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ABSTRACT
We present a statistical analysis of voids in the two-degree Field Galaxy Redshift Survey

(2dFGRS). In order to detect the voids, we have developed two robust algorithms. We define

voids as non-overlapping maximal spheres empty of haloes or galaxies with mass or lumi-

nosity above a given value. We search for voids in cosmological N-Body simulations to test

the performance of our void finders. We obtain and analyse the void statistics for several

volume-limited samples for the North Galactic Pole (NGP) and the South Galactic Pole (SGP)

constructed from the 2dFGRS full data release. We find that the results obtained from the

NGP and the SGP are statistically compatible. From the results of several statistical tests we

conclude that voids are essentially uncorrelated, with at most a mild anticorrelation and that at

the 99.5 per cent confidence level there is a dependence of the void number density on redshift.

We develop a technique to correct the distortion caused by the fact that we use the redshift

as the radial coordinate. We calibrate this technique with mock catalogues and find that the

correction might be of some relevance to carry out accurate inferences from void statistics.

We study the statistics of the galaxies inside nine nearby voids. We find that galaxies in voids

are not randomly distributed: they form structures like filaments. We also obtain the galaxy

number density profile in voids. This profile follow a similar but steeper trend to that followed

by haloes in voids.

Key words: methods: statistical – cosmology: observations – large-scale structure of Universe.

1 I N T RO D U C T I O N

There are many tests to constrain the models of structure formation,

which range from the large-scale statistics such as correlation func-

tions (Peebles 1980; Davis & Peebles 1983; Norberg et al. 2002;

Zehavi et al. 2002) or the power spectrum (Peebles 1980; Tegmark

et al. 2004; Cole et al. 2005), to detailed studies of the physical

properties of individual galaxy clusters and voids. Although dense

environments (i.e. galaxy clusters and groups) have been exten-

sively studied, the underdense regions like giant voids attract less

attention. Yet, they are not less important and can provide impor-

tant information on galaxy formation (Croton et al. 2005; Goldberg

et al. 2005; Hoyle et al. 2005; Rojas et al. 2005) and can give

independent constraints on cosmological models (Peebles 2001;

Plionis & Basilakos 2002; Croton et al. 2004; Conroy et al. 2005;

Colberg et al. 2005; Solevi et al. 2006). Large voids have woken

�E-mail: spatiri@iac.es

up more and more interest since their first detections 25 yr ago

(Kirshner et al. 1981; Rood 1981). At present, thanks to the advent

of larger redshift surveys like the two-degree Field Galaxy Redshift

Survey (2dFGRS) (Colless et al. 2001) and the Sloan Digital Sky

Survey (SDSS) (York et al. 2000), higher resolution of cosmolog-

ical simulations and better analytical frameworks, we can extract

accurate statistical information about voids. This information can

be used in different ways but one of the most important is to test the

models of structure formation.

Voids can be studied in different ways. One of the classical meth-

ods is the void probability function (VPF; White 1979; Fry 1986),

which gives the probability that a randomly located sphere of a

given radius contains no galaxies (see e.g. Einasto et al. 1991;

Croton et al. 2004; Solevi et al. 2006). The number density of voids

with radius greater than R is another useful statistic. This number

density and also the void significance can be estimated analytically

(see Patiri, Betancort-Rijo & Prada 2004). So far, it has been done

only using numerical simulations or mock catalogues (Colberg et al.

2005).

C© 2006 The Authors. Journal compilation C© 2006 RAS

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/369/1/335/1055534 by guest on 16 August 2022



336 S. G. Patiri et al.

Voids in the 2dFGRS were previously studied by Hoyle &

Vogeley (2004) and Croton et al. (2004). Croton et al. (2004) have

measured the VPF for volume-limited galaxy samples covering the

absolute magnitude range MbJ
− 5log10h = −18 to −22. Their

work mainly focused on the study of the dependence of the VPF on

the moments of galaxy clustering as a test to discriminate among

different clustering models. They found that the VPF measured

from the 2dFGRS is in excellent agreement with the paradigm

of hierarchical scaling of the galaxy clustering. In addition, they

showed that the negative binomial model gives a good approxi-

mation of the 2dF data over a wide range of scales. On the other

hand, Hoyle & Vogeley (2004) have also calculated the VPF in

the 2dFGRS obtaining similar results. They have obtained the VPF

for the dark matter haloes in Lambda cold dark matter (�CDM)

simulations and galaxy mock catalogues from semi-analytic mod-

els of galaxy formation to compare with the data. They have found

that the results from the semi-analytic models that include feed-

back effects provide a VPF that agree with the VPF measured for

the 2dFGRS and differ from that measured from the dark matter

distribution.

In spite of the fact that the notion of voids is not new, there is no

standard definition of what is a void. ‘Voids’ sometimes mean quite

different objects. It all depends on used data and goals of the analysis.

For example, to explain the patterns of the galaxy distribution in the

Universe Van de Weygaert & Van Kampen (1993) and Sheth & Van

de Weygaert (2004) define voids as irregular low-density regions

in the density field. Colberg et al. (2005) use a similar definition

to study void properties in a �CDM universe. However, as these

definitions are not based on point distributions, it may be difficult

to deal with the galaxy samples provided by large-scale redshift

surveys. El-Ad & Piran (1997), Hoyle & Vogeley (2002) and Hoyle

& Vogeley (2004) define voids as irregular regions of low number

density of galaxies, which may contain bright galaxies. Thus, by

construction, voids are not empty even of very luminous and likely

massive galaxies. By contrast, Gottlöber et al. (2003) define voids

as spherical regions which do not have massive objects (haloes in

this case). Voids also can be defined in a statistical point of view

as maximal spheres (Otto et al. 1986; Einasto, Einasto & Gramann

1989; Gottlöber et al. 2003; Patiri et al. 2004).

In this paper, we define voids as the maximal non-overlapping

spheres empty of objects with mass (or luminosity) above a given

value. For example, we could define voids as maximal spheres empty

of Milky Way size galaxies. While voids are empty of these galaxies,

they could have fainter galaxies inside. See Fig. 1 for a graphical

representation of our definition.

The first step to follow using voids as a test for large-scale struc-

ture and galaxy formation models is to develop a robust algorithm

to detect them, to calibrate it, and to obtain the statistical proper-

ties of voids for different catalogues both real and simulated ones.

With this information and with the predictions made through the

analytical formalism we may be able to contrast different structure

formation models. To achieve this goal we develop two algorithms.

They are conceptually different but are based on the same definition

of void. We develop them as complementary tools. One algorithm

is intended to search for all the voids in galaxy or dark matter halo

samples and the other is developed to search for the rarest voids.

Once we have the tools to detect the voids, we study statistical

properties that will be used to test the structure formation models.

These properties go from the void correlations to the redshift depen-

dence of voids. In the present work, we apply the tools we mentioned

above in order to study the statistic of voids in the 2dFGRS. One

important point that could provide clues on the galaxy formation

Figure 1. A graphic representation of our void definition. Voids are maximal

non-overlapping spheres, in the observational domain, which are empty of

objects classified by some intrinsic property. For example, in galaxy samples

our voids will be defined by galaxies more luminous than a given luminosity

L (filled circles). Open circles denote galaxies with luminosity fainter than

L. Note that for simplicity we do not show the open circles located outside

the maximal sphere.

processes is the galaxy contents of voids. In this work, we present

the first results on the distribution of faint galaxies in nearby voids.

In Section 2, we briefly describe how to detect voids. In Section 3,

we present the statistics of voids found in cosmological numeri-

cal simulations and compare the performance of our algorithms. In

Section 4, we present the voids that we have found in the 2dFGRS

together with their statistical properties. In Section 5, we develop

a method to get from the redshift space coordinates the real space

ones. In Section 6, we present the statistics of the galaxies inside

nearby rare voids. Finally, in Section 7 conclusions and discussions

are presented. In Appendix A, we give details of our void finders

presented in Section 2. Here, we also provide tests in order to check

the performance of them.

Throughout this work, we adopt a �CDM cosmology model with

parameters �m = 0.3 and �� = 0.7.

2 VO I D D E T E C T I O N A L G O R I T H M S

Once we have defined what is a void (as the maximal non-

overlapping spheres empty of galaxies brighter than a given magni-

tude), the next step is to develop an algorithm to be able to find them

in galaxy or dark matter halo samples. The computation structure of

the algorithm naturally will depend mainly on the void definition.

Following the definition we have stated in the previous section, the

algorithm should try to find the maximal sphere that the void can

accommodate.

There are many algorithms in the literature inspired by the dif-

ferent void definitions (see e.g. Einasto et al. 1989; Kauffmann

& Fairall 1991; El-Ad & Piran 1997; Aikio & Mähönen 1998;

Gottlöber et al. 2003). Aikio & Mähönen (1998) and Colberg
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et al. (2004) have developed similar algorithms. Following their

definitions of voids, they generate a field smoothing the point dis-

tribution on a cubic grid and find the local minima; then, they put

spheres around those minima filling the entire underdense region.

The radius of these voids are the effective ones taken from the

sphere that contain the same volume as the void. Gottlöber et al.

(2003) have developed an algorithm based on the minimal span-

ning tree for haloes selected by intrinsic properties, in this case

with mass above a given value. Although they have searched for

voids as local maximal spheres, they did not do void statistics

in their work.

Another algorithm in literature is the so-called ‘void finder’ devel-

oped by El-Ad & Piran (1997) and its modifications done by Hoyle

& Vogeley (2002). This algorithm searches for arbitrarily shaped

regions delimited by the so-called wall galaxies in order to get the

maximum volume of the void. They classify the galaxy sample in

wall galaxies and field or voids galaxies by mean of a criterion that

depends on the galaxy distribution itself, i.e. they define a length

parameter ln such that any galaxy that does not have n neighbours

within a sphere of radius ln is classify as field galaxy. Note that field

galaxies could be, for example, bright galaxies. These field galaxies

are removed before searching for voids. Once the classification is

done, the algorithm searches for the maximal spheres defined by the

wall galaxies based on a cubic mesh. Once all the spheres are ob-

tained, they define an overlapping parameter to discriminate if two

spheres belong to the same void. Similarly to Aikio & Mähönen

(1998) and Colberg et al. (2004), they finally fill the voids with

spheres to get the maximum volume. Again, they define the effec-

tive radius of a void by means of a sphere that contain the same

volume as the void.

Note that, although this may be interesting for some studies

(e.g. the shapes of voids), these kinds of statistics degrade in some

amount the information available in the actual galaxy distribution,

so they might not be particularly powerful to conduct accurate sta-

tistical inferences. This is similar to what happens with the binned

data: the best statistical test using binned data is never better and

usually worst than the best test using the raw data.

To identify voids, we designed two algorithms that are concep-

tually different but both are based in our definition of voids. The

algorithms are complementary. They help us to investigate the va-

riety of aspects present in the statistics of voids.

One of the algorithms, which we call CELLS Void Finder, was

designed to search for all the voids in a galaxy or halo sam-

ple based on a computational grid. This grid defines the work-

ing resolution. To determine the void centres, the code computes

the distances between each of the empty grid cells and all the

galaxies or haloes in the whole observational domain, keeping

the minimum distance. Once we have the list with the minimum

distances, we search for the local maxima which corresponds to

the void centres. Obviously, the voids radius are those maximum

distances.

The other algorithm, which we denominate HB Void Finder

is conceptually simple. This code searches for the maximal non-

overlapping spheres with radius larger than a given value. First of

all, we generate over the sample a large sample of random spheres

of a given radius. After this, we check and keep the spheres that

are empty of galaxies. We inflate these spheres until they reach

the maximum radius. Finally, we eliminate the overlapping spheres

keeping the maximal ones. This code is very accurate and com-

putationally efficient to search for the biggest voids in a galaxy

sample. Detailed descriptions of the two algorithms are given in

Appendix A.

Table 1. Parameters of simulations.

Box Mass resolution Number of particles σ 8

(h−1 Mpc) (h−1 M�)

80 3.18 × 108 5123 0.90

120 1.07 × 109 5123 0.90

500 7.80 × 1010 5123 0.90

3 VO I D S TAT I S T I C S I N S I M U L AT I O N S

3.1 Numerical simulations

We perform a series of numerical simulations with the Adaptive Re-

finement Tree code (ART; Kravtsov, Klypin & Khokhlov 1997) and

the Tree-SPH code GADGET (Springel, Yoshida & White 2001). Dark

matter haloes are identified in the simulation by the Bound Density

Maxima algorithm (BDM; Klypin & Holtzman 1997; Klypin et al.

1999).

In this work, we detect and study voids in simulation boxes of

80 h−1 Mpc, 120 h−1 Mpc and 500 h−1 Mpc size. The parameters of

all the simulations are summarized in Table 1. With these boxes

we have enough volume to study accurately the void statistics and

compare the results obtained with our two void finders.

3.2 The statistics

In Fig. 2, we show the number density of voids as a function of

their radius obtained with our void finders (squares for CELLS

Void Finder and circles for the HB Void Finder). These results were

Figure 2. Number density of voids in numerical simulations obtained with

our two void finders (squares for the CELLS Void Finder and circles for the

HB Void Finder). These results were obtained using our 80 and 120 h−1 Mpc

boxes. The open circles and squares denotes the number density of voids

defined by haloes with masses larger than 1 × 1012 M� while the filled

circles and squares are the number density of voids defined by haloes with

masses larger than 5 × 1012 M�. Here, we can see that both algorithms

get the same results as voids are bigger (symbols are overlapped). However,

as we go to more common voids the differences between codes are bigger.

This is due to the fact that the HB Void Finder is not so efficient detecting

common voids (see text for details). n̄v is in units of Mpc3 h−3.
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obtained for voids defined by two halo masses [1 × 1012 M� (open

symbols) and 5 × 1012 M� (filled symbols)].

In order to search for voids with the HB Void Finder, we have

generated 1 × 107, 2 × 107, 5 × 107 trial spheres for the 80 h−1 Mpc,

120 h−1 Mpc and 500 h−1 Mpc boxes, respectively. In the case of the

Cell Void Finder we defined a working resolution of 0.5 h−1 Mpc for

the 80 and 120 h−1 Mpc boxes and 1.2 h−1 Mpc for the 500 h−1 Mpc

box.

The obtained statistics shows that both algorithms give very sim-

ilar results. These results are indeed very useful to learn about the

performance of the void finders. Both algorithms give exactly the

same results for the largest voids (these are rare voids), the HB Void

Finder being the fastest and most precise. However, as we go to

more common voids the Cell Void Finder has the best performance.

The small differences between both codes for smaller voids are due

to the fact that we need more realizations of the trial spheres in the

HB Void Finder. As it is expected, the voids are more numerous and

larger the more massive the haloes defining the void are.

4 VO I D S TAT I S T I C S I N T H E 2 dFGRS

4.1 The galaxy samples

In the present work, we use the 2dFGRS final data release (Colless

et al. 2003) to obtain the void statistics in large galaxy redshift

samples. The source galaxy catalogue of the 2dFGRS is taken from

the Automatic Plate Measuring (APM) galaxy catalogue (Maddox

et al. 1990). The spectroscopic targets are galaxies with extinction-

corrected magnitudes brighter than bJ = 19.45. The median depth

of the survey is z ∼ 0.11. The final data releases contains a total

of 221 414 high-quality redshifts. There are two large contiguous

survey regions, one in the South Galactic Pole (SGP) and another one

towards the North Galactic Pole (NGP). There are also a number of

random fields which we have eliminated from our void search. Full

details of the 2dFGRS can be found in Colless et al. (2001, 2003).

In order to search for the voids we have selected from 2dFGRS

two rectangular regions: the region in the SGP defined by −34◦40′ <
δ < −25◦12′ and 21h 49′ < α < 3h26′ and the region in the NGP

defined by −4◦35′ < δ < 2◦17′ and 9h33′ < α < 14h54′; that is,

∼690 and ∼550 deg2, respectively.

The 2dFGRS is magnitude limited, i.e. the survey has been con-

structed by taking spectra of galaxies brighter than a fixed apparent

magnitude of bJ = 19.45. However, the survey is homogeneously

complete up to 90 per cent at bJ = 19.0 (see Norberg et al. 2002).

A magnitude-limited galaxy survey is not uniform in space, since

intrinsically faint galaxies have been observed only if they are rel-

atively nearby, while at large distances only bright galaxies will be

targeted. This non-uniformity of the magnitude-limited survey must

be taken into account in order to make our void analysis. There are

mainly two ways to deal with this; one is to use the selection func-

tions provided by the 2dFGRS and another more simple way which

we have followed here is to build volume-limited samples.

We construct four volume-limited samples, two for each survey

region (SGP and NGP), one with depth Dmax = 406.15 h−1 Mpc

which corresponds to z = 0.14. For this Dmax we have a limiting ab-

solute magnitude M lim
bJ

= −19.32 + 5 log h and the other with depth

Dmax = 571.71 h−1 Mpc corresponding to z = 0.2 and a limiting

absolute magnitude M lim
bJ

= −20.181 + 5 log h. All distances are

comoving ones. In Table 2, we give the properties of the volume-

limited samples. Now, we have guaranteed that any galaxy brighter

than M lim
bJ

is observed in our volume. We have computed the absolute

magnitudes from the apparent magnitudes assuming a �CDM cos-

Table 2. Parameters of our volume-limited samples.

Name M lim zmax Dmax Volume N galaxies

M bJ − 5 log h (h−1 Mpc) (106 h−3 Mpc3)

SGP1 −19.32 0.14 406.15 4.693 22 037

SGP2 −20.181 0.20 571.71 13.088 14 475

NGP1 −19.32 0.14 406.15 3.749 19 695

NGP2 −20.181 0.20 571.71 10.456 11 404

mology and applying the needed corrections to model the change

in the galaxy magnitudes due to the redshifted bJ filter bandpass

(k-correction) and to account for the galaxy evolution (e-correction).

These corrections for each galaxy are given in Norberg et al. (2002).

To test the spatial homogeneity of our SGP1,2 and NGP1,2

volume-limited samples we have computed the average of the cube

of the radial distances, i.e. a modified version of the V max test

(Rowan-Robinson 1968), which for a homogeneous sample must

satisfy〈(
r

rmax

)3〉
= 1

2
± 1√

12N ′ ,

N ′ = N

(1 + N 〈ξ (r )〉) ,
(1)

where r is the comoving distance to each galaxy, rmax is the same

as Dmax, the maximum distance of the sample, N is the number

of galaxies (given in Table 2) and 〈ξ (r)〉 is the average value of

the correlation function over all pair of galaxy positions within the

sample, defined as

〈ξ〉 = 1

V 2

∫ ∫
ξ (|r 1 − r 2|) dr 1 dr 2, (2)

where V is the volume of the sample. Assuming for ξ (r) (Peebles

1980):

ξ (r ) =
(

r

5.4 h−1 Mpc

)−1.77

, (3)

we found 〈ξ (r )〉 = 6.7910 × 10−3. It must be noted that we have

used equation (3) for any value of r, while in fact, it is known that for

r 
 10 h−1 Mpc ξ (r) must be close to the Fourier transform of the

linear power spectra. This would lead to smaller values of 〈ξ (r)〉.
However, this would not affect our analysis too much. With this

value we find that for a homogeneous sample

η ≡
〈(

r

rmax

)3〉
= 1

2
± 0.024. (4)

The actual η values for the SGP1 and NGP1 are η(SGP1) = 0.524

and η(NGP1) = 0.51. For the SGP2 and NGP2 to be homoge-

neous (assuming that 〈ξ (r)〉 takes the same values as in the previous

sample):

η ≡
〈(

r

rmax

)3〉
= 1

2
± 0.0253, (5)

and the actual values are η(SGP2) = 0.511 and η(NGP2) = 0.475.

Therefore, we can conclude that we do not detect inhomogeneities.

4.2 The void statistics

As described in Section 3.2, once we have constructed our samples,

we have to define which objects will define the voids. In the SG1 and
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NGP1 volume-limited samples we present in Table 2, we search for

voids defined by two types of galaxies. On the one hand, we search

voids defined by galaxies brighter than M bJ
= −19.32 + 5 log h.

Using these samples we also find voids defined by galaxies brighter

than M bJ
= −20.5 + 5 log h. The number of galaxies brighter than

M bJ
= −20.5 + 5 log h is 2427 for the SGP1 sample and 2074 for

the NGP1. In the SGP2 and NGP2 samples, we have searched for

voids defined by galaxies brighter than MbJ
= −20.181 + 5 log h.

In Fig. 3, we show a plot with the voids we have detected in the

NGP1 sample. In Table 3, we summarize the results for the NGP1

and SGP1 samples. Note that, as we saw in the simulations, voids

defined by bright galaxies are larger than the ones defined by fainter

ones. In Table 4, we present the statistics for the NGP2 and SGP2

samples. We have obtained these voids applying the HB algorithm.

In the radius ranges that we present here both codes have a similar

performance. We generate 8 × 107 trial spheres to search for voids

larger than 7.5 h−1 Mpc which are our main interest.

We have also calculated the VPF which is the probability that a

randomly located sphere of fixed radius contains no galaxies. Fig. 4

presents our VPF, which we find for the SGP1,2 and NGP1,2 sam-

ples. We calculate the rms of the VPF in the following way. Assum-

ing that voids are independent, we get from the central limit theorem

that

rms2(P0(r )) = N (r )

V 2
(〈
v2〉 − 〈
v〉2), (6)

where 
v is the volume where the centre of an empty sphere of

radius r may be moved so that it remains empty. V is the volume

of the sample and N(r) is the number of voids found with radius

larger than r in that volume. The parenthesis in the right-hand side

of equation (6) divided by V2 is the contribution of each individual

void to the variance of the VPF.

On the other hand, we have from Betancort-Rijo (1992) that

N (r )

V
= P0(r )

〈
v〉 . (7)

Now we square this expression and substitute it in expression (6) to

obtain

rms2(P0(r )) = P2
0 (r )

N (r )
[g(r ) − 1], (8)

g(r ) ≡ 〈
v2〉
〈
v〉2

, (9)

so that, taking into account the correlations in the sample, the rms

of the VPF is given by

rms(P0(r )) � g(r )1/2 P0(r )

N (r )1/2
[1 − wn̄v(R)]1/2, (10)

where wn̄v(R) is as defined in equation (21). In the rare voids limit,

i.e. when P0 
 1 it is shown that (Betancort-Rijo 1992)

g(r ) � 9.20. (11)

For voids with radius larger than 12 h−1 Mpc in the SGP1 and

NGP1 samples and larger than 17 h−1 Mpc in the SGP2 and NGP2

samples, the asymptotic value g(r )1/2 = 2.86 is a good approxima-

tion. For smaller values of r , g(r )1/2 is somewhat smaller (no less

than ∼2). So in Fig. 4, where the asymptotic value of g(r) have been

used, the error may be slightly overestimated for small values of r.

It must be noted, however, that the probability distribution of the

fluctuations of the VPF around the mean is strongly non-Gaussian

for small values of N(r); most fluctuations being quite smaller than

Figure 3. Voids in the 2dFGRS. We show the maximal spheres in the NGP1

volume-limited sample of galaxies (filled circles). The upper panel shows

the voids with radius larger than 7.5 h−1 Mpc defined by galaxies brighter

than M bJ = −20.5 − 5 log h. There are 2074 galaxies in this sample. In the

lower panel we show the voids with radius larger than 13.0 h−1 Mpc defined

by galaxies brighter than M bJ = −19.32 − 5 log h. The number of galaxies

is 19 695. Some galaxies lie inside the maximal spheres due to projection

effects.

the rms and a few of them being very large. So, to decide the com-

patibility between couples of measurements, this fact has to be taken

into account. In the present case, however, this problem do not arise

because all results are within the error bars.

Our results are in good agreement with the previous calculations

of the VPF (Croton et al. 2004; Hoyle & Vogeley 2004). In Croton

et al. (2004), the VPF was obtained for the whole 2dFGRS while
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Table 3. Statistics of Voids in our NGP1 and SGP1

samples. N NGP1 and N SGP1 are the number of voids

larger than the given radius. We present the void statis-

tics for two different defining galaxies.

Radius N NGP1 N SGP1

(h−1 Mpc)

M lim
bJ

= −19.32 − 5 log h

7.5 136 220

10.0 48 80

12.0 11 25

13.0 6 11

14.0 1 6

M lim
bJ

= −20.5 − 5 log h

13.0 28 43

14.0 24 35

16.0 14 26

17.0 7 17

19.0 2 6

Table 4. Statistics of voids in our NGP2 and SGP2

samples.

Radius N NGP2 N SGP2

(h−1 Mpc)

M lim
bJ

= −20.181 − 5 log h

13.0 68 101

15.0 36 53

16.0 25 31

17.0 9 23

18.0 5 14

21.0 2

Hoyle & Vogeley (2004) have studied the VPF for both strips (NGP

and SGP). In this last result, they found that the VPF for both strips

are not compatible for large spheres (see fig. 7 in Hoyle & Vogeley

2004). This is be due to the fact that they underestimated the error

bars. We have shown above that using a more accurate expression

for the rms of the VPF we obtain that both strips are compatible.

4.3 Voids spatial distribution

If we neglect the redshift dependence of the power spectra, the

spatial distribution of the voids found in a statistically homogeneous

sample must be statistically homogeneous itself, but conditioned to

the fact that the maximal sphere must lay within the sample. This

fact implies that the centre of the maximal spheres cannot occupy

all the volume of the sample. The available volume, V(R), for the

maximal spheres of radius R is

V (R) =
∫ rmax−R

R/sin(
δ/2)

∫ δ0+
δ

δ0

∫ α0+
α−B(r ,R,δ)

α0+B(r ,R,δ)

r 2cos δ dα dδ dr

B(r , R, δ) = sin−1

(
sin−1(R/r )

cos δ

)
. (12)

Figure 4. VPF for the 2dFGRS. We show the VPF for the SGP1,2 samples

(open and filled circles, respectively) and also for the NGP1,2 samples (filled

and open triangles, respectively).

Equation (12) may be considerably simplified by carrying out the

integrals over α and δ keeping B fixed (using its value at δ0 + 
δ/2).

This is a very good approximation since 
δ 
 1. So, we could write

V (R) �
∫ rmax−R

R/sin(
δ/2)

P(r , R)r 2 dr , (13)

P(r , R) ≡
[

sin

(
δ0 + 
δ − sin−1

(
R

r

))
− sin(δ0)

]

×
[

α − 2 sin−1

(
sin−1(R/r )

cos(δ + 
δ/2)

)]
, (14)

where 
δ, 
α are, respectively, the widths of the strips in declina-

tion and right ascension, while δ0 is its southernmost declination.

Although expression (13) for V(R) is not exact, its percentual error

is completely negligible (less than 10−5).

Using P(r) we may obtain the mean of the cube of the distance

(from the observer), r, to the centre of the maximal sphere with

radius larger than R′:

η(R′) ≡
〈(

r

rmax

)3〉
R�R′

= 1

V (R̄)

∫ rmax−R̄

R̄/sin(
δ/2)

P(r , R̄)

(
r

rmax

)3

r 2 dr ,
(15)

where R̄ is the mean radius of all maximal spheres larger than R′.
In a similar manner, we may obtain the variance for the estimate of

η(R/h−1 Mpc) from the void list we have obtained in the 2dFGRS.

The values found in the SGP1,2 and NGP1,2 for voids defined by

galaxies brighter than −19.32 + 5 log h are listed in Table 5).

From the analysis of these results we may conclude that the voids

are essentially compatible with homogeneity. There is, however, a

slight, although statistically significant, trend to values lower than

homogeneous that we will discuss in Section 3.5.
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Table 5. The values of η(R′) found in the SGP1,2 and NGP1, 2 samples. The

values within the parentheses are 1σ predictions assuming that the centre

of the maximal spheres are uniformly distributed conditioned to lay entirely

within the sample (see text).

Radius η η

(h−1 Mpc)

NGP1 SGP1

7.5 0.512 (0.563 ± 0.02) 0.503 (0.53 ± 0.02)

10.0 0.579 (0.579 ± 0.038) 0.508 (0.54 ± 0.03)

13.0 0.66 (0.615 ± 0.116) 0.433 (0.558 ± 0.08)

NGP2 SGP2

18.0 0.475 (0.611 ± 0.085) 0.588 (0.556 ± 0.06)

Now, we will consider the nearest-neighbour statistics which to-

gether with the void one-point statistic we have studied above is

sufficient to grant the validity of the statistical analysis in the fol-

lowing subsections.

The maximal spheres are chosen so that they do not overlap, in

order that they very rarely corresponds to the same connected un-

derdensity. So, by construction, for the maximal spheres with radius

larger than R the two-point correlation function of their centres is

−1 at least to a distance of 2R. The main question is how is the corre-

lation at larger distances. Note that if more than one maximal sphere

were associated with the same underlying connected underdensity

the correlation would be positive for distances somewhat larger than

2R. However, as there is typically only one maximal sphere per un-

derdense region and in the standard scenario of structure formation

these regions are essentially uncorrelated (for the relevant R values)

(Colberg et al. 2004), we do not expect to find correlations between

the maximal spheres.

To test whether voids are correlated we compare the actual

nearest-neighbour statistics with the theoretical predictions corre-

sponding to centres which are uncorrelated for distances larger than

2R̄ and completely anticorrelated for smaller distances. For maxi-

mal spheres with radius R the theoretical predictions for the mean

and quadratic mean distance to the nearest neighbour (〈Doo〉 and

〈D2
oo〉, respectively) is given by

〈Doo〉 =
[

4πn̄v(R)

3

]−1/3 ∫ ∞

w0

e−(w−w0)w1/3 dw, (16)

〈D2
oo〉 =

[
4πn̄v(R)

3

]−2/3 ∫ ∞

w0

e−(w−w0)w2/3 dw,

w0 ≡ 4π

3
(2R̄)3n̄v(R),

(17)

where n̄v(R) is the mean number density of the maximal spheres

larger than R and R̄ is their mean radius. The sampling error of 〈Doo〉
when estimated using N centres is

rms(〈Doo〉) =
√

5
(〈

D2
oo

〉
− 〈Doo〉2

)1/2)
(3N − 2)1/2

. (18)

With these expressions we may compute the mean and the variance

of q:

q

(
R

h−1 Mpc

)
≡ [n̄v(R)]1/3 E(〈Doo〉), (19)

where E(〈Doo〉) is the estimate of 〈Doo〉 using the void sample. For

typical voids we find for q:

qSGP1(7.5) = 0.978 (0.958 ± 0.006),

qNGP1(7.5) = 1.029 (0.958 ± 0.008),

qSGP2(13.0) = 0.966 (0.879 ± 0.01),

qNGP2(13.0) = 1.1 (0.879 ± 0.013),

where R = 7.5 h−1 Mpc(R̄ = 9.58 h−1 Mpc) corresponds to SGP1,

NGP1 and R = 13.0 h−1 Mpc(R̄ = 15.08 h−1 Mpc) to SGP2,

NGP2. The values in the parenthesis correspond to 1σ predictions

obtained using equations (16) and (17).

It is apparent that the estimated values are slightly shifted

upwards. The bias is large in terms of the rms values but we cannot

conclude from this that the centres are anticorrelated since the pre-

dictions do not account for border effect, which in this case is small

for the SGP samples but larger than the rms.

On the other hand, for rare voids, i.e. R = 13.0 h−1 Mpc for

the SGP1, NGP1 samples (R̄SGP1 = 14.14 h−1 Mpc, R̄NGP1 =
13.42 h−1 Mpc) and R = 18.0 h−1 Mpc for the SGP2, NGP2 samples

(R̄SGP2 = 19.5 h−1 Mpc, R̄NGP2 = 18.45 h−1 Mpc) we find

qSGP1(13.0) = 0.959 (0.716 ± 0.004),

qNGP1(13.0) = 1.398 (0.716 ± 0.006),

qSGP2(18.0) = 0.971 (0.724 ± 0.046),

qNGP2(18.0) = 1.071 (0.724 ± 0.070).

The upward bias with respect to the values for the uncorrelated

centres (without accounting for border effects) is now large even in

the SGP. To assess the border effect we have simulated a random set

of spheres with R = 19.5 h−1 Mpc (the mean radius of the maximal

spheres with radius �18.5 h−1 Mpc in the SGP2 sample) with the

condition that they lay entirely within the catalogue and do not

overlap, then we obtain the nearest-neighbour statistics. The average

over several realizations of the mean nearest distance is

n̄v(18.0)〈D̄oo〉 = 0.88 ± (0.05 ± ε), (20)

which is quite larger than the value predicted without border effect

(0.724). This is not enough, however, to account for the measured

value (0.971). The same result is found for zmax = 0.14 since the

border effect in this case must be very close to that in the previous

case. From these results we might conclude at least at the 99 per

cent confidence level (being rather conservative about the value of

ε) that the centre of the maximal spheres show some anticorrelation.

We prefer, however, to conclude simply that those centres are basi-

cally uncorrelated, which is the necessary result for the subsequent

statistical inferences, and leave open the question of the possible

existence of a weak anticorrelation, which shall be treated in more

detail in a future work. Incidentally, it must be noted that a slight

anticorrelation of the centres arise naturally in the standard scenario,

being compatible with the results of Colberg et al. (2004). The rea-

son is that the connexed underdense regions are somewhat larger

than the maximal spheres they contain.

4.4 Compatibility between SGP and NGP samples

Here, we compare the void statistics found in our samples in or-

der to assess their compatibility. To this end we must estimate the

mean number density of voids, n̄v(R), in each sample and obtain

their sampling error. To estimate n̄v(R) we simply divide the num-

ber of voids, N(R), with radius larger than R, by the mean available

volume V (R̄). To estimate the sampling error we must take into ac-

count that, although the centre of the maximal spheres are basically
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uncorrelated for r > 2R̄, they are totally anticorrelated for r < 2R̄
(we use a model in which all spheres have radius R̄). In this case

the number of spheres in a given volume do not follow a Poissonian

distribution, but a negative binomial one (Betancort-Rijo 1992). For

this distribution the sampling error of the estimate of n̄v(R) could

be obtained by means of the following expression:

rms(n̄v(R)) = n̄v(R)

[N (R)]1/2
[1 − wn̄v(R)]1/2, (21)

w ≡ 32π

3
R̄3

[
1 + 2.73n̄v(R)

32π

3
R̄3

×
{

1 − 3

4

n̄v(R)−1/3

2R̄
+ 1

8

[
n̄v(R)−1/3

2R̄

]2
} ]−1

.

For SGP1 we find

n̄v(7.5) = 9.364 ± 0.164 × 10−5,

n̄v(10.0) = 3.98 ± 0.11 × 10−5,

n̄v(13.0) = 7.26 ± 1.70 × 10−6.

For NGP1 we find

n̄v(7.5) = 9.597 ± 0.214 × 10−5,

n̄v(10.0) = 4.27 ± 0.15 × 10−5,

n̄v(13.0) = 6.56 ± 2.10 × 10−6.

The corresponding R̄ values are R̄(7.5) = 9.58 and R̄(10.0) =
11.35 (the mean over NGP and SGP), R̄(13.0) = 14.14 in the SGP1

and R̄(13.0) = 13.41 in the NGP1.

It is apparent that the three pairs of values are compatible. It is

true that for the SGP1 the galaxy density is roughly a 10 per cent

smaller than for the NGP1 and that the theoretical expression (Patiri

et al. 2004) predicts about a 20 per cent enhancement of the density

of voids with R � 13 h−1 Mpc in the SGP1 over that in the NGP1,

and smaller differences for more common voids, but this differences

do not show up above the sampling errors.

Similar results were found for the SGP2:

n̄v(13.0) = 1.685 × 10−5,

n̄v(15.0) = 9.49 × 10−6,

n̄v(18.0) = 2.978 ± 0.58 × 10−6,

and for the NGP2:

n̄v(13.0) = 2 × 10−5,

n̄v(15.0) = 1.202 × 10−5,

n̄v(18.0) = 2.22 ± 0.69 × 10−6.

Although the implications of this results for the large-scale struc-

ture formation models is left to for a future work, it is interesting to

note that they are generally in good agreement with the predictions

of the standard model.

4.5 Redshift dependence of void number densities

We have checked that the galaxies in our samples are, within the

sampling errors, homogeneously distributed over the sample vol-

umes. In this situation, the only possible explanation of a statistically

significant departure of the void distribution from the homogeneity

must be the redshift dependence of the properties of the large-scale

structure.

Using a theoretical framework (Patiri et al. 2004) to compute the

number density of voids in the distribution of dark matter haloes,

we found that the predicted number density of voids larger than

13.0 h−1 Mpc for M lim
bJ

= −19.32 + 5 log h decreases by 28 per cent

from z = 0 to 0.1 and a further 28 per cent when going to z =
0.2. For M lim

bJ
= −20.181 + 5 log h and R � 18 h−1 Mpc the void

density decreases by 26 per cent from z = 0 to 0.1 and another 28

per cent from z = 0.1 to 0.2. Where, in order to link light with dark

matter haloes, we assumed that there is one galaxy in each dark

halo. These numbers suggest the possibility of a measurable effect.

To this end we conduct first a test where we divide every sample

into two bins (a ‘near’ region and a ‘far’ region) both with the

same volume available for the voids considered. Then we compare

the total number of voids larger than the chosen radius in the near

regions with the total number in the far regions. If the first number

is significantly larger than the latter this should be interpreted as

evidence for a redshift dependence.

The problem now is that the effect we are trying to measure is

strong only for the rare voids which have poorer statistics. We reach

a compromise between both trends. We have chosen voids with

radius (Rmin) larger than 13 h−1 Mpc for the zmax = 0.14 sample

and 18 h−1 Mpc for the zmax = 0.2 sample. In order to divide a

sample into two subsamples with the same volume available for the

centres of the voids, we first obtain the mean radius (R̄) of the voids

larger than Rmin, and, using equation (12) with R = R̄, we obtain

the available volume of the whole sample (which has already been

done in Section 4.3). Then, we use again (12) with R = R̄ but

replacing rmax with rlim + R̄ and search for the value of r lim giving

for V half the value corresponding to the whole sample. If voids

were uniformly distributed their centres would lie above and below

r lim with equal probability. We have explicitly checked this fact

with numerical simulations. For the sample SGP1, we have chosen

Rmin = 13 h−1 Mpc, so R̄ = 14.14 h−1 Mpc which implies r lim =
371.7h−1 Mpc. Nine voids were found with their centres below this

distance and two above. Proceeding in a similar way with the other

samples, we found three voids closer than 349.1 h−1 Mpc and three

voids farther for the NGP1. For the SGP2 we found five voids closer

than 475.0 h−1 Mpc and eight farther, while for the NGP2 we found

four voids closer than 490.2 h−1 Mpc and one farther. So, in total

we have 21 voids in near regions and 14 in the far regions.

With these numbers we can infer at least at the 88 per cent con-

fidence level the presence of a redshift dependence. However, this

is only a marginal evidence. To make more patent this evidence we

use a more efficient test. This test uses the η values obtained in

Section 4.3 which are shown in Table 5. We use the η values cor-

responding to voids larger than 13 h−1 Mpc in the NGP1 and SGP1

samples, and voids larger than 18 h−1 Mpc in the NGP2 and SGP2

samples. From each of those four η values, we subtract its expected

value when uniformity is assumed (first number in the parenthesis

in Table 5) and divide the result by the corresponding rms (sec-

ond number in the parenthesis). Each of these quantities follow a

Gaussian distribution with zero mean and variance 1 under the uni-

formity hypothesis. So, the sum of the four quantities must follow

a Gaussian with zero mean and variance 4 and the probability that

this sum be smaller than the actually found result is

1 − 1

2
erfc

(∑4
i=1

ηi −η̄i
rms(ηi )

2
√

2

)
= 0.005. (22)

So, we may infer at the 99.5 per cent confidence level the existence

of non-uniformity on the void distribution, that, given the unifor-

mity of the galaxy distribution can only be explained by the growth

of density fluctuations as redshift decreases. Note that the rms(η)

given in Table 5 do not account for the anticorrelation between the
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void centres (when r < 2R). The last factor in expression (21) ap-

proximately accounts for this fact. If we were to use it, all the rms(η)

values would be smaller and, consequently, we could reject the uni-

formity hypothesis at a larger confidence level. However, we prefer

to give the conservative value quoted above since it does not have

any uncertainty.

5 R E D S H I F T S PAC E D I S TO RT I O N S

Redshift galaxy maps like the 2dFGRS or SDSS are distorted by the

peculiar velocities of galaxies along the line of sight. This effect,

which produce deformations such as the ‘finger of God’, is due to

the fact that the distance to the survey galaxies is obtained by means

of the Hubble distance which is obtained with the total velocity (the

Hubble flow plus the peculiar velocity).

We present in this section a method to correct this effect for

the galaxies around voids. We first suppose that if in the distorted

space we have a void of radius R, we will have the same void of

radius R in the real space. This is a good approximation because the

distortion around a void causes an elongation along the line of sight

of the maximal sphere without changing the ‘transversal’ radius,

i.e. although the distortion is not volume conservative, the maximal

radius will be approximately the same in both spaces.

With this assumption, we have in the position of the void in the

distorted space a mean underdensity, δ̄0, within the maximal sphere

with radius R (Patiri et al. 2004):

δ̄0 =
∫ ∞

−1

δ0 P

(
δ0

R

)
dδ0, (23)

where P(δ0/R) is the probability distribution for δ0 within a maximal

sphere of radius R.

We associate with this void a matter distribution given by the mean

profile, δ(r/δ̄0, R). In Patiri et al. (2004) we derive this profiles. So,

it has a peculiar velocity profile V(δ(r), r) given by the spherical

collapse model (Betancort-Rijo et al. 2005):

V (δ(r ), r )

H
= −0.51

3

r

1 + δ
δl (δ)

[
dδl (δ)

dδ

]−1

, (24)

where H is the Hubble constant, δ l(δ) is given in Sheth & Tormen

(2002) and δ is the mean profile (note that for simplicity we do not

show the dependence on r, δ0 and R). We have derived an analytical

approximation for δ(r/δ̄0, R) which gives good results for r � 1.5R:

δ(r/δ̄0, R) � δ̄0 + (0.1645 + 0.085δ̄0)

(
r

1.4R

)7

, (25)

so that, we correct the galaxy ‘measured’ distance r(z):

rreal � r (z) − (x − xc).x
|(x − xc)||x|

V (δ(r/δ̄0, R), r )

H
, (26)

where x is the vector to the galaxy and xc is the vector to the centre

of the void. We apply this correction to galaxies with distance to the

centre of the void �1.5R. Once we have the corrected catalogue, we

search for voids over this new catalogue.

In order to test our technique, we have applied it to a simulated cat-

alogue, the Millennium Run galaxy catalogue (Springel et al. 2001).

The publicly available catalogue1 contains a total of about nine

million galaxies in the simulation box of 500 h−1 Mpc. For each

galaxy, it is available the position and velocity, the total and bulge

galaxy magnitudes in five bands (ugriz SDSS bands), the total and

1 It can be downloaded from http://www.mpa-garching.mpg.de/galform/

agnpaper/

Table 6. The void statistics found in the three catalogues generated from

the millennium galaxy catalogue: the redshift distorted, the real and the

corrected. The first column show the number of voids found with radius

larger than the values given in the three columns on the right-hand side

corresponding to each catalogue.

Number Radius [(h−1 Mpc)]

of voids Distorted Real Corrected

1 18.17 17.48 17.58

5 16.51 16.19 15.89

10 15.70 15.09 14.93

15 15.42 14.57 14.58

20 14.93 14.36 14.15

bulge stellar mass, cold, hot and ejected gas mass, the black hole

mass and the star formation rate. The dark matter haloes in the sim-

ulation were populated using semi-analytic models of galaxy for-

mation (see Croton et al. 2005 for full details). We have constructed

from the full simulated box a smaller one of 250 h−1 Mpc. With this

box we have enough volume to study large (and rare) voids. Also,

as we have available in the original catalogue the coordinates in real

space, we have constructed another box of 250 h−1 Mpc with the

same galaxies but with the coordinates in redshift space.

We have applied our HB Void Finder to search for voids larger

than 13.0 h−1 Mpc in both distorted and real catalogues. With

the list of voids in the distorted catalogue, we have applied the

correction to those galaxies that lie within 1.4 times the radius of

the voids. After we have obtained the corrected galaxy catalogue,

we run the void finder over this catalogue. In Table 6, we show the

statistics of voids in the three different catalogues: the distorted,

the real and the corrected.

From the study of the simulated catalogues we learn that,

although the correction may be larger than 3 h−1 Mpc (for R �
16 h−1 Mpc) for galaxies close to the line of sight to the centre of

the voids, the correction for the radius of the maximal sphere is,

as expected, much smaller. Even so, the difference is not negligible

for sufficiently rare voids. We find that the 20 largest voids in the

simulated catalogues are on average slightly smaller (∼5 per cent)

in the corrected catalogue.

From the void statistics found in the corrected SGP1 and NGP1

samples we find that for the corrected SGP1, the 10 largest voids are

on average 0.83 h−1 Mpc smaller than for the uncorrected one and

that the number of voids larger than 12 h−1 Mpc in both samples is

25 for the uncorrected case and 14 for the corrected one. So, since

the strongest constraint on the models comes from relatively rare

voids, it seems likely that the corrected catalogues must be used in

order to be able to make accurate inferences.

6 G A L A X I E S I N N E A R B Y VO I D S

In this section, we study the galaxy content of the nearby rarest voids

in our 2dFGRS samples. To this end, we have selected the voids from

our SGP1 volume-limited sample described in Section 5.1 (see Ta-

ble 3). The voids are defined by galaxies brighter than −19.32 +
5 log h. We have searched for faint galaxies down to M lim

bJ
=

−18.3 + 5 log h inside nine voids with radius larger than 13 h−1 Mpc

in a volume-limited sample up to z = 0.095. These voids are un-

common (with mean radius of 14.0 h−1 Mpc) due to the fact that a

randomly placed sphere with radius equal to the mean size of these

voids should contain about 50 galaxies brighter than −19.32 +
5 log h. In total we find 130 faint galaxies inside these nine rare
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Figure 5. Three examples of faint galaxies in voids. We show for each void a 6 h−1 Mpc central slab. In the left-hand panel is shown a 13.5 h−1 Mpc void,

in the central panel a 14.0 h−1 Mpc void and in the right-hand panel a 14.7 h−1 Mpc void. The filled circles are the galaxies brighter than −19.32 + 5 log h
that define the voids. The open circles are the fainter galaxies inside the voids down to M lim

bJ
= −18.3 + 5 log h. Note that even though there is not a large

population of faint galaxies in these voids, the galaxies are not randomly distributed, i.e. they are distributed in filamentary structures similar to those found in

another scales (see central and right-hand panels).

voids, i.e. on average 14 galaxies per void. We have estimated the

number density contrast of the galaxies located inside these voids

by

δgal = n̄void − n̄

n̄
, (27)

where n̄void is the number density of galaxies inside the void and

n̄ is the number density of galaxies in the field. For the galaxies

inside the voids we obtain δgal = −0.87. In Fig. 5, we display

a central 6 h−1 Mpc thick slice for three of these nine voids. We

can see that, despite the fact that these voids are highly empty, the

faint galaxies populating them show interesting structures like fila-

ments. Nevertheless, most galaxies are placed close to the borders

of the voids being their centres much emptier. Note that these galaxy

0 0.2 0.4 0.6 0.8 1
0

0.0005

0.001

0.0015

Figure 6. Averaged enclosed number density profile of faint galaxies

(−19.32 + 5 log h < M bJ < −18.3 + 5 log h) in nearby voids as a function

of the distance from the centre of the void (in void radius units). The mean

number density of galaxies in the field for these magnitude band is 7.0 ×
10−3 (h−1 Mpc)−3.

patterns are similar to those found in voids in high-resolution nu-

merical simulations by Gottlöber et al. (2003). In Fig. 6, we show the

mean number density of faint galaxies in our rare voids as a function

of distance to the void centre (normalized to the void radius).

We have also studied the galaxies inside common voids, i.e.

voids whose underdensities are not too big. We have selected

from the SGP1 sample the voids defined by galaxies brighter than

−20.5 + 5 log h. We found five voids larger than 15.0 h−1 Mpc up

to z = 0.095. For these radii, a randomly chosen sphere should

contain only three galaxies brighter than −20.5 + 5 log h. In to-

tal, there are 666 galaxies fainter than −20.5 + 5 log h down to

M lim
bJ

= −18.3 + 5 log h. These voids contain on average 10 times

more galaxies than the rare voids discussed above, being the num-

ber density contrast of galaxies δgal = −0.54. In Fig. 7, we show

an example of a 8 h−1 Mpc thick slice of a 18.25 h−1 Mpc void in

160 170 180 190 200

70

80

90

100

110

Figure 7. Galaxies inside a common void. We show a central 8 h−1 Mpc

thick slice of a 18.25 h−1 Mpc void defined by galaxies brighter than

−20.5 + 5 log h (filled circles). The galaxies inside the void are fainter

down to M lim
bJ

= −18.3 + 5 log h (open circles).
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this sample. The galaxies inside this void almost fully fill the void

(open circles). This is not surprising due to the fact that the density

contrast of these voids is not too big.

7 D I S C U S S I O N A N D C O N C L U S I O N S

We have developed two robust and accurate algorithms to detect

non-overlapping maximal spheres in halo or galaxy samples. We

have applied them to several numerical simulations boxes in order

to study the performance of the algorithms. The results found were

very satisfactory.

We have then studied the void statistics in the 2dFGRS. We have

detected ∼350 voids with radius larger than 7.5 h−1 Mpc defined

by galaxies with M bJ
< −19.32 + 5 log h and ∼70 voids with

radius larger than 13.0 h−1 Mpc defined by galaxies with M bJ
<

−20.5 + 5 log h in the volume-limited samples up to zmax = 0.14.

We have also obtained the void statistics for the volume-limited

samples up to zmax = 0.2. For this case, we have detected ∼170 voids

with radius larger than 13 h−1 Mpc defined by galaxies brighter than

M bJ
< −20.181 + 5 log h.

The number density of voids larger than R found in the SGP and

NGP samples are in good agreement with each other for all values

of R. We have obtained the VPF for both strips finding results in

good agreement with previous ones (Croton et al. 2004; Hoyle &

Vogeley 2004). We have shown, using an appropriate expression

for the VPF sampling errors that the results found in both strips are

statistically compatible.

From the results of several statistical tests we conclude that ex-

cept for the anticorrelation implicit in the fact that the maximal

sphere are chosen so that they do not overlap, they are essentially

uncorrelated. There is, however, some evidence for a weak addi-

tional anticorrelation, which may be easily explained within the

standard scenario of structure formation. We conclude at least at

99.5 per cent confidence level that there is a dependence of the void

number density on redshift. We do this by means of a modified

version of the V max test which reveals a small trend towards small

z values.

We have also obtain preliminary results on the galaxy contents of

nearby voids found in volume-limited galaxy samples in the 2dF-

GRS. For the nine nearby voids up to z < 0.095 in our sample,

we have found inside them on average only 15 galaxies fainter

than −19.32 + 5 log h (the magnitude of the galaxies which de-

fine the voids). These voids are rather empty compare to those de-

fined by brighter galaxies. The galaxies within the voids are not

randomly distributed: they are clustered forming well-defined fila-

mentary structures as that observed in the large-scale structure of the

galaxy distribution of the Universe. Moreover, this is the same pat-

tern that show the dark matter halo distribution found inside voids

in high-resolution N-body simulations. The haloes inside voids are

distributed in a way that resemble a miniature of the Universe (see

fig. 2 in Gottlöber et al. 2003). We have also obtained the number

density profile for the galaxies inside the voids. The number density

of faint galaxies falls almost a factor of 7 from the border of the

voids to the inner half. Moreover, the number density of galaxies

close to the borders of the voids are still too low compared with the

field (almost a factor of 5). Gottlöber et al. (2003) and Patiri et al.

(2004) have obtained the number density profile for haloes in voids.

From the comparison of these results, we can see that even though

the number density of galaxies and haloes follow similar trends, the

galaxy profile is steeper than haloes (they fall just a factor of 2).

In a future work, we will use the framework developed in Patiri

et al. (2004) along with the results given here for the number density

of voids and their redshift dependence in order to constrain the value

of σ 8. Furthermore, using a halo occupation model (e.g. Berlind

et al. 2003) along the lines described in Patiri et al. (2004) we shall

establish constraints in the relationship between haloes and galaxies

from void statistics and the statistics of the galaxies inside the voids.

In particular, we hope to be able to determine whether or not the

conditional luminosity function depends on environment.

On the other hand, the study of the physical properties of the

galaxies inside voids could imply constraints on the galaxy for-

mation processes. So, we will analyse the physical properties

like colours, metallicities, star formation rates, etc. of galaxies

in rare voids that are available from the biggest galaxy surveys

(2dFGRS and SDSS) in order to test, for example, the galaxy lumi-

nosity function in voids and the density–morphology correlations.
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A P P E N D I X A : VO I D F I N D E R A L G O R I T H M S

A1 Algorithm 1: Cell Void Finder

The first step is to select the sample of galaxies or dark matter haloes

in our redshift survey or cosmological simulation that will define the

voids. We will select galaxies with luminosity greater than a given

value L or haloes with virial mass greater than M.

Once the galaxy or halo sample has been selected our code gen-

erates a cubic mesh where the cell size determines the working

resolution. Afterwards, the objects are assigned to cells. So we have

three types of cells: the cells that contain galaxies or haloes (filled

cells), the cells that are empty but are inside the observational do-

main (observed empty cells) and those cells which are also empty

but they are located outside the observational domain or in a not

observed region inside the observational domain (a ‘hole’) (not ob-

served empty cells). The code searches for the voids among the

observed empty cells inside the observational domain. In the case

of cosmological simulations the dark matter halo samples are in 3D

boxes and generally all the cells are inside the observational domain.

However, in the case of galaxy samples in redshift surveys which

have irregular geometry, some of the cells are located outside the

observational domain. We can easily determine which cell has been

observed and which has not by using the survey masks.

Once the cell classification procedure have been completed the

code is then ready to search for the voids, finding their centres and

radii. In principle, each observed empty cell could be a potential

void centre, but it is easy to realize that the observed empty cells

which are located close to filled cells that contain galaxies or haloes

will not be the centre of a void. So, in order to save computational

time, we mark these neighbouring cells and they will not be taken

into account at the time of searching for the void centres. This is an

iterative process, i.e. once we have marked the observed empty cells

closer to the filled cells we can go to the next level and mark the

observed empty cells that are neighbours of already marked empty

cells. Note that we will stop this iteration depending on the working

resolution (see Fig. A1).

Figure A1. An example of labelling of cells for our Cell Void Finder. In

order to save computational time, we mark the empty cells (dark grey cells)

that are neighbours of those cells that contain objects (black cells). Note that

this is an iterative process, i.e. we can now mark the empty cells that are

neighbours of already marked empty cells (light grey cells). The stop of this

iteration depends on the adopted resolution. The centre of the void will be

searched over the empty unmarked cells (white cells).

To determine the void centres, the code computes the distances

between each of the unmarked observed empty cell and all the galax-

ies or haloes in the whole observational domain and we retain the

minimum distance. Once we have the list with the minimum dis-

tances, we search for the local maxima which correspond to the void

centres. Obviously, the voids radii are those maximum distances.

Finally, the code removes the overlapping maximal spheres, keep-

ing the biggest one, i.e. if the distance between two maximal spheres

is less than the sum of their radius, then the voids overlap and we

remove the smaller one.

The main advantage of the Cell Void Finder algorithm is that

in only one run we get all the voids in the sample. However, its

main disadvantage is that it consumes quite a lot of memory, which

scale with the resolution that we require. There is a similar memory

problem when we have a large number of galaxies or haloes in the

sample. If we are only interested in the biggest voids (rare voids)

this algorithm is not the best strategy. Some studies are focused in

these kind of voids, so, here we have developed a complementary

algorithm which is more efficient in this respect.

A2 Algorithm 2: HB Void Finder

Here, we give the details of our second algorithm whose main task is

the detection of rare voids and we will use it as a complement of the

CELLS algorithm. The HB Void Finder is conceptually simple. It

searches for the non-overlapping maximal spheres with radius larger
than a given value. As we mentioned above this code is designed

for statistical studies focused on the biggest voids. In these cases,

the code is very accurate and computationally efficient as compared

with our Cell Void Finder.

The first step in the algorithm is to generate a sample of random

trial spheres with a fixed radius R. These spheres are generated

directly over the observational domain with the condition that the

entire sphere lies inside the observational domain. We check which

spheres contains no objects and keep them.

In the next step, we find for each trial empty sphere the four near-

est objects and we expand the sphere to contain them in its surface.
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[t]

a ) b )

c ) d )

Figure A2. Sequence of steps in our HB Void Finder: (a) we throw a sphere of fixed radius (dotted circle) over the observed sample of objects, (b) if this sphere

is empty of objects defining the void (filled dots), we then grow the sphere (dashed circle) until its surface contains the four nearest objects (three in 2D, see

Appendix A). This is a potential maximal sphere. We throw another random sphere (dotted circle). Again, if this one is empty, we obtain the potential maximal

sphere (dashed circle in panel c). (d) Finally, we check if the new maximal sphere overlaps with another one; if so, we keep the largest sphere. This is our void

(filled circle). See text for details.

These new spheres are potentially maximal (see Section A4). Note

that the new expanded spheres could in principle contain objects.

If this is the case, those spheres are removed. The potential maxi-

mal spheres will be actual maximal spheres if they do not overlap,

which is decided by means of the same criteria as for the Cell Void

Finder (i.e. if the distance between two spheres is less than the sum

of their radius they overlap, so we keep the largest one) and if the

four nearest objects are not located in the same hemisphere (see

Fig. A2). We put in both algorithms the additional constrain that

the maximal spheres have to be entirely inside the observational

domain. Note that, we need to do many realizations of the trial

spheres in order to get the maximal spheres. Typically, four real-

izations are needed for each void in order to reach its maximum

radius, when the maximal sphere is only slightly larger than R and

an increasing number as the maximal sphere is larger with respect

to R.

A3 Performance test

We construct random samples of objects in order to test the code

performance and check the results of both algorithms. We generate

two samples, one with 1000 points and another one with 10 000

points. Both samples are in a box of 100 Mpc. We give in Table A1

the void statistics computed from both algorithms. Note that the

agreement between codes is excellent. We obtain the void statistics

using ∼107 trial spheres with the HB Void Finder. The resolution

of the Cell Void Finder is 0.5 Mpc.

The CPU time of the codes mainly depends on the number of

particles, the number and radius of trial spheres in the case of the

HB algorithm and on the number of cells (i.e. resolution) and the

levels of neighbouring cell marking for the Cell Void Finder. For

example, in the case of the sample with 1000 random particles and

for the voids with radius larger than 10 Mpc, the HB Void Finder
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Table A1. Voids in random samples. We list the

statistics of the maximal spheres found by our al-

gorithms in the sample of 1000 and 10 000 random

points in a box of 100 Mpc . N HB is the number of

voids found with the HB algorithm with radius larger

than the value given in the first column. N CELLS is

the same but for the voids found with the Cells Void

Finder. See text for details.

Radius N HB N CELLS

(Mpc)

Sample 1000

10.0 23 25

11.0 15 15

12.0 7 7

Sample 10 000

5.5 69 73

6.0 20 21

6.5 3 3

7.0 1 1

takes ∼1 h for 107 trials, while the Cell Void Finder takes ∼3 h with a

resolution of 0.5 Mpc. Notice that the voids with radius larger than

10 Mpc are common in this box, so the running time differences

are not so big between both algorithms. However, if we search for

voids with radius larger than 12 Mpc, the HB Void Finder takes only

20 min, while the Cell Void Finder last the same ∼3 h. These tests

were done in a Pentium IV processor (3.06-GHz clock and 2 GB

RAM) and in a Itanium-2 processor (1.5-GHz clock, 2 GB RAM)

giving both similar performances.

A4 How to grow the trial spheres

To determine the sphere passing through the four nearest objects

to an empty trial sphere we proceed as follows. We first take the

two nearest objects (whose coordinates we denote as x1 and x2) and

calculate the middle point (x1 + x2)/2. From this point, we move

along a vector in the plane containing the three nearest objects and

perpendicular to x2 − x1 until we reach the point, q, where the

distances to the third nearest object (x3) is the same as that to object

1, then the distance between object 2 and q is also the same that the

previous two (See Fig. A3). Then we need to solve

|x1 − q(w0)| = |x3 − q(w0)|, (A1)

where

q(w) = x1 + x2

2
+ w j (A2)

j

q(w )0

e13

e12

x +x1 2

2

2

1

3

R

Figure A3. How we grow the spheres.

and

j = e13 − (e13.e12)e12

|e13 − (e13.e12)e12| , (A3)

where

e12 ≡ x1 − x2

|x1 − x2| and e13 ≡ x1 − x3

|x1 − x3| (A4)

with w0 ∈ (−2R0, 2R0), R0 is the radius of the trial sphere.

Now, we repeat the same procedure described above but taking

into account the fourth object, i.e. we move from q (w0) perpendic-

ularly to the plane of Fig. A3 until we reach the point P (t) where

the distance between x4 and P (t) is the same as the distance from

x1 to P (t). So,

P(t) = q(w0) + tn, (A5)

where

n = e12 ∧ e13. (A6)

Solving

|x1 − P(t)| = |x4 − P(t)| (A7)

with t ∈ (−2R0, 2R0), we finally obtain the coordinates of the centre

of the maximal sphere, P (t), and its radius R, which is simply given

by |x1 −P (t)|.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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