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1 Introduction

Experimental studies of quark-gluon plasma at RHIC and LHC have led to a number

of theoretical challenges. The successful phenomenological description of what is observed

rests on the assumption that the system thermalizes on a time scale of order less than inverse

local temperature. By thermalization we mean here that a hydrodynamic description

becomes valid [1, 2]. It has recently been appreciated that at least in some model cases

this happens while the system is still very anisotropic [3, 4], so instead of using the term

thermalization one sometimes speaks of “hydrodynamization”.

It is known that in a strongly interacting system the approach to hydrodynamics can

be very rapid [4, 5] — as rapid as seen in heavy ion collisions. One of the purposes of

the present work was to see how generic this behaviour is. This type of question was

recently considered in the context of isotropization [6], where no hydrodynamic modes are

present. Here we consider a case where we can see the onset of hydrodynamic behaviour

(as in [4, 5]). We consider a large number of far from equilibrium initial states (which

mimic the situation right after heavy nuclei collide) and simulate the subsequent evolution

until hydrodynamic behaviour sets in. This way we can see, in particular, the distribution

of thermalization times.

While the theory underlying the phenomena studied at RHIC and LHC is firmly be-

lieved to be textbook QCD, it has so far not been possible to understand the observations

from first principles. Since the post-collision plasma state appears to be strongly coupled,

much effort has been devoted to consideration of similar physical issues in the context of

strongly coupled N = 4 SYM [7], which has a tractable holographic representation in terms

of AdS gravity [8, 9]. Even then it has not been possible to describe the entire process

analytically, making it necessary to resort to suitable numerical techniques.
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Numerical studies of the dynamics of Yang-Mills plasma based on the AdS/CFT corre-

spondence have been an area of significant activity in recent years (for a review and refer-

ences see [10]). Holography represents strongly interacting Yang-Mills plasma (in d = 3+1

dimensions) by a spacetime geometry in one dimension higher. Initial states of the plasma

are represented as initial geometries which are then evolved numerically using Einstein’s

equations. These computations are in general rather daunting, so much effort has been

devoted to situations where symmetries reduce the complexity to a manageable level. A

physically important case is that of Bjorken flow [11]. Despite considerable simplification

of the dynamics, this example is rich enough to be of phenomenological significance, even

though its usefulness is limited to the central rapidity region.

Studies of Bjorken flow in the context of AdS/CFT were initiated in [12], which showed

analytically that hydrodynamic behaviour appears at late times. The dynamics at early

times was considered soon after [13], but it quickly became clear that a numerical ap-

proach to the problem was required. The first numerical studies were pioneered by Chesler

and Yaffe [3], but rather than setting general initial conditions (corresponding to non-

equilibrium states of the dual gauge theory plasma) in the bulk the authors considered

perturbing the system at the boundary.

Formulating consistent initial conditions requires solving the constraints contained in

Einstein equations. This rather nontrivial problem was considered in [13], where 29 solu-

tions were found. These initial conditions were the starting point for the numerical stud-

ies [4, 5], where a number of important observations were made. Some of the results were

however limited by the fact that only a small number of initial conditions were available.

The present work follows [3, 14] in using Eddington-Finkelstein coordinates. The pa-

rameterization of the metric used here is different however, because the original approach

of [3] made it difficult to set the initial conditions at very early proper time. The approach

described here overcomes this difficulty. The form of the field equations makes it possible

to effectively solve the constraints. Initial conditions can be set by choosing a single inde-

pendent metric coefficient function which satisfies some mild conditions and the remaining

metric coefficients on the initial time slice are then determined by numerically integrating

ordinary differential equations.

Given a well posed initial value problem it is possible to solve the field equations nu-

merically. The complications of AdS asymptotics can be dealt with following the approach

of [3] (see also [15]). Once the spacetime geometry is determined (up to some final time)

the AdS/CFT prescription provides an explicit recipe to determine the expectation value

of the energy-momentum tensor of the dual 4-dimensional gauge theory.

At sufficiently late times the system is governed by the equations of hydrodynamics

— this was shown analytically in [12] and numerically in [4, 5]. The determination of the

“typical” time when hydrodynamic behaviour sets in is one of the main tasks we address.

Heller et al. [4, 5] analysed 29 initial conditions which indicated the hydrodynamics sets in

quite early and noted that the pressure anisotropy at that time is still significant (this was

also pointed out in a similar context by [3]). The approach adopted in this paper makes it

possible to generate consistent initial conditions at will, so we are able to look at a large

number of solutions. This makes it possible to claim a much more firm estimation. In
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what follows we describe the distribution of thermalization times for a sample of over 600

initial conditions.

An important role in the interpretation of our simulations is played by entropy. After

thermalization the hydrodynamic notion of entropy [16–18] is valid, but also at earlier

times the apparent horizon1 area (mapped to the boundary) gives rises to an operational

notion of entropy, which asymptotes to hydrodynamic entropy at late times.

The organization of the paper is as follows. Section 2 recalls the implications of boost

invariance and the hydrodynamics of Bjorken flow. In section 3 we present the dual,

gravitational description and some details of the numerics. Initial states for the simulation

are discussed in section 4. The results for thermalization are presented in section 5 and

entropy production is the subject of section 6.

2 Boost invariant flow

An idealized, but very useful description of a heavy ion collision was formulated by

Bjorken [11]. The colliding nuclei are regarded as infinite sheets of mater extending in

the plane transverse to the collision axis. The collision energy is also infinitely high, and

the physics of the system is assumed to be determined only by the proper time evolution

of the energy density. In the case of central, ultrarelativistic collisions this is a useful

approximation for the description of observables in central rapidity region.

Boost invariant states in four spacetime dimensions can most simply be characterized

by saying that in proper time-rapidity coordinates

t = τ cosh y , z = τ sinh y , (2.1)

all observables are independent of the rapidity y. Furthermore, we assume independence

of the transverse coordinates.

In particular, in a conformal theory the expectation value of the energy momentum

tensor in a boost-invariant state takes the form [12]

Tµν = diag(ε, pL, pT , pT ) , (2.2)

where

pL = −ε− τ ε̇ , pT = ε+
1

2
τ ε̇ , (2.3)

so it is determined completely by the energy density ε(τ). Furthermore ε ∼ T 4, and for

N = 4 SYM [20] in equilibrium

ε =
3

8
π2N2

c T
4 . (2.4)

It is very convenient to introduce the notion of effective temperature, which satisfies eq. (2.4)

in any state; thus it is the temperature of an equilibrium state with the same energy

density [21]. In what follows we will denote the effective temperature by T , since this

introduces no ambiguity.2

1The boundary-covariant apparent horizon consistent with conformal symmetry is unique in fluid-gravity

duality [19].
2Note that it may not be possible to do this for more general flows [22].
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In a hydrodynamic state, by definition, the energy momentum tensor can be expressed

in terms of the local fluid velocity u and temperature T . Specifically, it can be written in

the form

〈Tµν〉 = εuµuν + p(uµuν + ηµν) + . . . (2.5)

where the ellipsis denotes terms involving gradients of the hydrodynamic variables. The

energy density ε and pressure p are understood to be expressed in terms of the temperature

using the equations of state. For a conformal field theory one has ε = 3p ∼ T 4.

A boost invariant configuration has (uµ) = (−1, 0, 0, 0), and all the physics is encoded

in the dependence of the energy density (or, equivalently, the temperature) on τ . Analytic

calculations have been performed up to third order in the gradient expansion [17, 21, 23],

the result being

T (τ) =
Λ

(Λτ)1/3

{
1− 1

6π (Λτ)2/3
+
−1 + log 2

36π2 (Λτ)4/3
+
−21 + 2π2 + 51 log 2− 24 log2 2

1944π3 (Λτ)2

}
. (2.6)

The scale Λ appearing in (2.6) depends on the initial conditions. Indeed, it is the only

trace of the initial conditions to be found in the late time behaviour of the system. It is

expected that starting from any initial state the system should evolve in such a way that

at late times it will be described by (2.6) for some value of the constant Λ. As we shall

see, our simulations suggest that for “low entropy” initial states Λ is proportional to the

apparent horizon entropy of the initial state.

To determine whether that the system has thermalized (in the sense of reaching hy-

drodynamics) it is very convenient to define the function [4]

f(w) =
τ

w

dw

dτ
, (2.7)

where w = τT (τ) is the proper time in units of inverse effective temperature. In a conformal

theory the behaviour of this function at large w is independent of Λ for dimensional reasons.

By computing it at late times (using (2.6)) one finds

fH(w) =
2

3
+

1

9πw
+

1− log 2

27π2w2
+

15− 2π2 − 45 log 2 + 24 log2 2

972π3w3
+ . . . . (2.8)

A given solution, ε(τ), starts out far from equilibrium, but the damping of non-

hydrodynamic modes ensures that after a sufficiently long time only hydrodynamic modes

remain. Given the result of a numerical simulation for T (τ) one can check whether the

hydrodynamic regime has been reached by comparing f(w) calculated from eq. (2.7) with

the hydrodynamic form given by eq. (2.8).

An important role in the following is played by entropy of the expanding plasma. The

thermodynamic (equilibrium) entropy density is given by

s =
1

2
π2N2

c T
3 . (2.9)

In a boost invariant setting it is useful to speak of entropy per unit rapidity and transverse

area, given by
dS

dydx2⊥
= τs , (2.10)
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where the factor of τ reflects the expanding volume. In our holographic calculation the

entropy per unit rapidity and transverse area can be computed from the apparent horizon

area (due to the Bekenstein-Hawking relation), as discussed in section 6.

As discussed in [5] it is convenient to use the dimensionless ratio

S =
1

1
2π

2N2
c ·
(
Ti
)2
(

dS
dydx2⊥

)
, (2.11)

where Ti is the effective temperature at the initial time. At late times, the ratio (2.11)

approaches the limiting value

Sf = Λ2
(
Ti
)−2

. (2.12)

Henceforth when speaking of entropy, we will mean the quantity given in eq. (2.11).

3 The gravity dual

The standard AdS/CFT prescription for calculating the energy-momentum tensor expec-

tation value in a given state is to find the gravity solution corresponding to that state and

then extract the expectation value from the near-boundary asymptotics.

The object of this paper is to simulate the approach to equilibrium starting from

generic, non-equilibrium initial states of Yang-Mills plasma at τ = 0. In the holographic

approach pursued here this is implemented by choosing an initial geometry at random and

evolving it using Einstein’s equations.

The choice of initial geometry must satisfy the constraint equations, whose form de-

pends on the choice of coordinates and parameterization of the metric. The choices adopted

here draw on the experience gained from references [3, 5] and make it possible to effectively

solve the constraints at τ = 0, so that an arbitrary number of consistent initial geometries

can be generated and evolved [24]. As in the work of Chesler and Yaffe [3, 10] (as well as

the papers on fluid-gravity duality [25]), we adopt Eddington-Finkelstein coordinates. The

metric is parameterized as

ds2 =
1

z2
(
−2dzdt− a(t, z)dt2 + b(t, z)dy2 + c(t, z)dx2⊥

)
. (3.1)

This parameterization is different from that used in [3], which is inconvenient if one wishes

to set initial conditions at t = 0. With the parameterization (3.1) it is possible to set initial

conditions at any t. Note that on the conformal boundary this time coordinate coincides

with the proper time coordinate τ .

Assuming the metric Ansatz given in eq. (3.1), the Einstein equations with negative

cosmological constant

Rab + 4gab = 0 (3.2)

reduce to a set of 5 nonlinear partial differential equations for the metric coefficients a, b, c.

Three of these equations can be regarded as evolution equations. Of the remaining two,

one is a constraint on initial data (and will be discussed in detail in section 4), and the
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other is redundant in the sense that it is automatically satisfied by any consistent initial

data evolved using the evolution equations.

Due to the presence of a negative cosmological constant the solutions describe locally

asymptotically AdS geometries. For the purpose of numerical computations it is very

convenient to isolate the asymptotic AdS behaviour by defining

a(z, t) = 1 + z3 ã(z, t)

b(z, t) = (t+ z)2 + z3 b̃(z, t)

c(z, t) = 1 + z3 c̃(z, t) . (3.3)

The evolution equations expressed in terms of ã, b̃, c̃ are amenable to numerical computa-

tions at t 6= 0, but at t = 0 one has to set

a(z, t) = 1 + z3 ã(0)(z, t)

b(z, t) = (t+ z)2 + z5 b̃(0)(z, t)

c(z, t) = 1 + z3 c̃(0)(z, t) (3.4)

in order to obtain differential equations which can be used to make the initial time step

at t = 0.

With the definitions (3.3)-(3.4) the evolution equations assume a rather special form:

even though they are nonlinear, they are linear in the time derivatives.3 Specifically, letting

u denote the 4-component vector (∂tb̃, ∂tc̃, ∂zã, ã) one finds that the 4 independent Einstein

equations can be written as

∂zu = Au+ f , (3.5)

where A is a 4x4 matrix and f is a 4-component vector expressed in terms of ã, b̃, c̃ and

their z derivatives. Solving this linear system of first order ordinary differential equations

by integration over z one can obtain the time derivatives ∂tb̃, ∂tc̃ and ã itself. These can

then be used to evolve the metric. The explicit form of A and f is unilluminating, but

straightforward to obtain. As mentioned earlier, for the time step at t = 0 one needs to

use (3.4) instead of (3.3).

The integration over z can conveniently be carried out using the spectral representa-

tion [26], which we use in the form of the collocation method with Chebyshev polynomials.

For regular configurations, such as those considered here, it gives exponential convergence,

allowing for modest grid sizes.

To solve eq. (3.5) one must impose the correct boundary conditions. These can be

determined by solving the field equations in a near boundary expansion, i.e. an expansion

around z = 0. The result of this standard procedure is

a(t, z) = 1 + a4(t)z
4 + . . .

b(t, z) = t2 + 2tz + z2 + z4 t2
(
a4(t) +

3

4
ta′4(t)

)
+ . . .

c(t, z) = 1− 1

2
z4
(
a4(t) +

3

4
ta′4(t)

)
+ . . . . (3.6)

3This is of course a consequence of using the Eddington-Finkelstein gauge.
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The above expansion is expressed in terms of the single function a4(t), which is not deter-

mined by the near-boundary analysis of the equations of motion. This function is deter-

mined by the asymptotics of the full numerical solution. Holographic renormalisation [27–

29] is then invoked to calculate the energy-momentum tensor (by construction this is of

the form given in eq. (2.2)-(2.3)). In this way from the numerical solution at a given time

τ one can read off the energy density using the relation [28]

ε(τ) = −3N2
c

8π2
a4(τ) . (3.7)

It can be checked that the field equations imply that at early times the expansion of a4(t)

contains only even powers of t, which due to (3.7) implies an analogous property of the

energy density — this was established already in [13] using Fefferman-Graham coordinates.

Time evolution is computed using the 4th order Adams-Bashforth-Moulton predictor-

corrector approach. This turned out to be preferable to using a Runge-Kutta integrator,

due to the relatively large cost of spacial integrations and solving eq. (3.5) at each time step.

In practice setting up the numerical solution of Einstein equations is somewhat subtle

here, since one must choose a suitable range for the z coordinate: ideally, it should cover

the region starting at the boundary and reaching just inside of the event horizon. The

location of the latter is however unknown until the entire spacetime is determined. This

chicken-and-egg problem is resolved in the spirit of what is universally done in the numerical

relativity literature: the apparent horizon is located (if present), and the coordinate range

is terminated there. The position of the apparent horizon is computed directly from the

definition in terms of the expansion scalars (see for example [17]). For our purposes the

area of the apparent horizon is also of prime interest, since it is connected to the entropy

of the black brane (and ultimately, of the Yang-Mills theory plasma).

The position of the apparent horizon is not static, so one has to dynamically adjust the

range of z every few time steps. Whenever this is done, one has to translate the solution

at that time to the new spacial grid. The heuristics for this regridding are essential for

the simulation to be stable long enough for hydrodynamics to be reached. The accuracy of

the numerical evolution can in practice be monitored by checking whether the constraint

equation (which is satisfied at the initial time) remains satisfied after each time step is taken.

4 Initial states

To specify a consistent initial condition for the asymptotically AdS geometry one needs to

satisfy the single constraint equation among (3.2). This equation involves only the metric

coefficients b and c
1

2

(
∂zb

b

)2

− ∂2zb

b
+

1

2

(
∂zc

c

)2

− ∂2zc

c
= 0 . (4.1)

At t = 0 we choose the function b and then obtain the initial condition for c by numerically

solving the above ordinary differential equation. Finally, the metric coefficient a is obtained

by solving the linear system (3.5).

The choice of b has to be consistent with the near boundary expansion, whose leading

terms are given in eq. (3.6). In practice we chose various families of functions (such as
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ratios of polynomials, elementary as well as special functions) depending on some number

of arbitrary coefficients which were then randomly generated a number of times.

Note that the choice of b at t = 0 also determines the expansion of a4(t) in powers of

t; this happens, because the near boundary expansion of b is expressed in terms of a4(t)

and its derivatives. This series representation of a4(t), valid close to t = 0, can be used to

control the numerical solution at early times.

As discussed in the previous section, the initial energy density when expanded in powers

of the proper time around τ = 0 can only contain even powers of τ . It is not however clear

whether one should assume that the energy density is a nonzero constant at τ = 0. The

color glass condensate approach suggests that ε(0) = ε0 > 0 (see for example [30]), which

was assumed in the present study. It could in principle be that ε0 = 0, in which case the

leading term would be

ε(τ) = ε2kτ
2k + . . . (4.2)

with ε2k 6= 0 for some k > 0. It has been suggested [31, 32] that such initial states (with

k = 1) appear in consequence of shock wave collisions in AdS. We hope to return to these

kind of initial states in the future, but in the work reported here we assumed that the energy

density is non-vanishing at the initial time. With this assumption one can for convenience

scale it to any given constant. We chose to fix a4(0) = −1. Using the relations (2.4)

and (3.7) this leads to

Ti =
1

π
. (4.3)

While the initial geometries generated are very diverse, the states of N = 4 SYM which

they map to all have the initial energy density scaled to the same value. These initial states

of the gauge theory are nevertheless distinct, as their subsequent evolution shows.

A very interesting question is how these states should be characterized in the Yang-

Mills theory. Since these are highly non-equilibrium states one cannot use thermodynamic

notions to describe them. Indeed, it seems that one should not expect any simple de-

scription. However, as noted by Heller et al. [4], from a holographic perspective there is

one characteristic which seems to be useful and interesting: it is “initial entropy”. This

quantity can be defined unambiguously on the gravity side in terms of the apparent hori-

zon area of the black brane geometry mapped to the boundary along null geodesics. This

quantity is guaranteed to be non-decreasing, and for large times becomes identical to hy-

drodynamic (and ultimately thermodynamic) entropy. It is not a priori obvious that an

apparent horizon should always exist in the chosen time slicing of AdS, but in all states

considered here it exists either at the initial time τ = 0 or very shortly thereafter. Using

the Bekenstein-Hawking relation to associate entropy with the apparent horizon area one

finds, with the assumed normalizations,

S =
aAH

π
, (4.4)

where aAH is the area of the apparent horizon. For all the numerical solutions considered

this indeed coincides with the thermodynamic result (2.6) at late times. The range of

entropies of all the initial states generated is shown in figure 1.
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Figure 1. The distribution of initial entropies.
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Figure 2. Left panel: effective temperature as a function of time for three different initial entropies

(both quantities in units of initial effective temperature). Right panel: maximal temperature (in

units of initial effective temperature) as a function of the initial entropy.

5 Thermalization

The results presented in this and the following sections follow from picking initial gravity

configurations as described above and evolving them until times large enough for hydro-

dynamics to be valid.

For each initial condition the simulation gives the proper-time dependence of the ef-

fective temperature. Similarly to the findings of [5] we find that there are generically three

different behaviours. For states of initial entropy below 0.3 typically the temperature either

decreases monotonically from the start, or after an initial plateau. For states with higher

entropy the effective temperature rises at first and only after some time the system begins

to cool. In [5] this phenomenon was referred as reheating.

Since we have normalized the effective temperature to 1/π at t = 0 for all the initial

configurations and for large times the system is cooling in accordance with hydrodynamics,

the maximal temperature is a measure of the reheating phenomenon. Figure 2 shows that

while reheating is absent for almost all low entropy initial states, it is typical for entropies

of around 0.3 or higher. There seems to be no functional dependence of Tmax on Si.

Despite these qualitative differences at early times, all numerical solutions exhibit

cooling at intermediate and late times. In the earlier studies of boost invariant flow [4, 5]
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Figure 3. The distribution of calculated (dimensionless) times w = τT at the transition to hydro-

dynamics.
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Figure 4. Thermalization times in the units of initial effective temperature as a function of the

initial entropy.

it was found that hydrodynamics become a good description at some w < 1 in all the 29

cases considered. In the study presented here evolution was carried on until w = 1.2. In

all 600 cases examined here hydrodynamics became an accurate description significantly

earlier, in agreement with [4, 5].

The criterion for thermalization which we used is the same as that proposed in [4].

Specifically, for a given solution T (τ) we evaluate the corresponding function f(w) defined

by (2.7). We then calculate the difference between this and the asymptotic form given

by (2.8). The thermalization “time” wth is defined as the maximum value of w such that

for w > wth ∣∣∣∣∣ f(w)

fH(w)
− 1

∣∣∣∣∣ < 0.005 . (5.1)

The distribution of the values of wth found can be seen in the histogram shown in figure 3.

It is clear from this that the early thermalization in boost invariant flow observed in [4] is

really a generic feature of the dynamics.

The corresponding thermalization times are plotted against initial entropy in figure 4.

The units are those of initial temperature in order to easily compare with reference [4],
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Figure 5. The pressure anisotropy for a small sample of solutions (black curves). The remaining

curves represent 1st (red, dotted), 2nd (magenta, dashed) and 3rd (green, dashed-dotted) order

hydrodynamics.

where it was observed that for the sample of initial states considered in that work, there

appeared to be a correlation between the initial entropy and the thermalization time. In

the larger set of solutions examined here this does not appear to be the case.

At late times all the solutions converge to hydrodynamics, as expected. This can be

seen on plots showing the numerically computed function f(w), or equivalently by plotting

the pressure anisotropy

∆ ≡ pT − pL
ε

= 6f(w)− 4 . (5.2)

Typically this is quite large (on average ∆ ∼ 0.35) at thermalization, as seen in figure 5. The

conclusion is then that hydrodynamics becomes valid rather early, and the large pressure

anisotropy predicted by hydro at such early times is in fact reliable. The oscillations

visible on these plots as hydrodynamics is approached indicate the presence of quasinormal

modes [33].

After thermalization is attained the hydrodynamic description becomes valid (by defi-

nition). As discussed in section 2, the boost-invariant hydrodynamics of a conformal fluid

is determined by the single scale Λ. For any numerical solution this value can be found

by fitting formula (2.6) to the tail of the numerical data. A histogram of the values of Λ

obtained in this way is shown in figure 6.

The distribution seen in the left panel of figure 6 is reminiscent of the histogram of

initial entropies. In fact, the simulations reported here suggest that the scale Λ is linearly

correlated with the initial entropy. This is seen in the right panel of figure 6. Since in QCD

the final charged particle multiplicity is proportional to the final entropy (which is Λ2 here),

this result suggests that this multiplicity is related to the square of the initial entropy.4

One can see that the linear correlation between Λ and the initial entropy is valid for a

large range of initial entropies, but at the high end the correlation seems to be lost. This

4Of course, unless one understands the meaning of initial entropy directly in field theory terms, this

observation is not very useful.
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Figure 7. Time dependence of the rescaled effective temperature.

suggests that in this regime the initial entropy is not the dominant characteristic of the

initial state, and other factors come into play.

Finally, it is instructive to view the hydrodynamization process from a slightly different

perspective [34]. Having computed the scale Λ, one can rescale the proper time and effective

temperature in such a way that the rescaled data reach hydrodynamics with Λ = 1. Such

a rescaling amounts to normalizing the data so all solutions have the same final entropy.

If this rescaling is done for all solutions they will start out at various values of the initial

effective temperature and will all converge at late times. In figure 7 we see this for a few

sample configurations.

6 Entropy

The observed viscosity of quark-gluon plasma implies that entropy rises during hydrody-

namic evolution, as well as in the pre-hydrodynamic stage — to the extent that it makes

sense to speak of entropy in a highly non-equilibrium system. In the case when a holo-

graphic dual is available we do have a notion of entropy as defined by the apparent horizon

area, so we can quantify entropy production at all times (at least in those cases where an

apparent horizon exists and was identified within the computational grid).
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Entropy production is an important aspect of the dynamics — it is related to particle

production in heavy ion collisions. An interesting observation was made in reference [4],

whose authors pointed out that the entropy produced is correlated with the initial entropy.

In fact, for Bjorken flow the final entropy is given in terms of the scale Λ by eq. (2.12), so

using eq. (4.3) one has

Sf = π2Λ2. (6.1)

As explained earlier, the actual value of Λ is obtained by fitting the 3rd order formula (2.6)

to the tail of the numerical solution. This relation, together with our previous observation

of a linear correlation between Λ and the initial entropy Si, implies that for small initial

entropies there should be a correlation between the entropy produced, Sf − Si, and the

initial entropy Si, which can be fitted by a quadratic function. This is indeed seen in the

data obtained in our simulations (see figure 8) for evolution from initial states with entropy

below 0.3. For initial states with higher entropy the correlation is lost. This is of course

consistent with our earlier observations concerning the appearance of a “chaotic phase”

when the initial entropy exceeds 0.3.

It is also interesting to consider how much entropy is produced during the hydrody-

namic stage of evolution. Since hydrodynamics provides an accurate description of the

dynamics already at rather early times, it is to be expected that a significant part of the

final entropy is due to hydrodynamic evolution — more than often assumed. This can be

taken as motivation for efforts to resum the hydrodynamic series [35–39].

In the following, by entropy at thermalization (denoted by Sth) we mean the apparent

horizon entropy given by eq. (4.4) evaluated at thermalization time. It is interesting to es-

timate the size of gradient corrections to thermodynamic entropy at this stage of evolution.

This can be done by comparing the “exact” entropy given in terms of the apparent horizon

area by eq. (4.4) with hydrodynamic entropy defined by the entropy current within the

gradient expansion [17]. Specifically, using eq. (2.9) and (2.10) one finds that the leading

order (thermodynamic) approximation to the entropy defined in eq. (2.11) is

S(0) = τπ2T 3 , (6.2)

– 13 –
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Figure 9. Entropy production during the hydrodynamic expansion, shown as ratio relative to

total entropy produced during evolution (left panel) and to final entropy (both as functions of

initial entropy).

assuming the normalization (4.3). Gradient corrections to hydrodynamic entropy are then

quantified by the ratio (S − S(0))/S. In the simulations described here we find that at

thermalization time this ratio assumes values in the range 0.05 — 0.15. This is consistent

with the fact that corrections to the leading order term, eq. (6.2), first appear at 2nd order

in the gradient expansion [17]. For this reason, even though the pressure anisotropy is large

at thermalization time, the gradient corrections to thermodynamic entropy are relatively

small. Therefore, in the situation studied here, thermodynamic entropy is a reasonable

approximation as soon as hydrodynamics becomes valid.

Entropy production at different stages of evolution is illustrated in figure 9. The left

panel shows the ratio of entropy produced during the hydrodynamic stage to the total

entropy production. This can be very high, especially for states of low initial entropy,

for which often more than half of the entropy produced comes from the hydrodynamic

evolution. Usually however, one compares the entropy produced during the hydrodynamic

stage not to the entropy produced during complete evolution, but rather to total entropy.

This ratio is plotted in the right panel of figure 9. This quantity is more in line with

expectations, although it can still be quite significant: about 15% − 25% of the total

entropy is produced by the dissipative effects during hydrodynamic evolution.

7 Conclusions

We have analyzed the time evolution of 600 randomly generated far from equilibrium initial

states of strongly coupled N = 4 SYM plasma well into the hydrodynamic regime. It is

important that in the approach presented here the number of initial states is not limited

by anything else than patience, and more solutions could easily be generated.

Having a fairly large sample makes it possible to look for generic features of the dy-

namics. While the selection of initial states does not have any built-in bias that we are

aware of, we cannot claim that the set we used is actually representative. One possible

limitation is that some randomly generated initial geometries do not evolve in a stable

way for long enough to reach the hydrodynamic regime. This is most likely because the

heuristics we use to estimate the position of the event horizon are not always effective,

especially in cases where no apparent horizon exists on the initial time slice. This could
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be the reason why among the initial states found in [4] there are some with lower initial

entropy than what we have found.

The main motivation for this study was to see how generic is the early thermalization

observed in the limited sample of initial states considered in [5]. Our results indicate that

early thermalization is the norm. Hydrodynamic behaviour typically sets in at a time of the

order of 0.6 over the effective temperature, when the pressure anisotropy is still significant

(with ∆ of the order of 0.3). At the onset of thermodynamics one can estimate the entropy

in field theory using the leading order hydrodynamic approximation, which we have verified

to be reasonably accurate, as expected [17]. This serves as a reference point to quantify

the amount of entropy produced during the hydrodynamic stage of evolution — the result

is that the increase in entropy is typically about 20% of the final entropy, which amounts

to about 40% of the total entropy produced during evolution.

In the previous study by Heller et al. [4] it was pointed out that in the context of

holography one could try to characterize far from equilibrium initial states by their en-

tropy measured by the area of the apparent horizon appearing in the dual geometry. Our

numerical experiments confirm that for a range of initial entropies this is indeed a useful

concept. One of the surprises that have emerged was that the parameter Λ which sets the

scale for the hydrodynamic tail is linearly correlated with this initial entropy. However,

for large entropies (larger than 0.3 in our units) this relation is lost and some “chaotic”

behaviour develops. This indicates that for such states there are other characteristics which

are important. Even for initial entropies which are not so high, it is not true that they fully

characterize the initial state, because thermalization times are not correlated with them

at all.

The fact that initial entropy seems to be a useful concept raises the question of its

field theory meaning. In other words, how can one define it without appealing to the

holographic picture? Perhaps this could be addressed in the context of models of the

initial post-collision state. Interesting attempts going in this directions have already been

made in [40, 41]. The connection between the notion of dynamical entropy defined in these

references and apparent horizon entropy is not clear, but could perhaps be made via an

approach such as [42].

Apart from pursuing answers to the questions discussed above, the work reported here

could be generalized in various ways. One direction would be to consider an alternative

class of initial conditions, with different early time behaviour. Another natural avenue

to pursue is the behaviour of non-local observables (such as Wilson lines or entanglement

entropy [43]) in the expanding backgrounds described here. We hope to return to these

issues in the future.
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