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Abstract: This paper presents a parametric low differential order model, suitable for 

mathematically analysis for Induction Machines with faulty stator. An adaptive Kalman 

filter is proposed for recursively estimating the states and parameters of continuous–time 

model with discrete measurements for fault detection ends. Typical motor faults as inter-

turn short circuit and increased winding resistance are taken into account. The models are 

validated against winding function induction motor modeling which is well known in 

machine modeling field. The validation shows very good agreement between proposed 

method simulations and winding function method, for short-turn stator fault detection. 
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1 Introduction 1 

For several decades now, there have been extensive 

researches regarding fault detecting of induction 

machines (IMs). As conventional methods of fault 

detection in IMs are using of signal analysis methods 

that are based on the measurement of stator current. 

Classical methods like Fourier and correlation analysis 

including FFT and spectral estimation are used to detect 

changes of the signal behavior caused by process faults 

[1]. 

Model based methods of fault detection use the relations 

between several measured variables to extract 

information on possible changes caused by fault. These 

relations are mostly analytical relations in form of 

process model equations. It is well known that under 

idealizing assumptions, the dynamics of a healthy 

induction machine (IM) can be well described by a set 

of ordinary differential equations, instead of the more 

physically motivated partial differential equations [2]. 

For the squirrel cage IMs, the most accurate way to 

proceed with motor modeling is possibly the Winding 

Function approach, where one electrical equation is 

introduced for each mesh in the rotor and typically one 

electrical equation for each stator phase [3]. This 

approach yields a detailed model of high differential 

order which in the most cases is too complex for control 

engineering ends. 
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To reduce the differential order of system dynamics, 

one can utilized the space phasor approach, observing 

the idealized assumptions given in [4]. It generally starts 

with defining three axes for the stator either three axes 

for the rotor. The state space phasor approach results in 

either 6(7) or 7(8) differential equations, including 

mechanical part of IM, referred to the sequel as three 

axis model. Although space phasor models are not 

completely faithful with the rotor physics, the dynamics 

of the stator are well described. 

By utilizing physical relations between currents and/or 

voltages, one then usually projects the model into two 

sets of orthogonal axes (π/2 apart). These models are 

referred to as Two-Axis models and can be further 

reduced to a set of three or four complex valued 

differential equations. Many of the idealizing 

assumptions introduced in the derivation of Two-Axis 

model fail to hold under stator faults. For instance, for 

increased resistance in one stator phase, the number and 

structure of differential equations describing the IM 

should clearly remains the same. Under the basic 

underlying assumptions, an inter-turn short circuit in the 

stator leaves the equations for the rotor dynamic 

unaffected. However, extra mesh for one stator phase is 

usually introduced in order to model this fault. Hence, 

the number of differential equations describing the IM is 

incremented by one compared to the healthy IM. 

Two-Axis Modeling of IMs with electrical stator faults 

is considered under standard idealizing assumptions in 

[5]. This simple intuitive parametric Two-Axis model is 

used in order to keep the differential order low without 

introducing additional meshes and hence additional 

differential equations in faulty conditions. Furthermore, 

non standard transformations to two axes are used in 
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order to achieve as parsimonious model as by three 

stator currents, three stator voltages and rotor angle 

measurement. The model parameters are identified with 

a Gauss-Newton algorithm. It provides possible 

applications of the models in fault detection. 

In this paper some useful modification has been applied 

on IM modeling in [5]. The electrical part of the model 

depends on electrical angle in [5] but it depends on rotor 

velocity in this paper. This is preferable to obtain a 

description of the IM where the model depends on rotor 

velocity. It is clear that angle measurement is more 

complicated than velocity measurement. The other 

modification is that the states and parameters of the 

model are estimated recursively by an adaptive Kalman 

filter. The approach to this problem has been pointed 

out by Ljung [6]. In spite of many nonlinear 

optimization methods like Gauss-Newton that is used in 

[5], adaptive Kalman filter eliminates two drawbacks. 

Firstly, the identification process can be formulated in a 

recursive manner. Secondly, there is no possibility of 

getting stuck at local minima and of the algorithm being 

unstable. 

 

2 System Modeling 

Let A, B, C denote three coordinate axes for the stator 

phases and a, b, c for the rotor phases that are connected 

in a Y-configuration. The angle between two 

consecutive axes is 2π/3. To simplify notation, 

introduce the electrical angle 
p

nγ = γ  where pn  is 

number of pole-pairs and γ is mechanical rotor angle. 

Fig. 1 illustrates the model parameters definitions with 

respect to stator phase A and rotor phase a .The 

situation is similar for other phases. 

Let T

3S A B C
i [i i i ]=

 
denote the stator currents 

T

3r a b c
i [i i i ]=  the rotor currents, 

T

3S A B C
[ ]ϕ = ϕ ϕ ϕ

 
the stator fluxes, 

T

3r a b c
[ ]ϕ = ϕ ϕ ϕ  the rotor fluxes and 

T

3S A B C
u [u u u ]=  the stator voltages and S3R  the 

stator resistance matrix, 
3r

R  the rotor resistance matrix, 

S3L  the stator self inductance matrix, r3L  the rotor self 

inductance matrix and M  the mutual inductance 

between rotor and stator. The second Kirschhoff”s law 

equations written for the stator phases A, B, C and the 

rotor phases a, b, c (see Fig.2) gives the equation 1. 

 





−=ϕ

+−=ϕ

r3r3r3

S3S3S3S3

iR

uiR

�

�

 (1) 

 

The fluxes are 

 

















=









ϕ

ϕ

r3

S3

r3

T

3

3S3

r3

S3

i

i

LM

ML

 

(2) 

 

where: 

a

A

aR

aL

AaM

ARAL
 

Fig. 1 Stator phase A, rotor phase a. 
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Fig. 2: Connection between the stator phases and rotor phases. 

The left figure is for the stator and the right figure is for the 

rotor. 

 

















=

C

B

A

S3

R00

0R0

00R

R

, 
















=

c

b

a

r3

R00

0R0

00R

R

  

















−
















=

0MM

M0M

MM0

2

1

L00

0L0

00L

L

BCAC

BCAB

ACAB

C

B

A

S3

 

















−
















=

0MM

M0M

MM0

2

1

L00

0L0

00L

L

bcac

bcab

acab

c

b

a

r3

 

( ) ( )γδ+γδ= sincosM s3c33  

















−−

−−

−−

=δ

CcCbCa

BcBbBa

AcAbAa

c3

M2MM

MM2M

MMM2

2

1

 

















−

−

−

=δ

0MM

M0M

MM0

2

3

CbCa

BcBa

AcAb

s3

 

 

The mechanical part of the IM can be expressed as: 
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( )lemp MMnDJ −+γ−=γ ���

 
(3) 

 

where emM is electromagnetic torque of the IM. ( J  is 

moment of inertia, D  is rotor damping and lM  is 

mechanical load). 

Consider the electrokinetic’s energy of IM is 

 

]ii[
2

1
T r3

T

r3S3

T

S3e ϕ+ϕ=
 

 

and electromagnetic torque is: 
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Assume now that a fault occurs in stator phase A. 

Examples of motor faults that are covered by the 

mathematical model are stator winding shortcut, 

increased stator winding resistance due to the inter turn 

short circuit and decreased air gap in front of stator 

phase A. When a stator fault occurs, the motor 

parameters can then be divided into two groups, one 

group for parameters related to the healthy IM and 

another one for parameters whose values are altered by 

the fault.  

Healthy IM parameters invariant under stator in phase 

A: 

 

CBS R,R:R & cbar R,R,R:R  

CBS L,L:L & bar L,L:L  

BCS M:M & bcacabr M,M,M:M  

CcCbCaBcBbBa M,M,M,M,M,M:M  

 

Parameter influenced by stator fault in phase A: 

 

AA R:R & AA L:L , 

ACABAS M,M:M & AcAbAaAr M,M,M:M  

 

In order to derive a Two-Axis model, it is convenient to 

use two orthogonal axes SS ,βα  connected to the stator 

where axis Sα
 
coincide with the axis of phase A and 

the axis Sβ  
lies π/2 ahead in the rotor movement 

direction. For the rotor, two orthogonal axes rr ,βα  are 

defined in a similar manner, See Fig. 3. 

With a simple geometric consideration the stator and 

rotor currents transformation matrix to Two-Axis model 

can be obtained. It has the following form  

T

32
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1

2 2
T

3 3
0

2 2
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The stator and rotor currents, stator and rotor fluxes and 

stator voltages in Two-Axis and three-axis models are 

related to each other according to the following 

equations: 
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where: 

 

[ ] [ ]
[ ] [ ] [ ]TSSS

T

rrr

T

SSS

T

rrr

T

SSS

u,uu,,,,

,i,ii,i,ii

βαβαβα

βαβα

=ϕϕ=ϕϕϕ=ϕ

==
 

 

Transformations (5) are applied in three-axis model to 

obtain Two-Axis model [5]. 

The dynamic equations of Two-Axis model are given 

by: 
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(6) 

 

where: 
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In order to minimize the number of parameters new 

state variables define as below: 
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It is possible to obtain a description of IM where the 

electrical part of model depends on rotor speed γ=ω � . 

Speed measuring has less practical difficulties in 

comparison with angle measuring. 

With new variable, electrical part of system (6) 

becomes: 
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Fig. 3 Two-Axis frames for the stator and rotor. The left figure 

is for the stator and the right one for the rotor.  

where: 
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The system output equations is derived from (7) 
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Rotor speed ω  is an unobservable state and it can not 

be estimated by an observer, therefore mechanical 

equation parameters are not considered as system 

parameters in identification process.  

Introduce [ ]21rrrrSA C,C,,MM,,MM,,,p α′α′εαα=  as 

unknown system parameters and ωβα ,i,i SS  as system 

measurements. If ω  is considered as a measurement, 

ω�  can be eliminated from system dynamic equations 

and it leads to a linear continuous-time state space 

model (8). 

 

3 Parameter Estimation 

In this section, recursive state and parameter estimation 

for linear continues-time system (8) with discrete output 

measurement (continues-discrete system) is 

investigated. The approach to this problem has been 

pointed out by Ljung [6]. For linear systems the Kalman 

filter can be viewed as a well-know recursive prediction 

error method (RPEM) applied to a general state space 

model [6, Section 3.8.3]. 

A problem arises if the RPEM is applied to a general 

state–space model. The computation of the gradient of 

the prediction error requires the gradient of the state 

estimate, the so-called sensitivity. The equations for this 

sensitivity are obtained from taking the derivate of the 

propagation equation and the update equation for the 

state estimate. The derivate of the update equation is the 

major source of the computational burden, since it 

contains the derivative of the filter gain. This expression 

is rather complicated; furthermore it requires the 

derivative of the error covariance matrix with respect to 

the parameter vectors. This complexity seems to be the 

major reason why the low differential order models with 
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less unknown parameters must be developed. 

Fortunately, these difficulties can be alleviated by 

developing the RPEM with the help of differential 

calculus [6, chapter 5]. 

The system under consideration is modeled as: 

 

)t(w)t(x)p(C)t(y

)t(v)t(u)t(x)p(A)t(x
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 (10) 

 

where, with a slight abuse of notation in Eq. (10), )t(v  

is continues time Gaussian white noise with covariance 

matrix
 

TE{v(t)v (t )} Q(p) (t t )′ ′= δ − , and )t(w k  is 

discrete-time Gaussian white noise with covariance 

matrix ijj

T

i R)}t(w)t(w{E δ= . The term )t(u  

represents an external, known input signal. The 

unknown system and noise parameters are collected in 

the parameters vector p of dimension S. Note that only 

the process noise covariance matrix is parameterized 

here. This is justified since the aim is not the estimation 

of the true process noise covariance (it is argued below 

that the estimation of the true covariance matrices is in 

fact impossible since the predictor is only an 

approximation, rather the covariance matrices are 

auxiliary parameters, which should be tuned so that 

accurate state and parameter estimates are obtained. 

A definition for a matrix derivative: 
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is used here [7, p.86]. A parameter-adaptive continuous-

discrete KF is then given by the following equations. 

State and covariance propagation: −
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⊗  stands for the Kronecher product. 

 

Prediction and prediction error: 
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Gradient of prediction: 
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−
+−

+
+ +

∂

∂
=  (18) 

 

Approximate prediction error covariance: 
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Derivative of prediction error covariance: 
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with 
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Parameter adaptation gain: 
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where 10 ≤λ<  is forgetting factor. 

 

Filter gain: 
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Derivative of gain: 
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Covariance updates: 
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n is the dimension of states. 

 

Sensitivity updates: 
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Parameter update: 

 

)t(Lp̂p̂ 1k1kk1k +++ ε+=  (30) 

 

State update: 

 

k 1 k 1 k 1 k 1
ˆ ˆx(t ) x(t ) K(t ) (t )

+ −

+ + + +
= + ε  (31) 

 

The philosophy behind the ordering of the equations is 

that all analytical derivatives should be evaluated with 

the latest available state and parameter estimates and 

terms should not be recomputed. Therefore, the state 

and the parameter estimates are updated simultaneously 

at the end of the computations for each sampling 

interval. The sensitivity equations (14), (15), (28), (29) 

result from taking the derivatives of Eqs. (12), (13), (31) 

and (27) respectively. Even though this algorithm 

allows immediate implementation (in the sense of 

prototyping, for example, in Matlab), it should be kept 

in mind that it is not computationally efficient because 

of the Kronecker products and sparse matrices present 

in the equations. 

Particularly, equations for the covariance and its 

sensitivity contain redundant entries due to symmetry, 

so only the upper or lower triangular parts need to be 

implemented. 

Also to estimate the elements of Q , a suitable 

parameterization needs to be chosen. Hence Q  is 

restricted to be diagonal, thus Q  and TdQ dp  are given 

as 

 

[ ]nn

nnn1s

11

n11sT

2

n1s

2

11s

Ep.......Ep
dp

dQ

}p,.......p{diag
2

1
Q

×+π×+

++

=

=
   

 

where 11

nnE × is an n by n matrix with a one in the ii 

position and zeros everywhere else, and 
1

s  is the 

number of unknown system parameters. 

Alternatively, a Cholesky factorization can be used to 

parameterizes Q  (it must be guaranteed that Q
 
is 

always positive definite).  

It should be pointed out that the estimated covariance 

matrix does not correspond to the true covariance 

matrix. 

Specifically, since an approximate filter is used as a 

predictor, it does not even hold that the true covariance 

matrices (even if they were known) would give the best 

filter performance. Often, filter performance can be 

improved by choosing a slightly larger process noise 

covariance that is pseudo-noise [8, p.24]. 

Thus, the recursive prediction error algorithms will find 

a covariance matrix that is optimal in term of prediction 

performance. 

 

4 Model Validation 

Simulation was performed on a 7.5 hp, 460 V, 60 Hz, 

two pole-pair, three phase induction machine. IM is 

simulated by winding function approach in healthy and 

faulty condition with typical stator faults, inter-turn 
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short circuit and increased winding resistance to provide 

required measurements for parameter estimation. 

 

4.1  Healthy IM 

From the parameters in Table 1, the resistance of the 

stator in the Two-Axis system amount to 
A

R 6.175= Ω, 

9825.5R s = Ω. 

 

Table 1 Estimated values of model parameters for healthy IM. 

04.109A =α  

93.326r =α  

M M 1.0232′ =  

967.11C1 =  

316.32r =ε  

103s =α  

41.319rr =α  

MM 1.0138′ =  

673.11C2 =  

 

The estimated parameters are compared in Fig. 4. 

Notably CC,MMMM,, 1rrrSA ≈′≈′α≈αα≈α
 
prove 

the IM magnetically symmetrical. The identified model 

of IM explains the measurements quite well too.  

Using the estimated parameters in the Two-Axis model, 

IMs has been simulated. Three stator phase currents 

have been shown in Fig. 5. In Fig. 6 these currents is 

compared with simulated currents with winding 

function approach. Two-Axis model currents have been 

completely fit with the simulated data with winding 

function approach. 

 

4.2  Increased Phase Resistance 

In this condition, an additional resistance of 8Ω was 

connected in series with phase A of an otherwise 

healthy motor to simulate a poor connection of the 

winding. The identified model parameters are given in 

Table 2.  

 

Table 2 Estimated values of model parameters for increased 

phase resistance. 

83.201A =α  

63.327r =α  

M M 1.0032′ =  

23.11C1 =  

32r =ε  

24.112s =α  

1.317rr =α  

MM 1.0022′ =  

449.11C2 =  

It is shown that 
A A S

3/ 2R R 1/ 2R′ = +
 
which yields 

A s
R 14.705,R 6.3557= =  Ω 

The estimated increase in AR  is about 8.1693 Ω and 

close to the actual value. Considering Table 2, it can be 

seen that the rotor remains symmetric. Also a significant 

difference between 
S

R
 

and 
A

R
 

with preserved 

magnetic symmetry in stator, i.e. M M 1′ ≈ , seems to be 

good indicator for this kind of fault. 

 

4.3  Inter-Turn Short Circuit 

For inter-turn short circuit, the parameter estimates 

change differently to what intuitively might be 

expected. For example the parameters that must not 

influence by stator faults, have been changed. 

To summarize, the estimated model parameters confirm 

significant imbalance in some parameters like rε . 

Further research is needed to understand whether the 

reason for these significant phenomena has been 

neglected in the model derivation, or it is due to 

problem with parameter identification. 

It is clear that the model can well describe the stator 

faults that do not change the model structure. 

 

Table 3 Estimated value of model parameters for inter-turn 

short circuit. 

46.144A =α  

41.193r =α  

M M 0.91532′ =  

686.12C1 =  

022.25r =ε  

24.122s =α  

68.117rr =α  

MM 1.1163′ =  

066.12C2 =  

First and second parameters estimates in healthy IM 

 

 

5 Conclusions 

In this paper a model based fault detection method has 

been presented for induction machines with stator faults. 

An adaptive Kalman filter was implemented for dual 

estimation. The model has been validated against 

simulated data by winding function approach with very 

promising results; especially when machine’s dynamic 

does not change under faults, model and estimated 

parameters satisfy all expectations. 
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Eight and ninth parameters estimates in healthy IM
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Fig. 4 Estimated parameters Comparison for the healthy IM at three different time intervals. 
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Fig. 5 IM stator phases currents simulated by Two-Axis model. 
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Fig. 6 IM stator phases currents Comparison simulated by Two-Axis and winding function approaches. 
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