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Abstract—Statsmodels is a library for statistical and econometric analysis in
Python. This paper discusses the current relationship between statistics and
Python and open source more generally, outlining how the statsmodels package
fills a gap in this relationship. An overview of statsmodels is provided, including
a discussion of the overarching design and philosophy, what can be found in the
package, and some usage examples. The paper concludes with a look at what
the future holds.
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Introduction

Statsmodels (http://statsmodels.sourceforge.net/) is a library for
statistical and econometric analysis in Python1. Its intended au-
dience is both theoretical and applied statisticians and econo-
metricians as well as Python users and developers across dis-
ciplines who use statistical models. Users of R, Stata, SAS,
SPSS, NLOGIT, GAUSS or MATLAB for statistics, financial
econometrics, or econometrics who would rather work in Python
for all its benefits may find statsmodels a useful addition to
their toolbox. This paper introduces statsmodels and is aimed
at the researcher who has some prior experience with Python,
NumPy/SciPy [SciPy]2.

On a historical note, statsmodels was started by Jonathan
Taylor, a statistician now at Stanford, as part of SciPy under the
name models. Eventually, models was removed from SciPy and
became part of the NIPY neuroimaging project [NIPY] in order to
mature. Improving the models code was later accepted as a SciPy-
focused project for the Google Summer of Code 2009 and again
in 2010. It is currently distributed as a SciKit, or add-on package
for SciPy.

The current main developers of statsmodels are trained as
economists with a background in econometrics. As such, much
of the development over the last year has focused on econometric
applications. However, the design of statsmodels follows a con-
sistent pattern to make it user-friendly and easily extensible by
developers from any discipline. New contributions and ongoing
work are making the code more useful for common statistical
modeling needs. We hope that continued efforts will result in a
package useful for all types of statistical modeling.
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The State of the Union: Open Source and Statistics

Currently R is the open source language of choice for applied
statistics. In applied econometrics, proprietary software pacakges
such as Gauss, MATLAB, Stata, SAS, and NLOGIT remain the
most popular and are taught in most graduate programs. However,
there is a growing call for the use of open source software in eco-
nomic research due in large part to its reliability, transparency, and
the paradigm it offers for workflow and innovation [YaltaYalta],
[YaltaLucchetti]. In particular R is increasing in popularity as
evidenced by the recent textbooks by Cryer and Chan (2008),
Kleiber and Zeileis (2008), and Vinod (2008). Gretl is another
notable open source alternative for econometrics [Gretl].

However, there are those who would like to see Python
become the language of choice for economic research and applied
econometrics. Choirat and Seri’s "Econometrics with Python" is
the first publication of which we are aware that openly advocates
the use of Python as the language of choice for econometri-
cians [ChoiratSeri]. Bilina and Lawford express similar views
[BilinaLawford]. Further, John Stachurski has written a Python-
based textbook, Economic Dynamics: Theory and Computation
[Stachurski], and Alan Isaac’s "Simulating Evolutionary Games:
a Python-Based Introduction" showcases Python’s abilities for
implementing agent-based economic models [Isaac].

In depth arguments for the choice of Python are beyond
the scope of this paper; however, Python is well known for its
simple syntax, gentle learning curve, and large standard library.
Beyond this, it is a language for much more than statistics and
can be the one toolbox for researchers across discplines. A few
examples of statistics-related packages that are outside of the
main numpy/scipy code are packages for Markov Chain Monte
Carlo and Bayesian statistics [PyMC], machine learning and mul-
tivariate pattern analysis [scikits-learn], [PyMVPA], neuroimaging
[NIPY] and neuroscience time series [NITIME], visualization
[Matplotlib], [Enthought], and efficient handling of large datasets
[PyTables].

We hope that statsmodels too can become an integral a part
of the Scientific Python community and serve as a step in the
direction of Python becoming a serious open source language
for statistics. Towards this end, others are working on an R-like
formula framework to help users specify and manipulate models
[charlton], and packages like pandas [pandas] (discussed in these
proceedings) and larry [larry] are providing flexible data structures
and routines for data analysis currently lacking in NumPy.

http://statsmodels.sourceforge.net/
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Statsmodels: Development and Design

It should not be the case that different conclusions can be had
from the same data depending on the choice of statistical software
or its version; however, this is precisely what Altman and Mac-
Donald (2003) find [AltmanMcDonald]. Given the importance of
numerical accuracy and replicablity of research and the multitude
of software choices for statistical analysis, the development of
statsmodels follows a process to help ensure accurate and trans-
parent results. This process is known as Test-Driven Development
(TDD). In its strictest form, TDD means that tests are written
before the functionality which it is supposed to test. While we do
not often take the strict approach, there are several layers in our
development process that ensure that our results are correct versus
existing software (often R, SAS, or Stata). Any deviations from
results in other software are noted in the test suite.

First, we employ a distributed version control system in which
each developer has his own copy of the code, a branch, to make
changes outside of the main codebase. Once a model is specified,
early changes, such as working out the best API or bug hunting,
take place in the main branch’s, or trunk’s, sandbox directory so
that they can be tried out by users and developers who follow
the trunk code. Tests are then written with results taken from
another statistical package or Monte Carlo simulation when it is
not possible to obtain results from elsewhere. After the tests are
written, the developer asks for a code review on our mailing list
(http://groups.google.ca/group/pystatsmodels). When all is settled,
the code becomes part of the main codebase. Periodically, we re-
lease the software in the trunk for those who just want to download
a tarball or install from PyPI, using setuptools’ easy_install. This
workflow, while not foolproof, helps make sure our results are
and remain correct. If they are not, we are able to know why and
document discrepancies resulting in the utmost transparency for
end users. And if all else fails, looking at the source code is trivial
to do (and encouraged!).

The design of the package itself is straightforward. The main
idea behind the design is that a model is itself an object to be used
for data reduction. Data can be both endogenous and exogenous
to a model, and these constituent parts are related to each other
through statistical theory. This statistical relationship is usually
justified by an appeal to discipline-specific theory. Note that in
place of endogenous and exogenous, one could substitute the
terms dependent and independent variables, regressand and re-
gressors, response and explanatory variables, etc., respectively, as
you prefer. We maintain the endogenous-exogenous terminology
throughout the package, however.

With this in mind, we have a base class, Model, that is intended
to be a template for parametric models. It has two main attributes
endog and exog3 and placeholders for fit and predict methods.
LikelihoodModel is a subclass of Model that is the workhorse for
the regression models. All fit methods are expected to return some
results class. Towards this end, we also have a base class Results
and LikelihoodModelResults which inherits from Results. The
result objects have attributes and methods that contain common
post-estimation results and statistical tests. Further, these are
computed lazily, meaning that they are not computed until the
user asks for them so that those who are only interested in, say,
the fitted parameters are not slowed by computation of extraneous
results. Every effort is made to ensure that the constructors of
each sublcass of Model, the call signatures of its methods, and the
post-estimation results are consistent throughout the package.

Package Overview

Currently, we have five modules in the main codebase that contain
statistical models. These are regression (least squares regression
models), glm (generalized linear models), rlm (robust linear mod-
els), discretemod (discrete choice models), and contrast (contrast
analysis). Regression contains generalized least squares (GLS),
weighted least squares (WLS), and ordinary least squares (OLS).
Glm contains generalized linear models with support for six
common exponential family distributions and at least ten standard
link functions. Rlm supports M-estimator type robust linear models
with support for eight norms. Discretemod includes several dis-
crete choice models such as the Logit, Probit, Multinomial Logit
(MNLogit), and Poisson within a maximum likelihood framework.
Contrast contains helper functions for working with linear con-
trasts. There are also tests for heteroskedasticity, autocorrelation,
and a framework for testing hypotheses about linear combinations
of the coefficients.

In addition to the models and the related post-estimation
results and tests, statsmodels includes a number of convenience
classes and functions to help with tasks related to statistical anal-
ysis. These include functions for conveniently viewing descriptive
statistics, a class for creating publication quality tables, and
functions for translating foreign datasets, currently only Stata’s
binary .dta format, to numpy arrays.

The last main part of the package is the datasets. There are
currently fourteen datasets that are either part of the public domain
or used with express consent of the original authors. These datasets
follow a common pattern for ease of use, and it is trivial to add
additional ones. The datasets are used in our test suite and in
examples as illustrated below.

Examples

All of the following examples use the datasets included in
statsmodels. The first example is a basic use case of the OLS
model class to get a feel for the rest of the package, using Long-
ley’s 1967 dataset [Longley] on the US macro economy. Note that
the Longley data is known to be highly collinear (it has a condition
number of 456,037), and as such it is used to test accuracy of
least squares routines than to examine any economic theory. First
we need to import the package. The suggested convention for
importing statsmodels is

>>> import scikits.statsmodels as sm

Numpy is assumed to be imported as:

>>> import numpy as np

Then we load the example dataset.

>>> longley = sm.datasets.longley

The datasets have several attributes, such as descriptives and
copyright notices, that may be of interest; however, we will just
load the data.

>>> data = longley.load()

Many of the Dataset objects have two attributes that are helpful
for tests and examples -endog and exog- though the whole dataset
is available. We will use them to construct an OLS model instance.
The constructor for OLS is

def __init__(self, endog, exog)

http://groups.google.ca/group/pystatsmodels
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It is currently assumed that the user has cleaned the dataset and
that a constant is included, so we first add a constant and then
instantiate the model.

>>> data.exog = sm.add_constant(data.exog)
>>> longley_model = sm.OLS(data.endog, data.exog)

We are now ready to fit the model, which returns a RegressionRe-
sults class.

>>> longley_res = longley_model.fit()
>>> type(longley_res)
<class 'sm.regression.RegressionResults'>

By default, the least squares models use the pseudoinverse to
compute the parameters that solve the objective function.

>>> params = np.dot(np.linalg.pinv(data.exog),
data.endog)

The instance longley_res has several attributes and methods of
interest. The first is the fitted values, commonly β in the general
linear model, Y = Xβ , which is called params in statsmodels.

>>> longley_res.params
array([ 1.50618723e+01, -3.58191793e-02,

-2.02022980e+00, -1.03322687e+00,
-5.11041057e-02, 1.82915146e+03,
-3.48225863e+06])

Also available are

>>> [_ for _ in dir(longley_res) if not
_.startswith('_')]

['HC0_se', 'HC1_se', 'HC2_se', 'HC3_se', 'aic',
'bic', 'bse', 'centered_tss', 'conf_int',
'cov_params', 'df_model', 'df_resid', 'ess',
'f_pvalue', 'f_test', 'fittedvalues', 'fvalue',
'initialize', 'llf', 'model', 'mse_model',
'mse_resid', 'mse_total', 'nobs', 'norm_resid',
'normalized_cov_params', 'params', 'pvalues',
'resid', 'rsquared', 'rsquared_adj', 'scale', 'ssr',
'summary', 't', 't_test', 'uncentered_tss', 'wresid']

All of the attributes and methods are well-documented in the
docstring and in our online documentation. See, for instance,
help(longley_res). Note as well that all results objects carry an
attribute model that is a reference to the original model instance
that was fit whether or not it is instantiated before fitting.

Our second example borrows from Jeff Gill’s Generalized
Linear Models: A Unified Approach [Gill]. We fit a Generalized
Linear Model where the endogenous variable has a binomial
distribution, since the syntax differs somewhat from the other
models. Gill’s data comes from the 1998 STAR program in Cali-
fornia, assessing education policy and outcomes. The endogenous
variable here has two columns. The first specifies the number of
students above the national median score for the math section
of the test per school district. The second column specifies the
number of students below the median. That is, endog is (number
of sucesses, number of failures). The explanatory variables for
each district are measures such as the percentage of low income
families, the percentage of minority students and teachers, the
median teacher salary, the mean years of teacher experience, per-
pupil expenditures, the pupil -teacher ratio, the percentage of
student taking college credit courses, the percentage of charter
schools, the percent of schools open year round, and various
interaction terms. The model can be fit as follows

>>> data = sm.datasets.star98.load()
>>> data.exog = sm.add_constant(data.exog)
>>> glm_bin = sm.GLM(data.endog, data.exog,

family=sm.families.Binomial())

Note that you must specify the distribution family of
the endogenous variable. The available families in scik-
its.statsmodels.families are Binomial, Gamma, Gaussian, In-
verseGaussian, NegativeBinomial, and Poisson.

The above examples also uses the default canonical logit link
for the Binomial family, though to be explicit we could do the
following

>>> links = sm.families.links
>>> glm_bin = sm.GLM(data.endog, data.exog,

family=sm.families.Binomial(link=
links.logit))

We fit the model using iteratively reweighted least squares, but we
must first specify the number of trials for the endogenous variable
for the Binomial model with the endogenous variable given as
(success, failure).

>>> trials = data.endog.sum(axis=1)
>>> bin_results = glm_bin.fit(data_weights=trials)
>>> bin_results.params
array([ -1.68150366e-02, 9.92547661e-03,

-1.87242148e-02, -1.42385609e-02,
2.54487173e-01, 2.40693664e-01,
8.04086739e-02, -1.95216050e+00,
-3.34086475e-01, -1.69022168e-01,
4.91670212e-03, -3.57996435e-03,
-1.40765648e-02, -4.00499176e-03,
-3.90639579e-03, 9.17143006e-02,
4.89898381e-02, 8.04073890e-03,
2.22009503e-04, -2.24924861e-03,
2.95887793e+00])

Since we have fit a GLM with interactions, we might be interested
in comparing interquartile differences of the response between
groups. For instance, the interquartile difference between the
percentage of low income households per school district while
holding the other variables constant at their mean is

>>> means = data.exog.mean(axis=0) # overall means
>>> means25 = means.copy() # copy means
>>> means75 = means.copy()

We can now replace the first column, the percentage of low income
households, with the value at the first quartile using scipy.stats and
likewise for the 75th percentile.

>>> from scipy.stats import scoreatpercentile as sap
>>> means25[0] = sap(data.exog[:,0], 25)
>>> means75[0] = sap(data.exog[:,0], 75)

And compute the fitted values, which are the inverse of the link
function at the linear predicted values.

>>> lin_resp25 = glm_bin.predict(means25)
>>> lin_resp75 = glm_bin.predict(means75)

Therefore the percentage difference in scores on the standardized
math tests for school districts in the 75th percentile of low income
households versus the 25th percentile is

>>> print "%4.2f percent" % ((lin_resp75-
lin_resp25)*100)

-11.88 percent

The next example concerns the testing of joint hypotheses on
coefficients and is inspired by a similar example in Bill Greene’s
Econometric Analysis [Greene]. Consider a simple static invest-
ment function for a macro economy

ln It = β1 +β2 lnYt +β3it +β4∆pt +β5t + εt (1)

In this example, (log) investment, It is a function of the interest
rate, it , inflation, ∆pt , (log) real GDP, Yt , and possibly follows a
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linear time trend, t. Economic theory suggests that the following
model may instead be correct

ln It = β1 + lnYt +β3 (it −∆pt)+ εt (2)

In terms of the (1) this implies that β3 +β4 = 0, β2 = 1, and β5 =
0. This can be implemented in statsmodels using the macrodata
dataset. Assume that endog and exog are given as in (1)

>>> inv_model = sm.OLS(endog, exog).fit()

Now we need to make linear restrictions in the form of Rβ = q

>>> R = [[0,1,0,0,0],[0,0,1,1,0],[0,0,0,0,1]]
>>> q = [1,0,0]

Rβ = q implies the hypotheses outlined above. We can test the
joint hypothesis using an F test, which returns a ContrastResults
class

>>> Ftest = inv_model.f_test(R,q)
>>> print Ftest
<F test: F=array([[ 194.4428894]]),
p=[[ 1.27044954e-58]], df_denom=197, df_num=3>

Assuming that we have a correctly specified model, given the high
value of the F statistic, the probability that our joint null hypothesis
is true is essentially zero.

As a final example we will demonstrate how the SimpleTable
class can be used to generate tables. SimpleTable is also currently
used to generate our regression results summary. Continuing the
example above, one could do

>>> print inv_model.summary(yname="lninv",
xname=["const","lnY","i","dP","t"])

To build a table, we could do:

>>> gdpmean = data.data['realgdp'].mean()
>>> invmean = data.data['realinv'].mean()
>>> gdpstd = data.data['realgdp'].std()
>>> invstd = data.data['realinv'].std()
>>> mydata = [[gdpmean, gdpstd],[invmean,

invstd]]
>>> myheaders = ["Mean", "Std Dev."]
>>> mystubs = ["Real GDP", "Real Investment"]
>>> tbl = sm.iolib.SimpleTable(mydata,

myheaders, mystubs, title =
"US Macro Data", data_fmts=['%4.2f'])

>>> print tbl
US Macro Data

================================
Mean Std Dev.

--------------------------------
Real GDP 7221.17 3207.03
Real Investment 1012.86 583.66
--------------------------------

LaTeX output can be generated with something like

>>> fh = open('./tmp.tex', 'w')
>>> fh.write(tbl.as_latex_tabular())
>>> fh.close()

While not all of the functionality of statsmodels is covered in
the above, we hope it offers a good overview of the basic usage
from model to model. Anything not touched on is available in our
documentation and in the examples directory of the package.

Conclusion and Outlook

Statsmodels is very much still a work in progress, and perhaps
the most exciting part of the project is what is to come. We
currently have a good deal of code in our sandbox that is being
cleaned up, tested, and pushed into the main codebase as part

of the Google Summer of Code 2010. This includes models for
time-series analysis, kernel density estimators and nonparametric
regression, panel or longitudinal data models, systems of equation
models, and information theory and maximum entropy models.

We hope that the above discussion gives some idea of the
appoach taken by the project and provides a good overview
of what is currently offered. We invite feedback, discussion, or
contributions at any level. If you would like to get involved,
please join us on our mailing list available at http://groups.google.
com/group/pystatsmodels or on the scipy-user list. If you would
like to follow along with the latest development, the project blog
is http://scipystats.blogspots.com and look for release announce-
ments on the scipy-user list.

All in all, we believe that the future for Python and statistics
looks bright.
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