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Cosmological observations are a powerful probe of neutrino properties, and in particular

of their mass. In this review, we first discuss the role of neutrinos in shaping the

cosmological evolution at both the background and perturbation level, and describe their

effects on cosmological observables such as the cosmic microwave background and the

distribution of matter at large scale. We then present the state of the art concerning the

constraints on neutrino masses from those observables, and also review the prospects

for future experiments. We also briefly discuss the prospects for determining the neutrino

hierarchy from cosmology, the complementarity with laboratory experiments, and the

constraints on neutrino properties beyond their mass.
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1. INTRODUCTION

Flavor oscillation experiments have by now firmly established that neutrinos have a mass. Current
experiments measure with great accuracy the three mixing angles, as well as the two mass-squared
splittings between the three active neutrinos. In the framework of the standard model (SM) of
particle physics neutrinos are massless, and consequently do not mix, since it is not possible to build
a mass term for them using the particle content of the SM. Therefore, flavor oscillations represent
the only laboratory evidence for physics beyond the SM. Several unknowns in the neutrino sector
still remain, confirming these particles as being the most elusive within the SM. In particular, the
absolute scale of neutrino masses has yet to be determined. Moreover, the sign of the largest mass
squared splitting, the one governing atmospheric transitions, is still unknown. This leaves open
two possibilities for the neutrino mass ordering, corresponding to the two signs of the atmospheric
splitting: the normal hierarchy, in which the atmospheric splitting is positive, and the inverted
hierarchy, in which it is negative. Other unknowns are the value of a possible CP-violating phase in
the neutrino mixing matrix, and the Dirac or Majorana nature of neutrinos.

There are different ways of measuring the absolute neutrino mass scale. One is to use kinematic
effects, for example by measuring the energy spectrum of electrons produced in the β-decay
of nuclei, looking for the distortions due to the finite neutrino mass. This approach has the
advantage of being very robust and providing model-independent results, as it basically relies only
on energy conservation. Present constraints on the effective mass of the electron neutrino mβ

(an incoherent sum of the mass eigenvalues, weighted with the elements of the mixing matrix)
are mβ < 2.05 eV from the Troitsk [1] experiment, and mβ < 2.3 eV from the Mainz [2]
experiment, at the 95% CL. The KATRIN spectrometer [3], that will start its science run in
2018, is expected to improve the sensitivity by an order of magnitude. Another way to measure
neutrino masses in the laboratory is to look for neutrinoless double β decay (0ν2β in short) of
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nuclei, a rare process that is allowed only if neutrinos are
Majorana particles [4]. The prospects for detection of neutrino
mass with 0ν2β searches are very promising: current constraints
for the effective Majorana mass of the electron neutrino mββ , a
coherent sum of themass eigenvalues, weighted with the elements
of the mixing matrix, are in the mββ < 0.1 ÷ 0.4 eV ballpark
(see section 9 for more details). There are a few shortcomings,
however. First of all, there is some amount of model dependence:
one has to assume that neutrinos are Majorana particles to start,
and even if this is, in some sense, a natural and very appealing
scenario from the theoretical point of view—as it could explain
the smallness of neutrino masses [5–9]—we have at the moment
no indication that this is really the case. Moreover, inferring
the neutrino mass from a (non-)observation of 0ν2β requires
the implicit assumption that the mass mechanism is the only
contribution to the amplitude of the process, i.e., that no other
physics beyond the SM that violates lepton number is at play.
Another issue is that the amplitude of the process also depends
on nuclear matrix elements, that are known only with limited
accuracy, introducing an additional layer of uncertainty in the
interpretation of experimental results. Finally, given that mββ

is a coherent superposition of the mass eigenvalues, it could be
that the values of the Majorana phases arrange to make mββ

vanishingly small.
The third avenue to measure neutrino masses, and in fact

the topic of this review, is to use cosmological observations.
As we shall discuss in more detail in the following, the
presence of a cosmic background of relic neutrinos (CνB) is
a robust prediction of the standard cosmological model [10].
Even though a direct detection is extremely difficult and still
lacking, (but experiments aiming at this are currently under
development, like the PTOLEMY experiment [11]), nevertheless
cosmological observations are in agreement with this prediction.
The relic neutrinos affect the cosmological evolution, both at
the background and perturbation level, so that cosmological
observables can be used to constrain the neutrino properties,
and in particular their mass (see e.g., [10, 12, 13] for excellent
reviews on this topic). In fact, cosmology currently represents
the most sensitive probe of neutrino masses. The observations
of cosmic microwave background (CMB) anisotropies from
the Planck satellite, without the addition of any external data,
constrain the sum of neutrino masses already at the 0.6 eV level
[14], which is basically the same as the KATRIN sensitivity.
Combinations of different datasets yield even stronger limits,
at the same level or better than the ones from 0ν2β searches,
although a direct comparison is not immediate, due to the
fact that different quantities are probed, and also due to the
theoretical assumptions involved in the interpretation of both
kinds of data. Future-generation experiments will likely have
the capability to detect neutrino masses, and to disentangle
the hierarchy, provided that systematics effects can be kept
under control—and that our theoretical understanding of the
Universe is correct, of course! Concerning this last point, the
drawback of cosmological measurements of neutrino mass and
other properties, is that they are somehow model dependent.
Inferences from cosmological observations are made in the
framework of a model—the so-called 3CDMmodel—, and of its

simple extensions, that currently represents our best and simple
description of the Universe that is compatible with observations.
This model is based on General Relativity (with the assumption
of a homogeneous and isotropic Universe at large scales) and
on the SM of particle physics, with the addition of massive
neutrinos, complemented with amechanism for the generation of
primordial perturbations, i.e., the inflationary paradigm. When
cosmological data are interpreted in this framework, they point
to the following picture: our Universe is spatially flat and is
presently composed by baryons (∼5% of the total density), dark
matter (∼25%), and an even more elusive component called dark
energy (∼70%), that behaves like a cosmological constant, and is
responsible for the present accelerated expansion, plus photons
(a few parts in 105) and light neutrinos. The constraints from
Planck cited above imply that, in the framework of the 3CDM
model, neutrinos can contribute 1% to the present energy density
at most. The structures that we observe today have evolved from
adiabatic, nearly scale-invariant initial conditions. Even though
this model is very successful, barring some intriguing but for
the moment still mild (at the ∼2σ level) discrepancies between
observational probes, this dependence should be borne in mind.
On the other hand, such a healthy approach should not, in our
opinion, be substituted with its contrary, i.e., a complete distrust
toward cosmological constraints. A pragmatic approach to this
problem is to test the robustness of our inferences concerning
neutrino properties against different assumptions, by exploring
extensions of the 3CDMmodel. This has been in fact done quite
extensively in the literature, and we will take care, toward the end
of the review, to report results obtained in extended models.

Another advantage of cosmological observations is that they
are able to probe neutrino properties beyond their mass. A well-
known example is the effective number of neutrinos, basically a
measure of the energy density in relativistic species in the early
Universe, that is a powerful probe of a wide range of beyond the
SM model physics (in fact, not necessarily related to neutrinos).
For example, it could probe the existence of an additional,
light sterile mass eigenstate, as well as the physics of neutrino
decoupling, or the presence of lepton asymmetries generated in
the early Universe. Cosmology can also be used to constrain the
existence of non-standard neutrino interactions, possibly related
to the mechanism of mass generation. Even though they are not
the focus of this review, we will briefly touch some of these aspects
in the final sections of the review.

Cosmological data have reached a very good level of
maturity over the last decades. Measurements of the CMB
anisotropies from the Planck satellite have put the tightest
constraints ever on cosmological parameters from a single
experiment [14], dramatically improving the constraints from the
predecessor satellite WMAP [15]. From the ground, the Atacama
Cosmology Telescope (ACT) polarization-sensitive receiver and
the South Pole Telescope (SPT) have been measuring with
incredible accuracy CMB anisotropies at the smallest scales
in temperature and polarization [16, 17]. At degree and sub-
degree scales, the BICEP/Keck collaboration [18, 19] and the
POLARBEAR telescope [20] are looking at the faint CMB
“B-mode” signal, containing information about both the early
stages of the Universe (primordial B-modes) and the late time
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evolution (lensing B-modes). The Cosmology Large Angular
Scale Surveyor (CLASS) [21] is working at mapping the CMB
polarization field over 70% of the sky. The SPIDER balloon
[22] successfully completed its first flight and is in preparation
for the second launch likely at the end of 2018. In addition
to CMB data, complementary information can be obtained by
looking at the large-scale structure of the Universe. The SDSS
III-BOSS galaxy survey has recently released its last season
of data [23]. Extended catalogs of galaxy clusters have been
completed from several surveys (see e.g., [24] and references
therein). In addition, weak lensing surveys (Canada-France-
Hawaii Telescope Lensing Survey [25], Kilo-Degree Survey
[26], Dark Energy Survey [27]) are mature enough to provide
constraints on cosmological parameters that are competitive with
those from other observables. They also allow to test the validity
of the standard cosmological paradigm by comparing results
obtained from high-redshift observables to those coming from
measurements of the low-redshift universe.

The current scenario is just a taste of the constraining power
of cosmological observables that will be available with the next
generation of experiments, that will be taking measurements in
the next decade. Future CMB missions—including Advanced
ACTPol [28], SPT-3G [29], CMB Stage-IV [30], Simons
Observatory1, Simons Array [31], CORE [32], LiteBIRD [33],
PIXIE [34]—will test the Universe over a wide range of scales
with unprecedented accuracy. The same accuracy will enable
the reconstruction of the weak lensing signal from the CMB
maps down to the smallest scales and with high sensitivity,
providing an additional probe of the distribution and evolution
of structures in the universe. On the other hand, the new
generation of large-scale-structure surveys—including the Dark
Energy Spectroscopic Instrument [35], the Large Synoptic Survey
Telescope [36], Euclid [37], and the Wide Frequency InfraRed
Spectroscopic Telescope [38]—will also probe the late-time
universe with the ultimate goal of shedding light on the biggest
unknown of our times, namely the nature of dark energy and dark
matter.

The aim of this review is to provide the state of the art of the
current knowledge of neutrino masses from cosmological probes
and give an overview of future prospects. The review is organized
as follows: in section 2, we outline the framework of this review,
introducing some useful notation and briefly reviewing the basics
of neutrino cosmology. Section 3 is devoted to discussing, from
a broad perspective, cosmological effects induced by massive
neutrinos. In section 4, we will describe in detail how the effects
introduced in section 3 affect cosmological observables, such as
the CMB anisotropies, large-scale structures and cosmological
distances. Sections 5 and 6 present a detailed collection of the
current and future limits on 6mν from the measurements of the
cosmological observables discussed in section 4, mostly derived
in the context of the 3CDM cosmological model. Constraints
derived in more extended scenarios are summarized in section 7.
Section 8 briefly deals with the issue of whether cosmological
probes are able to provide information not only on 6mν , but
also on its distribution among the mass eigenstates, i.e., about

1https://simonsobservatory.org

the neutrino hierarchy. In section 9, we will briefly go through
the complementarity between cosmology and laboratory searches
in the quest for constraining neutrino properties. Finally,
section 10 offers a summary of the additional information about
neutrino properties beyond their mass scale that we can extract
from cosmological observables. We derive our conclusions in
section 11. The impatient reader can access the summary of
current and future limits from Tables 1–4.

2. NOTATION AND PRELIMINARIES

2.1. Basic Equations
Inferences from cosmological observations are made under the
assumption that the Universe is homogeneous and isotropic, and
as such it is well-described, in the context of general relativity,
by a Friedmann-Lemaitre-Robertson-Walker (FLRW) metric.
Small deviations from homogeneity and isotropy are modeled as
perturbations over of a FLRW background.

In a FLRWUniverse, expansion is described by the Friedmann
equation2 for the Hubble parameter H:

H(a)2 = 8πG

3
ρ(a)− K

a2
, (1)

where G is the gravitational constant, K parameterizes the spatial
curvature3, a is the cosmic scale factor and the ρ is the total
energy density. This is given by the sum of the energy densities
of the various components of the cosmic fluid.

Considering cold dark matter (c), baryons (b), photons (γ ),
dark energy (DE), andmassive neutrinos (ν), and introducing the
redshift 1+ z = a−1, the Friedmann equation can be recast as:

H(z)2 = H2
0

[

(�c + �b) (1+ z)3 + �γ (1+ z)4+

+ �DE(1+ z)3(1+w) + �k(1+ z)2 + ρν,tot(z)

ρcrit,0

]

,

(2)

where we have introduced the present value of the critical density
required for flat spatial geometry ρcrit,0 ≡ 3H2

0/8πG (in general,
we use a subscript 0 to denote quantities evaluated today), and
the present-day density parameters �i = ρi,0/ρcrit,0 (since we
will be always referring to the density parameters today, we omit
the subscript 0 in this case). The scalings with (1 + z) come
from the fact that the energy densities of non-relativistic matter
and radiation scale with a−3 and a−4, respectively. For DE, in
writing Equation (2) we have left open the possibility for an
arbitrary (albeit constant) equation-of-state parameter w. In the
case of neutrinos, since the parameter of their equation of state
is not constant, we could not write a simple scaling with redshift,
although this is possible in limiting regimes (see section 2.5). We
use ρν,tot to denote the total neutrino density, i.e., summed over
all mass eigenstates. Finally, we have defined a “curvature density

2All throughout this review, we take c = h̄ = kB = 1.
3We choose not to rescale K to make it equal to±1 for an open or closed Universe,
so that we are left with the freedom to rescale the scale factor today a0 to unity.
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parameter” �k = −K/H2
0 . From Equation (2) evaluated at z = 0

it is clear that the density parameters, including curvature, satisfy
the constrain

∑

i �i = 1.
Let us also introduce some extra notation and jargon that will

be useful in the following. We will use �m to refer to the total
density of non-relativistic matter today. Thus, this in general
includes dark matter, baryons, and those neutrinos species that
are heavy enough to be non-relativistic today. In such a way we
have that �m + �DE = 1 in a flat Universe (or �m + �DE =
1−�k in general), since the present density of photons and other
relativistic species is negligible. Since many times we will have to
consider the density of matter that is non-relativistic at all the
redshifts that are probed by cosmological observables, i.e., dark
matter and baryons but not neutrinos, we also introduce �c+b,
with obvious meaning. When we consider dark energy in the
form of a cosmological constant (w = −1) we use �3 in place
of �DE to make this fact clear. Finally, we also use the physical
density parameters ωi ≡ �ih

2, with h being the present value of
the Hubble parameter in units of 100 km s−1 Mpc−1.

As we shall discuss in more detail in the following,
cosmological observables often carry the imprint of particular
length scales, related to specific physical effects. For this reason
we recall some definitions that will be useful in the following. The
causal horizon rh at time t is defined as the distance traveled by a
photon from the Big Bang (t = 0) until time t. This is given by:

rh(t) =
∫ t

0

dt′

a(t′)
=
∫ ∞

z(t)

dz′

H(z′)
. (3)

Note that this is actually the comoving causal horizon; in the
following, unless otherwise noted, we will always use comoving
distances. We also note that the comoving horizon is equal
to the conformal time η(t) (defined through dt = adη and
η(t = 0) = 0). In a Friedmann Universe (i.e., one composed
only by matter and radiation), the physical causal horizon is
proportional, by a factor of order unity, to the Hubble length
dH(t) ≡ H(t)−1. For this reason, we shall sometimes indulge in
the habit of calling the latter the Hubble horizon, even though
this is, technically, a misnomer.

A related quantity is the sound horizon rs(t), i.e., the distance
traveled in a certain time by an acoustic wave in the baryon-
photon plasma. The expression for rs is very similar to the one
for the causal horizon, just with the speed of light (equal to 1 in
our units) replaced by the speed of sound cs in the plasma:

rs(t) =
∫ t

0

cs(t′)
a(t′)

dt′ =
∫ ∞

z(t)

cs(z′)
H(z′)

dz′ . (4)

The speed of sound is given by cs = 1/
√
3(1+ R), with R =

(pb + ρb)/(pγ + ργ ) being the baryon-to-photon momentum
density ratio. When the baryon density is negligible relative to
the photons, cs ≃ 1/

√
3 and rs ≃ rh/

√
3 = η/

√
3.

Imprints on the cosmological observables of several physical
processes usually depend on the value of those scales at some
particular time. For example, the spacing of acoustic peaks in
the CMB spectrum is reminiscent of the sound horizon at the
time of hydrogen recombination; the suppression of small-scale

matter fluctuations due to neutrino free-streaming is set by the
causal horizon at the time neutrinos become non-relativistic; and
so on. Moreover, since today we see those scales through their
projection on the sky, what we observe is actually a combination
of the scale itself and the distance to the object that we are
observing. We find then useful also to recall some notions related
to cosmological distances. The comoving distance χ between us
and an object at redshift z is

χ(z) =
∫ z

0

dz′

H(z′)
, (5)

and this is also equal to η0−η(z). The comoving angular diameter
distance dA(z) is given by

dA(z) =
sin
(√

Kχ
)

√
K

, (6)

so that

dA(z) = χ(z) =
∫ z

0

dz′

H(z′)
for �k = 0. (7)

The angular size θ of an object is related to its comoving linear
size λ through θ = λ/dA(z). This justifies the definition of an
object of known linear size as a standard ruler for cosmology.
In fact, knowing λ, we can use a measure of θ to get dA and
make inferences on the cosmological parameters that determine
its value through the integral in Equation (6).

Another measure of distance is given by the luminosity
distance dL(z), that relates the observed flux F to the intrinsic
luminosity L of an object at redshift z:

dL(z) ≡
√

L

4πF
= (1+ z)dA(z). (8)

Similarly to what happened for the angular diameter distance,
this allows to use standard candles—objects of known intrinsic
luminosity—as a mean to infer the values of cosmological
parameters, after their flux has been measured.

2.2. Neutrino Mass Parameters
According to the standard theory of neutrino oscillations, the
observed neutrino flavors να (α = e, µ, τ ) are quantum
superpositions of three mass eigenstates νi (i = 1, 2, 3):

|να〉 =
∑

i

U∗
αi |νi〉 , (9)

where U is the Pontecorvo-Maki-Nakagawa-Sasaka (PMNS)
mixing matrix. The PMNS matrix is parameterized by three
mixing angles θ12, θ13, θ23, and three CP-violating phases: one
Dirac, δ, and two Majorana phases, α21 and α31. The Majorana
phases are non-zero only if neutrinos are Majorana particles.
They do not affect oscillation phenomena, but enter lepton
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number-violating processes like 0ν2β decay. The actual form of
the PMNS matrix is:

U =











c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13











× diag
(

1, eiα21/2, eiα31/2
)

, (10)

where cij ≡ cos θij and sij ≡ sin θij.
In addition to the elements of the mixing matrix, the other

parameters of the neutrino sector are the mass eigenvalues mi

(i = 1, 2, 3). Oscillation experiments have measured with
unprecedented accuracy the three mixing angles and the two
mass squared differences relevant for the solar and atmospheric
transitions, namely the solar splitting 1m2

sol = 1m2
21 ≡ m2

2 −
m2

1 ≃ 7.6 × 10−5 eV2, and the atmospheric splitting 1m2
atm =

|1m2
31| ≡ |m2

3 − m2
1| ≃ 2.5 × 10−3 eV2 (see e.g., [39–41] for a

global fit of the neutrino mixing parameters and mass splittings).
We know, because of matter effects in the Sun, that, of the two
eigenstates involved, the one with the smaller mass has the largest
electron fraction. By convention, we identify this with eigenstate
“1,” so that the solar splitting is positive. On the other hand, we
do not know the sign of the atmospheric mass splitting, so this
leaves open two possibilities: the normal hierarchy (NH), where
1m2

31 > 0 andm1 < m2 < m3, or the inverted hierarchy, where
1m2

31 < 0 andm3 < m1 < m2.
Oscillation experiments are unfortunately insensitive to the

absolute scale of neutrino masses. In this review, we will mainly
focus on cosmological observations as a probe of the absolute
neutrinomass scale. To a very good approximation, cosmological
observables are mainly sensitive to the sum of neutrino masses
6mν , defined simply as

6mν ≡
∑

i

mi. (11)

Absolute neutrino masses can also be probed by laboratory
experiments. These will be reviewed in more detail in section 9,
where their complementarity with cosmology will be also
discussed. For the moment, we just recall the definition of the
mass parameters probed by laboratory experiments. The effective
(electron) neutrino massmβ

mβ =
(

∑

i

|Uei|2m2
i

)1/2

, (12)

can be constrained by kinematic measurements like those
exploiting the β decay of nuclei. The effective Majorana mass of
the electron neutrinomββ :

mββ =
∣

∣

∣

∣

∣

∑

i

U2
eimi

∣

∣

∣

∣

∣

, (13)

can instead be probed by searching for 0ν2β decay.

2.3. The Standard Cosmological Model
Our best description of the Universe is currently provided by
the spatially flat 3CDM model with adiabatic, nearly scale-
invariant initial conditions for scalar perturbations. With the
exception of some mild (at the ∼2σ level) discrepancies that
will be discussed in the part devoted to observational limits, all
the available data can be fit in this model, that in its simplest
(“base”) version is described by just six parameters. In the base
3CDM model, the Universe is spatially flat (�k = 0), and the
matter and radiation content is provided by cold dark matter,
baryons, photons, and neutrinos, while dark energy is in the form
of a cosmological constant (w = −1). The energy density of
photons is fixed bymeasurements of the CMB temperature, while
neutrinos are assumed to be very light, usually fixing the sum
of the masses to 6mν = 0.06 eV, the minimum value allowed
by oscillation experiments. In this way, the energy density of
neutrinos is also fixed at all stages of the cosmological evolution
(see section 2.5). From Equation (2), and taking into account
the flatness constraint, it is clear then that the background
evolution in such a model is described by three parameters,
for example4 h, ωc, and ωb, with �3 given by 1 − �m. The
initial scalar fluctuations are adiabatic and have a power-law,
nearly scale invariant, spectrum, that is thus parameterized by
two parameters, an amplitude As and a logarithimc slope ns − 1
(with ns = 1 thus corresponding to scale invariance). Finally,
the optical depth to reionization τ parameterizes the ionization
history of the Universe.

This simple, yet very successful, model can be extended in
several ways. The extension that we will be most interested in,
given the topic of this review, is a one-parameter extension
in which the sum of neutrino masses is considered as a free
parameter. We call this seven-parameter model 3CDM+6mν .
This is also in some sense the best-motivated extension of
3CDM, as we actually know from oscillation experiments that
neutrinos have a mass, and from β-decay experiments that this
can be as large as 2 eV. In addition to this minimal extension,
we will also discuss how relaxing some of the assumptions of the
3CDMmodel affects estimates of the neutrino mass. Among the
possibilities that we will consider, there are those of varying the
curvature (�k), the equation-of-state parameter of dark energy
(w), or the density of radiation in the early Universe (Neff, defined
in section 2.5).

There are many relevant extensions to the 3CDMmodel that
however we will not consider here (or just mention briefly). The
most important one concerns the possibility of non-vanishing
tensor perturbations, i.e., primordial gravitational waves, that,
if detected, would provide a smoking gun for inflation. This
scenario is parameterized through an additional parameter, the
tensor-to-scalar ratio r. In the following, we will always assume
r = 0. In any case, this assumption will not affect the estimates
reported here, as the effect of finite neutrino mass and of
tensor modes on the cosmological observables are quite distinct.
Similarly, we will not consider the possibility of non-adiabatic

4In the analysis of CMB data, the angle subtended by the sound horizon at
recombination is normally used in place of h, as it is measured directly by CMB
observations, see section 4.1.
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initial perturbations, nor of more complicated initial spectra for
the scalar perturbations, including those with a possible running
of the scalar spectral index, although we report a compilation of
relevant references in section 7 for the reader’s convenience.

2.4. Short Thermal History
Given that cosmological observables carry the imprint of
different epochs in the history of the Universe, we find it
useful to shortly recall some relevant events taking place during
the expansion history, and their relation to the cosmological
parameters. For our purposes, it is enough to start when the
temperature of the Universe was T ∼ 1MeV, i.e., around
the time of Big Bang Nucleosynthesis (BBN) and neutrino
decoupling. At these early times (z ∼ 1010), since matter and
radiation densities scale as (1+ z)3 and (1+ z)4, respectively, the
Universe is radiation-dominated.

• At T ∼ 1MeV (z ∼ 1010), the active neutrinos decouple from
the rest of the cosmological plasma. Before this time, neutrinos
were kept in equilibrium by weak interactions with electrons
and positrons, that were in turn coupled electromagnetically to
the photon bath. After this time, the neutrino mean free path
becomes much larger the the Hubble length, so they essentially
move along geodesics, i.e., they free-stream. Shortly after
neutrino decouple, electrons and positrons in the Universe
annihilate, heating the photon-electron-baryon plasma, and,
to a much lesser extent, the neutrino themselves (in section 2.5
we shall discuss in more detail the neutrino thermal history).
After this time, the Universe can essentially be thought as
composed of photons, electrons, protons and neutrons (either
free, or, after BBN, bound together into the light nuclei),
neutrinos, dark matter, and dark energy.

• Soon after, at T ∼ 0.1MeV, primordial nucleosynthesis starts,
and nuclear reactions bind nucleons into light nuclei. After
this time, nearly all of the baryons in the Universe are in the
form of 1H and 4He nuclei, with small traces of 2H and 7Li.
The yields of light elements strongly depend on the density
of baryons, on the density and energy spectrum of electron
neutrinos and antineutrinos (as those set the equilibrium of
the nuclear reactions) and on the total radiation density (as
this sets the expansion rate at the time of nucleosynthesis).

• As said above, at early times (high z) the Universe is radiation-
dominated, given that the radiation-to-matter density ratio
like (1 + z). However, the radiation density decreases faster
than that of matter, and, at some redshift zeq, the matter and
radiation contents of the Universe will be equal: ρm(zeq) =
ρr(zeq). This is called the epoch of matter-radiation equality,
that marks the beginning of the matter-dominated era in the
history of the Universe. From the scaling of the two densities,
it is easy to see that 1+zeq = �m/(�γ +�ν) in a Universe with
massless neutrinos (so that their density always scale as (1+z)4;
see section 2.5 for further discussion on this point). Given the
current estimates of cosmological parameters, zeq ≃ 3, 400
[14].

• At T ≃ 0.3 eV, electrons and nuclei combine to form neutral
hydrogen and helium, that are transparent to radiation. This
recombination epoch thus roughly corresponds to the time of

decoupling of radiation from matter. This is the time at which
the CMB radiation is emitted. After decoupling, the CMB
photons undergo last interactions with residual free electrons.
Finally, the CMB photons emerge from this last scattering
surface and free-stream until the present time (with some
caveats, see below). Most of the features that we observe in
the CMB anisotropy pattern are created at this time. Given
the current estimates of cosmological parameters, zrec ≃
1, 090 [14]. Note that in fact the temperature at recombination
is basically fixed by thermodynamics, so once the present
CMB temperature is determined through observations, zrec =
T(z = zrec)/T(z = 0) depends very weakly on the other
cosmological parameters.

• Even if photons decoupled from matter shortly after
recombination, the large photon-to-baryon ratio keeps
baryons coupled to the photon bath for some time after that.
The drag epoch zdrag is the time at which baryons stop feeling
the photon drag. A good fit to numerical results in a CDM
cosmology is given by Eisenstein and Hu [42]

zdrag = 1,291
(ωc + ωb)

0.251

1+ 0.659(ωc + ωb)0.828
[1+ b1(ωc + ωb)

b2 ],

b1 = 0.313(ωc + ωb)
−0.419[1+ 0.607(ωc + ωb)

0.674],

b2 = 0.238(ωc + ωb)
0.223 (14)

Given the current estimates of cosmological parameters,
zdrag ≃ 1,060 [14].

• For a long time after recombination, the Universe stays
transparent to radiation. These are the so-called “dark ages.”
However, in the late history of the Universe, the neutral
hydrogen gets ionized again due to UV emission of the
first stars, that puts an end to the dark ages. This is called
the reionization epoch. After reionization, the CMB photons
are scattered again by the free electrons. Given the current
estimates of cosmological parameters, zre ≃ 8 [43].

• At some point during the recent history of the Universe,
that we denote with z3, the energy content of the Universe
starts to be dominated by the dark energy component. The
end of matter domination, and the beginning of this DE
domination is set by ρDE(z3) = ρm(z3). For a cosmological
constant (w = −1), 1 + z3 = (�3/�m)1/3. Given the
current estimates of cosmological parameters, z3 ≃ 0.3
[14]. Around this time, the cosmological expansion becomes
accelerated.

2.5. Evolution of Cosmic Neutrinos
In this section, we discuss the thermal history of cosmic
neutrinos.

As anticipated above, in the early Universe neutrinos are
kept in equilibrium with the cosmological plasma by weak
interactions. The two competing factors that determine if
equilibrium holds are the expansion rate, given by the Hubble
parameter H(z), and the interaction rate Ŵ(z) = n〈σv〉, where
n is the number density of particles, σ is the interaction cross
section, and v is the velocity of particles (brackets indicate a
thermal average). In fact, neutrino interactions become too weak
to keep them in equilibrium once Ŵ < H. The left-hand
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side of this inequality is set by the standard model of particle
physics, as the interaction rate at a given temperature only
depends on the cross-section for weak interactions, and thus,
ultimately, on the value of the Fermi constant (σw ∼ G2

FT
2).

The right-hand side is instead set through Equation (2) by the
total radiation density (the only relevant component at such
early times): H2 = (8πG/3)(ργ + ρν). In the framework of the
minimal 3CDM model, once the present CMB temperature is
measured, the radiation density at any given temperature is fixed.
Thus the temperature of neutrino decoupling, defined through
Ŵ(Tν,dec) = H(Tν,dec) does not depend on any free parameter
in the theory. A quite straightforward calculation shows that
Tν,dec ≃ 1MeV [44].

While they are in equilibrium, the phase-space distribution
f (p) of neutrinos is a Fermi-Dirac distribution5:

f (p, t) = 1

ep/Tν (t) + 1
, (15)

where it has been taken into account that at T & 1MeV, the
active neutrinos are certainly ultrarelativistic (i.e., Tν ≫mν) and
thus E(p) ≃ p. The distribution does not depend on the spatial
coordinate Ex, nor on the direction of momentum p̂, due to the
homogeneity and isotropy of the Universe. Before decoupling,
the neutrino temperature Tν is the common temperature of all
the species in the cosmological plasma, that we denote generically
with T, so that Tν = T. We recall that the temperature of the

plasma evolves according to g
1/3
∗s aT = const., where g∗s counts

the effective number of relativistic degrees of freedom that are
relevant for entropy [44].

Since decoupling happens while neutrinos are ultrarelativistic,
it can be shown that, as a consequence of the Liouville theorem,
the shape of the distribution function is preserved by the
expansion. In other words, the distribution function still has the
form Equation (15), with an effective temperature Tν(z) (that for
the sake of simplicity we will continue to refer to as the neutrino
temperature) that scales like a−1 (i.e., aT = const). We stress that
this means that, when computing integrals over the distribution
function, one still neglects the mass term in the exponential of the
Fermi-Dirac function, even at times when neutrinos are actually
non-relativistic.

Shortly after neutrino decouple, electrons and positrons
annihilate and transfer their entropy to the rest of the plasma,
but not to neutrinos. In other words, while the neutrino
temperature scales like a−1, the photon temperature scales like

a−1g
−1/3
∗s , and thus decreases slightly more slowly during e+e−

annihilation, when g∗s is decreasing. In fact, applying entropy
conservation one finds that the ratio between the neutrino
and photon temperatures after electron-positron annihilation is
Tν/T = (4/11)1/3. The photon temperature has been precisely
determined by measuring the frequency spectrum of the CMB
radiation: T0 = (2.725 ± 0.002) K [45, 46], so that the present
temperature of relic neutrinos should be Tν,0 ≃ 1.95 K ≃ 1.68×
10−4 eV.

5We are assuming a vanishing chemical potential for neutrinos and antineutrinos,
i.e., a vanishing lepton asymmetry.

The number density nν of a single neutrino species (including
both neutrinos and their antiparticles) is thus given by:

nν(Tν) =
g

(2π)3

∫

d3p

ep/Tν + 1
= 3ζ (3)

4π2
T3

ν , (16)

where ζ (3) is the Riemann zeta function of 3, and in the
last equality we have taken into account that g = 2 for
neutrinos. This corresponds to a present-day density of roughly
113 particles/cm3.

The energy density of a single neutrino species is instead

ρν(Tν) =
g

(2π)3

∫

√

p2 +m2

ep/Tν + 1
d3p. (17)

This is the quantity that appears, among other things, in the right-
hand side of the Friedmann equation (summed over all mass
eigenstates). In the ultrarelativistic (Tν ≫m) and non-relativistic
(Tν ≪m) limits, the energy density takes simple analytic forms:

ρν(Tν) =











7π2

120
T4

ν (UR)

mνnν (NR)

(18)

These scalings are consistent with the fact that one expects
neutrinos to behave as pressureless matter, ρν ∝ (1 + z)3, in the
non-relativistic regime, and as radiation, ρν ∝ (1 + z)4, in the
ultrarelativistic regime.

Given that the present-day neutrino temperature is fixed by
measurements of the CMB temperature and by considerations
of entropy conservation, it is clear from the above formulas
how the present energy density of neutrinos depends only on
one free parameter, namely the sum of neutrino masses 6mν

defined in Equation (11). Introducing the total density parameter
of massive neutrinos �ν ≡ ∑

i ρνi ,0/ρcrit,0, one easily finds from
Equation (16):

�νh
2 = 6mν

93.14 eV
. (19)

where we have already included the effects of non-instantaneous
neutrino decoupling, see below. In the instantaneous decoupling
approximation, the quantity at denominator would be 94.2 eV.

On the other hand, the neutrino energy density in the early
Universe only depends on the neutrino temperature, and thus it
is completely fixed in the framework of the 3CDMmodel. Using
the fact that for photons ργ = (π2/15)T4, together with the
relationship between the photon and neutrino temperatures, one
can write for the total density in relativistic species in the early
Universe, after e+e− annihilation:

ργ+ν = ργ

[

1+ 7

8

(

4

11

)4/3

Nν

]

, (20)

where Nν is the number of neutrino families. In the framework
of the standard model of particle physics, considering the active
neutrinos, one has Nν = 3. However, the above formula slightly
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underestimates the total density at early times; the main reason is
that neutrinos are still weakly coupled to the plasma when e+e−

annihilation occurs, so that they share a small part of the entropy
transfer. Moreover, finite temperature QED radiative corrections
and flavor oscillations also play a role. This introduces non-
thermal distortions at the subpercent level in the neutrino energy
spectrum; the integrated effect is that at early times the combined
energy densities of the three neutrino species are not exactly
equal to 3ρν , with ρν given by the upper row of Equation
(18), but instead are given by (3.046ρν) [12, 47]. A recent
improved calculation, including the full collision integrals for
both the diagonal and off-diagonal elements of the neutrino
density matrix, has refined this value to (3.045ρν) [48]. It is then
customary to introduce an effective number of neutrino families
Neff and rewrite the energy density at early times as:

ργ+ν = ργ

[

1+ 7

8

(

4

11

)4/3

Neff

]

. (21)

In this review, we will consider Neff = 3.046 as the “standard”
value of this parameter in the 3CDM model, and not the more
precise value found in de Salas and Pastor [48], since most of the
literature still makes use of the former value. This does not make
any difference, however, from the practical point of view, given
the sensitivity of present and next-generation instruments.

It is also customary to consider extensions of the minimal
3CDMmodel in which one allows for the presence of additional
light species in the early Universe (“dark radiation”). In this
kind of extension, the total radiation density of the Universe
is still given by the right-hand side of Equation (21), where
now however Neff has become a free parameter. In other words,
Equation (21) becomes a definition for Neff, that is, just a way to
express the total energy density in radiation. The effect on the
expansion history of this additional radiation component can be
taken into account by the substitution

�γ → �γ

[

1+ 7

8

(

4

11

)4/3

1Neff

]

(22)

in the rhs of the Hubble equation (2), with 1Neff ≡ Neff −
3.046. Note that this substitution fully captures the effect of the
additional species only if this is exactly massless, and not just
very light (as in the case of a light massive sterile neutrino, for
example—see section 10).

It is often useful, to understand some of the effects that we will
discuss in the following, to have a feeling for the time at which
neutrinos of a given mass become non-relativistic, or, thinking
the other way around, for the mass of a neutrino that becomes
non-relativistic at a given redshift. The average momentum of
neutrinos at a temperature Tν is 〈p〉 = 3.15Tν . We take as the
moment of transition from the relativistic to the non-relativistic
regime the time when 〈p〉 = mν . Then, using the fact that
Tν(z) = (4/11)1/3T0(1+ z) = 1.68× 10−4(1+ z) eV, one has

1+ znr ≃ 1,900
(mν

eV

)

. (23)

This relation can be used to show e.g., that neutrinos with mass
mν . 0.6 eV turn non-relativistic around or after recombination.
In the following, when discussing the effect of neutrino masses
on the CMB anisotropies, we will assume that this is the case.
Note however that the actual statistical analyses from which
bounds on neutrino masses are derived do not make such an
assumption. We also note that, given the current measurements
of the neutrino mass differences, only the lightest mass eigenstate
can still be relativistic today. Thus at least two out of the three
active neutrinos become non-relativistic before the present time.

We conclude this section with a clarification on the role
of neutrinos in determining the redshift of matter-radiation
equality. Given the present bounds on neutrino masses, we know
that equality likely takes place when neutrino are relativistic.
In fact, observations of the CMB anisotropies constrain zeq ≃
3,400, so that neutrinos with mass mν ≃ 1.8 eV, just below the
current bound from tritium beta-decay, turn non-relativistic at
equality. Thus, for masses sufficiently below the tritium bound,
the total density of matter at those times is proportional to �c+b.
The radiation density is instead provided by photons and by
the relativistic neutrinos (and as such does not depend on the
neutrino mass), plus any other light species present in the early
Universe. So the redshift of equivalence is given by

1+ zeq =
�c + �b

�γ

[

1+ 7
8

( 4
11

)4/3
Neff

] = ωc + ωb

ωγ

[

1+ 7
8

( 4
11

)4/3
Neff

] ,

(24)

where the last equality makes it clear that, in the framework of the
minimal 3CDMmodel, the redshift of equivalence only depends
on the quantity ωc + ωb, since Neff is fixed and ωγ is determined
through observations (it is basically the CMB energy density).

3. COSMOLOGICAL EFFECTS OF
NEUTRINO MASSES

The impact of neutrino masses—and in general of neutrino
properties—on the cosmological evolution can be divided in two
broad categories: background effects, and perturbation effects.
The former class refers to modifications in the expansion history,
i.e., in changes to the evolution of the FLRW background. The
latter class refers instead to modifications in the evolution of
perturbations in the gravitational potentials and in the different
components of the cosmological fluid. We shall now briefly
review both classes; we refer the reader who is interested in a
more detailed analysis to the excellent review by Lesgourgues and
Pastor [13].

To start, we shall consider a spatially flat Universe, i.e.,
�k = 0, in which dark energy is in the form of a cosmological
constant (w = −1) and there are no extra radiation components
(Neff = 3.046). Let us also consider a particular realization of
this scenario, that we refer to as our reference model, in which
the sum of neutrino masses is very small; for definiteness, we
can think that 6mν is equal to the minimum value allowed by
oscillation measurements, 6mν = 0.06 eV (see section 8 for
further details). When needed, we will take the other parameters
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as fixed to their3CDMbest-fit values fromPlanck 2015 [14]. Our
aim is to understand what happens when we change the value of
6mν . Increasing the sum of neutrino masses 6mν will increase
ων = �νh

2 according to Equation (19). Remember that the sum
of the density parameters

∑

i �i = 1; this constraint can be recast
in the form:

ωc + ωb + ω3 + ωγ + ων + ωk = h2. (25)

Since ωγ is constrained by observations, and ωk is zero by
assumption, we have four degrees of freedom that we can use to
compensate for the change in ων , namely: increase h, or decrease
any of ωc, ωb, or ω3. For the moment, for simplicity, we will not
distinguish between baryons and cold dark matter, pretending
that as non-relativistic components they have the same effect
on cosmological observables. This is of course not the case, but
we will come back to this later. Then we are left with three
independent degrees of freedom that we can use to compensate
for the change in ων : h, ωb+c, and ω3. We prefer to use �3

in place of ω3, so that in the end our parameter basis for this
discussion will be

{

h, ωc+b, �3

}

.
The first option, increasing the present value of the Hubble

constant while keeping �3 and ωb+c constant has the effect
of making the Hubble parameter at any given redshift after
neutrinos become non-relativistic larger with respect to the
reference model. This can be understood by looking at Equation
(2), that we rewrite here in this particular case

H(z)2 = H2
0

[

(�c + �b) (1+ z)3 + �γ (1+ z)4

+ �3 + ρν,tot(z)

ρcrit,0

]

. (26)

With respect to the reference model, the first two terms in the
RHS are unchanged, while the third increases because�3 is fixed
but h is larger. The last term does not depend on h (because the
factor H2

0 in front of the square brackets cancel the one in the
critical density) but yet increases because ρν = 6mνnν is larger
as long as neutrinos are in the non-relativistic regime. On the
other hand, before neutrino become non-relativistic, ρν is the
same in the two models, and the change in the �3h

2 term is
irrelevant, because the DE density is only important at very low
redshifts. So we can conclude that at z ≫ znr, the two models
share the same expansion history, while for z . znr the model
with “large” neutrino mass is always expanding faster (larger H),
or equivalently, is always younger, at those redshifts. In terms
of the length scales and of the distance measures introduced in
section 2.1, it is easily seen that the causal and sound horizons at
both equality and recombination (as well as at the drag epoch)
are unchanged, because the expansion history between z =
∞ and z ≃ znr is unchanged. On the other hand, distances
between us and objects at any redshift—for example, the angular
diameter distance to recombination—are always smaller than
in the reference model, because H is always larger between
z ≃ znr and z = 0. H increases with the extra neutrino
density, so this effect increases with larger neutrino masses (and
moreover, znr also gets larger for larger masses). Given this, we

expect for example the angle subtended by the sound horizon at
recombination, θs = rs(zrec)/dA(zrec) to become larger when we
increase 6mν . We conclude this part of the discussion that in
this case the redshift of equality zeq does not change, since ωb+c

is being kept constant, and neutrinos contribute to the radiation
density at early times (see discussion at the end of the previous
section).

If we instead choose to pursue the second option, i.e., we keep
h and �3 constant while lowering ωc+b, we are again changing
the expansion history, but this time on a different range of
redshifts. In fact, when neutrinos are non-relativistic, the RHS of
Equation (26) is unchanged, because the changes in the present-
day densities of neutrinos and non-relativistic matter perfectly
compensate; this continues to hold as long as both densities scale
as (1+ z)3, i.e., roughly for z < znr. On the other hand, at z > znr
the neutrino density is the same as in the reference model, while
the matter density is smaller, so H(z) is smaller as well. Finally,
when the Universe is radiation dominated, the two models share
again the same expansion history. Then in this scenario we
change the expansion history, decreasing H, for znr . z .

zeq. The sound horizon at recombination increases, and so does
the angular diameter distance, so one cannot immediately guess
how their ratio varies. However, a direct numerical calculation
shows that, starting from the Planck best-fit model, the net
effect is to increase θs, meaning that the sound horizon will
subtend a larger angular scale on the sky when 6mν increases.
For what concerns instead the redshift of matter-radiation
equality, it is immediate to see that it decreases proportionally
to ωc+b, i.e., equality happens later in the model with
larger 6mν .

Finally, when �3 is decreased, the main effect is to delay the
onset of acceleration and make the matter-dominated era last
longer. This has some effect on the evolution of perturbations,
as we shall see in the following. For what concerns the expansion
history, since the model under consideration and the reference
model only differ in the neutrinomass and in the DE density, they
are identical when neutrinos are relativistic and DE is negligible,
i.e., at z > znr. For z < znr, instead, starting as usual from
Equation (26) one finds, with some little algebra, that H(z) is
always larger in the model with smaller �3 and larger 6mν . As
in the previous case, both rs and dA at recombination vary in the
same direction (decreasing in this case); the net effect is again
that θs becomes larger with6mν . Also, since thematter density at
early times is not changing in this case, the redshift of equivalence
is the same in the two models.

We now comment briefly about ωb. One could choose to
modify ωb in place of ωc in order to compensate for the change
in ων . From the point of view of the background expansion,
both choices are equivalent, since the baryon and cold dark
matter density only enter through their sum ωb+c in the RHS
of Equation (26). However, changing the baryon density also
produces some peculiar effects, mainly related to the fact that (i)
it determines the BBN yields, and (ii) it affects the evolution of
photon perturbations prior to recombination. Thus, the density
of baryons is quite well constrained by the observed abundances
of light elements and by the relative ratio between the heights of
odd and even peaks in the CMB, (see section 4.1) and there is
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little room for changing it without spoiling the agreement with
observations.

Let us now turn to discuss the effects on the evolution
of perturbations. Given that we have observational access
to the fluctuations in the radiation and matter fields, it is
useful to discuss separately these two components. The photon
perturbations are sensitive to time variations in the gravitational
potentials along the line of sight from us up to the last-
scattering surface; this is the so-called integrated Sachs-Wolfe
(ISW) effect. The gravitational potentials are constant in a purely
matter-dominated Universe, so that the observed ISW gets an
early contribution right after recombination, when the radiation
component is not yet negligible, and a late contribution, when
the dark energy density begins to be important. Coming back
to our previous discussion, it is clear to see how delaying the
time of equality will increase the amount of early ISW, while
anticipating dark energy domination will increase the late ISW,
and viceversa. For what concerns matter inhomogeneities, a first
effect is again related to the time of matter-radiation equality.
Changing zeq affects the growth of perturbations, since most of
the growth happens during thematter dominated era. Apart from
that, a very peculiar effect is related to the clustering properties of
neutrinos. In fact, while neutrinos are relativistic, they tend to free
stream out of overdense regions, damping out all perturbations
below the horizon scale. The net effect is that neutrino clustering
is suppressed below a certain critical scale, the free-streaming
scale, that corresponds to the size of the horizon at the time of the
nonrelativistic transition. If the transition happens during matter
domination, this is given by:

kfs ≃ 0.018�1/2
m

( mν

1eV

)1/2
hMpc−1. (27)

On the contrary, above the free-streaming scale neutrinos cluster
as dark matter and baryons do. Thus, increasing the neutrino
mass and consequently the neutrino energy density will suppress
small-scale matter fluctuations relative to the large scales. It will
also make small-scale perturbations in the other components
grow slower, since neutrino do not source the gravitational
potentials at those scales. It should also be noted that the free-
streaming scale depends itself on the neutrino mass—specifically,
heavier neutrinos will become non-relativistic earlier and the
free-streaming scale will be correspondingly smaller. Moreover,
there is actually a free-streaming scale for each neutrino species,
each depending on the individual neutrino mass. In principle
one could think to go beyond observing just the small-scale
suppression and try to access instead the scales around the non-
relativistic transition(s), in order to get more leverage on themass
and perhaps also on the mass splitting. We shall see however in
the following that this is not the case.

The suppression of matter fluctuations due to neutrino
free-streaming also affects the path of photons coming from
distant sources, since those photons will be deflected by the
gravitational potentials along the line of sight, resulting in a
gravitational lensing effect. This is relevant for the CMB, as it
modifies the anisotropy pattern by mixing photons that come
from different directions. Another application of this effect, of

particular importance for estimates of neutrino masses, is to use
the distortions of the shape of distant galaxies due to lensing, to
reconstruct the intervening matter distribution.

4. COSMOLOGICAL OBSERVABLES

In this section we review the various cosmological observables,
and explain how the effects described in the previous section
propagate to the observables.

4.1. CMB Anisotropies
The CMB consists of polarized photons that, for the most part,
have been free-streaming from the time of recombination to the
present time. The pattern of anisotropies in both temperature
(i.e., intensity) and polarization thus encodes a wealth of
information about the early Universe, down to z = zrec ≃
1, 100. Moreover, given that the propagation of photons from
decoupling to the present time is also affected by the cosmic
environment, the CMB also has some sensitivity to physics at z <

zrec. Two relevant examples for the topic under consideration
are the CMB sensitivity to the redshift of reionization (because
the CMB photons are re-scattered by the new population of free
electrons) and to the integrated matter distribution along the line
of sight (because clustering at low redshifts modifies the geodesics
with respect to an unperturbed FLRW Universe, resulting in a
gravitational lensing of the CMB, see next section). However, the
CMB sensitivity to these processes is limited due to the fact that
these are integrated effects.

The information in the CMB anisotropies is encoded in the
power spectrum coefficients CTT

ℓ , i.e., the coefficients of the
expansion in Legendre polynomials of the two-point correlation
function. In the case of the temperature angular fluctuations
1T(n̂)/T:

〈

1T(n̂)

T

1T(n̂′)

T

〉

=
∞
∑

ℓ=0

2ℓ + 1

4π
CTT

ℓ Pℓ(n̂ · n̂′). (28)

For Gaussian fluctuations, all the information contained in the
anisotropies can be compressed without loss in the two-point
function, or equivalently in its harmonic counterpart, the power
spectrum. A similar expression holds for the polarization field
and for its cross-correlation with temperature. In detail, the
polarization field can be decomposed into two independent
components, known as E− (parity-even and curl-free) and B−
(parity-odd and divergence-free) modes. Given that, it is clear
that we can build a total of six spectra CXY

ℓ with X, Y = T, E, B;
however, if parity is not violated in the early Universe, the TB
and EB correlations are bound to vanish. Let us also recall
that, in linear perturbation theory, B modes are not sourced
by scalar fluctuations. Thus, in the framework of the standard
inflationary paradigm, primordial B modes can only be sourced
in the presence of tensor modes, i.e., gravitational waves.

The shape of the observed power spectra is the result of
the processes taking place in the primordial plasma around
the time of recombination. In brief, in the early Universe,
standing, temporally coherent acoustic waves set in the coupled
baryon-photon fluid, as a result of the opposite action of gravity
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and radiation pressure [49]. Once the photons decouple after
hydrogen recombination, the waves are “frozen” and thus we
observe a series of peaks and throughs in the temperature power
spectrum, corresponding to oscillationmodes that were caught at
an extreme of compression or rarefaction (the peaks), or exactly
in phase with the background (the throughs). The typical scale
of the oscillations is set by the sound horizon at recombination
rs(zrec), i.e., the distance traveled by an acoustic wave from
some very early time until recombination, see Equation (4). The
position of the first peak in the CMB spectrum is set by the value
of this quantity and corresponds to a perturbation wavenumber
that had exactly the time to fully compress once. The second
peak corresponds to the mode with half the wavelength, that had
exactly the time to go through one full cycle of compression and
rarefaction, and so on. Thus, smaller scales (larger multipoles)
than the first peak correspond to scales that could go beyond
one full compression, while larger scales (smaller multipoles)
did not have the time to do so. In fact, scales much above the
sound horizon are effectively frozen to their initial conditions,
provided by inflation. This picture is complicated a little bit by
the presence of baryons, that shift the zero of the oscillations,
introducing an asymmetry between even and odd peaks. Finally,
the peak structure is further modulated by an exponential
suppression, due to the Silk damping of photon perturbations
(further related to the fact that the tight coupling approximation
breaks down at very small scales). This description also holds for
polarization pertubations, with some differences, like the fact that
the polarization perturbations have opposite phase with respect
to temperature perturbations.

As noted above, the large-scale temperature fluctuations, that
have entered the horizon very late and did not have time to
evolve, trace the power spectrum of primordial fluctuations,
supposedly generated during inflation. On the contrary, since
there are no primordial polarization fluctuations, but those are
instead generated at the time of recombination and then again
at the time of reionization, the polarization spectra at large
scales are expected to vanish, with the exception of the so-called
reionization peak.

We can now understand how the CMB power spectra are
shaped by the cosmological parameters, in a minimal model
with fixed neutrino mass. The overall amplitude and slope of
the spectra are determined by As and ns, since these set the
initial conditions for the evolution of perturbations. The height
of the first peak strongly depends on the redshift of equivalence
zeq (that sets the enhancement in power due to the early ISW),
while its position is determined by the angle θs subtended by the
sound horizon at recombination. As we have discussed before,
zeq and θs are in turn set by the values of the background
densities and of the Hubble constant. The baryon density further
affects the relative heights of odd and even peaks, and also the
amount of damping at small scales, through its effect on the
Silk scale. The ratio of the densities of matter and dark energy
fixes the redshift of dark energy domination and the amount of
enhancement of large-scale power due to the late ISW. Finally,
the optical depth at reionization τ induces an overall power
suppression, proportional to e−2τ , in all spectra, at all but the
largest scales. This can be easily understood as the effect of

the new scatterings effectively destroying the information about
the fluctuation pattern at recombination, at the scales that are
inside the horizon at reionization. Reionization also generates
the large-scale peak in the polarization spectra, described above.
Measuring the power spectra gives a precise determination of all
these parameters: simplifying a little bit, the overall amplitude
and slope give Ase

−2τ and ns (the latter especially if we can
measure a large range of scales), the ratio of the peak heights and
the amount of small-scale damping fix ωb, while the position and
height of the first peak fix θs and zeq, and thus h and ωb+c. The
polarization spectra further help in that they are sensitive to τ

directly, allowing to break the As − τ degeneracy, and that the
peaks in polarization are sharper and thus allow, in principle,
for a better determination of their position [50]. It is clear that
adding one more degree of freedom to this picture, for example
considering curvature, the equation of state parameter of dark
energy, or the neutrino mass as a free parameter, will introduce
parameter degeneracies and degrade the constraints.

Coming to massive neutrinos, as we have discussed in section
3, there is a combination of the following effects when 6mν ,
and consequently ων , is increased, depending on how we are
changing the other parameters to keep

∑

i �i = 1: (i) an increase
in θs; (ii) a smaller zeq and thus a longer radiation-dominated
era; (iii) a delay of the time of dark energy domination. These
changes will in turn result in: (i) a shift towards the left of the
position of the peaks; (ii) an increased height of the first peak,
that is set by the amount of early ISW; (iii) less power at the
largest scales, due to the smaller amount of late ISW. A more
quantitative assessment of these effects can be obtained using
a Boltzmann code, like CAMB [51] or CLASS [52], to get a
theoretical prediction for the CMB power spectra in presence
of massive neutrinos. These are shown in Figure 1. In the left
panel we plot the unlensed CMB temperature power spectra for a
reference model with 6mν = 0.06 eV (ων ≃ 6.4 × 10−4) (the
other parameters are fixed to their best-fit values from Planck
2015) and for three models with 6mν = 1.8 eV (ων ≃ 1.9 ×
10−2), where either h, ωc, or �3 are changed to keep

∑

i �i =
1. We consider three degenerate neutrinos with mν = 0.6 eV
each, so that they become non-relativistic around recombination.
We also show the ratio between these spectra and the reference
spectrum in the right panel of the same figure.

These imprints are in principle detectable in the CMB,
especially the first two, since the position and height of the
first peak are very well measured; much less so the redshift
of DE domination, due to the large cosmic variance at small
ℓ’s. However, following the above discussion, it is quite easy to
convince oneself that these effects can be pretty much canceled
due to parameter degeneracies. In fact, simplifying again a little
bit, in standard 3CDM we use the very precise determinations
of the height and position of the first peak to determine θs and
zeq, and from them ωc+b and h. In an extension with massive
neutrinos, we still have the same determination of θs and zeq,
but we have to use them to fix three parameters, namely ωc+b,
h, and ων , so that the system is underdetermined. One could
argue that the amount of late ISW, as measured by the large-
scale power, could be used to break this degeneracy, as it would
provide a further constraint on the matter density (given that
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FIGURE 1 | (Top) CMB TT power spectra for different values of 6mν . The quantity on the vertical axis is DTT
ℓ

≡ ℓ(ℓ + 1)CTT
ℓ

/2π . The red curve is a cosmological

model with 6mν = 0.06 eV and all other parameters fixed to the Planck best-fit. The other curves are for models with 6mν = 1.8 eV, in which the curvature is kept

vanishing by changing h (green), �3 (yellow, always below the green apart from the lowest ℓ’s), or ωc (blue). The model in blue has a smaller zeq with respect to the

reference; the models in yellow and green have a larger θs; in addition, the yellow model also has a smaller z3. (Bottom) Ratio between the models with

6mν = 1.8 eV and the reference model.

the DE density is fixed by the flatness condition). Unfortunately,
measurements of the large-scale CMB power are plagued by large
uncertainties, due to cosmic variance, so they are of little help
in solving this degeneracy. Given the experimental uncertainties,
then, it is clear that, when trying to fit a theory to the data,
there will be a strong degeneracy direction corresponding to
models having the same θs and zeq, and thus with identical
predictions for the first peak, and slightly different values of z3,
with very low statistical weight due to the large uncertainties
in the corresponding region of the spectrum. In other words,
the effects of neutrino masses will be effectively “buried” in
the small-ℓ plateau, where experimental uncertainties are large.
The situation is even worse in extended models, for example if

we allow the spatial curvature or the equation of state of dark
energy to vary [13]. In any case, the degeneracy between h and
ωc+b is not completely exact, so that the unlensed CMB still has
some degree of sensitivity to neutrinos that were relativistic at
recombination. For example, the Planck 2013 temperature data,
in combination with high-resolution observations fromACT and
SPT, were able to constrain 6mν < 1.1 eV after marginalizing
over the effects of lensing [53].

4.1.1. Secondary Anisotropies and the CMB Lensing
As observed above, in addition to the features that are generated
at recombination, the so-called primary anisotropies, the CMB
spectra also carry the imprint of effects that are generated along

Frontiers in Physics | www.frontiersin.org 12 February 2018 | Volume 5 | Article 70

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gerbino and Lattanzi Neutrino Properties—Cosmological Constraints

the line of sight.We have already given an example of one of these
secondary anisotropieswhen we have mentioned the re-scattering
of photons over free electrons at low redshift, that creates
the distinctive “reionization bump” in the low-ℓ region of the
polarization spectra. Another important secondary anisotropy is
the gravitational lensing of the CMB (see [54, 55]): photon paths
are distorted by the presence of matter inhomogeneities along the
line of sight. In the context of General Relativity, the deflection
angle α for a CMB photon is

α = −2

∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)fK(χ)
∇9(χn, η0 − χ) (29)

where χ∗ is the comoving distance to the last scattering surface,
fK(χ) is the angular-diameter distance (Equation 6) thought
as a function of the comoving distance, 9 is the gravitational
potential, η0 − χ is the conformal time at which the photon was
along the direction n. If we then define the lensing potential as

φ(n̂) ≡ −2

∫ χ∗

0
dχ

fK(χ∗ − χ)

fK(χ∗)fK(χ)
9(χn, η0 − χ), (30)

it is straightforward to see that the deflection angle is the gradient
of the lensing potential, α = ∇φ. From the harmonic expansion
of the lensing potential, we can build an angular power spectrum6

as < φℓmφ∗
ℓ′m′ >≡ δℓℓ′δmm′C

φφ

ℓ . The lensing power spectrum

C
φφ

ℓ is therefore proportional to the integral along the line of sight
of the power spectrum of the gravitational potential P9 , which in
turn can be expressed in terms of the power spectrum of matter
fluctuations Pm (see the next section for its definition).

The net effect of lensing on the CMB is that photons
coming from different directions are mixed, somehow “blurring”
the anisotropy pattern. This effect is mainly sourced by
inhomogeneities at z < 5 and has a typical angular scale of 2.5′.
In the power spectra, this translates in a several percent level
smoothing of the primary peak structure (ℓ & 1,000), while the
lensing effect becomes dominant at ℓ & 3,000. We stress that
lensing only alters the spatial distribution of CMB fluctuations,
while leaving the total variance unchanged. Lensing, being a
non-linear effect, creates some amount of non-gaussianity in the
anisotropy pattern. Thus, other than through its indirect effect
on the temperature and polarization power spectra (i.e., on the
two-point correlation functions), lensing can be detected and
measured by looking at higher-order correlations, in particular
at the four-point correlation function. In fact, in such a way it

has been possible to directly measure the power spectrum C
φφ

ℓ

of the lensing potential φ. Another consequence of the non-
linear nature of lensing is that it is able to source “spurious”
B modes by converting some of the power in E polarization,
thus effectively creating B polarization also in the absence of a
primordial component of this kind. The latter effect represents
an additional tool to enable the reconstruction of the lensing
potential, especially for future CMB surveys. An alternative
reconstruction technique is based on the possibility to cross-
correlate the CMB signal with tracers of large-scale structures,

6We are assuming that the lensing field is isotropic.

such as Cosmic Infrared Background (CIB) maps, therefore
leading to an “external” reconstruction [56] (opposite to the
“internal” reconstruction performed with the use of CMB-based
only estimators [57, 58]).

The lensing power spectrum basically carries information
about the integrated distribution of matter along the line of
sight. Given the peculiar effect of neutrino free-streaming on
the evolution of matter fluctuations, CMB lensing offers an
important handle for estimates of neutrino masses. Since a
larger neutrino mass implies a larger neutrino density and less
clustering on small scales, because of neutrino free-streaming, the
overall effect of larger neutrino masses is to decrease lensing. In
the temperature and polarization power spectra, the result is that
the peaks and throughs at high ℓ’s are sharper. Concerning the
shape of the lensing power spectrum, for light massive neutrinos
the net effect is a rescaling of power at intermediate and small
scales (see e.g., [59]). Thus, the lensing power spectrum is a
powerful tool for constraining 6mν and will probably drive even
better constraints on 6mν in the future. In fact, it is almost free
from systematics coming from poorly understood astrophysical
effects, it directly probes the (integral over the line of sight of the)
distribution of the total matter fluctuations (as opposed to what
galaxy surveys do, as we will see in the next section) at scales that
are still in the linear regime.

Given a cosmological model, it is quite straightforward, using
again CAMB or CLASS, to get a theoretical prediction for the
lensing power spectrum, as well as for the lensing BB power
spectrum. Note that non-linear corrections (see next section for
further details) to the lensing potential are important in this
case to get accurate large-scale BB spectrum coefficients [54].
Additional corrections that take into accountmodifications to the
CMB photon emission angle due to lensing can further modify
the large-scale lensing BB spectrum [60].

4.2. Large Scale Structures
4.2.1. Clustering
The clustering of matter at large scales is another powerful probe
of cosmology. The clustering can be described in terms of the
two-point correlation function, or, equivalently, of the power
spectrum of matter density fluctuations:

〈

δm(Ek, z)δm(Ek′, z)
〉

= Pm(k, z)δ
(3)
(

Ek− Ek′
)

, (31)

where δm(Ek, z) is the Fourier transform of the matter density
perturbation at redshift z. Note that, contrarily to the CMB,
that we are bound to observe at a single redshift (that of
recombination), the matter power spectrum can, in principle, be
measured at different times in the cosmic history, thus allowing
for a tomographic analysis.

As for the CMB, the large-scale (small k’s) part of the
power spectrum traces the primordial fluctuations generated
during inflation, while smaller scales reflect the processing
taking place after a given perturbation wavenumber enters the
horizon. A relevant distinction in this regard is whether a
given mode enters the horizon before or after matter-radiation
equality. Since subhorizon perturbations grow faster during
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matter domination, the matter power spectrum shows a turning
point at a characteristic scale, corresponding to the horizon at
zeq. Given that perturbations grow less efficiently also during DE
domination, increasing z3 produces a suppression in the power
spectrum. Also, increasing h will make the horizon at a given
redshift smaller; so the mode k that is entering the horizon at that
redshift will be larger.

Varying the sum of neutrino masses has some indirect effects
on the shape of matter power spectrum, related to induced
changes in background quantities, similarly to what happens
for the CMB. As explained in section 3, increasing 6mν while
keeping the Universe flat has to be compensated by changing
(a combination of) ωm, �3, or h. This will in turn result in
a shift of the turning point and/or in a change in the global
normalization of the spectrum. This can be seen in Figure 2,
where we show the matter power spectra for the same models
considered when discussing the background effects of neutrino
masses on the CMB.

As it is for the CMB, these effects can be partly canceled
due to parameter degeneracies. Neutrinos, however, have also a
peculiar effect on the evolution of matter perturbations. This is
due to the fact that neutrinos possess large thermal velocities for
a considerable part of the cosmic history, so they can free-stream
out of overdense regions, effectively canceling perturbations on
small scales. In particular, one can define the free-streaming
length at time t as the distance that neutrinos can travel from
decoupling until t. The comoving free-streaming length reaches
a maximum at the time of the non-relativistic transition. This
corresponds to a critical wavenumber kfs, given in equation
(27) for transitions happening during matter-domination, above
which perturbations in the neutrino component are erased.

A first consequence of neutrino free-streaming is that, below
the free-streaming scale, there is a smaller amount of matter that

can cluster. This results in an overall suppression of the power
spectrum at small scales, with respect to the neutrinoless case.
Secondly, subhorizon perturbations in the non-relativistic (i.e.,
cold dark matter and baryons) components grow more slowly.
In fact, while in a perfectly matter-dominated Universe, the
gravitational potential is constant and the matter perturbation
grows linearly with the scale factor, δm ∝ a, in a mixed matter-
radiation Universe the gravitational potential decays slowly
inside the horizon. Below the free-streaming scale, neutrinos
effectively behave as radiation; then in the limit in which the
neutrino fraction fν = �ν/�m is small, one has for k≫ kfs

δm(k≫ kfs) ∝ a1−(3/5)fν , (32)

while δm ∝ a for k ≪ kfs. These two effects can be qualitatively
understood as follows: if one considers a volume with linear size
well below the free-streaming scale, this region will resemble
a Universe with a smaller �m and a larger radiation-to-matter
fraction than the “actual” (i.e., averaged over a very large
volume) values. This yields a smaller overall normalization of the
spectrum, as well as a larger radiation damping; the two effects
combine to damp the matter perturbations inside the region. So,
looking again at the full power spectrum, the net effect is that, in
the presence of free-streaming neutrinos, power at small-scales is
suppressed with respect to the case of no neutrinos. At z = 0, the
effect saturates at k ≃ 1 h Mpc−1, where a useful approximation
is Pm(k, fν)/Pm(k, fν = 0) ≃ 1− 8fν [61].

It is useful to stress that since fν is linear in 6mν , we have the
somehow counterintuitive result that the effects of free-streaming
are more evident for heavier, and thus colder, neutrinos. The
reason is simply that the asymptotic suppression of the spectrum
depends only on the total energy density of neutrinos, as

FIGURE 2 | Total matter power spectrum Pm for the same models shown in Figure 1.

Frontiers in Physics | www.frontiersin.org 14 February 2018 | Volume 5 | Article 70

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Gerbino and Lattanzi Neutrino Properties—Cosmological Constraints

this determines the different amount of non-relativistic matter
between small and large scales.

Until now, we have somehow ignored the role of baryons in
shaping the matter power spectrum. In fact, on scales that enter
the horizon after zdrag, the baryons are effectively collisionless
and behave exactly like cold dark matter. On the other hand,
baryon perturbations at smaller scales, entering the horizon
before zdrag exhibit acoustic oscillations due to the coupling with
photons. This causes the appearance of an oscillatory structure
in the matter power spectrum. These wiggles in Pm(k), that
go under the name of baryon acoustic oscillations (BAO), have
a characteristic frequency, related to the value of the sound
horizon at zdrag. Thus they can serve as a standard ruler and
can be used very effectively in order to constrain the expansion
history.

In more detail, the acoustic oscillations that set up in the
primordial Universe produce a sharp feature in the two-point
correlation function of luminous matter at the scale of the
sound horizon evaluated at the drag epoch, rs(zd) ≡ rd; this
sharp feature translates in (damped) oscillations in the Fourier
transform of the two-point correlation function, i.e., the power
spectrum. Measuring the BAO feature at redshift z allows in
principle to separately constrain the combination dA(z)/rd, for
measurements in the transverse direction with respect to the line
of sight, or rdH(z) for measurements along the line of sight.
An isotropic analysis instead measures, approximately, the ratio
between the combination

dV (z) =
[

zd2A(z)

H(z)

]1/3

, (33)

called the volume-averaged distance, and the sound horizon rd.
Given that the value of the sound horizon is well constrained
by CMB observations, measuring the BAO features, possibly at
different redshifts, allows to directly constrain the expansion
history, as probed by the evolution of the angular diameter
distance dA(z) and of the Hubble function H(z), or of
their average dV (z). In particular, it is straightforward to see
that BAO measurements put tight constraints on the �m −
H0rd plane, along a different degeneracy direction that it is
instead probed by CMB [62, 63]. Therefore, when estimating
neutrino masses, the addition of BAO constraints to CMB data
helps breaking the parameter degeneracies discussed in the
previous section, yielding in general tighter constraints on this
quantity.

The linear matter power spectrum for a given cosmological
model can be computed using a Boltzmann solver. However,
comparison with observations is complicated by the non-linear
evolution of cosmic structures. Note that both CAMB and
CLASS are able to handle non-linearities in the evolution
of cosmological perturbations with the inclusion of non-
linear corrections from the Halofit model [64] calibrated over
numerical simulations. In particular, for cosmological models
with massive neutrinos, the preferred prescription is detailed in
Bird et al. [65].

From the observational point of view, Pm(k, z) can be probed
in different ways. In galaxy surveys, the 3-D spatial distribution

of galaxies is measured, allowing to measure the two-point
correlation function and to obtain an estimate of the power
spectrum of galaxies Pg(k, z). Since in this case one is measuring
the distribution of luminous matter only, and not of all matter
(including dark matter), this does not necessarily coincide with
the quantity for which we have a theoretical prediction, i.e.,
Pm; in other words, galaxies are a biased tracer of the matter
distribution. To take this into account, one relates the two
quantities through a bias b(k, z):

Pg(k, z) = b2(k, z)Pm(k, z). (34)

The bias is in general a function of both redshift and scale.
If it is approximated as a scale-independent factor, then the
presence of the bias only amounts to an overall rescaling of
the matter power spectrum (at a given redshift). In this case,
one marginalizes over the amplitude of the matter spectrum,
effectively only using the information contained in its shape. A
scale-independent bias is considered to be a safe approximation
for the largest scales: as an example, for Luminous Red Galaxies
sampled at an efficient redshift of 0.5 (roughly corresponding
to the CMASS sample of the SDSS III-BOSS survey), a scale-
independent bias is a good approximation up to k . 0.2 hMpc−1

[66]. On the other hand, scale-dependent features are expected
to appear on smaller scales. In this case, the bias can still
be described using a few “nuisance” parameters, that are then
marginalized over. In any case the exact functional form of
the bias function, the range of scales considered, as well as
prior assumptions on the bias parameters, are delicate issues
that should be treated carefully. An additional complication
arises from the fact that massive neutrinos themselves induce a
scale-dependent feature in the bias parameter, due to the scale-
dependent growth of structures in cosmologies with massive
neutrinos [67, 68].

It has to be mentioned that, at any given redshift, there
exists a certain scale kNL below which the density contrast
approaches the limit δ ∼ 1. In this regime, the evolution
of cosmic structures cannot be completely captured by a linear
theory of perturbations. The modeling of structures in the
non-linear regime relies on numerical N-body simulations that
must take into account the astrophysical and hydrodynamical
processes at play at those scales. The level of complexity of N-
body simulations has been increasing over the years, so that
the physical processes included in the simulations and the final
results are much closer to the observations than they used to be
at the beginning. Recent examples are given by the MassiveNuS
[69] suite, based on the Gadget-2 code [70] modified to include
the effects of massive neutrinos, the DEMNUni suite [71–73],
the TianNu simulation [74–76], the BAHAMAS project [77], the
gevolution simulations [78], and the nuCONCEPT simulations
[79] (see also [80] for a method combining the particle and
fluid descriptions)7. Nevertheless, the uncertainties related to the
non-linear evolution of cosmological structures are still higher

7Prescriptions for the matter power spectrum in the non-linear regime are also
provided by the Halofit model [65], the Coyote Universe emulator [81], the semi-
analytical approach of PINOCCHIO [82], and additional methods referenced in
Rizzo et al. [82].
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than those affecting the linear theory, therefore reducing the
constraining power coming from the inclusion of those scales
in cosmological analysis. In fact, the conservative choice of not
including measurements at k > kNL is usually made when
performing cosmological analyses. It is easy to understand that at
higher redshifts, a wider range of scales is still in the linear regime.

Additional probes of Pm are measurements of Lyman-α (Lyα)
forests and 21-cm fluctuations (see e.g., [83, 84] for reviews).
Although they are promising avenues since they can probe the
matter distribution at higher redshifts and smaller scales than
those usually accessible with typical galaxy samples, they still have
to reach the level of maturity required to take full advantage
of their constraining power. The observation of high-redshift
(z ∼ 2) quasars and in particular the measurement of their flux
provides a powerful tool for cosmological studies. Indeed, the
absorption of the Lyα emission from quasars by the intervening
intergalactic medium—an observational feature known as “Lyα
forest”—constitutes a tracer of the total matter density field at
higher redshifts and smaller scales than those usually probed
by galaxy surveys. Similarly to what is done for galaxy samples,
one can compute a correlation function of the measured flux
variation, or equivalently its power spectrum PLyα . The latter is
again proportional to the total Pm via a bias parameter bLyα . The
Lyα bias factor is in general different from the galaxy bias, as
each tracer of the underlying total matter distribution exhibits
its own characteristics. The Lyα forest is ideally a powerful
cosmological tool, being able to access high redshifts. Therefore,
at fixed scale k, the physics governing the Lyα spectrum is much
closer to the linear regime than that related to the galaxy power
spectrum. Furthermore, the redshift window probed by Lyα is
complementary to that probed by traditional galaxy surveys,
in a sense that at higher redshift the relative impact of dark
energy on the cosmic inventory is much smaller. However, a
reliable description of the astrophysics at play in the intergalactic
medium is essential for deriving the theoretical model for the
Lyα absorption features along the line of sight. This description
heavily depends on hydrodynamical simulations that reproduce
the behavior of baryonic gas and on poorly known details of the
reionization history. In addition, uncertainties in the theory of
non-linear physics of the intergalactic medium at small scales can
play a non-negligible role.

Finally, another tracer of the total matter fluctuations is
represented by fluctuations in the 21-cm signal. The 21-cm line
is due to the forbidden transition of neutral hydrogen (HI)
between the two hyperfine levels of the ground state (spin flip)
of the hydrogen atom. The observational technique resides in
the possibility to measure the brightness temperature relative to
the CMB temperature. Fluctuations in the 21-cm brightness are
related to fluctuations in HI (or equivalently to the fraction of
free electrons xe), which in turn trace the matter fluctuations.
Therefore, one can infer Pm observationally by measuring the
power spectrum of 21-cm fluctuations P21−cm. Apart from the
technological challenges associated with the detection of the
21-cm signal, the main source of systematics come from the
difficulties to separate the faint 21-cm signal from the much
brighter foreground contamination, mostly due to synchrotron
emission from our own galaxy.

4.2.2. Cluster Abundances
The variation of the number of galaxy clusters of a certain mass
M with redshift dN(z,M)/dz is also a valid source of information
about the evolution of the late time Universe (see e.g., [85] for
a review). The expected number of clusters to be observed in a
given redshift window is an integral over the redshift bin of the
quantity

dN

dz
=
∫

d�

∫

dMχ̂
dN

dMdzd�
(35)

where � is the solid angle, χ̂ is the so-called completeness of the
survey (a measure of the probability that the survey will detect a
cluster of a given mass M at a given redshift z) and dN

dM (z,M) is
the mass function giving the number of clusters per unit volume.
The latter can be predicted once a cosmological model has been
specified. The quantity in Equation (35) is thus directly sensitive
to the matter density �m and to the current amplitude of matter
overdensities, usually parametrized in terms of σ8, the variance of
matter fluctuations within a sphere of 8 h−1Mpc. As a result, this
probe can be highly beneficial for putting bounds on 6mν .

Extended catalogs of galaxy clusters have been published in
the last decade by the Atacama Cosmology Telescope (ACT)
[86, 87], the South Pole Telescope (SPT) [88], and the Planck
[24] collaborations. CMB experiments are in fact able to perform
searches for galaxy clusters by looking for the thermal Sunyaev-
Zeldovich (SZ) effect, the characteristic upward shift in frequency
of the CMB signal induced by the inverse-Compton scattering of
CMB photons off the hot gas in clusters. The redshift of cluster
candidates is identified with follow-up observations, whereas
their mass is usually inferred with X-ray observations or, more
recently, calibrated through weak lensing. Regardless of how
it is calibrated, the determination of the cluster mass is the
largest source of uncertainty for the cluster count analysis, due
to possibly imprecise assumptions about the dynamical state of
the cluster and/or survey systematics. A commonway to factorize
the uncertainties related to the mass calibration is to introduce a
mass bias parameter that relates the true cluster mass to the mass
inferred with observations.

4.2.3. Weak Lensing
The weak gravitational lensing effect is the deflection of the light
emitted by a source galaxy caused by the foreground large-scale
mass distribution (lens). The shape of the source galaxy therefore
appears as distorted, i.e., it acquires an apparent ellipticity. The
cosmic shear is the weak lensing effect of all the galaxies along
the line of sight (see e.g., [89] for a review). Weak lensing surveys
offer the possibility to directly test the distribution of intervening
matter at low redshifts, thus providing a powerful tool to
investigate the late-time evolution of the Universe. By correlating
the apparent shapes of source galaxies at different redshifts, one
can compute the shear field γ (n̂, z) as a function of the angular
position n̂ and redshift z. The shear field is usually decomposed
in two components: the curl-free E-modes and the divergence-
free B-modes. It can be shown that, in absence of systematics, the
B-modes are expected to vanish, whereas the power spectrum of

the E-modes is equivalent to the lensing power spectrum C
φφ

ℓ .
The integrated lensing potential has been defined in Equation
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(30) for a source located at recombination. The corresponding
expression for a source at a generic redshift z can be obtained
simply by substituting χ∗ with the comoving distance of the
source.

Thus, the power spectrum of the lensing potential—which is
due to intervening matter along the line of sight—is recovered
from the measurements of the lensing-induced ellipticity of
background galaxies; in a similar way, the lensing power
spectrum is recovered from the redistribution of CMB photons
due to the forming structures along the line of sight. As we have
seen in section 4.1.1, the spectrum of the lensing potential is a
function of the matter power spectrum integrated along the line
of sight. Therefore, it carries information about the distribution
and growth of structures, representing a powerful tool for
constraining 6mν . It should be mentioned that the observed
shear signal γobs is a biased tracer of the true shear γtrue. This
effect, mostly due to noise in the pixels when galaxy ellipticity
is measured, is usually taken into account by introducing a
multiplicative bias m that relates γtrue and γobs: γobs = (1 +
m)γtrue + c, where c is the additional noise bias [90].

In addition, the shear signal can be cross-correlated with the
angular distribution of foreground (lens) galaxies (the so-called
galaxy-shear or galaxy-galaxy lensing cross-correlation). This
cross-correlation is a powerful way to overcome the limitations
induced in the galaxy-galaxy auto-correlation by the unknown
galaxy bias. Indeed, the galaxy-galaxy lensing is basically a
cross-correlation between the galaxy field and the total matter
fluctuation field.Measurements of the galaxy-galaxy lensing cross
spectrum can therefore help determine the form of the bias.

Cosmological constraints from weak lensing surveys are often
summarized in terms of bounds on �m and σ8. As an additional
probe of the large-scale structure in the Universe, weak lensing
can be profitably used to constrain 6mν .

4.3. Supernovae Ia and Direct
Measurements of the Hubble Constant
Measurements of the distance-redshift relation of Supernovae Ia
(SNIa) have provided the compelling evidence of the accelerated
Universe [91, 92]. SNIa are produced in binary stellar systems
in which one of the stars is a white dwarf. Accreting matter
from its companion, the white dwarf explodes once it reaches
the Chandrasekhar mass limit. Therefore, SNIa are standard
candles, because their absolute magnitude can be theoretically
inferred from models of stellar evolution. A comparison between
the absolute magnitude and the apparent luminosity yields an
estimate of their luminosity distance dL(z). The expected value
of dL in turn depends on the underlying cosmological model.
The constraints coming from SNIa in the �m − �3 plane
are orthogonal to those obtained from CMB. As a result, the
combination of the two probes is extremely efficient in breaking
the degeneracy between the two parameters. For this reason, SNIa
are very useful for constraining models of dark energy and/or
arbitrary curvature. Nonetheless, constraints on6mν can benefit
from the use of SNIa data, thanks to the improved bounds on�m.

As already discussed, the effect of light massive neutrinos
on the background evolution of the Universe can be also

compensated by a change in the value of the Hubble constant
H0. Therefore, it is clear that any direct measurement of H0

can be highly beneficial for putting bounds on 6mν . Direct
measurements only rely on local distance indicators (i.e., redshift
z≪1), therefore they are little or not-at-all sensitive to changes
in the underlying cosmological model. In contrast, indirect
estimates from high-redshift probes, such as primary CMB, can
suffer from model dependency.

Direct measurements of H0 are based on the geometric
distance calibration of nearby Cepheids luminosity-period
relation and the subsequent calibration of SNIa over Cepheids
observed in the same SNIa galaxy hosts (see e.g., [93] and
references therein). The goal is to connect the precise geometric
distances measured in the nearby Universe (usually referred to
as “anchors”) with the distant SNIa magnitude-redshift relation
in order to extract the estimate of H0. The main systematics
are of course related to the calibration procedure. Further
improvements on the precision of direct measurements ofH0 are
expected to come once the precise parallaxes measurements from
the Gaia satellite will be available [94].

Local measurements of H0 are not directly sensitive to 6mν .
Besides, their results, in combination with cosmological probes,
can break the degeneracy between cosmological parameters and
improve constraints on 6mν . The main example is in fact the
possibility to break the strong (inverse) degeneracy between H0

and 6mν that affects CMB constraints.
Indirect estimates of H0 can be obtained from CMB and

BAO measurements. We have already seen in section 4 that the
position and amplitude of the first acoustic peak in the CMB
spectrum depends on H0 in combination with other parameters.
In addition, we shall mention that, once the BAO are calibrated
with the precise determination of rd from CMB, measurements
of dA/rd and Hrd (or dV/rd) yields bounds on H0 that are
competitive with CMB estimates and direct measurements.

We finally mention an additional independent measurement
of H0. The gravitational wave (GW) signal emitted by merging
compact objects in combination with the observation of an
electromagnetic counterpart has been proposed as a standard
siren [95, 96]. The GW waveform reconstruction allows for
a determination of the luminosity distance to the source.
Precise determinations of the source localization can lead to
percent accuracy in the luminosity distance estimation. The
observation of the electromagnetic counterpart of the GW
event is then essential to determine the redshift to the source.
The full combination of distance-redshift pair can finally be
employed to constrain H0. In the absence of the detection of
an electromagnetic counterpart, methods to infer the redshift
of the source of the GW signal have been proposed (see
e.g., [97]).

4.4. Summary of the Effects of Neutrino
Masses
Beforemoving to report the current observational constraints, we
find it useful to summarize the constraining power of different
cosmological observables with respect to the neutrino mass.
The discussion is somehow qualitative, also given the high-level
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complexity of the cosmological models. The purpose is also to
underline the importance of combining different cosmological
probes.

We start from the CMB. For the present discussion, it is
useful to consider separately the information coming from the
unlensed CMB (i.e., the primary CMB plus all the secondary
effects with the exclusion of lensing) and that coming from the
weak lensing of CMB photons. For what concerns the former, the
sensitivity of the unlensed CMB to neutrino masses is somehow
limited. This is mainly due to a geometrical degeneracy between
h and ων thanks to which one can simultaneously change the two
parameters (decreasing h and increasing ων) to keep θs constant,
thus preserving the position of the first peak, with only limited
changes to other parts of the spectrum (especially changes in the
low-ℓ region, where the sensitivity is limited by cosmic variance,
induced by variations in �3). The height of the first peak is
preserved by keeping ωc fixed. Having access to the information
contained in the CMB lensing, either through its effect on the
temperature and polarization power spectra, or through a direct
estimation of the lensing power spectrum, helps because 6mν

also affects the matter distribution and then the amplitude of
the lensing potential at small scales. This helps breaking the
degeneracy described above.

To illustrate this point, in the upper panel of Figure 3we show
the parameter correlations derived by an analysis of the Planck
observations of the temperature, over a wide range of scale,
and large-scale polarization anisotropies. We remember that this
dataset contains some information about lensing through the
high-ℓ part of the temperature power spectrum. The negative
degeneracy between 6mν and H0 is particularly evident. Given
that ωc and ωb are both measured quite well from the CMB, this
also translates into a strong degeneracy with �m = (ωc +ωb)/h

2

and �3 = 1−�m. Among the other parameters, one can notice
mild correlations with As and τ . These are due to the small-scale
effects related to the increased lensing inmodels with larger6mν .
The overall amplitude of the spectrum Ase

−2τ is very precisely
determined by CMB observations. On the other hand, the lensing
amplitude depends on As but not on τ . So, the lensing amplitude
can be kept constant by increasing both As and ων . At this point
τ has to be increased as well to preserve the scalar amplitude
Ase

−2τ .
Geometric measurements, like those coming from BAO,

SNIa, or direct measurements of H0, greatly help solving the
geometrical degeneracy between H0 and 6mν . This is evident
in the lower panel of Figure 3, where we show parameter
correlations from an analysis of the same dataset as above with
the addition of BAO data, if one compares the (H0, 6mν) square
with the corresponding square in the upper panel. Measurements
of large scale structures, and especially those that are directly
sensitive to the total matter distribution at small scales, are
very helpful, in that on the one hand they allow to further
constrain�m, As, and ns and thus reduce degeneracies with these
parameters; on the other hand, they allow to probe the regime
in which neutrino free-streaming is important. Finally, it is also
clear that a precise measurement of τ from a CMB experiment
that is sensitive to the large-scale polarization (meaning that it
can access a large fraction of the sky) will be highly beneficial.

FIGURE 3 | Correlation matrices of a selection of cosmological parameters for

the combinations of Planck TT+lowP (Upper) and Planck TT+lowP+BAO

(Lower). See section 5.1 for the description of these datasets. The darker the

color shade, the stronger the degeneracy between the corresponding

parameter pair. In both panels, the third row and the third column correspond

to the correlation coefficients between 6mν and the remaining cosmological

parameters. From the comparison between the two panels, it is clear that the

inclusion of BAO data helps reduce the degeneracy between parameters (see

e.g., the correlation between 6mν and H0, �3); in a few cases, in fact, the

inclusion of BAO reverts the degeneracy (see e.g., the correlation between

6mν and ns).

We have focused our attention to the 3CDM+6mν model.
In extended dark energy models (as well as modified gravity
models), for example for arbitrary equations of state of the dark
energy fluid, the degeneracy between 6mν and �3 is amplified.
Both massive neutrinos and dark energy-modified gravity affect
the late time evolution of the Universe, so that the individual
effects on cosmological observables (mostly structures) can be
reciprocally canceled.
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5. CURRENT OBSERVATIONAL
CONSTRAINTS ON 6mν

In this section we report current constraints on 6mν from
cosmological and astrophysical observations. These constraints
are also summarized in Table 1 for the reader’s convenience.
Unless otherwise stated, the results are obtained in the framework
of a minimal one-parameter extension of the 3CDM model
with varying neutrino mass, dubbed 3CDM+6mν , in which the
three mass eigenstates are degenerate (mi = 6mν/3). Given the
sensitivity of current experiments, the degenerate approximation
is appropriate. See section 8 for a more detailed discussion on this
point.

5.1. CMB
CMB observations are probably the most mature cosmological
measurements. The frequency spectrum is known with great
accuracy [46]. Measurements of the power spectrum of CMB
anisotropies in temperature are cosmic-variance limited down
to very small scales (ℓ ∼ 1, 500) and the quality of current
CMB data in polarization is already good enough to tighten
constraints on cosmological parameters [14, 16, 17, 19, 20]. The
next generation of CMB experiments will further improve our
knowledge of CMB polarization anisotropies [21, 30–33]. The
main systematics involved in CMB measurements are due to
foreground contamination (atmospheric, galactic, extragalactic),
calibration uncertainties and spurious effects induced by an

TABLE 1 | Constraints on 6mν from different combination of current

cosmological data.

Dataset 6mν [eV] References

Planck TT+lowP <0.72 [14]

Planck TT+lowP+lensing <0.59 [14]

Planck TT,TE,EE+lowP <0.49 [14]

Planck TT+SimLow <0.59 [43]

Planck TT,TE,EE+lowP+BAO+FS <0.25 [23]

Planck TT+lowP+BAO <0.19 [98]

Planck TT,TE,EE+lowP+BAO <0.15 [98]

Planck TT+lowP+FS <0.30 [98]

Planck TT+lowP+BAO+JLA <0.25 [27]

Planck TT+lowP+BAO+JLA+WL <0.29 [27]

Planck TT,TE,EE+BAO+SZ <0.20 [24]

Planck TT+lowP+Lyα-FS <0.14 [99]

Bounds given in this table are 95% CL.

BAO+FS for row 5 are from SDSS BOSS DR12 [23]. BAO data for rows no. 6–7 are from

6dFGS [100], WiggleZ [101], SDSS BOSS DR11 LOWZ and SDSS BOSS DR11 CMASS

[102] (see [98] for details). FS for row no. 8 is from SDSS BOSS DR12 CMASS [103] (see

[98] for details). BAO for row no. 9–10 are from 6dFGS [100], SDSS MGS [104], BOSS

DR12 [23] (see [27] for details). BAO data for row no. 11 are from 6dFGS [100], SDSS

MGS [104], BOSS LOWZ DR11 and BOSS CMASS DR11 [102] (see [14] for details).

JLA for row no. 9–10 is the catalog of luminosity distance measurements from the Joint

Lightcurve Analysis [105, 106]. WL for row no. 10 is the combination of galaxy, shear and

galaxy-galaxy lensing spectra from DES Year1 [27]. SZ in row no. 11 is the SZ cluster

count dataset from Ade et al. [24]. Lyα-FS in the last row is the Lyα power spectrum

measurement from BOSS [107].

imprecise knowledge of the instrument (see e.g., [108–112] for
a sample list of references).

The tightest constraints on 6mν from a single experiment
come from the measurements of the Planck satellite [14]. In the
context of a one-parameter extension of the3CDM cosmological
model, the state of the art after the 2015 data release was as
follows. The combination of the measurements of the CMB
temperature anisotropies up to the multipole ℓ ≃ 2, 500
(hereafter, “Planck TT”) and the large scale (ℓ < 30) polarization
anisotropies (hereafter “lowP”) leads to an upper bound of
6mν < 0.72 eV at 95% CL. The inclusion of the small scale
(ℓ ≥ 30) polarization measurements (which we globally label
as “Planck TE,EE”) provides a tighter upper bound of 6mν <

0.49 eV at 95% CL. This latter bound should be regarded as less
conservative, as a small level of residual systematics could still
affect the small scale polarization data.

The Planck collaboration also provides the most significant
measurements of the CMB lensing potential power spectrum
for the multipole range 40 < L < 400 (labeled as “lensing”)
[113]. When this dataset is included in the analysis, the
95% CL constraints on 6mν become: 6mν < 0.68 eV for
Planck TT+lowP+lensing and 6mν < 0.59 eV for Planck
TT,TE,EE+lowP+lensing [14]. When combining the lensing
reconstruction data from Planck with the measurements of the
CMB power spectra, it should be kept in mind that CMB power
spectra as measured by Planck prefer a slightly higher lensing
amplitude than that estimated with the lensing reconstruction. As
a result, the bounds on 6mν obtained by their combination have
less weight for smaller values of 6mν than the corresponding
bounds obtained from CMB power spectra only. Nevertheless,
higher values of 6mν are still disfavored.

In 2016, new estimates of the reionization optical depth τ

have been published by the Planck collaboration [43], obtained
from the analysis of the high-frequency CMB maps, in 2015
still affected by unexplained systematics effects at large scales.
The estimated 68% credible interval for τ coming from the
EE−only low-ℓ data is τ = 0.055 ± 0.009. This estimate is
lower than the corresponding interval obtained in 2015 from
the analysis of the low-frequency maps (τ = 0.067 ± 0.023),
though the two estimates are well in agreement with each other.
The lower value of τ has an impact on the constraints on
6mν , due to the degeneracy between the optical depth and the
amplitude of primordial perturbations As, as they together fix
the normalization amplitude As e

−2τ . A lower τ implies a lower
AS and thus a lower lensing amplitude, leaving less room for
large values of 6mν (that would further reduce lensing). If the
“lowP” dataset is replaced by the new estimate of τ (labeled as
“SimLow”), the 95% CL bounds improve as follows: 6mν <

0.59 eV for Planck TT+SimLow and 6mν < 0.34 eV for Planck
TT,TE,EE+SimLow [43].

5.2. Large-Scale Structure Data
Although the CMB is an extremely powerful dataset, multiple
degeneracies between cosmological parameters limit the
constraining power on 6mν from CMB only, as seen in
section 4.4. Measurements of the large scale structures (LSS) can
help solving these degeneracies. LSS surveys map the distribution
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and clustering properties of matter at later times (or equivalently
at lower redshift) than those accessible with CMB data and are
directly sensitive to cosmological parameters that CMB data can
only constrain indirectly, such as the total matter abundance
at late times (see e.g., [114] for a review). In this section, we
gather constraints on 6mν from different LSS probes alone and
in combination with CMB data.

5.2.1. Baryon Acoustic Oscillations and the Full

Shape of the Matter Power Spectrum from the

Clustering of Galaxies
BAO measurements, obtained by mapping the distribution of
matter at relatively low redshifts (z < 3) if compared to
the redshifts relevant for CMB, constrain the geometry of
the expanding Universe, providing estimates of the comoving
angular diameter distance dA(z) and the Hubble parameter H(z)
at different redshifts (or an angle-averaged combination of the
two parameters, dV (z) = [zd2A(z)/H(z)]1/3 ). Therefore, BAO
constrain cosmological parameters which are relevant for the
late-time history of the Universe, helping break the degeneracy
between those parameters and 6mν .

BAO extraction techniques rely on the ability to localize the
peak of the two-point correlation function of some tracer of the
baryon density, or equivalently the locations of the acoustic peaks
in the matter power spectrum, thus neglecting the information
coming from the broad-band shape of thematter power spectrum
itself. In principle, the full shape (FS) of the matter power
spectrum is a valuable source of information about clustering
properties of the different constituents of the Universe and their
reciprocal interactions. In particular, full shape measurements
of the power spectrum also provide estimates of the growth
of structures at low redshifts through the anisotropies induced
by the redshift-space distortions (RSD), usually encoded in the
parameter f (z)σ8(z), where f (z) is the logarithmic growth rate
and σ8(z) is the normalization amplitude of fluctuations at a
given redshift in terms of rms fluctuations in a 8h−1 Mpc sphere.

In 2016, the final galaxy clustering data from the Baryon
Oscillation Spectroscopic Survey (BOSS) were released, as part
of the Sloan Digital Sky Survey (SDSS) III8. Joint consensus
constraints on dA(z), H(z), and f (z)σ8(z) from BAO and FS
measurements at three different effective redshifts (zeff =
0.38, 0.51, 0.61) are employed to derive constraints on 6mν

9 in
combination with Planck TT,TE,EE+ lowP [23]. The 95% upper
bound is 6mν < 0.16 eV. When relaxing the constraining power
coming from CMB weak lensing (through the rescaling of the
lensing potential with the lensing amplitude AL) and the RSD
(through the rescaling of the fσ8 parameter with the amplitude
Afσ8 ), the bound degrades up to 6mν < 0.25 eV.

8Recently, the DES collaboration has reported a 4% measurement of the angular
diameter distance from the distribution of galaxies to redshift z = 1 [115].
Cosmological constraints are derived in the3CDM framework, with6mν fixed to
the minimal value of 0.06 eV. Therefore, no bounds on 6mν have been extracted
from the BAO measurements from DES yet.
9Note that the authors follow the assumption that all the mass is carried by only
one of three neutrino species, i.e., m1 = 6mν , m2,3 = 0 eV, instead of the more
widely used fully-degenerate approximation of mi = 6mν/3, i = 1, 2, 3 for each
of the three neutrino species.

When using the FS measurements, it has to be noted that
the constraining power of this dataset is highly reduced if one
considers that (1) the majority of information encoded in the
FS usually comes from the small-scale region of the power
spectrum, where the still imprecisely known non-linearities play
a non-negligible role; (2) the exact shape and scale-dependence
of the bias b between the observed galaxy clustering and the
underlying total matter distribution is still debated. Therefore,
it is useful to disentangle BAO and FS measurements, to gauge
the relative importance of the two in constraining 6mν . For
a thorough comparison between the constraining power of the
two datasets, we refer the reader to Vagnozzi et al. [98] (see
also [116, 117] for analyses using older data), where the authors
focus on recent BAO and FS measurements. Here, we summarize
the conclusion of the paper: “The analysis method commonly
adopted [for FS measurements] results in their constraining
power still being less powerful than that of the extracted BAO
signal.”

5.2.2. Weak Lensing
The most recent weak lensing datasets have been released by
the Kilo-Degree Survey (KiDS [26, 118]) and the Dark Energy
Survey (DES [27, 119]). It is interesting to note that all of the
aforementioned datasets provide results in terms of cosmological
parameters which are slightly in tension with the corresponding
estimates coming from CMB data (which we remind is a high-
redshift probe). In particular, the values of �m and S8 =
σ8(�m/0.3)0.5 inferred from weak lensing data are lower than the
best fit obtained with CMB data. The significance of this tension
is at ∼ 2σ level for KiDS and more than 1σ level for the 1-D
marginalized constraints on �m and S8 for DES (even though a
more careful measure of the consistency between the two datasets
in the full parameter space provides “substantial” evidence for
consistency, see Abbott et al. [27] for details).

Weak lensing data tend to favor higher values of 6mν than
those constrained by CMB power spectrum data. In fact, lower
values of �m and S8 imply a reduced clustering amplitude, an
effect that can be obtained by increasing the sum of neutrino
masses. In Abbott et al. [27], the combination of DES shear,
galaxy and galaxy-shear spectra with Planck TT+lowP and other
cosmological datasets in agreement with CMB results (i.e., BAO
from 6dFGS [100], SDSS DR7 MGS [104], and BOSS DR12
[23], and luminosity distances from the Joint Lightcurve Analysis
(JLA) of distant SNIa [105, 106]) yields an upper bound at 95%
CL on the sum of the neutrino masses of 6mν < 0.29 eV,
almost 20% higher than the corresponding bound obtained
dropping DES data (6mν < 0.245 eV). Interestingly enough,
the DES collaboration shows that a marginal improvement in the
agreement between DES and Planck data is obtained when the
sum of the neutrino masses is fixed to the minimal mass allowed
by oscillation experiments 6mν = 0.06 eV.

To conclude this section, we also report the upper bound on
6mν obtained by weak lensing only data from the tomographic
weak lensing power spectrum as measured by the KiDS
collaboration [26]. They found 6mν < 3.3 eV and 6mν <

4.5 eV at 95% CL depending on the number of redshift bins
retained in the analysis. These bounds are significantly broader
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than the constraints coming from CMB only data. Nevertheless,
they come from independent cosmological measurements and
are still tighter than the constraints coming from kinematic
measurements of β decay.

5.2.3. Cluster Counts
An additional low-redshift observable is represented by
measurements of the number of galaxy clusters as a function
of their mass at different redshifts. Cluster number counts
provide a tool to infer the present value of the matter density
�m and the clustering amplitude σ8, to be compared with the
equivalent quantities probed at higher redshift by the primary
CMB anisotropies.

Depending on the prior imposed on the mass bias, cluster
counts tend to prefer lower values of �m and σ8 than the
corresponding values obtained with primary CMB. The tension
between the two datasets can be as high as 3.7σ for the lowest
value of the mass bias as quantified by the Planck collaboration
in 2015 [24]. Again, this preference for less power in the
matter distribution favors higher values of the sum of the
neutrino masses. Indeed, the Planck collaboration reports [24]
an upper bound of 6mν < 0.20 eV at 95% CL when Planck
TT,TE,EE+lowP+BAO is combined with the SZ cluster count
dataset (with a prior on themass bias (1−b) = 0.780±0.092 from
the gravitational shear measurements of the Canadian Cluster
Comparison Project, CCCP [120]), to be compared with the
corresponding 95% upper bound 6mν < 0.17 eV without the
SZ cluster count dataset [14].

Recently, Salvati et al. [121] updated constraints on
cosmological parameters, including 6mν , from the SZ clusters
in the Planck SZ catalog, considering cluster count alone
and in combination with the angular power spectrum of SZ
sources. A comparison with bounds coming from primary CMB
anisotropies is also performed. The combination of the two SZ
probes (complemented with BAO measurements from [102] to
fix the underlying cosmology) confirms the discrepancy in �m

and σ8 at the level of 2.1σ and provides an independent upper
limit on the sum of the neutrino masses of 6mν < 1.47 eV
at 95% CL. When combined with primary CMB, the bound
reduces to 6mν < 0.18 eV. This bound is slightly higher than
6mν < 0.12 eV found by Vagnozzi et al. [98] in absence of SZ
data, as we should expect due to the aforementioned tension
between SZ and primary CMB estimates of matter density and
power.

5.2.4. Lyman-α Forests
Like all the datasets that probe the clustering of matter over
cosmological distances, the Lyα power spectrum is sensitive
to 6mν primarily through the power suppression induced by
massive neutrinos at small scales. The Lyα spectrum alone
can constrain 6mν at the level of 1 eV (see e.g., [107]). The
constraining power of the Lyα spectrum is evident when it
is combined with CMB data. In this case, the Lyα data are
used for setting the overall normalization of the spectrum
through their sensitivity to �m and σ8, whereas the CMB
fixes the underlying cosmological parameters and helps break
degeneracies between �m, σ8, and 6mν . Recently, Yèche et al.

[122] reported constraints on 6mν from the combination of the
one-dimensional (i.e., angle-averaged) Lyα power spectra from
the SDSS III-BOSS collaboration and from the VLT/XSHOOTER
legacy survey (XQ- 100). When the power spectra are used
alone [complemented with a Gaussian prior on H0 =
(67.3 ± 1.0) km s−1Mpc−1], the authors obtain 6mν < 0.8 eV
at 95% CL. The bounds dramatically improve to 6mν < 0.14 eV
when CMB power spectrum data from Planck TT+lowP are
added to the analysis. The tightest bound on 6mν from Lyα
power spectrum comes from Palanque-Delabrouille et al. [107],
with6mν < 0.12 eV fromPlanck TT+lowP in combination with
the Lyα flux power spectrum from BOSS-DR12. Interestingly
enough, in both analyses, the limit set by Lyα+Planck TT+lowP
does not further improve when the Lyα spectra are combined
instead with the full set of CMB data from Planck, including
small-scale CMB polarization (Planck TT,TE,EE+lowP), and
with BAO data from 6dFGS, SDSS MGS, BOSS-DR11.

The BAO signal can be also extracted from the Lyα spectrum
(see [123] for a pivotal study), providing estimates of the
comoving angular diameter distance dA(z) and of the Hubble
parameter H(z) at redshift z ≃ 2. Recently, the SDSS III-BOSS
DR12 collaboration reported measurements of the BAO signal
at z = 2.33 from Lyα forest [99]. The estimated values of dA
and H are in agreement with a 3CDM model (even though a
slight tension with Planck primary CMB is present), although
their precision is smaller than the precision obtained with galaxy-
derived BAO measurements. Therefore, at present, the impact
of Lyα-BAO data on simple extensions of the 3CDM model is
minimal.

We conclude that it is a conservative choice to take the
constraints coming from Lyα with some caution (a similar
comment applies to constraints coming from aggressive analyses
of the broadband shape of the matter power spectrum from
galaxy surveys), until this probe will reach the level of maturity
comparable with other traditional cosmological probes.

5.3. Local Measurements of the Hubble
Constant and Supernovae Ia
The most recent estimate of the Hubble constant has been
reported in Riess et al. [93]. The authors improved over their
previous measurement of H0 from 3.3 to 2.4% thanks to an
increased sample of reliable SNIa in nearby galaxies calibrated
over Cepheids. Their final estimate, based on the combination of
three different anchors, is H0 = (73.24 ± 1.74) km s−1Mpc−1,
3.2σ higher than the indirect estimate of H0 from Planck
TT+SimLow (3.4σ higher than Planck TT,TE,EE+SimLow) in
the context of a 3CDM cosmology with 6mν = 0.06 eV.
Previous analyses from the same authors also pointed to a ∼ 2σ
tension between direct measurements ofH0 and indirect estimate
from primary CMB anisotropies from Planck (although see [124]
for a re-analysis of the same dataset which slightly reduces the
discrepancy to within 1σ agreement). A discussion about the
possible reasons behind this discrepancy and ways to alleviate
it invoking non-standard cosmological scenarios are beyond the
scope of this work. We refer the reader to the dedicated works
[62, 125, 126] for further reading.
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Since the Hubble constant and the sum of neutrino masses
are anti-correlated, given the tension between the two probes it
is clear that the combination of direct measurements of H0 with
CMB data leads to a preference for smaller values of 6mν with
respect to CMB-only constraints. Indeed, several authors have
pointed out the tight constraints on6mν for such a combination.
As an example, Vagnozzi et al. [98] showed that constraints on
6mν can be as tight as 6mν < 0.148 eV at 95% CL when Planck
TT+lowP+BAO are complemented with a Gaussian prior on
H0 equal to the estimate of the Hubble constant in Riess et al.
[93], to be compared with 6mν < 0.186 eV from Planck
TT+lowP+BAO only. When lowP is replaced by a Gaussian
prior on τ compatible with the new estimates from SimLow, these
numbers change to 6mν < 0.115 eV (6mν < 0.151 eV) with
(without) the H0 prior.

For the sake of completeness, we shall also mention
that independent estimates of H0 from BAO measurements
conducted by the SDSS III-BOSS DR12 collaboration
[23] are in agreement with CMB estimates (see also [62]
for a recent discussion). See also Abbott et al. [127]
for an additional independent estimate of H0 with a
combination of clustering and weak lensing measurements
from DES-Y1 with BAO and BBN data. A discussion
about the combination of different measurements of H0

from cosmological probes and local measurements is
also reported in Abbott et al. [127], Vega-Ferrero et al.
[128].

Finally, we report that a standard sirenmeasurement ofH0 has
been performed after the detection of the neutron star-neutron
star merger GW170817 [129–131]. The Hubble constant has
been constrained as H0 = 70.0+12.0

−8.0 km s−1 Mpc−1 at 68% CL.
The accuracy of this determination is not comparable with the
precise estimates of direct measurements and other cosmological
constraints. However, the standard siren approach represents
an additional independent estimate of H0 and appears as a
promising avenue as more GW events with electromagnetic
counterparts are detected.

Concerning the inclusion of SNIa, the bounds from Planck
TT+lowP improve from 6mν < 0.72 eV to 6mν <

0.33 eV at 95% CL when data from the Joint Lightcurve
Analysis [105, 106] are included10. The most relevant systematics
that affect SNIa measurements are related to the way in
which SNIa light curves are standardized, with issues mostly
arising from photometric calibrations and lightcurve fitting
procedures.

6. CONSTRAINTS ON 6mν FROM FUTURE
SURVEYS

In this section, we will discuss the expected improvements in the
constraints on 6mν from the upcoming generation of CMB and
LSS surveys. These constraints are also summarized inTable 2 for
the reader’s convenience.

10Bounds from the Planck Legacy Archive: https://wiki.cosmos.esa.int/
planckpla2015/index.php/Cosmological_Parameters

TABLE 2 | Expected sensitivity on 6mν from different combination of future

cosmological data.

Dataset σ (6mν )[meV] References

CORE TT,TE,EE,PP 44 [132]

S4 TT,TE,EE,PP 73 [30]

CORE TT,TE,EE,PP+DESI 21 [132]

S4 TT,TE,EE,PP a +DESI 23 [30]

S4 TT,TE,EE,PP b +DESI 15 [30]

Planck CMB+LSST-shearc 30 [36]

Planck+Euclid-FS 40 [133]

Stage-III CMB

(ACTPol)+WFIRST

BAO+FS

30 [38]

Stage-III

CMB+WFIRST+Euclid+LSST

8 [38]

aThe combination assumes a Gaussian prior on τ = 0.06 ± 0.01 roughly corresponding

to the new estimate from Aghanim et al. [43].
bThe combination assumes σ (τ ) = 0.002 and noise level of 2.5µK · arcmin.
cFor a fiducial value 6mν =0 eV and marginalizing over dynamical dark energy, arbitrary

curvature and Neff .

Unless otherwise stated, the sensitivity σ (6mν ) is forecasted assuming a standard

cosmological model with 6mν = 0.06 eV. DESI refers to the simulated DESI-BAO

dataset based on expected experimental performances [35] (see [30, 132] for details).

FS refers to the use of the (simulated) measurements of the full shape of the matter power

spectrum. The last line implies the use of CMB lensing, Euclid and WFIRST to calibrate

the multiplicative bias in the shear measurements from LSST [38].

6.1. CMB Surveys: CORE and CMB
Stage-IV
The tightest bounds on 6mν from a single CMB experiment
are those from the Planck satellite, reported in section 5.1.
As already explained, this sensitivity mostly comes from the
ability to (1) detect, at the level of CMB power spectrum,
the smoothing effect of gravitational lensing of CMB photons,
and, (2) directly reconstruct the lensing power spectrum itself.
These effects arise at small angular scales (higher multipoles
ℓ), therefore it is crucial to observe this region of the power
spectrum with high accuracy in order to improve the sensitivity
on 6mν . Improved measurements of the polarization power
spectra at all scales are also important to break degeneracies
between cosmological parameters. The main example is the effect
that a better estimate of the reionization optical depth τ from
the large scale polarization spectrum has on 6mν . Concerning
the lensing power spectrum, this is internally reconstructed
by the Planck collaboration with high statistical significance
up to intermediate scales. However, the full power of this
probe will be definitively unveiled when better measurements
of polarization maps are available, enabling reconstruction
from E-B estimators with lower variance and up to smaller
scales [57].

A detailed summary of the expected sensitivity to
cosmological parameters, including 6mν , of all pre-2020
and post-2020 CMB missions can be found in Errard et al. [134].
As relevant examples, in this section we focus on two classes
of future (post 2020) CMB experiments: a space mission and a
ground based telescope.
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Recently, a proposal for a future CMB space mission has
been submitted to the European Space Agency (ESA) in
response to a call for medium-size mission proposals (M5). The
mission, named Cosmic ORigin Explorer (CORE), is designed
to have 19 frequency channels in the range 60 − 600GHz for
simultaneously solving for CMB and foreground signals, angular
resolution in the range 2′ − 18′ depending on the frequency
channel and aggregate sensitivity of 2µK · arcmin [32] (for
comparison, the Planck satellite has 9 frequency channels in
the range 30− 900GHz, angular resolution in the range 5′ −
33′ and the most sensitive channel shows a temperature noise
of 0.55µK · deg at 143GHz [135]). This experimental setup
would enable to constrain 6mν = (0.072+0.037

−0.051) eV at 68% CL
assuming a 3CDM model with a fiducial value of the sum of
the neutrino masses 6mν = 0.06 eV, for the combination of
CORE TT,TE,EE,PP (temperature and E-polarization auto and
cross spectra and lensing power spectrumPP) [132]. This roughly
corresponds to a sensitivity of σ (6mν) ∼ 0.044 eV (note that the
target threshold for a 3σ detection in the minimal mass scenario
is σ (6mν) = 0.020 eV; for comparison, a simulated Planck-like
experiment could only put an upper limit of 6mν < 0.315 eV
at 68% CL for the same model). Other than to the capability
of measuring with high precision the small scale polarization
(also in order to reconstruct the lensing potential), part of this
high sensitivity also comes from the improved limits that a
science mission like CORE can put on τ : compared to Planck,
CORE would achieve an almost cosmic-variance-limited (CVL)
detection of the reionization optical depth [σCVL(τ ) ≃ 0.002].

A roadmap towards a Stage-IV (S4) generation of CMB
ground-based experiments11 has been also developing [30]. The
goal is to set a definitive CMB experiment with ∼250,000
detectors surveying half of the sky, with angular resolution of
1′−2′ and a sensitivity of 1µK · arcmin at 150GHz. The greatest
contaminant for a ground-based experiment is the atmospheric
noise, which highly reduces the accessible frequencies for CMB
observations to a total of four windows, roughly 35, 90, 150,
and 250 GHz. The main advantages with respect to a space-
borne mission are a larger collecting area with an incredibly
higher number of detectors (for a comparison, the CORE
proposal accounts for a total of 2,100 detectors [32], the Planck
satellite has 74 detectors [135]) and subsequent suppression
of experimental noise. At large scales, the Stage-IV target
is the recombination bump at ℓ > 20. The reduced sky
fraction accessible from ground, foreground contaminations and
atmospheric noise are the main issues that limit the possibility
to target also the range ℓ < 20. Therefore, it is likely that S4
would be complemented by balloon-based and satellite-based
measurements at the largest scales. As a result, forecasts for S4
relies on external measurements of τ . The sensitivity σ (6mν)
of S4 TT,TE,EE,PP complemented with a Gaussian prior on the
optical depth of τ = 0.06 ± 0.01 (roughly corresponding to the
latest estimate from Planck-HFI [43]) is in the range [0.073 −
0.110] eV, depending on the angular resolution and noise level,
for fsky = 40% [30].

11https://cmb-s4.org

Neither of the two classes of future CMB mission proposals
can achieve alone the necessary sensitivity to claim a detection of
6mν = 0.06 eV at the 3-σ level. Nevertheless, we will see in the
next section that the combination of future CMB missions with
future galaxy surveys could possibly lead to the first detection of
neutrino masses from cosmology.

6.2. Future LSS Surveys: DESI, Euclid,
LSST, WFIRST
Improved performances from future galaxy surveys with respect
to the current status can be achieved by mapping a larger volume
of the sky, therefore increasing the number of samples observed
and going deeper in redshift. In this section, we will briefly review
the expected performances of the main Stage-IV LSS surveys.

The successor to SDSS III-BOSS survey will be the ground-
based Dark Energy Spectroscopic Instrument12 (DESI). It is
designed to operate for 5 years and cover roughly a 14,000 deg2

survey area. The extension in redshift is expected to be up to
z = 1 for Luminous Red Galaxies (LRG), z = 1.7 for Emission
Line Galaxies (ELG) and z = 3.5 for Lyα forests, for a total of over
20million galaxy and quasar redshifts.With these numbers, DESI
will improve over the BOSS survey by an order of magnitude
in both volume covered and number of objects observed. It can
achieve a 3.49% and 4.78% determination of the BAO signal
across (dA/rd) and along (Hrd) the line-of-sight, respectively, at
z = 1.85, and 16% and 9% determination of the same quantities
at the highest redshift achievable with Lyα forest z = 3.55 [35].
Even in the most conservative scenario when DESI BAO only
(i.e., without including information from the broadband shape
of the matter power spectrum and Lyα forests) are combined
with future CMB experiments, the sensitivity on 6mν greatly
improves. It goes down to σ (6mν) = 0.021 eV for CORE
TT,TE,EE,PP+DESI BAO, forecasting a ∼ 3σ detection of 6mν

in the minimal mass scenario [132]. In the case of S4+DESI BAO
[30], σ (6mν) is in the range [0.023 − 0.036] eV ( or [0.020 −
0.032] eV) with a prior of τ = 0.06± 0.01 (or τ = 0.060± 0.006,
the expected sensitivity from Planck-HFI [136]) and fsky = 0.40,
depending on the S4 angular resolution and noise level. For a 1′

resolution and a noise level lower than 2.5µK · arcmin, σ (6mν)
could be further improved with a better measurement of τ down
to the level of σ (6mν) < 0.015 eV, that would guarantee a > 4σ
detection of 6mν in the minimal mass scenario.

The DESI mission will be complementary to the science
goals of the Large Synoptic Survey Telescope13 (LSST), a Stage-
IV ground-based optical telescope. The main science fields in
which LSST will mostly operate are [36]: “Inventory of the
Solar System, Mapping the Milky Way, Exploring the Transient
Optical Sky, and Probing Dark Energy and Dark Matter”. These
goals will be achieved by surveying a ∼30,000 deg2 area (2/3
of which in a “deep-wide-fast” survey mode) over 10 years, in
six bands (ugrizy), with incredible angular resolution (∼ 0.7′′),
producing measurements of roughly 10 billion stars and galaxies.
Thanks to its peculiar observational strategy, LSST will provide
multiple probes of the late-time evolution of the Universe with

12http://desi.lbl.gov
13https://www.lsst.org
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a single experiment, namely, weak lensing cosmic shear, BAO
in the galaxy power spectrum, evolution of the mass function
of galaxy clusters, and a compilation of SNIa redshift-distances.
The expected sensitivity on 6mν [36] is in the range σ (6mν) =
[0.030 − 0.070] eV, depending on the fiducial value of 6mν

assumed when performing forecasts (6mfid
ν = [0 − 0.66] eV).

Larger fiducial values for the mass yield better sensitivity. These
numbers include amarginalization over the uncertainties coming
from an extended cosmological scenario, where a number of
relativistic species different than 3.046, a non-zero curvature and
a dynamical dark energy component are allowed. They also take
into account the combination of the three-dimensional cosmic
shear field as measured by a LSST-like survey with Planck-like
CMB data and can be improved by a factor of 2 if either BAO
or SNIa measurements are also considered, whereas a factor of√
2 degradation could come from systematic effects. Interestingly

enough, the observational strategy of LSST (large and deep
survey) could provide the necessary sensitivity to explore the
faint effects that the distinct neutrino mass eigenstates have on
cosmological probes. This is a highly debated topic and we refer
the reader to section 8 for related discussion.

Synergy between these large ground-based observatories and
future space missions is expected. We consider here the ESA
Euclid satellite14 and the NASA Wide Field Infrared Survey
Telescope15 (WFIRST) as representative space-borne missions.
Euclid will be a wide-field satellite that operates with imaging
and spectroscopic instruments for 6 years and covers roughly
15,000 deg2 in the optical and near-infrared bands, observing a
billion galaxies andmeasuring∼100million galaxy redshifts [37].
The redshift depth will be up to z ∼ 2 for galaxy clustering and
up to z ∼ 3 for cosmic shear. The combination of the galaxy
power spectrum measured with Euclid and primary CMB from
Planck is expected to give σ (6mν) = 0.04 eV; if instead the weak
lensing dataset produced by Euclid is considered in combination
with primary CMB, we expect σ (6mν) = 0.05 eV [133]. Both
combinations provide a ∼ 1σ evidence in the minimal mass
scenario. Some authors have also pointed out that weak lensing
data as measured by Euclid could discriminate between the two
neutrino hierarchies if the true value of 6mν is small enough
(i.e., far enough from the degenerate region of the neutrino mass
spectrum), see [133] and references therein16.

WFIRST is an infrared telescope with a primary mirror as
wide as the Hubble Space Telescope’s primary (2.4m) and will
operate for 6 years [38]. The primary instrument on board, the
Wide Field Instrument, will be able to operate both in imaging
and spectroscopic mode, observing a billion galaxies. The
instrumental characteristics of WFIRST will more than double
the surface galaxy density measured by Euclid. With this setup,
WFIRST will test the late expansion of the Universe with great
accuracy employing supernovae, weak lensing, BAO, redshift
space distortions (RSD), and clusters as probes. From the BAO

14https://www.euclid-ec.org
15https://wfirst.gsfc.nasa.gov
16Note that the specifics of the Euclid mission have changed since the time when
[133] was published. The new specifics are not publicly available, however the
Euclid collaboration is expected to release updated forecasts in the near future.

and broadband measurements of the matter power spectrum,
WFIRST in combination with a Stage-III CMB experiment could
provide σ (6mν) < 0.03 eV [38].

We want to conclude this section by pointing out that
the aforementioned missions will be extremely powerful if
combined together. Indeed, they are quite complementary
[137]. A significant example concerning the improvement of
constraints on massive neutrinos is the combination of all the
previously discussed surveys with the lensing reconstruction
from CMB. The cross correlation of weak lensing (optical), CMB
lensing power spectrum and galaxy clustering (spectroscopic)
can highly reduce the systematics affecting each single probe,
in particular the multiplicative bias in cosmic shear [138]. For
example, a combination of WFIRST, Euclid, LSST, and CMB
Stage-III can achieve σ (6mν) < 0.01 eV [38]. Another example
is the calibration of the cluster mass for SZ cluster count analyses.
This calibration can be performed through optical surveys such
as LSST or through CMB lensing calibration, with comparable
results. In Madhavacheril et al. [139], the authors show that
lensing-calibrated SZ cluster counts can provide a detection of
the minimal neutrino mass 6mν at > 3σ level, also in extended
cosmological scenarios.

6.3. 21-cm Surveys
In this section, we will briefly comment about the possibility
to use 21-cm survey data to constrain 6mν . We refer the
reader to the relevant papers for further readings. Measurements
of the 21-cm signal such as those expected from the Square
Kilometer Array17 (SKA) and the Canadian Hydrogen Intensity
Mapping Experiment18 (CHIME) can shed light on the Epoch of
Reionization, including a better determination of the reionization
optical depth τ . In addition, they map the distribution of neutral
hydrogen in the Universe, a tracer of the underlying matter
distribution. Therefore, constraints on 6mν can benefit from
21-cm measurements in two ways: by breaking the degeneracy
between 6mν and τ (see e.g., [140], where the authors report
σ (6mν) = 0.012 eV for a combination of CORE+Euclid lensing
and FS+ a prior on τ compatible with expectations from future
21-cm surveys); by detecting the effect of 6mν on the evolution
of matter perturbations (see e.g., [141–143]).

7. CONSTRAINTS ON 6mν IN EXTENDED
COSMOLOGICAL SCENARIOS

The constraints reported so far apply to the simple one-parameter
extension of the standard cosmological model, 3CDM + 6mν .
When derived in the context of more complicated scenarios,
such as models that allow arbitrary curvature and/or non-
standard dark energy models and/or modified gravity scenarios
etc., constraints on 6mν are expected in general to degrade
(although tighter constraints on 6mν can be also possible in
particular extended scenarios) with respect to those obtained
in a 3CDM + 6mν cosmology. This effect is due to the
multiple degeneracies arising between cosmological parameters

17http://skatelescope.org
18https://chime-experiment.ca
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that describe the cosmological model under scrutiny. In other
words, when more degrees of freedom are available—in terms of
cosmological parameters that are not fixed by the model—, more
variables can be tuned in order to adapt the theoretical model
to the data. For example, CMB data measure with incredible
accuracy the location (expressed by the angular size of the
horizon at recombination θs) and amplitude (basically driven
by the exact value of zeq) of the first acoustic peak. Therefore,
we want to preserve this feature in any cosmological model.
As explained before, h, �m, and 6mν can be varied together
in order to do this. Adding other degrees of freedom, like
curvature or evolving dark energy, allows for evenmore freedom,
thus making the degeneracy worse. Of course, the addition
of different cosmological data, which are usually sensitive to
different combinations of the aforementioned parameters, is
extremely helpful in tightening the constraints on 6mν (and,
in general, on any other cosmological parameter) in complex
scenarios.

In more detail, constraints on the sum of neutrino masses
are particularly sensitive to the so-called “geometric degeneracy.”
This term refers to the possibility of adjusting the parameters
in order to keep constant the angle subtended by the sound
horizon at last scattering, that controls the position of the
first peak of the CMB anisotropy spectrum. The degeneracy is
worsened in models with a varying curvature density �k or
parameter of the equation of state of dark energy w. Constraints
on the expansion history, like those provided by BAO or by
direct measurements of the Hubble constant, are particularly
helpful in breaking the geometric degeneracy. In principle, one
could also expect a degeneracy between the effective number of
degrees of freedom Neff and 6mν , but for a different reason:
both parameters can be varied in order to keep constant the
redshift of matter-radiation equality. However, this can be done
only at the expense of changing the CMB damping scale (see
section 10 for further details). High-resolution measurements of
the CMB anisotropies are therefore a key to partially break the
degeneracy. Finally, a non-standard relation between the matter
density distribution and the lensing potential can be modeled by
introducing a phenomenological parameterAL, which modulates
the amplitude of the lensing signal [144]. Most of the current
constraining power of CMB experiments on 6mν comes from
CMB lensing. Therefore, it is clear that in models with varying
AL the limits on neutrinomasses are strongly degraded. However,
it should also be noted that AL is usually introduced as a
proxy for instrumental systematics; if considered as an actual
physical parameter, its value is fixed by general relativity to
be AL = 1.

To make the discussion more quantitative, we see how this
applies to the constraints obtained with present data and future
data. In Table 3, we report a comparison of the constraints
on 6mν for some extensions of the 3CDM model. In the
upper part of the table, we report constraints obtained from the
PlanckTT+lowP+lensing+BAO dataset combination, described
in section 5.1. These are taken from the full grid of results
made available by the Planck collaboration19 and have been

19The full grid can be downloaded from the Planck Legacy Archive.

TABLE 3 | Constraints on 6mν from different extensions to the 3CDM model for

the indicated datasets.

Extension to 3CDM 6mν [meV] Dataset

3CDM+ 6mν <254 Planck TT+lowP+lensing+BAOa

3CDM+ 6mν + �K <368 Planck TT+lowP+lensing+BAOa

3CDM+ 6mν + w <372 Planck

TT+lowP+lensing+BAOa

3CDM+ 6mν + Neff <323 Planck

TT+lowP+lensing+BAOa

3CDM+ 6mν + AL <413 Planck

TT+lowP+lensing+BAOa

3CDM+ 6mν 62± 16 CORE TT,TE,EE,PP+BAO [132]

3CDM+ 6mν + �K 63± 21 CORE TT,TE,EE,PP+BAO [132]

3CDM+ 6mν + w 48+22
−17 CORE TT,TE,EE,PP+BAO [132]

3CDM+ 6mν + Neff 68+15
−17 CORE TT,TE,EE,PP+BAO [132]

3CDM+ 6mν + YHe 62± 16 CORE TT,TE,EE,PP+BAO [132]

3CDM+ 6mν + r 60+15
−17 CORE TT,TE,EE,PP+BAO [132]

aFrom the Planck 2015 Explanatory Supplement Wiki.

ΩK is the curvature density parameter, w is the (constant) equation of state parameter

for the dark energy, Neff is the number of relativistic species at recombination, AL is the

phenomenological rescaling of the lensing power that smears the CMB power [144], YHe

is the primordial Helium abundance, r is the tensor to scalar ratio. Upper section: 95% CL

constraints from the full grid of results from the Planck collaboration (see text for details).

BAO data are from 6dFGS, SDSS MGS, BOSS LOWZ DR11, and BOSS CMASS DR11

(see [14] for details). Lower section: Forecasted 68% CL constraints from Di Valentino et

al. [132]. BAO refers to simulated data for DESI and Euclid surveys. The fiducial model

adopted for the analysis is the following: 6mν = 0.06 eV, ΩK = 0, w = −1, Neff = 3.046,

YHe = 0.24, r = 0.

obtained with the same statistical techniques used for the3CDM
model. We see that the constraints are degraded by 30% in
models with varying Neff, by 50% in models with varying �K

or w, and by 65% in models with varying AL. This information
is also conveyed, for an easier visual comparison, in Figure 4,
where we show the sum of neutrino masses as a function of
the mass mlight of the lightest eigenstate. The green and red
curves are for normal and inverted hierarchy, respectively. We
show 95% constraints on 6mν for different models and dataset
combinations as horizontal lines. In the lower section of Table 3
we instead report a similar comparison, based on the expected
sensitivities of future CMB and LSS probes [132]. The pattern is
very similar to that observed for present data, although it should
be noted that the increased precision of future experiments will
allow to further reduce the degeneracies. In particular, it is found
that the constraints on 6mν are degraded by ∼30% in models
with varying �K or w, and not degraded at all in models with
varyingNeff (models with varyingAL have not been considered in
Di Valentino et al. [132]).

The cases reported in Table 3 hardly exhaust all the possible,
well-motivated extensions to the 3CDM + 6mν model. To
make a few examples of more complicated extensions, without
the aim of being complete, the interplay between inflationary
parameters and the neutrino sector has been investigated in
Gerbino et al. [145] and Di Valentino et al. [146]. In Di Valentino
et al. [147–149] “extended parameter spaces” are considered, in
which 12 parameters, including 6mν , are varied simultaneously.
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FIGURE 4 | Sum of neutrino masses 6mν as a function of the mass mlight of

the lightest neutrino eigenstate, for normal (green) or inverted (red) hierarchy.

The horizontal dashed lines show 95% CL upper limits for different dataset

combinations, from top to bottom: PlanckTT+lowP in the 3CDM+ 6mν

model, PlanckTT+lowP+BAO in the 3CDM+ 6mν + �K model,

PlanckTT+lowP+BAO in the 3CDM+ 6mν model.

Neutrino-dark matter interactions are discussed in Di Valentino
et al. [150], while low-reheating scenarios are studied in de
Salas et al. [151]. Finally, constraints on 6mν in the context of
cosmological models with time-varying dark energy are derived
for example in Lorenz et al. [152] and Yang et al. [153].
Neutrino masses in interacting dark energy-dark matter models
and in extended neutrino models (including neutrino viscosity,
anisotropic stress and lepton asymmetry) have instead been
considered in Kumar and Nunes [154] and in Nunes and Bonilla
[155].

8. COSMOLOGY AND THE NEUTRINO
MASS HIERARCHY

Cosmology is mostly sensitive to the total energy density in
neutrinos, directly proportional to the sum of the neutrino
masses 6mν ≡ m1 +m2 +m3. We can express 6mν in the two
hierarchies as a function of the lightest eigenstate mlight (either

m1 orm3) and of the squared mass differences 1m2
12 and 1m2

13:

6mNH
ν = mlight +

√

m2
light + 1m2

12

+
√

m2
light + |1m2

13| (36)

6mIH
ν = mlight +

√

m2
light + |1m2

13|

+
√

m2
light + |1m2

13| + 1m2
12 (37)

When stating that oscillation experiments are insensitive to the
absolute mass scale, one refers to the fact that the value of mlight

is not accessible with oscillation data. When mlight = 0 eV, one

obtains 6mNH
ν ≃ 0.06 eV and 6mIH

ν ≃ 0.1 eV. Therefore,
for each hierarchy, a minimum mass scenario exists in which
6mν 6= 0.

It has been a long-standing issue whether or not cosmological
probes are sensitive to the neutrino mass hierarchy. In principle,
we expect physical effects on cosmological observables due to
the choice of the neutrino hierarchy. Individual neutrino species
that carry a slightly different individual mass exhibit a slightly
different free-streaming scale kfs: depending on their individual
mass, neutrinos can finish suppressing the matter power at
different epochs, leaving three distinct “kinks” in the matter
power spectrum. As a consequence, the weak lensing effects on
the CMB and on high redshift galaxies can be slightly affected
by the choice of the hierarchy. In practice, all of these signatures
are at the level of permille effects on the matter and CMB power
spectra, well below the current sensitivity [156].

Given the current sensitivity (roughly 6mν < 0.2 eV at
95% CL), it is then a legitimate assumption to approximate the
mass spectrum as perfectly degenerate (mi = 6mν/3) when
performing analysis of cosmological data. Very recently, several
authors investigated the possibility that such an approximation
could fail reproducing the physical behavior of massive neutrinos
when observed with the high sensitivity of future cosmological
surveys [132, 145, 157, 158]. In addition, the issue of whether
future surveys could unravel the unknown hierarchy has been
addressed by several groups [98, 158–162]. We refer the reader
to the relevant papers for a thorough discussion of these issues.
Here, we summarize the main results: (1) the sensitivity of
future experiments will not be enough to clearly separate the
effects of different choices of the neutrino hierarchy, for a given
value of 6mν ; therefore the fully-degenerate approximation is
still a viable way to model the neutrino mass spectrum in the
context of cosmological analysis; (2) the possibility to clearly
identify the neutrino hierarchy with future cosmological probes
is related to the capability of measuring 6mν < 0.1eV at high
statistical significance, in order to exclude the IH scenario. It is
clear that the possibility to do this strongly depends on the true
value of 6mν : the closer it is to 6mNH

ν = 0.06 eV, the larger
will be the statistical significance by which we can exclude IH.
This is true independently of whether we approach the issue
from a frequentist or Bayesian perspective. In the latter case,
however, since a detection of the hierarchy would be driven by
volume effects, this posits the question of what is the correct
prior choice for 6mν . The issue is extensively discussed in
Gerbino et al. [159], Simpson et al. [163], Schwetz et al. [164],
Caldwell et al. [165], Long et al. [166], and Hannestad and Tram
[167].

9. COMPLEMENTARITY WITH
LABORATORY SEARCHES

Cosmological observables are ideal probes of the neutrino
absolutemass scale, though they are not the only probes available.
In fact, laboratory avenues such as kinematic measurements
in β-decay experiments (see e.g., [168]) and neutrino-less
double-β decay (0ν2β) searches (see e.g., [169, 170]) provide
complementary pieces of information to those brought by
cosmology.
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Kinematic measurements are carried on with β-decay
experiments mostly involving 3H. The shape of the decay
spectrum close to the end point is sensitive to the (electron)
neutrinomass and can be parametrized in terms of constraints on
the electron neutrino effective mass20 defined in Equation (12).
The current best limits on mβ come from the Troitzk and Mainz
experiments, with mβ < 2.05 eV [1] and mβ < 2.3 eV [2] at
95% CL. The new generation 3H β-decay experiment KATRIN
(Karlsruhe Tritium Neutrino21) is expected either to reach a
sensitivity of mβ < 0.2 eV at 90% CL, an order of magnitude
improvement with respect to current sensitivities, or to detect
the neutrino mass if it is higher than mβ = 0.35 eV. Note that
a detection of non-zero neutrino mass in KATRIN would imply
6mν & 1 eV, and would then be in tension with the cosmological
constraints obtained in the framework of the3CDMmodel. This
could point to the necessity of revising the standard cosmological
model, although it should be noted that none of the simple one-
parameter extensions reported inTable 3 could accommodate for
such a value.

Future improvements in kinematic measurements involve
technological challenges, since KATRIN reaches the experimental
limitations imposed to an experiment with spectrometers. Future
prospects are represented by the possibility of calorimetric
measurements of 136Ho (HOLMES experiment [171]) and
measurements of the 3H decay spectrum via relativistic shift
in the cyclotron frequency of the electrons emitted in the
decay (Project8 experiment22 [172]). Although the bounds
coming from β-decay experiments are very loose compared to
bounds from cosmology, nevertheless they are appealing for the
reason that they represent model-independent constraints on the
neutrino mass scale, only relying on kinematic measurements.

0ν2β decay is a rare process that is allowed only if neutrinos
are Majorana particles. A detection of 0ν2β events thus would
solve the issue related to the nature of neutrinos, whether they
are Dirac or Majorana particles. Searches for 0ν2β directly probe
the number of 0ν2β events, which is related to the half life
T1/2 of the isotope involved in the decay. The half life can
be translated in limits on the Majorana mass mββ (defined in
Equation 13) once a nuclearmodel has been specified. In practice,
a bound on T1/2 is reflected in a range of bounds on mββ , due
to the large uncertainties associated with the exact modeling
of the nuclear matrix elements. Additional complications are
due to model dependencies: when translating bounds on T1/2

to bounds on mββ , a mechanism responsible for the 0ν2β
decay has to be specified. This is usually the exchange of light
Majorana neutrinos, though alternative mechanisms could be
responsible for the lepton number violation that not necessarily
allow a direct connection between T1/2 and mββ . Finally, it
can be shown that in the case of NH, disruptive interference
between mixing parameters could prevent a detection of 0ν2β

20It has to be noticed that the observable which β-decay experiments are sensitive
to is m2

β , rather than mβ . Nevertheless, it is useful to quote constraints in terms of
mβ to facilitate the comparison with results from other probes.
21 https://www.katrin.kit.edu
22http://www.project8.org/index.html

events, regardless of the neutrino nature and the lepton-number
violation mechanism.

We report here some of the more recent limits on mββ

from 0ν2β searches. Constraints are reported as a range of 90%
CL upper limits, due to the uncertainty on the nuclear matrix
elements. We also specify the isotope used in each experiment.
The current bounds are mββ < 0.120 − 0.270 eV from Gerda
Phase-II (76Ge) [173, 174], mββ < 0.061 − 0.165 eV from
KamLAND-Zen [175] (136Xe), mββ < 0.147 − 0.398 eV from
EXO-200 (136Xe) [176], mββ < 0.140 − 0.400 eV from CUORE
(130Te) [177]. The next generation 0ν2β experiments, such
as LEGEND, SuperNEMO, CUPID, SNO+, KamLAND2-Zen,
nEXO, NEXT, PANDAX-III, aims to cover the entire region of
IH, reaching a 3σ discovery sensitivity for mββ of 20meV or
better, roughly an order of magnitude improvement with respect
to the current limits (see [178] for a more detailed discussion and
for a full list of references).

As outlined above, laboratory searches and cosmology
are sensitive to different combinations of neutrino mixing
parameters and individual masses. Therefore, it makes sense
to compare their performances in terms of constraints on the
neutrinomass scale. It is also beneficial to combine these different
probes of the mass scale, in order to overcome the limitations
of each single probe and increase the overall sensitivity to the
neutrino masses [40, 165, 179]. This is possible because, once
the elements of the mixing matrix are known, specifying one of
three mass parameters among (mβ , mββ , 6mν), together with
the solar and atmospheric mass splittings, uniquely determines
the other two. Oscillation experiments measure precisely the
values of the mixing angles and of the squared mass differences,
with an ambiguity on the sign of 1m2

31, so that these parameters
can be simply fixed to their best-fit values, given the larger
uncertainties on the absolute mass parameters. The value of the
Dirac phase, on the other hand, is known with lesser precision,
and the Majorana phases, relevant for the interpretation of
0ν2β searches, are not probed at all by oscillation experiments.
However this ignorance can be folded into the analysis using
standard statistical techniques. Finally, the relation between the
mass parameters also depends on the mass hierarchy. This can
be taken into account either by performing different analyses for
NH and IH, or by marginalizing over the hierarchy itself (see
e.g., [159]).

Combining the different probes of the absolute mass scale,
with the support of oscillation results, leads to some interesting
considerations. First of all, basically all of the information
on the absolute mass scale comes from cosmology and 0ν2β
searches. This confirms the naive expectation that can be
made by comparing the sensitivity of the different probes.
However, we recall again that the robust limits on mβ from
kinematic experiments represent an invaluable test for the
consistency of the more model-dependent constraints coming
from cosmology and 0ν2β decay experiments. At the moment,
cosmology still provides most of the information on the neutrino
masses, although the sensitivity of 0ν2β experiments is rapidly
approaching that of cosmological observations. A summary of
the current limits is reported in Figure 3 of Gerbino et al.
[159]. To better illustrate the complementarity of cosmology
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FIGURE 5 | Majorana mass mββ of the electron neutrino as a function of the

mass mlight of the lightest neutrino eigenstate, for normal (green) or inverted

(red) hierarchy. The filled regions correspond to the uncertainty related to the

CP-violating phases. The horizontal dashed lines show 95% current upper

limits from 0ν2β searches. In particular, we show the tightest and loosest limits

among those reported in the text, namely the most stringent from

KamLAND-Zen (labeled “KamLAND-Zen, optimistic NME”), and the less

stringent from CUORE (labeled “CUORE, pessimistic NME”). NME refers to the

uncertainty related to the nuclear matrix elements. We also show vertical

dashed lines corresponding to 95% upper limits on 6mν from cosmological

observations, translated to upper limits on mlight using the information from

oscillation experiments. In particular we show different model and dataset

combinations, from right to left: PlanckTT+lowP in the 3CDM+ 6mν model,

PlanckTT+lowP+BAO in the 3CDM+ 6mν + �K model,

PlanckTT+lowP+BAO in the 3CDM+6mν model. The vertical lines shown in

the plot assume normal hierarchy, but the difference with the case of inverted

hierarchy is very small on the scale of the plot.

and 0ν2β searches, we show in Figure 5 how they constrain,
together with oscillation experiments, the allowed space in the
(mββ , mlight) plane. In more detail, we show the region in that
plane that is singled out by oscillation experiments, for normal
and inverted hierarchy. The width of the allowed regions traces
the uncertainties on the CP-violating phases. We show current
upper 95% bounds on mββ from 0ν2β searches as horizontal
lines, and current 95% bounds on mlight from cosmology as
vertical lines. These are translated from the bounds on6mν using
information from oscillation experiments and assuming normal
hierarchy. Assuming inverted hierarchy would however make a
barely noticeable difference on the scale of the plot. It can be seen
that in general cosmological observations are more constraining
than 0ν2β searches.

In the future, however, one can expect that the constraining
power of these two probes will be roughly equivalent. This can
be seen in Figure 6 where, similarly to Figure 5, we show the
allowed space in the (mββ , mlight) plane for future cosmological
and 0ν2β probes. As shown in Gerbino et al. [159], the
constraining power of 0ν2β searches for6mν would also depend

FIGURE 6 | The same as Figure 5, but for future cosmological observations

and 0ν2β experiments. Note that in this figure we show 95% upper limits for

both mββ and mlight, assuming that the true values of both quantities are

much smaller that the corresponding experimental sensitivities. The horizontal

yellow band labeled “Future 0ν2β” is the union of the regions that contain the

95% upper limits for LEGEND 1K, CUPID, and nEXO, assuming 5 years of live

time. The vertical dashed lines correspond to 95% upper limits on 6mν . From

right to left: CORE TT, TE, EE, PP in the 3CDM+ 6mν model, CORE TT, TE,

EE, PP + the DESI and EUCLID BAO in the 3CDM+ 6mν + �K model,

CORE TT, TE, EE, PP + the DESI and EUCLID BAO in the 3CDM+ 6mν

model. The vertical lines shown in the plot assume normal hierarchy.

crucially on the possibility of reducing the uncertainty on the
nuclear matrix elements for the 0ν2β isotopes. In fact, provided
that neutrinos are Majorana particles and that the leading
mechanism responsible for the decay is a mass mechanism, the
combination of cosmological probes and 0ν2β measurements
could not only lead to a detection of the mass scale, but could
also solve the hierarchy dilemma and provide useful information
about (at least one of) the Majorana phases [179–181].

10. CONSTRAINTS ON Neff

Until now, we have focused on the capability of cosmological
observations to constrain neutrino masses. However, as noted
in the introduction, cosmology is also a powerful probe of other
neutrino properties. The main example is without any doubt the
effective number of neutrino families (also called effective number
of relativistic degrees of freedom) Neff, defined in Equation (21).
As it is clear from its definition, Neff is simply a measure of the
total cosmological density during the radiation-dominated era.
More precisely, it represents the density in relativistic species,
other than photons, normalized to the energy density of a
massless neutrino that decouples well before electron-positron
annihilation (that, we remember, is not actually the case). As
explained in section 2.5, the standard framework, in which
photons and active neutrinos are the only relativistic degrees
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of freedom present, and neutrino interactions follow the SM of
particle physics, predicts Neff = 3.046 after electron-positron
annihilation [12, 47, 48].

Given its meaning, it is clear that a deviation from the
expected value of Neff can hint to a broad class of effects—in
fact, all those effects that change the density of light species
in the early Universe. Those effects are not necessarily related
to neutrino physics, as the definition of Neff in terms of the
number of relativistic degrees of freedom suggests. For example,
the existence of a Goldstone boson that decouples well before
the QCD phase transition would appear as an increased number
of degrees of freedom, with 1Neff ≡ Neff − 3.046 = 0.027
[182]. Speaking however about changes in Neff that are somehow
related to neutrino physics, the most notable example is probably
the existence of one (or more) additional, sterile light eigenstate,
produced through some mechanism in the early Universe. In
such a situation, one would have Neff > 3.046, as well as an
additional contribution to 6mν . Note that a light sterile neutrino
would not necessarily contribute with 1Neff = 1, as it does not
share the same temperature as the active neutrinos.

In this section we will focus on cosmological constraints on
sterile neutrinos. However, for completeness, we mention a few
other examples of scenarios in which 1Neff can possibly be
different from zero. One is the presence of primordial lepton
asymmetries, related to the presence of a non-vanishing chemical
potential in the neutrino distribution function, Equation (15).
Constraints on the allowed amount of lepton asymmetry,
obtained taking into account the effect of neutrino oscillations,
have been reported in Castorina et al. [183] using CMB and BBN
data. Another possibility is the so-called low-reheating scenario
[151, 184, 185], in which the latest reheating episode of the
Universe happens just before BBN, at temperatures of the order
of a few MeV, so that neutrinos do not have time to thermalize
completely. In this case, one has1Neff ≤ 0. Finally, non-standard
interactions between neutrino and electrons can modify the
time of neutrino decoupling [186], so that the entropy transfer
from e+e− annihilation and Neff are different with respect to
the standard picture. We note that the effects related to these
new scenarios are often more complicated that just a change
in Neff: for example, both in the case of lepton asymmetries
and low reheating, the neutrino distribution function is changed
in a non-trivial way, affecting also the other moments of the
distribution (like the number density, the average velocity, etc.).
Finally, to mention a possibility that is not related to changes
in Neff, cosmology can also probe the free-streaming nature of
neutrinos, for example by looking for the effects of non-standard
interactions among neutrinos [187–190], or between neutrinos
and dark matter [191–193].

Let us briefly recall how Neff is constrained by cosmological
observations [194]. Increasing Neff will make the Universe
expand faster (largerH) during the radiation-dominated era, and
thus be younger at any given redshift. Then the comoving sound
horizon at recombination will be smaller, going like 1/H, while
the angular diameter distance to recombination stays constant,
because H is unchanged after equality, so that θs is smaller. Also,
for fixed matter content, this will make the radiation-dominated
era last longer. Recalling our discussion in section 4.1, the effect

on the CMB spectrum is that the first peak is enhanced due to
the larger early ISW, and all the peaks are moved to the right.
However, as we have already learned, these effects can be canceled
by acting on other parameters. There is however a more subtle
and peculiar effect of Neff, that is related to the scale of Silk
damping. The damping scale roughly scales as 1/

√
H, i.e., as

√
t,

as expected for a random walk process. Then the ratio between
the angle subtended by the sound horizon and that subtended
by the damping length scales like H−1/H−1/2 = H−1/2. Since θs
is fixed by the position of the first peak, this means that, when
increasingNeff, the damping length is projected on larger angular
scales, or, equivalently, that damping at a given scale is larger. In
conclusion the net effect is to lower the damping tail of the CMB
spectrum. This effect is difficult to mimic with other parameters,
at least in the standard framework. The damping length also
depends on the density of baryons, so in principle one could think
of changing this to compensate for the effect of Neff; however,
the baryon density is very well determined by the ratio of the
heights of the first and second peak, so that it is in practice fixed.
One possibility, in extended models, is to vary the fraction of
primordial helium. Since the mean free path of photons depends
on the number of free electrons, and helium recombines slightly
before hydrogen, changing the helium-to-hydrogen ratio alters
the Silk scale. However, this requires the assumption of non-
standard BBN, since, in the framework of standard BBN, the
helium fraction is fixed by ωb and Neff themselves, so it is not
a free parameter.

We first review constraints on Neff in a simple one-parameter
extension of 3CDM, in which Neff is left free to vary, and
the mass of active neutrinos is kept fixed to the minimum
value allowed by oscillations. This case can be considered as the
most agnostic, in some sense, in which one does not make any
hypothesis on the new physics that is changing Neff (and thus
on any other effects this new physics might produce). Moreover,
one can think of these as limits for a very light (massless) sterile
neutrino. Finally, constraining Neff is a robustness check for
the standard 3CDM model. In fact, measuring Neff = 3.046
within the experimental uncertainty can be seen as a great success
of the standard cosmological model. It can be regarded as an
indirect detection of the CνB, or, at least, of some component
who has the same density, within errors, as we would expect
for the three active neutrinos23. From PlanckTT+lowP, one gets
Neff = 3.13 ± 0.32; adding BAO gives Neff = 3.15 ± 0.23 [14].
Both measurements, with a precision of ∼ 10%, are in excellent
agreement with the standard prediction. Moreover, according to
these results, 1Neff = 1 is excluded at least at the 3σ level.
Using also information about the full shape of the matter power
spectrum, the BOSS collaboration finds Neff = 3.03 ± 0.18 [23].
We note that adding information from direct measurements of
the Hubble constant results in larger values ofNeff (Neff = 3.41±
0.22 from Planck TT,TE,EE+lowP+lensing+BAO+JLA+H0,
see [93]); this is due to the tension with the value of H0 that
is inferred from the CMB, that is alleviated in models with

23The fact that, when probed, there is no hint for deviations from the free-
streaming behavior should strengthen our belief that we are really observing the
CνB.
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larger Neff. The next generation of cosmological experiments will
improve these constraints by roughly one order of magnitude,
getting close to the theoretical threshold of 1Neff = 0.027
discussed at the beginning of this section, corresponding to a
Goldstone boson decoupling before the QCD phase transition.
Moreover, it will be possible to confirm the effects of non-
instantaneous decoupling, since future sensitivities will allow to
distinguish, at the 1-σ level, between Neff = 3 and Neff =
3.046. The combination of CORE TT,TE,EE,PP will put an
upper bound at 68% CL of 1Neff < 0.040 on the presence
of extra massless (m ≪ 0.01 eV) species24 [132] in addition to
the three active neutrino families. The CORE collaboration puts
limits also on the scenario in which the three active neutrinos
have a fixed temperature, but their energy density is rescaled
as (Neff/3.046)

3/4. This scenario can account for an enhanced
neutrino density (if Neff > 3.046) and reduced neutrino density
(if Neff < 3.046 as for example in the case of low-reheating
scenarios). In this case, CORE TT,TE,EE,PP yieldsNeff = 3.045±
0.041. Forecasts from S4 show that, in order to get closer to the
threshold of 1Neff = 0.027, a sensitivity of 1µK · arcmin and
fsky > 50% are needed for a 1′ beam size [30]. Efficient de-
lensing will help improve the limits on Neff: delensed spectra
will have sharper acoustic peaks, allowing to constrain Neff not
only through the impact on the Silk scale, but also through the
phase shift in the acoustic peaks [195]. Finally, having access
to a larger sky fraction—and therefore to a larger number of
modes observed—will be beneficial for constraints on Neff [30].
We conclude this summary about future limits by noticing that
the inclusion of LSS data, such as BAO measurements from
DESI and Euclid, provides only little improvements with respect
to CMB-only constraints (e.g., from CORE TT,TE,EE,PP+DESI
BAO+Euclid BAO, 1Neff < 0.038 at 68% CL for extra massless
species andNeff = 3.046±0.039 for three neutrinos with rescaled
energy density [132]). For a summary of current and future limits
on Neff, we refer to Table 4.

Let us now come to the case of a massive sterile neutrino.
A sterile neutrino would contribute both to Neff and to ων .
Its effect on the cosmological observables will thus be related
to changes in these two quantities, as explained through this
review. In fact, in principle, we should specify the full form of the
distribution function of the sterile neutrino, and its effects could
not be fully parameterized through Neff and ων . Fortunately,
one has that, when the distribution function is proportional to
a Fermi-Dirac distribution, all the effects on the perturbation
evolution of a light fermion can be mapped into two parameters
[196]: its energy density in the relativistic limit (and thus its
contribution to Neff) and its energy density in the non-relativistic
limit (and thus its density parameter, let us denote it with
ωs to distinguish it from the active neutrinos). This covers
several physically interesting cases, namely those of a sterile
neutrino that either (i) has a thermal distribution with arbitrary
temperature Ts, or (ii) is distributed proportionally to the active
neutrinos, but with a suppression factor χs (this corresponds
to the Dodelson-Widrow (DW) prediction for the non-resonant

24This constraint has been obtained in the context of a 3CDM+6mν cosmology,
with 6mfid

ν = 0.06 eV.

TABLE 4 | Constraints on Neff (at 68% CL) from different combinations of

cosmological data.

Dataset Bounds References

Planck TT+lowP Neff = 3.13± 0.32 [14]

Planck TT+lowP+BAO Neff = 3.15± 0.23 [14]

Planck TT+lowP+BAO+FS Neff = 3.03± 0.18 [23]

CORE TT,TE,EE,PPa 1Neff < 0.040 [132]

CORE TT,TE,EE,PPb Neff = 3.045± 0.041 [132]

S4 TT,TE,EE,PPc σ (Neff ) = 0.027 [30]

CORE TT,TE,EE,PP+DESI BAO+Euclid BAOa 1Neff < 0.038 [132]

CORE TT,TE,EE,PP+DESI BAO+Euclid BAOb Neff = 3.046± 0.039 [132]

aThe constrain applies to the scenario of extra light relics in addition to the three massive

neutrino families, i.e., Neff ≥ 3.046.
bThe constrain applies to the scenario of three massive neutrinos with energy density

rescaled by Neff , i.e., Neff can be either lower or greater than 3.046.
cThe combination includes delensed CMB spectra and a Gaussian prior on the optical

depth τ = 0.06 ± 0.01.

Upper part: current 68% CL constraints on Neff . BAO in row no. 2 are from 6dFGS [100],

SDSSMGS [104], BOSS LOWZDR11 and BOSSCMASSDR11 [102] (see [14] for details).

BAO and FS (full shape measurements) in row no. 3 are from BOSS DR12 [23]. Lower

part: forecasts for future cosmological surveys. Unless otherwise stated, the sensitivity on

Neff is forecasted assuming a standard cosmological model with Neff = 3.046 and also

marginalizing over 6mν . DESI and Euclid BAO refer to the simulated BAO datasets based

on expected experimental performances [35, 37] (see [132] for details).

production scenario [197]; see also Merle et al. [198]). Defining
an effective massmeff

s by mimicking Equation 19, i.e.,

meff
s ≡ 93.14ωs eV, (38)

the actual mass ms of the sterile is related to the effective
parameters by:

ms = (Ts/Tν)
−3meff

s = 1N
−3/4
eff meff

s (thermal) (39)

ms = χ−1
s meff

s = 1N−1
eff meff

s (DW). (40)

Planck data are consistent with no sterile neutrinos: the 95%
allowed region in parameter space is Neff < 3.7, meff

s < 0.52 eV
from PlanckTT + lowP + lensing + BAO. However, it should
be noted that they do not exclude a sterile neutrino, provided
its contribution to the total energy density is small enough. A
light sterile neutrino has been proposed as an explanation of the
anomalies observed in short-baseline (SBL) experiments (see e.g.,
[199] and references therein). However, a sterile neutrino with
the mass (ms ≃ 1 eV) and coupling required to explain reactor
anomalies would rapidly thermalize in the early Universe (see
e.g., [200, 201]) and lead to 1Neff = 1, strongly at variance with
cosmological constraints (excluded at more than 99% confidence
considering the above combination of Planck and BAO data).
We conclude this section by quoting the forecasts for future
cosmological probes. In the context of a 3CDM + 6mν model
with 6mfid

ν = 0.06 eV and mfid
s = 0 eV, the combination of

CORE TT,TE,EE,PP with BAO measurements from DESI and
Euclid will provide 1Neff < 0.054 andms < 0.035 eV [132].
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11. SUMMARY

The absolute scale of neutrino masses is one of the main
open questions in physics to date. Measuring the neutrino
mass could shed light on the mechanism of mass generation,
possibly related to new physics at a high energy scale. From the
experimental point of view, neutrino masses can be probed in
the laboratory, with β- and double β-decay experiments, and
with cosmological observations. In fact, cosmology is at the
moment the most sensitive probe of neutrino masses. Upper
limits from cosmology on the sum of neutrino masses are
possibly based on combinations of different observables. Results
from the CMB alone can be regarded as very robust: these
are of the order of 6mν < 0.7 eV (95% CL). The addition
of geometrical measurements, like those provided by BAO—
also very robust—brings down this limit to 6mν < 0.2 eV
(95% CL). More aggressive analyses can get the bound very close
to the minimum value allowed by oscillation experiments in the
case of inverted hierarchy, but are based on observations where
control of systematics is more difficult and thus should be taken
with caution. It should also be borne in mind that cosmological
inferences of neutrino masses are somehow model dependent.
In extended cosmological models, especially those involving
non-vanishing spatial curvature or dark energy, the constraints
on 6mν are degraded, even though they still remain very
competitive with those obtained from laboratory experiments.
Combination of future CMB and LSS experiments could reach, if
systematics are kept under control, a sensitivity of 15 meV in the
first half of the next decade, allowing a 4σ detection of neutrino
masses if the hierarchy is normal and the lightest eigenstate is
massless. In that case, it will also be possible to exclude the
inverted hierarchy scenario with a high statistical significance.

Present data are also compatible with the standard description
of the neutrino sector, based on the standard model of particle
physics. CMB measurements constrain the number of relativistic

species at recombination to be Neff = 3.13 ± 0.32 at 68% CL.
The inclusion of LSS data further tightens the constraints to
Neff = 3.03± 0.18 at 68% CL. These results exclude the presence
of an additional thermalized species at more than 3σ level.
Cosmological data are also consistent with no sterile neutrinos.
Thus no new physics in the neutrino sector is presently required
to interpret cosmological data. The standard picture will be tested
more thoroughly by future experiments, that will allow to probe
to an unprecedented level the physics of neutrino decoupling.
An example would be the possibility to constrain non-standard
neutrino-electron interactions. Future cosmological probes will
also possibly reach the sensitivity necessary to detect, at the 1-
σ level, the increase in the number of degrees of freedom due
to a Goldstone boson that decouples well before the QCD phase
transition.
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