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Various etiological factors, such as head injury, chemical intoxication, tumors, and gene 

mutation, can induce epileptogenesis. In animal models, status epilepticus (SE) triggers 

epileptogenesis. In humans, convulsive SE for >30 min can be a life-threatening medical 

emergency. The duration and severity of convulsive SE are highly variable in chemocon-

vulsant animal models. A continuous video-electroencephalography (EEG) recording, 

and/or diligent direct observation, facilitates quantification of exact duration of different 

stages of convulsive seizures (Racine stages 3–5) to determine the severity of SE.  

A continuous convulsive SE for >30 min usually causes high mortality in some rodents 

and results in widespread brain damage in the surviving animals, in spite of treating with 

antiepileptic drugs (AEDs). AEDs control behavioral seizures but not EEG seizures. The 

severity of initial SE impacts epileptogenesis and cognitive function; therefore, quanti-

tative assessment of behavioral SE and EEG in animal models will help to understand 

the impact of SE severity on epileptogenesis. There are several excellent reviews on 

experimental models of seizure/SE/epilepsy. This review focusses on the comparison 

of induction and characterization of behavioral SE and EEG correlates in mice and rats 

induced by kainate. We also discuss the advantages of repeated low dose of kainate (i.p. 

route), which minimizes variability in the initial SE severity between animals and reduces 

mortality rate. A refined approach to induce SE with kainate also addresses the two of 

the 3Rs (i.e., refinement and reduction), the guiding principles for ethical and scientific 

standpoint of animal research.

Keywords: status epilepticus, kainate, repeated low dose, electroencephalography seizures, behavioral seizures

INTRODUCTION

�e PubMed search, using status epilepticus (SE) and epilepsy as key words, yielded >1,600 articles 
on SE. In a recent review on bibliometric analysis of top 100 articles on both SE and epilepsy, as 
expected, revealed that the majority of these articles are from animal studies (1). In these literature, 
the duration of SE is discussed, but the information on quanti�cation of the severity of SE is lacking 
(2, 3). In general, the duration of SE in experimental models is between the time of administra-
tion of chemoconvulsant (assuming the onset of convulsive SE) and the end of behavioral seizures. 
Traditionally, the behavioral seizures are scored based on the Racine scale (4–6). However, the 
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electroencephalography (EEG) quanti�cation to determine the 
severity of SE in animal models is lacking in the literature. �ere 
are numerous reports on qualitative EEG that has been used as an 
evidence to demonstrate the occurrence of SE and to support the 
idea that benzodiazepines are ine�ective in controlling the epi-
leptiform spiking activity a�er certain time-point (7, 8). We have 
recently described both behavioral and EEG seizures’ quanti�cation 
methods from the kainate-induced SE in both mice and rat models 
(2, 9, 10). In this mini-review, we discuss SE in the context of its 
onset, duration, types of seizures during SE, quantitative measures 
of behavioral and electrographic seizures to determine SE severity, 
and the impact of SE severity on epileptogenesis in the rat and 
mouse kainate models of temporal lobe epilepsy (TLE).

�e de�nition of SE has been constantly changing. It is also 
suggested that it depends on the context of SE, in humans or 
experimental models (11, 12). �ere has been a consensus that the 
duration or length of convulsive seizures (CS) during SE should 
be su�cient to cause long-term brain injury, enabling the brain to 
generate spontaneous seizures i.e., “an enduring epilepticus” (13). 
According to the Commission of Epidemiology Prognosis (1993) 
and Dodson et al. (14), initial duration of SE for humans was set 
at 60 min. �is was later reduced to 30 min, which is now widely 
accepted for studies that investigate the long-term consequences 
of SE, i.e., epileptogenesis and epilepsy. Seizures are normally 
self-terminated by activating inhibitory mechanisms. Failure of 
these mechanisms can result in prolonged seizures (SE), which 
may require interventional drugs (12). However, according to the 
clinical trial guidelines, the treatment should be initiated only if 
the CS last for ~5 min (11, 14–16). According to the recommen-
dation of the Commission on Classi�cation and Terminology, 
and the Commission on Epidemiology of the International 
League Against Epilepsy (ILAE), the SE is de�ned as “a condition 
resulting either from the failure of the mechanisms responsible for 
seizure termination or from the initiation of mechanisms, which 
lead to abnormally, prolonged seizures (a�er time point t1). It is a 
condition, which can have long-term consequences (a�er time point 
t2), including neuronal death, neuronal injury, and alteration of 
neuronal networks, depending on the type and duration of seizures” 
(17). In this review, we discuss the types and duration of seizures 
during SE in mice and rat kainate models of TLE. We also discuss 
SE in these models on the background of a new de�nition of SE 
proposed by the ILAE.

SE IN ANIMAL MODELS: THE TYPES  

OF SEIZURES

In the literature on chemoconvulsant models of seizure/epilepsy, 
the types of behavioral seizures during SE are generally well 
de�ned based on the (modi�ed) Racine scale (4–6, 18). However, 
the scoring pattern varies between the literature, models, stimulus, 
strains, and species used in the experiment. �e most accept-
able broad classi�cation of behavioral seizures, for quanti�cation 
purpose, are non-convulsive seizure (NCS) and CS (tonic–clonic, 
tonic, and clonic). For the sake of clarity, the following �ve stages 
of behavioral seizures were considered for SE quanti�cation for 
mice and rat kainate models: stage 1, absence-like immobility; 

stage 2, hunching with facial automatism (exaggerated upper lip 
movement as evident from vibrissae movement with or without 
salivation) and/or abducted forelimb/s, wet-dog shaking (in rats); 
stage 3, rearing with facial automatism and forelimb clonus (exces-
sive salivation in some animals); stage 4, repeated rearing with 
continuous forelimb clonus and falling (loss of righting re�ex); 
and stage 5, generalized tonic–clonic convulsions with lateral 
recumbence or jumping (more common in mice) and wild run-
ning followed by generalized convulsions (Figures 1A,B) (2, 9).

SE ONSET AND ITS LENGTH OR 

DURATION IN ANIMAL MODELS

Unlike electroconvulsant models, such as the maximal electro-
shock seizure model (19–21), the time of onset and length of 
convulsive SE are highly variable in chemoconvulsant models. 
�is depends on numerous factors, such as drug and its route of 
administration, species, sex, age groups, strain, and genetic back-
ground (22–25). In the kainate model, intraperitoneal admin-
istration of a single high dose (SHD) of kainate (20–30 mg/kg)  
induced convulsive SE between 5 and 49 min in 86% of inbred 
C57BL/6J mice. Out of these, 63% of mice had >30  min and 
23% had <30  min of convulsive SE (Figure  1E). �e duration 
of SE (stages 1–5) was usually greater than 2 h in these animals 
(Figure 2A). However, 21% of mice died due to the severity of 
CS, and the vast majority of deaths occurred in mice that reached 
stage 5 seizures in <15 min of kainate administration (data not 
shown). A similar pattern of quick onset of convulsive SE with 
kainate (i.p.), but >80% mortality was observed in mixed genetic 
background mice (C57  ×  Balb-c) (Figures  1C–E). In Sprague 
Dawley rats, the convulsive SE onset with a SHD of kainate 
(12.5–15.0  mg/kg, i.p.) occurred between 30 and 40  min, with 
12% mortality, and the percentage of animals that achieved CS 
for ≥30 min was 46% (Figures 1C–E).

�e type of seizures and their duration determine the severity 
of SE. It has been proposed that >10 min of convulsive SE is suf-
�cient to cause brain damage and to induce TLE in chemoconvul-
sant animal models (10, 26). However, in some of the literature, 
there is limited information on whether the CS (stage ≥3) were 
continuous or intermittent in a given time (for example, during 
the 2–3 h of drug administration), and whether the behavioral 
SE was terminated with an antiepileptic drug (AED) or not. We 
used both behavioral methods and EEG parameters to accurately 
quantify the duration of convulsive SE. Interestingly, in C57BL/6J 
mouse kainate model, about 50% of behavioral seizures did not 
correspond to the epileptiform activity detected on the EEG 
(10). �is implies that in some chemoconvulsant models, there 
is an exaggerated behavioral response that could be due to the 
peripheral e�ects (27).

QUANTITATIVE MEASURE OF 

BEHAVIORAL AND ELECTROGRAPHIC 

SEIZURES TO DETERMINE SE SEVERITY

In a pilocarpine mouse model (C57BL/129Sv genetic back-
ground) of acute seizures, both video and quantitative EEG 
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FIGURE 1 | (A,B) An example of an electroencephalography (EEG) trace showing different stages of seizures, induced by kainate in C57BL/6J mouse (A) and 

Sprague Dawley rat (B). The corresponding power spectra, activity level, and real-time behavioral seizures captured from the video-EEG recording are illustrated. (i) 

EEG trace in the middle shows the changes in electrical activity as the seizure severity progressed from NCS to CS over time. A brief HFT pattern on the EEG, which 

had no behavioral correlate, preceded the CS. The photographs show different stages of behavioral seizures (iii). Magnified 2-s EEG traces that correspond to each 

stage of behavioral seizures are shown in the panel (ii). The histograms at the top panel in “i” represent power bands. As the seizure progressed from NCS to CS, 

the power bands, especially the gamma power increased (shown in green) at stage 3, but decreased during stages 4 and 5. The delta and theta power bands 

increased during the stage 2 NCS. The gamma power band increased after HFT, peaked at stage 3B, and declined in stages 4 and 5 before returning to the 

baseline. One interesting finding in the power spectra of the rat kainate model (B), in contrast to the mouse kainate model (A), was an increase in theta and delta 

power bands during CS. Activity counts represent brisk locomotor activity, which is shown below the EEG trace, increased from stage 3A onward and peaked in 

stage 3B and 4. Activity counts reduced in stage 5 when the mouse was recumbent or showed generalized rigidity but increased when the mouse displayed 

jumping behavior. In the rat KA model, the delta power persisted at high levels during pre- and post-CS stage, but the theta, beta, and gamma powers increased 

during the CS stages. (C–E) The comparison of latency to the onset of CS (C), mortality rate (D), and the time spent by the number of animals (in percentage) in CS 

stages (E) in C57BL/6J mice, the crossbred mice on C57BL/6J genetic background (C57 × Balb-c) and the Sprague Dawley rats in response to SHD of kainate. (F) 

Comparison between the total amounts of kainate, given 5 mg/kg at 30 min interval, required to induce CS in telemetry and non-telemetry groups of mice and rats. 

The animals with telemetry required about ~40% less kainate to reach CS when compared to the non-telemetry group in both rats and mice. Mann–Whitney test, 

***p < 0.001, n = 30–40 per group. RLD, repeated low dose; SHD, single high dose; CS, convulsive seizures; NCS, non-convulsive seizures; HFT, high frequency 

trigger. Adopted and modified from Tse et al. (2) and Puttachary et al. (9).
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analyses (fast Fourier transformation) were used to correlate the 
electrographic seizures with the convulsive behaviors (6). In this 
study, the authors graded the seizures on the Racine scale, and the 

root-mean-square (RMS) power analysis of EEG was performed 
using Sirenia Seizure Pro so�ware. �ey found a weak correla-
tion between the RMS power and convulsive behavior, induced 
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FIGURE 2 | (A) Seizure severity comparison between single high dose (SHD) and repeated low dose (RLD) of KA in mice during SE. Animals in RLD group showed 

more severe seizures and spent more time in ≥3 stage when compared to the SHD group during the 3 h of SE. Animals in both groups were given 20–30 mg/kg 

kainate (i.p.) (***p < 0.0001, two-way ANOVA between 1 and 719 degrees of freedom, F = 148.60, n = 30 for each group). Adopted and modified from Tse et al. (2). 

(B–E) An example of a 30-min EEG trace, during SE, showing inter-ictal activity that comprises of continuous epileptiform spikes and seizure cluster <12 s without 

any behavioral phenotype. Convulsive seizures (CS) and non-convulsive seizures (NCS) were observed throughout SE, but behavior activity was evident only during 

CS, i.e., stage ≥3. Expanded electroencephalography (EEG) traces of (B) are shown in panels (C–E).
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by the pilocarpine, suggesting that power spectral analysis alone 
is insu�cient to quantitatively correlate the behavioral seizures 
with electrographic seizures (6). In the mouse (C57BL/6J) kain-
ate model, we determined the power spectrum for frequencies 
ranging from 0.5 to 80  Hz based on stage-speci�c behavioral 
and EEG seizure correlates (2). In our studies, the power band 
spectrum analysis included delta (δ, 0–4 Hz), theta (θ, 4–8 Hz ), 
alpha (α, 8–12 Hz), sigma (Σ, 12–16 Hz), beta (β, 16–24 Hz), and 
gamma (γ, 24–80 Hz) frequencies in 10-s epochs on a continu-
ous EEG during SE with power ranging from 200 to 2,000 mV2.  
As the seizure stages progressed from stages 1–5, the EEG pat-
terns with increase in power bands began to emerge in real-time 
as measured by the Neuroscore so�ware (Figures  1A,B). A 
magni�ed EEG traces shown above the behavioral stages in these 
�gures demonstrate stage-speci�c spike characteristics (ampli-
tude, duration, and inter-spike intervals). When the seizures 
progressed from NCS (stages 1 and 2) to CS (stages 3–5), the 
power in di�erent bands also changed. �e gamma power peaked 
during stage 3, but declined in stages 4 and 5 before reaching 
the baseline (Figures  1A,B). Higher delta and theta powers 

were the hallmarks of stage-2 spikes. A reduced delta power, but 
the increased beta and gamma powers marked the progression 
from NCS to CS. �e high frequency trigger (HFT) pattern was 
frequently observed during the transition from NCS to CS, which 
was characterized by a brief peak in alpha and sigma powers 
(Figures 1A,B). To determine the severity of SE, in addition to 
the power spectral analysis, it is useful to quantify stage-speci�c 
spike frequencies during SE to correlate with the behavioral sei-
zures as described in the mouse and rat kainate models (2, 9, 10).  
However, it is plausible that the type of chemoconvulsant [for 
example, parasympathomimetics (pilocarpine) versus glutamate 
agonists (kainate)] could a�ect the extent of correlation between 
the power, EEG, and behavioral seizures.

SEVERITY OF SE AND ITS IMPACT ON 

EPILEPTOGENESIS

Several review articles have documented the impact of the sever-
ity of initial SE on epileptogenesis and epilepsy in the long term 
(28–32). �e majority of chemoconvulsant-induced SE in rats 

http://www.frontiersin.org/Neurology/
http://www.frontiersin.org
http://www.frontiersin.org/Neurology/archive


6

Sharma et al. Chemoconvulsants Induced SE in Rodent Models

Frontiers in Neurology | www.frontiersin.org January 2018 | Volume 9 | Article 7

and mice will develop progressive epilepsy, which is generally 
characterized by reactive gliosis, neurodegeneration, sponta-
neous recurrent seizures, and cognitive de�cits (10, 31–37).  
A recent article by Loscher et  al. (22) has highlighted the rel-
evance of strain-speci�c di�erences in mice and rats and their 
implications in determining the choice of experimental models 
of seizure/epilepsy. �e vast variation in seizure susceptibility 
in animal models is due to the diversity of their outbred genetic 
backgrounds. However, the C57BL/6J inbred mice response to 
chemoconvulsants such as kainate also varies between batches 
of mice and the source (22, 38–41). SE induction by chemocon-
vulsants in mice and rats revealed a huge variation in latency to 
convulsive SE onset, duration of CS, and mortality (Figures 1C–E 
and 2A). A re�ned method of inducing SE with repeated low dose 
(RLD) of kainate, 5 mg/kg, administered at 30 min intervals via 
the intraperitoneal route, has shown to reduce inconsistency in 
SE severity across di�erent strains (2, 42–44). Moreover, the RLD 
method of kainate administration revealed that the surgical pro-
cedure for intracranial electrode implantation reduces the thresh-
old for CS onset. About 40% less kainate was required to induce 
convulsive SE in the telemetry animals when compared to the 
non-telemetry animals (Figure 1F) (2, 9, 10). �e SE induction by 
either SHD or RLD of kainate (i.p.) will lead to the development 
of epilepsy in the majority of animals. However, the frequency of 
spontaneous convulsive (tonic–clonic) seizures signi�cantly var-
ies between models. For example, the RLD method in both rats 
and mice induced epilepsy and the C57BL/6J mice had almost 
the same numbers of spontaneous CS as the rats during the �rst 
4 weeks, but the frequency of seizures reduced a�er 4–6 weeks in 
the mice (9, 10, 45). In both rats and mice, the electrodes were 
implanted epidurally on the surface of the cortices as described 
previously (2, 10, 46). Interestingly, in a 4-month continuous 
video-EEG study from the C57BL/6J mouse kainate model, irre-
spective of initial severity of SE (severe or mild SE), high numbers 
of electrographic NCS were detected on EEG, which persisted 
during entire length of the study (10). However, the frequency 
of spontaneous CS, a readout for the classi�cation of the severity 
of disease, was related to the initial severity of SE in both rats 
and mice (9, 10, 47, 48). �erefore, it is imperative to review and 
re�ne the methods of induction and quanti�cation of severity of 
SE (the type and duration of seizures) to understand its impact on 
the disease progression and, importantly, to determine disease-
modifying e�ects of drugs in experimental models of TLE.

Considering one of the operational dimensions of the ILAE 
recommendations for SE, we further focus the review on “the 
length of the seizure and the time point (t1) beyond which the 
seizure should be regarded as ‘continuous seizure activity’”  
(11, 17). Hitherto, the SE in animal models has been de�ned 
as the duration from the onset of seizures until they stop on 
their own or intervention by an AED, most commonly diazepam 
(DZP). �is means the length of behavioral seizures, i.e., SE 
could vary between animals. �is can cause problems in animals 
that are intended for interventional and long-term studies (for 
example, vehicle treated versus test drug treated group/s), and 
would yield confounding results. Since DZP has little or no e�ect 
on EEG seizures, it is unlikely to have an impact on brain pathol-
ogy in animals that experience severe SE (49, 50). However, 

DZP treatment controlled behavioral seizures and suppressed 
epileptiform spikes or electrographic seizures in mice that had 
mild SE (45). According to the NIH CounterACT program, 
administering DZP or other AEDs to control behavioral seizures 
prior to testing disease-modifying agent is recommended for 
translational studies. �e length of SE also depends on the type 
of chemoconvulsant and the method of administration. For 
example, SHD method of kainate (i.p.) produces inconsistent 
seizure response with high variability in SE duration, while the 
RLD method of administration (i.p.) produces relatively consist-
ent SE (stage ≥3) with longer duration in both mice and rats 
(2, 9). �erefore, the RLD method is useful to develop animal 
models of varying SE severity, such as mild or severe groups, for 
any chosen experiment.

Several studies have shown huge variations in SE response 
to a SHD of kainate in various strains of mice and rats in terms 
of SE onset and duration (2, 23, 43, 51, 52). Unlike in humans, 
the convulsive SE is not always continuous in animal models, 
and the seizures �uctuate either between stage 1 and stage 5 or 
in between the stages of CS (stages 3 and 5). During continuous 
SE, the electrographic activity does not always correspond to 
the behavioral seizures. Furthermore, progression of NCS to CS 
is not always consistent in mice and rats. For example, during 
the transition from NCS to CS, we observed a pattern of HFT 
spikes on the EEG that had no behavioral correlation in both 
mice and rats (Figures 1A,B). During SE, a variety of epilepti-
form spiking activities were observed on the EEG, even though 
the animals were not exhibiting any behavioral seizures. �ese 
include spike trains containing isolated epileptiform spikes or 
spike clusters with <12-s duration (Figures 2B–E) (45). Since 
not every experiment will require telemetry, a video acquisition, 
in addition to direct observation, is useful to quantify the exact 
duration of convulsive SE in a given time. To precisely quantify 
the severity of SE, we considered the exact duration of CS (stage 
≥3) that occurred between the �rst onset of CS following kainate 
injection and the time the DZP was administered. By RLD of 
kainate, we could achieve >30 min of continuous CS in 95% of 
the animals with <15% mortality rate in both mice (irrespective 
of strains) and rats. �ese results are consistent with the previ-
ous studies (2, 43, 44, 51, 53). Irrespective of the model, DZP at 
10 mg/kg (i.p.) terminated behavioral seizures in the vast major-
ity of animals, but had little or no impact on continuous seizure 
activity, i.e., epileptiform spiking activity in those animals that 
experienced severe seizures (45, 54–56). However, DZP reduced 
mortality rate in animals with severe SE to some extent (56–58), 
but completely suppressed epileptiform spikes in animals that 
had mild SE (45). It has been known that severe seizures cause 
either internalization or inactivation of GABAA receptors at the 
synaptic terminals that result in diminished response to the DZP 
treatment (8, 49, 54, 59, 60).

In summary, the length of the convulsive SE in animal models 
usually lasts for >30  min by the RLD method of kainate, in 
contrast to a SHD method. �e severity of SE can be determined 
by quantifying the exact duration of di�erent stages of CS (stages 
3–5) from continuous video recording and/or by direct observa-
tion. Telemetry implanted animals require ~40% less kainate 
to induce convulsive SE. �e epileptiform spike frequency can 
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