
Status Updates Through Queues
Sanjit K. Kaul

IIIT-Delhi
email: skkaul@iiitd.ac.in

Roy D. Yates and Marco Gruteser
WINLAB, ECE Dept., Rutgers University

email: {ryates, gruteser}@winlab.rutgers.edu

Abstract—Anytime, anywhere network connectivity, together
with portable sensing and computing devices have led to appli-
cations in which sources, for example people or environmental
sensors, send updates of their status, for example location, to
interested recipients, say a location service. These applications
desire status updates at the recipients to be as timely as possible;
however, this is typically constrained by limited network re-
sources. We employ a time-averaged age metric for characterizing
performance of such status update systems. We use system
abstractions consisting of a source, a service facility and monitors,
with the model of the service facility (physical constraints) a
given. While prior work examined first-come-first-served (FCFS)
queues, this paper looks at the queue discipline of last-come-
first-served (LCFS). We explore LCFS systems with and without
the ability to preempt the packet currently in service. For each
we derive a general expression for system age and solve for
the average age a Poisson source can achieve given memoryless
service. Specifically, when preemption is allowed, we evaluate how
the source would share the service facility with other independent
Poisson sources.

I. INTRODUCTION

The information age [2] has witnessed huge improvements
in computing, access and storage of information. More re-
cently, fueled by ubiquitous connectivity and advancements
in portable devices, real-time status updates have become
increasingly popular. These range from news and weather
reports and updates by individuals on Twitter about what is
keeping them busy, to updates by environmental sensors [3].

Real-time status updates can enable a variety of applica-
tions. Temperature and humidity updates from a forest can
help better predict and control forest fires, energy utilization
information can help make a smart-home energy efficient,
knowledge of the velocity, acceleration of a car can assist
drivers in an intelligent transportation system to make safe
maneuvers [4].

In the above examples, the goals are to ensure that the
agency that monitors fires stays current about conditions in
the forest and drivers stay current about status of vehicles in
their vicinity, respectively. These examples share a common
description: a source generates time-stamped status update
messages that are transmitted through a communication system
to a monitor. The goal of real-time status updating is to ensure
that the status of interest, is as timely as possible at each
monitor. When the monitor’s most recently received update
at time t is time-stamped u(t), the status update age, which
we will refer to as simply the age, is t− u(t). The monitor’s
requirement of timely updating corresponds to a small average
status update age.

In our work we model complex systems using simple queue-
theoretic abstractions, in which one or more sources queue
their packets to receive service from a single server. On
completion of service a packet is received by one or more
monitors. We want to minimize the age of status updates
generated by a given source at the monitors.

In [1] we looked at the first-come-first-served (FCFS) queue
discipline, under which the latest status update packet waited
in queue till all previous packet updates had received service.
We learned for a variety of FCFS systems that while utilization
may be maximized by making the sensor send updates as fast
as possible, this strategy may lead to the monitor receiving de-
layed statuses because the status messages become backlogged
in the communication system. In this case, delay suffered by
the stream of status updates could be reduced by reducing the
rate of updates. Alternatively, reducing the update rate could
also lead to the monitor having unnecessarily outdated status
information because of a lack of updates.

On generation of a status packet, ideally, we would want
it to receive service immediately, as reception of a newer
update will set the age of status at the monitors to a smaller
value. Also, under the assumption that the status is Markovian,
having received an update, the monitors do not benefit from
the reception of older status updates. This motivates exploring
a last-come-first-served (LCFS) queue. We will explore two
possibilities under LCFS. First, under LCFS without preemp-
tion, the new status packet replaces any older status packet
waiting in the queue. It, however, has to wait for the packet
currently under service to finish. Second, under LCFS with
preemption, we allow the new packet to preempt the packet
currently in service.

Specifically, we will derive the expression for system age for
the queue discipline of LCFS, with and without preemption,
under very general assumptions about the source and service.
We will also calculate the age for an example system in which
the source is Poisson and the service is memoryless (M/M/1).
For the case of LCFS with preemption we will allow other
independent Poisson sources to share the service facility with
the source of our interest. Finally, we will show that, for a
memoryless service facility, LCFS without preemption can
achieve the lower bound on age that FCFS achieves.

This paper is organized as follows. Overview of related
work is in Section II. LCFS queues for the case when preemp-
tion is not allowed are analyzed in Section III. In Section IV
we show that LCFS with preemption can achieve the FCFS
lower bound on achievable age for memoryless service. The
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case when preemption is allowed is analyzed in Section V.
We conclude the paper in Section VI.

II. RELATED WORK

The requirement of ensuring freshness occurs in various
fields, including that of networks, and real time databases.
In [5] we look at minimizing the age of status updates over a
large network of cars in which each car broadcasts its delay
sensitive state periodically. The minimum, however, is not
known in general and is seen to exist in simulations that we
conducted. In [6] we explore piggybacking other cars’ updates
to achieve a smaller age.

In [7] the authors want to maximize the freshness of data
in warehouses to meet user demands. They use networks of
queues and assumption of Poisson arrivals and memoryless
service to estimate the queue length and delay at the staging
area of a warehouse, which is where updates wait before
they are committed to the warehouse database. They do not
consider the LCFS discipline, however.

Web caching reduces the latency in returning a web page
to a client. Unless refreshed often enough, a cache will return
stale web pages. However, the rate of refreshing is limited by
the finite time it takes for a cache to be updated after the page
has been updated at the server. In [8] the authors propose an
architecture that limits the “degree of staleness” of a cache.

In [9] the authors look at periodic transactions updating
real time databases. Each transaction updates the database
with data that is associated with a deadline relative to when
it is generated. The objective is to find the combination of
update period and deadline that ensure that all transactions
complete before their deadlines, ensuring the freshness of data
and minimizing the CPU utilization.

Ad hoc networking protocols typically use a route cache
to forward packets to their destinations. In [10] the authors
propose a mechanism that avoids propagation of stale route
information through the network. They do not want to broad-
cast new route information periodically, however, to avoid
the associated overheads. In [11] the authors consider the
issue of frequency of hello messages in ad-hoc networks. The
frequency must not be so large as to congest the network but
also not too small that the nodes have stale information.

Finally, in [1] we look at minimizing age for the queue
discipline of FCFS.

III. LCFS WITHOUT PREEMPTION

We will derive the average age of status updates from a
source updating a monitor, for the queue discipline of LCFS
without preemption. We will use a graphical argument similar
to the one we used in [1].

Figure 1 shows an example change in age ∆(t) of updates
from the source with time t, at a monitor. Without loss of
generality, assume that we begin observing at t = 0 when the
queue is empty and the age is ∆(0) = ∆0.

The time instants, ti, for i = 1, 2, . . . , n correspond to
packets i generated by the source that complete service. Packet
i completes service at t′i. Packets generated between time ti

∆

t1 t2

t
′
1

t21 t3

t
′
2 t

′
3

t4

t
′
4

tn−1 tn

t
′
n

t

∆0

∆(t)

QnQ2

Q̃1

Y2 T2 Yn Tn

Y3 T3

t22 t31

A
ge

Fig. 1: Example change in age at a monitor for a system using LCFS
without preemption.

and ti+1 may include packets from other sources that may or
may not complete service and packets from the source under
consideration that do not receive service as they are preempted
by a new packet arrival. The time of generation of such packets
is denoted by tik, k = 1, 2, . . .. In the figure, such packets are
generated at t21, t22 and t31.

Observe that the given source’s update age at the monitor
increases linearly in time in the absence of any updates (that
is arrivals that complete service) and is reset to a smaller value
when an update is received. At t′i, the age ∆(t′i) at the monitor
is reset to the age Ti = t′i − ti of the received status update.
The age Ti is also the system time of the update packet i and
is the sum of the time the packet waited in the queue and the
time it spent in service. Thus the age function ∆(t) exhibits
the sawtooth pattern shown in Figure 1.

Note that in LCFS older status updates of a source are
discarded on a new arrival. When there are more than one
sources, a new arrival from a source may or may not lead to
an earlier arrival from another source, which is not yet under
service, to be discarded. While a new arrival will always lead
to an older queued update from the source to be discarded, the
new arrival may take the position of the discarded update in
the queue or it may be queued behind previous arrivals from
other sources. The analysis that follows is not affected by the
above considerations.

Only those packets generated by the source that enter
service update the age. Since packets cannot be preempted in
service, packets that enter service are received by the monitors.
Let Yi be the time elapsed between generation/arrival of two
such packets. We have

Yi = ti − ti−1. (1)

From Figure 1, we have

Qi =
(Yi + Ti)

2

2
− T 2

i

2
. (2)

Our interval of observation is (0, T ). The time-average of age
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∆T is given by

∆T =
1

T

∫ T
0

∆(t)dt. (3)

For simplicity of exposition, the length of the observation
interval is chosen to be T = t′n, as depicted in Figure 1.
We decompose the area defined by the integral in (3) into
a sum of disjoint geometric parts. Starting from t = 0, the
area can be seen as the concatenation of the polygon area Q̃1,
the trapezoids Qi for i ≥ 2 (Q2 and Qn are highlighted in
the figure), and the triangular area of width Tn over the time
interval (tn, t

′
n). With N(T ) = max{n|tn ≤ T } denoting the

number of arrivals by time T , this decomposition yields

∆T =
Q̃1 + T 2

n/2 +
∑N(T )
i=2 Qi

T . (4)

Let N(T ) = max{n|tn ≤ T }. Substituting Qi from (2)
in (4), we get

∆T =
Q̃1

T +
T 2
n

2

+
N(T )− 1

T
1

N(T )− 1

N(T )∑
i=2

[
Y 2
i

2
+ YiTi

]
. (5)

We have
N(T )− 1

T =
N(T )− 1

t1 +
∑N(T )
i=2 Yi + TN(T )

. (6)

Since t1 and TN(T ) are finite with probability 1, (6) implies

lim
T→∞

N(T )− 1

T =
1

E[Y ]
. (7)

From equations (5) and (7), we can obtain the steady state
time-average age

∆ = lim
T→∞

∆T =
1

E[Y ]

[
E[Y 2]

2
+ E[Y T ]

]
, (8)

where E[·] is the expectation operator, and Y and T are
the random variables that correspond to the interarrival time
between updates from the source that complete service and
system time of an update packet, respectively. Finally, we
note that the average update age in (8) holds under weak
assumptions on the ergodicity of the service system.

A. M/M/1 LCFS Service without Preemption (Single Source)

We will derive the expression of average age for LCFS
service without preemption with status update arrivals under
the assumption that the system sees arrivals from just one
source. The arrivals are described by a Poisson process of
rate λ and the service times are exponentially distributed.
We will see that, given a service rate µ, this system can
achieve the minimum age achieved by the system described
in Section IV, in which a new status packet generation was
designed to occur at the moment the previously generated
packet finished service. The average age ∆ is given by (8).
We need to calculate the terms E[Y ], E[Y 2] and E[Y T ].

Since in our assumed system a packet waiting in queue is
replaced by a newly generated packet, a packet i enters service
immediately or it waits for Wi for packet i − 1 to finish its
remaining time in service. Let Si be the service time of packet
i. Thus packet i has respective waiting and system times

Wi = (Si−1 − Yi)+, (9)
Ti = Si +Wi. (10)

We need
E[TiYi] = E[WiYi] + E[SiYi]. (11)

The expectation of WiYi can be calculated as

E[WiYi] = E
[
(Si−1 − Yi)+Yi

]
(12)

=

∫ ∞
s=0

fSi−1
(s)

∫ s

y=0

(s− y)yfYi|Si−1
(y|s) dy ds.

(13)

To find fYi|Si−1
(y|s), we first derive the conditional prob-

ability P{Yi ≤ y|Si−1 = s}. For y ≤ s, the event Yi ≤ y
occurs iff one or more arrivals occurs during the first y units
of service of update i− 1 but zero arrivals take place during
the remaining s− y units of service. This implies

P{Yi ≤ y|Si−1 = s} = (1− e−λy)e−λ(s−y), y ≤ s. (14)

For y > s, the event Yi > y occurs when there are no arrivals
for a time interval of length y that consists of the length s
service time of update i followed by an idle time of duration
y − s. This implies

P{Yi ≤ y|Si−1 = s} = 1− e−λy, y > s. (15)

Since fYi|Si−1
(y|s) = dP{Yi ≤ y|Si−1 = s}/dy, it follows

from (14) and (15) that

fYi|Si−1
(y|s) =

{
λe−λ(s−y) y ≤ s,
λe−λy y > s.

(16)

Using (16), and the exponential service time PDF fSi−1
(s) =

µe−µs, we can write (13) as

E[WiYi] =

∫ ∞
s=0

µe−µs
∫ s

y=0

(s− y)yλe−λ(s−y) dy ds (17)

=
1

λµ
− µ+ 2λ

λ(µ+ λ)2
. (18)

Using (16) and the memoryless service times, the pdf of Yi,
fYi(y) can be calculated as

fYi(y) =

∫ ∞
0

fYi|Si−1
(y|s)fSi−1

(s)ds

= λe−λy(1− e−µy) +
λµ

λ+ µ
e−µy. (19)

The PDF (19) can be used to obtain

E[Yi] =
1

λ
+

λ2

µ(µ+ λ)2
, (20)

E
[
Y 2
i

]
=

2

λ2
− 2λ

(µ+ λ)3
+

2λ

(µ+ λ)µ2
. (21)
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Fig. 2: A comparison of change of age (at a monitor) with server uti-
lization for M/M/1 FCFS and LCFS with and without preemption.
Service rate is µ = 1. As λ = ρ increases, age goes to 2/µ = 2 when
preemption is not allowed. It goes to 1/µ = 1 when it is allowed.

Using the independence of Yi and Si, we can write

E[TiYi] = E[WiYi] + E[Si]E[Yi]. (22)

Furthermore, when the system reaches steady state T =st Ti
and Y =st Yi. Using equations (18), (20), (21) and (22) to
make substitutions in (8), we can calculate ∆ to be

∆ =
1

µ

[
1 +

ρ3(1 + ρ)2 + ρ4 + (1 + ρ)3

ρ4(1 + ρ) + ρ(1 + ρ)3

]
. (23)

If we bombard the server with new status packets at a very
large rate, that is if λ→∞, the age ∆ is obtained to be

lim
λ→∞

∆ =
2

µ
. (24)

Specifically, in (8), the term (E[TY ]/E[Y ]) → E[S] = 1/µ
and the term (E

[
Y 2
]
/(2E[Y ])) → 1/µ, giving an age of

∆ = 2/µ. Figure 2 plots the age given by (23) for µ = 1. As is
seen in the plot, the M/M/1 LCFS system without preemption
always performs better than the M/M/1 FCFS system. This
is expected as packets under LCFS will be newer, would have
waited lesser on an average than under FCFS, when they enter
service. The age approaches 2/µ = 2 as ρ = (λ/µ) = λ
increases.

IV. MINIMUM FCFS ACHIEVABLE AGE AND LCFS

For the queue discipline of FCFS we observed in [1] that
the lower bound on the age is achievable by a FCFS system
in which the source observes the state of the packet update
queue so that a new status update is generated the very moment
the previous update finishes service. In this setting, the server
is always busy and the waiting time of every update packet
is zero. Since each delivered update packet is as young as
possible, the average status update age obtained for this system
is a lower bound to the age for any FCFS queue in which
updates are generated as a stochastic process independent of
the current state of the queue.

The lower bound was found to be

∆∗ =
1

E[S]

[
E[S2]

2
+ (E[S])2

]
, (25)

where S is the service time distribution. For a system with
memoryless service at rate µ, the minimum average age is
therefore ∆∗ = 2/µ. From equation (24) we know that
this minimum can be approached by a LCFS system without
preemption and with arrivals independent of the current status
of the queue, as the arrival rate becomes very large.

V. LCFS WITH PREEMPTION

What if every packet entered service immediately after
generation? A packet arrival preempts the packet currently in
service, if any. Packets arrive from one or more independent
sources. The new arrival and the packet being preempted may
not belong to the same source. The number of packets in such
a system is at most 1. Figure 3 shows an example progression
of age for a given source, say u, in such a system. The
packets generated by this source u at time instants ti, for
i = 1, 2, . . . , n, indexed by i, complete service. Let Yi denote
the time between such arrivals i − 1 and i. The interval Yi
begins with a busy period that ends in departure of i − 1.
The interval ends with arrival of update packet i, which will
complete a service of duration Zi.

Let Z =st Zi and Y =st Yi for any i. From Figure 3 and
using arguments similar to those in Section III, the steady state
average age ∆u of user u can be obtained as

∆u =
1

E[Y ]

[
E[Y 2]

2
+ E[Y Z]

]
. (26)

In order to calculate ∆u, let Di (see D3 in Figure 3) be the
time interval between the departure of i−1 and i. This interval
starts with an idle period and may see zero or more arrivals
of other sources, some of which may complete service, while
others are preempted. Any arrivals of the given source during
Di, other than arrival i, are preempted. Thus the interval Di

consists of one or more blocks of server being idle followed
by it being busy. Note that if the system consists of just one
source, then Di consists of just one block, which starts with the
idle period that follows the departure of i−1. This idle period
is followed by the server busy period that ends in departure
i. Figure 3 shows D3, which contains a random L number
of blocks. The figure shows block 1 and block L. A block
1 ≤ k ≤ L, say of length Bk, consists of an idle period of
length X ′k followed by a busy period of length Sk. We have

Di =
L∑
k=1

Bk =
L∑
k=1

(X ′k + Sk). (27)

Note that packet i arrives during SL and then spends Zi
amount of time in service.

We will now calculate the terms E[Y ], E[Y 2] and E[Y Z]
in the expression for ∆u (equation (26)) in terms of Di and
Zi. Consider the interval Yi, for any i. We can write (the case
for i = 3 is shown in Figure 3),

Yi = Zi−1 +Di − Zi. (28)

Further, because Z =st Zi−1 =st Zi, Y =st Yi, and D =st
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Fig. 3: Example change in age for a system using LCFS with
preemption.

Di we get

E[Y ] = E[Yi] = E[Di] = E[D]. (29)

Note that Di and Zi are dependent but are each independent
of Zi−1. Using this fact and (28) we get

E
[
Y 2
]

= E
[
D2
]

+ 2 Var[Z]− 2 Cov[DZ]. (30)

Finally, note that Yi and Zi are mutually independent. Using
this and (29) we can write

E[YiZi] = E[Yi]E[Zi] = E[Y ]E[Z] = E[D]E[Z]. (31)

Using (29), (30) and (31), equation (26) can be written as

∆u = E[Z] +
E
[
D2
]

2E[D]
+

Var[Z]− Cov[DZ]

E[D]
(32)

Next we calculate ∆u for a M/M/1 system.

A. M/M/1 and LCFS with preemption (One or more Sources)

Let’s assume that one or more independent Poisson sources
contribute status update arrivals to the system such that the
cumulative status update arrival rate is λ. Further let λu be
the rate of arrival of update packets from source u. We will
now derive ∆u.

The general expression for ∆u is given by (32). Thus we
need to calculate the terms E[Z] = E[Zi], E

[
Z2
]

= E
[
Z2
i

]
,

E[D] = E[Di], E
[
D2
]

= E
[
D2
i

]
, and E[DZ] = E[DiZi].

Note that Zi is the time arrival i, from the given source
u, spends in service. Arrival i completes service (is not
preempted) and hence is the last arrival from any source
during SL. Thus Zi is the random time interval the server
is busy after i arrives, and no new arrivals occur during it.
Note that Zi is independent of the fraction of interval SL
that had elapsed before arrival of i. The distribution of Zi is
that of the time to service completion, say Xµ, after packet
i arrives, conditioned on Xµ being smaller than the time
to the next packet arrival, say Xλ, from any source. Thus
P [Zi > z] = P [Xµ > z|Xµ < Xλ].

Since service and packet arrival times in our system are
memoryless with means 1/µ and 1/λ respectively, Xµ is
exponential with mean 1/µ and Xλ is exponential with mean
1/λ. From earlier observations we can write

P [Zi > z] =

∫∞
z
P [z < Xµ < y|Xλ = y]fXλ(y) dy

P [Xµ < Xλ]

=

∫∞
z

(e−µz − e−µy)λe−λy dy

µ/(µ+ λ)
(33)

= e−(λ+µ)z. (34)

Equation (33) is obtained by noting that Xµ and Xλ are inde-
pendent and exponentially distributed. Equation (34) implies
that Zi is an exponentially distributed random variable with

E[Zi] =
1

λ+ µ
, and E

[
Z2
i

]
=

2

(λ+ µ)2
. (35)

Now we will calculate E[Di]. From (27) we know that Di is
a random sum of random variables Bj , 1 ≤ j ≤ L. Also, Di

ends with the departure of an update packet of u. Since the
arrival rate of λ is the sum of rates of independent Poisson
sources, the probability that any block Bj ends in the departure
of status packet of source u is λu/λ. Thus, the probability that
Di consists of L = l blocks is the probability of the event that
l − 1 consecutive blocks end in departures of packets not of
user u, followed by block l that ends in a user u departure. It
is given by

P [L = l] = (1− q)l−1q, (36)

where q = λu/λ. Note that Bj = X ′j + Sj , where X ′j is an
idle period and Sj is the server busy period. During the busy
period a random number of packet arrivals may be preempted.
Note that the service rate for all packet arrivals is µ. Also the
busy period Sj is memoryless in nature and is independent of
the number of arrivals during it that get preempted and the
user whose packet departs at its end. The above observations
and given the Poisson arrivals of rate λ, we can write

E
[
X ′j
]

=
1

λ
, E[Sj ] =

1

µ
, and E[Bj ] =

1

λ
+

1

µ
. (37)

The memoryless nature of the arrival and service processes
also implies that each Bj is independent of L. Using this fact
and equations (27), (36) and (37), we can write

E[Di] = E[L]E[Bj ] =
µ+ λ

λuµ
. (38)

Now we will calculate E
[
D2
i

]
. Let the random variable B

be stochastically identical to block lengths Bj , j = 1, . . . , L.
Using arguments we used to calculate E[Di], and noting that
Bi and Bj , for i 6= j are independent random variables, we
can write

E
[
D2
i

]
= E[L]E

[
B2
]

+ E[L(L− 1)](E[B])2, (39)

Also note that the idle period X ′j and busy period Sj that
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constitute Bj are mutually independent. This allows us to write

E
[
B2
]

=
2

λ2
+

2

µ2
+

2

λµ
. (40)

Using equations (36), (37) and (40), we can write (39) as

E
[
D2
i

]
= 2

λ

λu

(
λ

λu

[
1

λ
+

1

µ

]2
− 1

λµ

)
. (41)

Finally, we calculate E[DZ] = E[DiZi]. We can write

E[DiZi|L] = E

Zi L∑
j=1

Bj |L


= E[ZiB1 + . . .+ ZiBL] (42)
= (L− 1)E[Zi]E[B] + E[ZiBL]. (43)

We argued when we calculated E[Di] that the block lengths
Bj are independent of L. This gives us (42). Also, note that
Zi is the time that the departing packet of user u spent in
service and is a part of block L. Thus Zi is independent of
the length of the L− 1 blocks that preceded block L and that
gives us (43). We can write E[ZiBL] as

E[ZiBL] = E[Zi(X
′
L + SL)]

= E[Zi]E[X ′L] + E[ZiSL]. (44)

Equation (44) can be obtained by noting that the time Zi the
departure i spends in service is independent of the idle period
X ′L that precedes the busy period SL.

Note that SL is the sum of two disjoint intervals, the first
of which ends with arrival i of user u. Let’s call it ŜL. All
arrivals during ŜL are preempted and do not complete service.
Interval Zi, during which no arrivals take place, follows ŜL.
We have SL = ŜL+Zi. Further ŜL, which is the sum of packet
inter-arrival times during SL, is independent of Zi. Using this
fact and equations (35) and (37) we can write

E[ZiSL] = E
[
Zi(Zi + ŜL)

]
= E

[
Z2
i

]
+ E[Zi]E[SL − Zi] =

λ+ 2µ

(λ+ µ)2µ
. (45)

Further using equations (35), (36), (37), (43), (44), and (45)
we can compute E[DiZi] = E[E[DiZi|L]] to be

E[DiZi] =
1

µλ

(
λ− λu
λu

)
+

1

λ(λ+ µ)
+

λ+ 2µ

(λ+ µ)2µ
. (46)

Using equations (35), (38), (41), (46), and substituting in
equation (32) we can obtain the update age of user u as

∆u =
λ

λu

(
1

λ
+

1

µ

)
. (47)

Note that if we fix (λ− λu) and let λu →∞, the age ∆u →
1/µ, that is the average update age of the source converges to
the average packet service time at the facility, as the source
rate of u increases, while contributions of other sources are
kept fixed.

Similarly, if we have N sources and λ1, λ2, . . . , λN →∞,

while λi = λj for all i and j, all sources’ updates experience
an age of N/µ each. Specifically, in (47), ∆u → N/µ.

Finally, note that if our system sees arrivals from only one
user, that is if λ = λu, the update age ∆u for the sole user
becomes

∆u =
1

λ
+

1

µ
. (48)

This age is plotted in Figure 2. As is expected, LCFS with
preemption achieves the smallest age for any given server
utilization ρ, under the assumption of independent and mem-
oryless inter-arrival and service times. As λ→∞, it achieves
half the age of when preemption is not allowed.

VI. CONCLUSIONS AND FUTURE WORK

We have looked at the problem of keeping the status updates
as new as possible at interested recipients, given a set of
physical constraints. We looked at queue-theoretic abstractions
for the queue discipline of last-come-first-served (LCFS). We
showed that the smallest age under FCFS can be achieved
by using a LCFS queue with waiting room of size 1 and the
source generating updates at a very large rate. Such systems
may further benefit by allowing a new packet to preempt the
packet currently in service. For the M/M/1 system, a 50%
reduction in minimum age was obtained. We plan to extend
the work to systems in which multiple sources may compete
with each other to minimize their update ages.
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