic thresholds for oscillating ACRs,

can be replaced by because in (7) are the abscissa

of two local maxima of (the local maxima are located

on the envelope). Therefore, in (23) and in (28) can

be expressed as:

(37)

(38)

where

(39)

(40)

By using (37) and (38) instead of (23) and (28), we highly sim-

plify the calculation of the thresholds. In fact, if we want to

compute the thresholds of a passband pulse (i.e., pulse modu-

lated by carrier) w.r.t. the IFBW in (15), then instead of gen-

erating the normalized ACR for each value of , we just

compute the normalized ACR envelope once and eval-

uate by varying w.r.t. .

C. Threshold Properties

In this subsection we prove that for a baseband (i.e., unmod-

ulated) pulse that can be written as (e.g, Gaussian, cardinal sine

and raised cosine pulses):

(41)

with denoting the bandwidth, the asymptotic threshold only

depends on the shape (i.e., independent of ) (e.g, con-

stant for Gaussian and cardinal sine pulses, and function of the

roll-off factor for raised cosine pulses), and that for the passband

pulse

(42)

with denoting the carrier frequency, the begin-ambiguity

threshold only depends on the shape of the envelope

of (i.e., independent of , and the IFBW

), whereas the end-ambiguity and asymptotic thresholds are

functions of the shape and the IFBW in (15) (i.e., in-

dependent of the values taken by and separately). This is

equivalent to saying that the begin-ambiguity threshold is only

function of the shape of the envelope of the signal, whereas the

end-ambiguity and asymptotic thresholds are only functions of

the shape of the signal itself, regardless of any other parameters

like the bandwidth and the carrier frequency.

1) Asymptotic Threshold for Baseband Pulses: Let us prove

that the asymptotic threshold in (23) of the pulse in (41)

is independent of . From (41) we can write the normalized

ACR of as:

(43)

where denotes the normalized ACR of , and the

MQBW of using (4) and (43) as:

(44)

where denotes the MQBW of (unitary

MQBW, i.e., MQBW per a bandwidth of ). Note

that and used here are, respectively, equivalent to

and used in Section IV-B. As for

non-oscillating ACRs, we can write and in (23) from

(43) and (44) as:

We can see that both and are independent of .

Hence, for the pulse in (41) the asymptotic threshold is inde-

pendent of ; it depends only on the shape of the normalized

ACR determined by .

2) Begin-Ambiguity Threshold for Passband Pulses: Let us

prove that the begin-ambiguity threshold in (36) of the pulse

in (42) is independent of and . The envelope

of the normalized ACR of and the

EMQBW of can be written from (42), (43) and

(44) as:

(45)

(46)

Note that and used here are, respec-

tively, equivalent to and used in Section IV-B.

As for the begin-ambiguity threshold, we

can write and in (36) using (45) and (46) as:

Both and are independent of and . Hence, for

the pulse in (42) the begin-ambiguity threshold is independent

of and ; it only depends on the shape of the envelope

of the normalized ACR .

3) End-Ambiguity and Asymptotic Thresholds for Passband

Pulses: Let us prove that the asymptotic threshold in (37) and

the end-ambiguity threshold in (38) of the pulse in (42)
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Fig. 1. Baseband: SQRTs of the CRLB , the maximum MSE and the

MSEA w.r.t. the SNR and the pulse width .

are function of the shape of the envelope in (41)

and the IFBW in (15) only.

As for oscillating ACRs, we can write ,

and in (37) and (38) using (45) and (46) as:

Hence, the end-ambiguity and asymptotic thresholds of

are independent of and separately; they depend

on the shape of the envelope of the ACR and on the

IFBW . Note that and determine together the shape

of the ACR of .

We have mentioned in the introduction that a closed-form ex-

pression of the asymptotic threshold is derived in [14] based on

the MIE-based MSEA in [16]. The obtained result is very nice.

However, it is only applicable on cardinal sine ACRs. Further-

more, the employed MSEA considers the unknown parameter

and the zeros of the ACR as testpoints. This choice is not optimal

for asymptotic threshold computation because the MSE starts to

deviate from the asymptotic MSE (the CRLB for asymptotically

estimators) when the estimate starts to fall around the strongest

local maxima.

The latter problem is bypassed in [15] by only considering the

unknown parameter and the two strongest local maxima (like in

our approach). However, the threshold is not computed based

on the achieved MSE w.r.t. the asymptotic one (like in the ap-

proach of [14] and ours) but based on the probability of non-am-

biguity. Obviously, the MSE-based approach is more reliable

because the main concern in estimation is to minimize the MSE

(by making it attaining the asymptotic one).

As mentioned in the introduction, we have two main con-

tributions with regards to the thresholds. The first contribution

is that we derived closed-from expressions of the begin-ambi-

guity, end-ambiguity and asymptotic thresholds for oscillating

and non-oscillating ACRs. The obtained thresholds are very ac-

curate (especially for the end-ambiguity and asymptotic thresh-

olds of oscillating ACRs, see Section V). Our approach can be

applied on any estimation problem satisfying the system model

Fig. 2. Baseband: a priori and asymptotic thresholds w.r.t. the ATBW .

of Part I. To the best of our knowledge, our results are com-

pletely new. Also, we have dealt with the case of non-oscillating

ACRs. To the best of our knowledge, no one has investigated

this case before.

The second contribution is that we proved some properties of

the obtained thresholds. The proved properties are valid for any

estimation problem whose ACR (rather than transmitted signal

like in the TOA case) satisfies (41) and (42).

V. NUMERICAL RESULTS ABOUT THRESHOLDS

In this section we discuss some numerical results about the

thresholds obtained for the baseband and passband Gaussian

pulses respectively given by

(47)

(48)

The bandwidth at of both and and

the MQBW of (equal to the EMQBW of ) can

respectively be expressed as [32]:

(49)

(50)

In Sections V-A and V-B we consider the baseband and pass-

band cases, respectively.

A. Baseband Pulses: A Priori and Asymptotic Thresholds

w.r.t. the ATBW

We consider in this subsection the baseband pulse in (47) and

compute the a priori and asymptotic thresholds w.r.t. the ATBW

in (14) by considering a variable pulse width and a fixed

a priori domain ns.

In Fig. 1, we show the SQRTs of the CRLB in (1), the

maximum MSE in (3), and the MSEA in (6) w.r.t.

and . We can see that decreases as decreases for

whereas it becomes approximately constant w.r.t.

for . In fact, is achieved at (ap-

proximately equal to the asymptotic threshold), and it is also

inversely proportional to which is in turn inversely propor-

tional to as can be noticed from (1) and (50). We deduce that
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Fig. 3. Passband: SQRTs of the CRLB , the ECRLB , the maximum MSE

, and the MSEA w.r.t. the SNR and the pulse width .

the MSE can (resp. cannot) be reduced with baseband pulses by

increasing the bandwidth (inversely proportional to the pulse

width) if the available SNR is above (resp. below) the asymp-

totic threshold.

Fig. 2 shows the a priori threshold (obtained numer-

ically from ), the asymptotic thresholds and

(resp. obtained numerically from and the ALB in (8))

and the asymptotic threshold in (23) (analytic expres-

sion) w.r.t. the ATBW . We can see that:

� The asymptotic thresholds , and

are approximately constant ( ,

and ). This re-

sult is already proved in Section IV-C.

� Thea priori threshold increases with ; in fact, the

gap between the CRLB and the maximum MSE increases

with while the asymptotic threshold is constant.

B. Passband Pulses: A Priori, Begin-Ambiguity,

End-Ambiguity and Asymptotic Thresholds Width Respect to

the IFBW

In this subsection we consider the passband pulse in (48).

We compute the a priori, begin-ambiguity, end-ambiguity and

asymptotic thresholds w.r.t. the IFBW in (15) by considering

variable pulse width and a priori domain

and a fixed carrier .

In Fig. 3, we show the SQRTs of the CRLB in (1), the

ECRLB in (2), the maximum MSE in (3), and the MSEA

in (6) w.r.t. and . The ambiguity region is not ob-

servable for small because converges from to

without staying long equal to due to the weak oscillations in

the ACR; this explains why the begin-ambiguity and end-am-

biguity thresholds are very close to each other for small as

can be seen in Fig. 4. For high , the ambiguity region is

easily observable; it has a triangular shape due to the gap be-

tween the begin-ambiguity and end-ambiguity thresholds that

increases with as can be seen in Fig. 4.

In Fig. 4, we show the a priori threshold (obtained

numerically from ), begin-ambiguity threshold

(obtained numerically from ), begin-ambiguity threshold

in (36) (analytic expression), end-ambiguity threshold

(obtained numerically from ), end-ambiguity

Fig. 4. Passband: A priori, begin-ambiguity, end-ambiguity, and asymptotic

thresholds w.r.t. the IFBW .

threshold in (38) (analytic expression), asymptotic

thresholds , and (resp. obtained numerically

from and the ALBs in (8) and in (9)) and the

asymptotic threshold in (37) (analytic expression) w.r.t.

the IFBW . We can see that:

� Both and are approximately constant. In

fact, the a priori and begin-ambiguity thresholds of a pass-

band signal are approximately equal to the a priori and

asymptotic thresholds of its envelope (see Part I). Further-

more, the a priori threshold of the envelope increases with

the ATBW (constant here), and its asymptotic threshold is

constant (see Section V-A).

� Both and increase with . In fact, the

gap between the global and the local maxima of the ACR

decreases as increases. Therefore, a higher SNR is re-

quired to guarantee that the estimate will only fall around

the global maximum.

� The asymptotic threshold obtained from the ALB

is very close to whereas obtained from is

a bit far from .

� The thresholds , and obtained

from the analytic expressions are very close to ,

and obtained numerically. This result

validates the accurateness of the analytic thresholds espe-

cially because they are obtained by considering one arbi-

trary envelope and by varying according to whereas

the numerical ones are obtained by varying the envelope

and fixing .

Thanks to Fig. 4, we can predict the value of the achievable

MSE based on the values of the available SNR and IFBW. It

is approximately equal to the maximum MSE if falls in

the a priori region (below the a priori threshold curve), be-

tween the maximum MSE and the ECRLB if falls in

the a priori ambiguity transition region (between the a priori

and begin-ambiguity threshold curves), approximately equal to

the ECRLB if falls in the ambiguity region (between

the begin-ambiguity and end-ambiguity threshold curves), be-

tween the ECRLB and the CRLB if falls in the ambi-

guity asymptotic transition region (between the end-ambiguity

and asymptotic threshold curves), and approximately equal to
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CRLB if falls in the asymptotic region (above the asymp-

totic threshold curve).

To summarize we can say that the a priori threshold depends

on both the shape of the envelope of the ACR and the a priori

domain. The begin-ambiguity threshold depends only on the

shape of the envelope of the ACR function. The end-ambiguity

and asymptotic thresholds only depend on the shape of the ACR,

or on any set of parameters describing this shape like the shape

of the envelope and the IFBW together.

VI. PULSE DESIGN FOR MINIMUM ACHIEVABLEMSE

We have seen in Sections IV and V that the achievable MSE

depends on the available SNR and on the parameters of the

transmitted signal. In this section we consider the design of the

transmitted pulse spectrum w.r.t. the available SNR in order

to minimize the achievable MSE.

We assume that the transmitted signal consists of the pass-

band Gaussian pulse in (48). Our goal is to find the optimal

values and of the bandwidth and the carrier frequency

, respectively; the optimal pulse width can be obtained

from the optimal bandwidth using (49).

Regarding the constraints about the spectrum of the trans-

mitted pulse, the two following scenarios are investigated:

i) The spectrum falls in a given frequency band.

ii) The spectrum falls in a given frequency band and has a

fixed bandwidth.

To perform the optimization w.r.t. the SNR, the receiver should

measure the SNR and feed it back to the transmitter, unless

the latter can measure it by itself (such as with mono-static

radars). As the SNR should be accurately estimated we investi-

gate in Section VI-A the estimation of the SNR then we treat in

Sections VI-B and VI-C the optimization of the spectrum sub-

ject to the two constraints introduced above.

A. MLE of the SNR

In this subsection we derive the MLE of the SNR and

approximate its statistics.

For convenience we recall from Section II the following

equations: ,

(with ) and . As well, we rewrite from

(2) in Part I [1] the expression of the log-likelihood function

as: .

By substituting the gain in the expression of by

and equating the partial derivatives of w.r.t. and to zero

we can write the MLE of as:

(51)

where is the MLE of given in Section II.

Wewill see later in Sections VI-B andVI-C that our optimiza-

tion method is useful when the SNR is superior to the begin-am-

biguity threshold. Therefore, the maximum of the

CCR will fall around the maximum of the en-

velope of the ACR so can be approximated

by (Taylor series expansion limited to first order)

where2 . Accordingly, can

be approximated using (51) by

with . As such, asymptotically (due to the

approximation) follows a non-central Chi-squared distribution

with one degree of freedom and with the mean and the variance

respectively given by:

As an illustration, we assume that the estimation error is equal

to the standard deviation . Then for

(resp. ), the SNR estimate is approximately equal

to (resp. ) which

corresponds to an error of (resp.

) on a logarithmic scale. This

shows that the obtained estimator is sufficiently accurate to be

used in the optimization problems investigated below.

B. Spectrum Falling in a Given Frequency Band

We assume in this subsection that the spectrum of the trans-

mitted pulse falls in the frequency band . This constraint

can be written as:

(52)

We consider the FCC UWB band3

[27] in our numerical example.

We can write our optimization problem as:

(53)

where denotes the achievable MSE. As depicted in Fig. 5, the

feasible region corresponding to the constraint in (52) is the

triangular region (region with horizontal dashed bars) limited

by the lines

(54)

(55)

The maximum bandwidth in this feasible region is given by

(56)

and corresponds to the intersection of the lines and :

(57)

2 stands for the normal distribution of mean and variance .

3We have chosen the FCC UWB spectrum because it is possible, thanks to

its ultra wide authorized band, to move the pulse spectrum around so that the

IFBW be reduced and the asymptotic threshold becomes lower than or equal to

the available SNR.
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Fig. 5. The feasible regions corresponding to the constraint in (52) (region

with horizontal dashed bars) and the constraint in (65) (region with vertical

solid bars).

We have for the FCC UWB band.

For a given bandwidth , the minimal and maximal

IFBWs in the feasible region of are given by

(58)

(59)

and correspond to the intersections of the line

(60)

with the lines and respectively:

(61)

(62)

As result, the minimal IFBW is equal to

(63)

and corresponds to in (57); we have

for the FCC UWB band. The maximal IFBW is infinite and

corresponds to .

Let us now consider the minimization of the achievableMSE.

According to the value of the available SNR , three cases can

be considered:

i) The available SNR is lower than the begin-ambiguity

threshold: ; is constant because it de-

pends on the envelope shape only.

ii) The available SNR is close to the begin-ambiguity

threshold: .

iii) The available SNR is greater than the begin-ambiguity

threshold: .

Consider the first case where . We have seen in

Part I [1] that a passband signal and its envelope approximately

achieve the same MSE below the begin-ambiguity threshold

of the passband signal (approximately equal to the asymptotic

threshold of the envelope). We have also seen in Section V-A

that below the asymptotic threshold of the envelope, the

achieved MSE is approximately constant and does not depend

on the pulse width and the bandwidth. Therefore, nothing can

be done to reduce the MSE in this case.

Consider the second case where . As the ECRLB

in (2) is approximately achieved in this case, we minimize

the MSE by maximizing the bandwidth (i.e., minimizing the

pulse width ) so the EMQBW in (2) is maximized and

(inversely proportional to ) is minimized. Therefore, the

optimal solution in this case and the corresponding

achievable MSE are given by

(64)

where the expression of is obtained using (49) and (50). Note

that is themaximum bandwidth in (56). As

as can be seen in Fig. 4, we have for the

FCC band ( ).

Consider now the last case where . As we can

see in Fig. 4, the point will fall, according to the value

of the IFBW , in the ambiguity region, the ambiguity-asymp-

totic transition region, or the asymptotic region. Therefore, the

achievable MSE is equal to the ECRLB , between the ECRLB

and the CRLB , or equal to the CRLB. Now, in order to find the

optimal bandwidth and carrier frequency we proceed as

follows:

1) We pick from Fig. 4 the value of the IFBW for which

the available SNR belongs to the asymptotic threshold

curve.

2) In order to guarantee that the CRLB is achieved, we con-

sider the constraint that is lower than or equal to the

picked . If this constraint cannot be satisfied because

is lower than the minimal IFBW in (63), then the

CRLB cannot be achieved. In order to make the achievable

MSE the closest possible to the CRLB, we set to the min-

imal IFBW . This constraint can be expressed as

if

if .
(65)

3) Now, given that the estimator achieves the CRLB or a

MSE that is the closest possible to the CRLB thanks to the

previous step, we minimize the achievable MSE by mini-

mizing the CRLB itself.

According to the last step, we can write from (52) and (65)

the minimization problem in (53) as

(66)

As can be approximated from (1) and (4) by

(67)

we can write the minimization problem in (66) as

(68)

As shown in Fig. 5, the feasible region of the constraint in

(65) is the half-space below the line (region

with vertical solid bars). We have already seen that the feasible

region of the constraint in (52) is the triangle limited by the

lines , and . Therefore, the feasible region of and
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Fig. 6. (a) Optimal IFBWs and w.r.t. the available SNR . (b) Optimal bandwidths and carrier frequencies and w.r.t. . (c) SQRTs

of the optimal MSEs and w.r.t. ( , , , and are obtained from exhaustive search based on ).

together is the triangular region limited by , and

(region with both vertical and horizontal bars). Consequently,

the solution of the maximization problem in (68) corresponds

to the point of intersection of the lines

and as can easily be seen in Fig. 5. In the special case

where , the feasible region of reduces to the line

so the feasible region of and reduces

to the point which is as result the solution of

(68).

Finally, the solution when the available SNR is larger than

the begin-ambiguity threshold and the corresponding achiev-

able MSE are given by:

with being the CRLB at the SNR , and the

minimum MSE in (64) achieved when .

Note that in practice we do not need to compute the optimal

bandwidth and carrier frequency in real time; it suffices to calcu-

late them once w.r.t. the SNR and to save the obtained values in

a table. Then during the communication the receiver measures

the SNR and feeds it back to the transmitter which, in turn, se-

lects the optimal bandwidth and carrier frequency from the table

and tunes the spectrum of the transmitted signal to meet the op-

timal one.

Let us now discuss a numerical example about the

scenario considered in this subsection. We denote by

the point minimizing the MSEA in the

band , the minimal , and

the corresponding IFBW. To obtain , and , the

available band is swept (exhaustive search) using an increment

of 0.2 GHz for the bandwidth and 0.1 GHz for the carrier

frequency .

In Fig. 6(a) we show (obtained from our method) and ,

both w.r.t. the available SNR . We can see that is a bit

smaller than . This is due to the factor in the

definition of the asymptotic threshold in (13). For ,

we have and .

In Fig. 6(b) we show and (obtained from our method),

and and w.r.t. . We can see that and are

very close to and , respectively. This result shows that

our solution is very close to the optimal one. We can also see

that (resp. ) is a bit larger (resp. lower) than (resp.

). In fact, as already observed in Fig. 6(a). For

, we have and

.

In Fig. 6(c) we show the SQRTs of (minimum MSE ob-

tained from our method) and w.r.t. . We can see that

and are very close to each other. For , we have

and .

C. Spectrum Falling in a Given Frequency Band and Having

a Fixed Bandwidth

We assume here that the spectrum of the transmitted pulse

falls in the frequency band and has the fixed bandwidth

. The constraint about the bandwidth can be written as:

(69)

The feasible region corresponding to the constraints in (52)

and in (69) is the segment of the line in (60) limited by

the lines in (54) and in (55); in this feasible region, the

IFBW satisfies:

where is given in (58) and in (59).

To minimize the MSE, the available SNR should fall in

the asymptotic region; accordingly, we write the following con-

straint similarly to the constraint in (65):

if

if

if .

(70)
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Fig. 7. Optimal carrier frequency w.r.t. the available SNR for

1 GHz (bandwidth).

Our optimization problem can be formulated as:

(71)

The solution of (71) is in (61) for ,

in (62) for , and

(72)

for .

We can write the solution of our optimization problem and

the corresponding achievable MSE as:

(73)

with .

To point out the improvement that our method brought about,

we consider the following numerical example. In Fig. 7 we show

the optimal carrier frequency w.r.t. the available SNR for

a bandwidth of . The curve of has three

branches corresponding to the three cases in (73):

� Branch 1 ( dB): where it is impossible to get to the

asymptotic region because cannot decrease more due

to and .

� Branch 2 ( dB): where the asymptotic region is at-

tained as well as increases with .

� Branch 3 ( dB): where the asymptotic region is at-

tained but cannot increase more due to and .

In Fig. 8 we show the SQRTs of the MSEs , and

achieved by the optimal carrier frequency , the carrier fre-

quency minimizing the CRLB (without taking

account of the ambiguity effect) and the carrier frequency

minimizing the IFBW ( and are constant). To

compute the achievedMSEswe first evaluate the IFBW for each

of , and w.r.t. . Then, the MSE is approximated

by the ECRLB in (2) if is between the begin-ambiguity and

end-ambiguity thresholds (which are functions of the IFBW)

Fig. 8. SQRTs of the MSEs , and achieved by , and w.r.t.

the available SNR for 1 GHz (bandwidth).

and by the MSEA in (7) if is larger than the end-ambiguity

threshold. We can see that has four branches:

� Branch 1 ( dB): where the ECRLB is achieved;

decreases only thanks to because is constant.

� Branch 2 ( dB): where converges from the

ECRLB to the CRLB.

� Branch 3 ( dB): where attains the CRLB which

decreases thanks to both and (note that in-

creases with , see Fig. 7).

� Branch 4 ( dB): where attains the CRLB which

decreases only thanks to because is constant.

Each of and has only three branches (similar to Branches

1, 2 and 4 of ); highly outperforms ( at

30 dB) because simultaneously achieves and minimizes the

CRLB whereas just minimizes the CRLB; outperforms

because achieves the CRLB without minimizing it. The

maximum improvement due to the minimization of the CRLB

is given by . Fig. 8 shows that

for .

In Sections VI-B and VI-C we have considered two typical

optimization examples.More setups with other pulse shapes and

with other constraints can be investigated. For TOA estimation

based on modulated pulses we exactly follow the procedure de-

scribed above regardless of the shape of the envelope. The solu-

tion of any optimization problem suffering from threshold and

ambiguity effects consists in general in the following two steps:

1) Define w.r.t. the tunable parameters (both the car-

rier frequency and the bandwidth for the problem in

Section VI-B and just the carrier frequency for the

problem in Section VI-C) the feasible region where the

CRLB is achieved.

2) Minimize the CRLB in the feasible region by taking into

account the different constraints.

We have mentioned in the introduction that optimal time-

bandwidth product design is considered in [19] based on the

MIE; the mentioned work is based on the probability of non-am-

biguity rather than the MSE. Therefore, the obtained solution is

optimal for sufficiently high SNRs only.

As mentioned in the introduction, we have one main contri-

bution with regards to optimization subject to threshold and am-
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biguity phenomena. We considered the problem of pulse design

for TOA estimation and proposed a very simple algorithm that

minimizes the achievable MSE. To the best of our knowledge,

this work has never been done before. The obtained solution

is completely different from the one obtained by minimizing

the CRLB (e.g, [17]). When the threshold and ambiguity phe-

nomena are not taken into account, then the optimal solution

consists in filling the available spectrum with the maximum al-

lowed PSD starting from the highest frequency. The works in

[17], [19] correspond to the second step of our optimization

method.

Finally, we would like to point out that the results of

Section VI can be used in practical UWB-based positioning

systems where both the multipath component (MPC) resolv-

ability and the perfect multiuser interference suppression can

be insured. In fact, TOA estimation can achieve, in multipath

line-of-sight (LOS) channels, the same performance as in

AWGN channels if the MPCs are resolvable (e.g, see [33]

where the CRLB is experimentally attained).

VII. CONCLUSION

We have employed the MIE-based MSEA to derive ana-

lytic expressions for the begin-ambiguity, end-ambiguity and

asymptotic thresholds. The obtained thresholds are very accu-

rate, and also can be used with various estimation problems. We

have proved that the begin-ambiguity threshold only depends

on the shape of the ACR envelope, and the end-ambiguity and

asymptotic thresholds only on the shape of the ACR. Therefore,

the asymptotic threshold is constant for baseband pulses with

a given shape (e.g, Gaussian, cardinal sine, raised cosine with

constant roll-off). For passband pulses with given envelope

shape, the begin-ambiguity threshold is constant whereas the

end-ambiguity and asymptotic thresholds are functions of the

IFBW. We have exploited the information on the begin-ambi-

guity and asymptotic thresholds to optimize, according to the

available SNR, the pulse spectrum that achieves the minimum

attainable MSE. The proposed method is very simple and very

accurate.
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