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Stay‑at‑home policy 
is a case of exception fallacy: 
an internet‑based ecological study
R. F. Savaris1,4,5*, G. Pumi2, J. Dalzochio3 & R. Kunst3

A recent mathematical model has suggested that staying at home did not play a dominant role in 
reducing COVID‑19 transmission. The second wave of cases in Europe, in regions that were considered 
as COVID‑19 controlled, may raise some concerns. Our objective was to assess the association 
between staying at home (%) and the reduction/increase in the number of deaths due to COVID‑
19 in several regions in the world. In this ecological study, data from www.googl e.com/covid 19/
mobil ity/, ourworldindata.org and covid.saude.gov.br were combined. Countries with > 100 deaths 
and with a Healthcare Access and Quality Index of ≥ 67 were included. Data were preprocessed and 
analyzed using the difference between number of deaths/million between 2 regions and the difference 
between the percentage of staying at home. The analysis was performed using linear regression 
with special attention to residual analysis. After preprocessing the data, 87 regions around the world 
were included, yielding 3741 pairwise comparisons for linear regression analysis. Only 63 (1.6%) 
comparisons were significant. With our results, we were not able to explain if COVID‑19 mortality is 
reduced by staying at home in ~ 98% of the comparisons after epidemiological weeks 9 to 34.

By late January, 2021, approximately 2.1 million people worldwide had died from the new coronavirus (COVID-
19)1. Wearing masks, taking personal precautions, testing for COVID-19 and social distancing have been advo-
cated for controlling the  pandemic2–4. To achieve source control and stop transmission, social distancing has 
been interpreted by many as staying at home. Such policies across multiple jurisdictions were suggested by some 
 experts5. �ese measures were supported by the World Health  Organization6,7, local  authorities8–10, and encour-
aged on social media  platforms11–13.

Some mathematical models and meta-analyses have shown a marked reduction in COVID-19  cases14–19 and 
 deaths20,21 associated with lockdown policies. Brazilian researchers have published mathematical models of 
spreading  patterns22 and suggested implementing social distancing measures and protection policies to control 
virus  transmission23. By May 5th, 2020, an early report, using the number of curfew days in 49 countries, found 
evidence that lockdown could be used to suppress the spread of COVID-1924. Measures to address the COVID-19 
pandemic with Non-Pharmacological Interventions (NPIs) were adopted a�er Brazil enacted Law No.  1397925, 
and this was followed by many states such as Rio de  Janeiro26, the Federal District of Brasília (Decree No. 40520, 
dated March 14th, 2020)27, the city of São Paulo (Decree No. 59.283, dated March 16th, 2020)28, and the State of 
Rio Grande do Sul (Decree No. 55240/2020, dated May 10th, 2020)29. It was expected that, with these actions, 
the number of deaths by COVID-19 would be reduced. Of note, the country’s most populous state, São Paulo, 
adopted rigorous quarantine measures and put them into e�ect on March 24th,  202028. Internationally, Peru 
adopted the world’s strictest  lockdown30.

Recently, Google LLC published datasets indicating changes in mobility (compared to an average baseline 
before the COVID-19 pandemic). �ese reports were created with aggregated, anonymized sets of daily and 
dynamic data at country and sub-regional levels drawn from users who had enabled the Location History setting 
on their cell phones. �ese data re�ect real-world changes in social behavior and provide information on mobility 
trends for places like grocery stores, pharmacies, parks, public transit stations, retail and recreation locations, 
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residences, and workplaces, when compared to the baseline period prior to the  pandemic31. Mobility in places 
of residence provides information about the “time spent in residences”, which we will herea�er call “staying at 
home” and use as a surrogate for measuring adherence to stay-at-home policies.

Studies using Google COVID-19 Community Mobility Reports and the daily number of new COVID-19 
cases have shown that over 7 weeks a strong correlation between staying at home and the reduction of COVID-19 
cases in 20 counties in the United  States32; COVID-19 cases decreased by 49% a�er 2 weeks of staying at  home33; 
the incidence of new cases/100,000 people was also  reduced34; social distancing policies were associated with 
reduction in COVID-19 spread in the  US35; as well as in 49 countries around the  world24. A recent report using 
Brazilian and European data has shown a correlation between NPI stringency and the spread of COVID-1936,37; 
these analyses are debatable, however, due to their short time span and the type of time series  behavior38, or for 
their use of Pearson’s correlation in the context of non-stationary time  series35. �e same statistical tools cannot 
be applied to stationary and non-stationary time series  alike39, and the latter is the case with this COVID-19 
data. A 2020 Cochrane systematic review of this topic reported that they were not completely certain about this 
evidence for several reasons. �e COVID-19 studies based their models on limited data and made di�erent 
assumptions about the  virus17; the stay-at-home variable was analyzed as a binary  indicator40; and the number 
of new cases could have been substantially  undocumented41; all which may have biased the results. A sophis-
ticated mathematical model based on a high-dimensional system of partial di�erential equations to represent 
disease spread has been  proposed42. According to this model, staying at home did not play a dominant role in 
disease transmission, but the combination of these, together with the use of face masks, hand washing, early-
case detection (PCR test), and the use of hand sanitizers for at least 50 days could have reduced the number of 
new cases. Finally, a�er 2 months, the simulations that drove the world to lockdown have been  questioned43. 
�ese studies applied relatively complex epidemiological models with unrealistic assumptions or parameters 
that were either user-chosen or not deemed to work properly. Furthermore, the e�ects in the death rates were 
directly inferred from the a�ermath of a given intervention without a control group. Finally, the temporal delay 
between the introduction of a certain intervention and the actual measurable variation in death rates was not 
properly taken into  account44,45.

�e rationale we are looking for is the association between two variables: deaths/million and the percentage 
of people who remained in their residences. Comparison, however, is di�cult due to the non-stationary nature of 
the data. To overcome these problems, we proposed a novel approach to assess the association between staying at 
home values and the reduction/increase in the number of deaths due to COVID-19 in several regions around the 
world. If the variation in the di�erence between the number of deaths/million in two countries, say A and B, and 
the variation in the di�erence of the staying at home values between A and B present similar patterns, this is due 
to an association between the two variables. In contrast, if these patterns are very di�erent, this is evidence that 
staying at home values and the number of deaths/million are not related (unless, of course, other unaccounted 
for factors are at play). In view of this, the proposed approach avoids altogether the problems enumerated above, 
allowing a new approach to the problem.

A�er more than 25 epidemiological weeks of this pandemic, verifying if staying at home had an impact on 
mortality rates is of particular interest. A PUBMED search with the terms “COVID-19” AND (Mobility) (search 
made on September 8th, 2020) yielded 246 articles; of these, 35 were relevant to mobility measures and COVID-
19, but none compared mobility reduction to mortality rates.

Results
A �owchart of the data manipulation is depicted in Fig. 1. Brie�y, Google COVID-19 Community Mobility 
Report data between February 16th and August 21st, 2020, yielded 138 separate countries and their regions. 
�e website Our World in Data provided data on 212 countries (between December 31st, 2019, and August 
26th, 2020), and the Brazilian Health Ministry website provided data on all states (n = 27) and cities (n = 5,570) 
in Brazil (February 25th to August 26th, 2020).

A�er data compilation, a total of 87 regions and countries were selected: 51 countries, 27 States in Brazil, six 
major Brazilian State capitals [Manaus, Amazonas (AM), Fortaleza, Ceará (CE), Belo Horizonte, Minas Gerais 
(MG), Rio de Janeiro, Rio de Janeiro (RJ), São Paulo, São Paulo (SP) and Porto Alegre, Rio Grande do Sul (RS)], 
and three major cities throughout the world (Tokyo, Berlin and New York) (Fig. 1).

Characteristics of these 87 regions are presented in Table 1 (further details are in Supplemental Material—
Characteristics of Regions).

Comparisons. �e restrictive analysis between controlled and not controlled areas yielded 33 appropriate 
comparisons, as shown in Table 2. Only one comparison out of 33 (3%)—state of Roraima (Brazil) versus state 
of Rondonia (Brazil)—was signi�cant (p-value = 0.04). A�er correction for residual analysis, it did not pass the 
autocorrelation test (Lagrange Multiplier test = 0.04). (Further details are in Supplemental Material—Restrictive 
Analysis).

�e global comparison yielded 3,741 combinations; from these, 184 (4.9%) had a p-value < 0.05, a�er cor-
recting for False Discovery Rate (Table S1). A�er performing the residual analysis, by testing for cointegration 
between response and covariate, normality of the residuals, presence of residual autocorrelation, homoscedastic-
ity, and functional speci�cation, only 63 (1.6%) of models passed all tests (Table S2). Closer inspection of several 
cases where the model did not pass all the tests revealed a common factor: the presence of outliers, mostly due 
to di�erences in the epidemiological week in which deaths started to be reported. A heat map showing the com-
parison between the 87 regions is presented in Fig. 2.

Characteristics of these 87 regions are presented in Table 1 (further details are in Auxiliary Supplementary 
Material—Characteristics of Regions) .
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Figure 1.  Flow chart of the data setup (further details are in Auxiliary Supplementary Material—Flow chart).
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Region/Country Density people/km2 Urban Pop (%) HDI Population Land area (  km2)

Controlled areas

Austria 109 57 0.914 9,014,380 82,409

Bahrain 2,239 89 0.838 1,709,919 760

Belgium 383 98 0.919 11,597,489 30,280

Berlin 4,118 100 0.950 3,669,491 891

Canada 4 81 0.922 37,793,085 9,093,510

Czech Republic 139 74 0.891 10,712,102 78,866

Denmark 137 88 0.930 5,795,391 42,430

Finland 18 86 0.925 5,542,073 303,890

City of Fortaleza, Ceará, Brazil 7,786 100 0.754 2,686,612 312

France 119 82 0.891 65,296,176 547,557

Germany 240 76 0.939 83,825,861 348,560

Greece 81 85 0.870 10,414,904 128,900

Hungary 107 72 0.845 9,656,450 90,530

Ireland 72 63 0.942 4,946,213 68,890

Italy 206 69 0.883 60,447,728 294,140

Japan 347 92 0.915 126,414,795 364,555

Kuwait 240 100 0.808 4,280,111 17,820

Macedonia 83 59 0.759 2,083,360 25,220

City of Manaus, Amazonas, Brazil 158 100 0.737 2,219,580 11,401

Netherlands 508 92 0.934 17,140,821 33,720

New York City 10,194 100 0.941 8,336,817 784

Norway 15 83 0.954 5,427,784 365,268

Portugal 111 66 0.850 10,191,976 91,590

City of Rio de Janeiro, RJ, Brazil 5,266 100 0.799 6,747,815 1,200

Russia 9 74 0.824 145,944,331 16,376,870

Slovenia 103 55 0.902 2,078,983 20,140

South Korea 527 82 0.906 51,276,136 97,230

Spain 94 80 0.893 46,757,635 498,800

State of Acre 4 73 0.663 894,470 164,124

State of Amazonas 2 79 0.674 4,207,714 1,559,169

State of Pará 6 68 0.646 8,602,865 1,245,871

State of Roraima 2 76 0.707 631,181 223,645

Sweden 25 88 0.937 10,109,031 410,340

Switzerland 219 74 0.946 8,664,406 39,516

Tokyo, Japan 6,158 100 0.941 13,491,000 2,191

United Kingdom 279 83 0.920 67,886,011 241,930

Not controlled areas

Argentina 17 93 0.83 45,259,525 2,736,690

Australia 3 86 0.938 25,545,026 7,682,300

Belarus 47 79 0.817 9,448,832 202,910

City of Belo Horizonte, MG, Brazil 7167 100 0.81 2,521,564 331

Bosnia and Herzegovina 64 52 0.769 3,277,541 51,000

Bulgaria 64 76 0.861 6,940,012 108,560

Chile 26 85 0.847 19,141,470 743,532

Colombia 46 80 0.761 50,965,881 1,109,500

Costa Rica 100 80 0.794 5,101,269 51,060

Croatia 73 58 0.837 4,101,200 55,960

Brasília, FD Brazil 444.66 96.62 0.824 3,055,149 5,761

Israel 400 93 0.906 9,197,590 21,640

Lebanon 667 78 0.73 6,820,558 10,230

Libya 4 78 0.708 6,885,460 1,759,540

Luxembourg 242 88 0.909 627,509 2,590

Moldova 105 43 0.711 4,032,473 32,850

Oman 16 87 0.834 5,125,566 309,500

Peru 26 79 0.759 33,041,424 1,280,000

Continued
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Comparisons. �e restrictive analysis between controlled and not controlled areas yielded 33 appropriate com-
parisons, as shown in Table 2. Only one comparison out of 33 (3%)—State of Roraima (Brazil) versus State of 
Rondonia (Brazil)—was signi�cant (p-value = 0.04). A�er correction for residual analysis, it did not pass the 
autocorrelation test (p-value of the Lagrange Multiplier test = 0.04). (Further details are in Auxiliary Supplemen-
tary Material—Restrictive Analysis).

�e global comparison yielded 3,741 combinations; from these, 184 (4.9%) had a p-value < 0.05, a�er correct-
ing for False Discovery Rate (Table S1 suppl). A�er performing the residual analysis, by testing for cointegration 
between response and covariate, normality of the residuals, presence of residual autocorrelation, homoscedastic-
ity, and functional speci�cation, only 63 (1.6%) of models passed all tests (Table S2—suppl). Closer inspection of 
several cases where the model did not pass all the tests revealed a common factor: the presence of outliers, mostly 
due to di�erences in the epidemiological week in which deaths started to be reported. A heat map showing the 
comparison between the 87 regions is presented in Fig. 2.

Discussion
We were not able to explain the variation of deaths/million in di�erent regions in the world by social isolation, 
herein analyzed as di�erences in staying at home, compared to baseline. In the restrictive and global comparisons, 
only 3% and 1.6% of the comparisons were signi�cantly di�erent, respectively. �ese �ndings are in accordance 
with those found by Klein et al.46 �ese authors explain why lockdown was the least probable cause for Sweden’s 
high death rate from COVID-1946. Likewise, Chaudry et al. made a country-level exploratory analysis, using a 
variety of socioeconomic and health-related characteristics, similar to what we have done here, and reported that 
full lockdowns and wide-spread testing were not associated with COVID-19 mortality per million  people47. Dif-
ferent from Chaudry et al., in our dataset, a�er 25 epidemiological weeks, (counting from the 9th epidemiological 

Table 1.  Characteristics of the 87 regions and countries used for comparison in the study. HDI = Human 
Development Index (the higher, the better).

Region/Country Density people/km2 Urban Pop (%) HDI Population Land area (  km2)

Poland 124 60 0.872 37,840,045 306,230

City of Porto Alegre, RS, Brazil 2837.53 100 0.805 1,488,252 495

Qatar 248 96 0.848 2,807,805 11,610

Romania 84 55 0.816 19,217,049 230,170

City of São Paulo, SP, Brazil 7398.26 100 0.805 12,325,232 1,521

Saudi Arabia 16 84 0.857 34,895,566 2,149,690

Serbia 100 56 0.799 8,731,751 87,460

State of Alagoas 112.23 73.64 0.631 3,351,543 27,843

State of Amapá 4.69 89.81 0.708 861,773 142,471

State of Bahia 24.82 72.07 0.66 14,930,634 564,760

State of Ceará 56.76 75.09 0.682 9,187,103 148,894

State of Espírito Santo 76.25 85.29 0.74 4,064,052 46,074

State of Goiás 17.65 90.29 0.735 7,113,540 340,203

State of Maranhão 19.81 63.07 0.639 7,114,598 329,642

State of Mato Grosso 3.36 81.9 0.725 3,526,220 903,207

State of Mato Grosso do Sul 6.86 85.64 0.729 2,809,394 357,146

State of Minas Gerais 33.41 83.38 0.731 21,292,666 586,521

State of Paraíba 66.7 75.37 0.658 4,039,277 56,467

State of Paraná 52.4 85.31 0.749 11,516,840 199,299

State of Pernambuco 89.63 80.15 0.673 9,616,621 98,068

State of Piauí 12.4 65.77 0.646 3,281,480 251,757

State of Rio de Janeiro 365.23 96.71 0.761 17,264,943 43,750

State of Rio Grande do Norte 59.99 77.82 0.684 3,534,165 52,810

State of Rio Grande do Sul 37.96 85.1 0.746 11,422,973 281,707

State of Rondônia 6.58 73.22 0.69 1,796,460 237,765

State of Santa Catarina 65.27 83.99 0.774 7,252,502 95,731

State of São Paulo 166.23 95.88 0.783 46,289,333 248,219

State of Sergipe 94.35 73.51 0.665 2,318,822 21,925

State of Tocantins 4.98 78.81 0.699 1,590,248 277,467

Turkey 110 76 0.807 84,477,895 769,630

Ukraine 75 69 0.75 43,691,576 579,320

United Arab Emirates 118 86 0.866 9,908,607 83,600

United States of America 36 82 0.92 331,303,997 9,834,000
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week onwards in 2020) we included regions and countries with a "plateau" and a downslope phase in their 
epidemiological curves. Our �ndings are in accordance with the dataset of daily con�rmed COVID-19 deaths/
million in the UK. Pubs, restaurants, and barbershops were open in Ireland on June 29th and masks were not 
 mandatory48; a�er more than 2 months, no spike was observed; indeed, death rates kept  falling49. Peru has been 
considered to be the most strict lockdown country in the  world30, nevertheless, by September 20th, it had the 
highest number of deaths/million50. Of note, di�erences were also observed between regions that were considered 
to be COVID-19 controlled, e.g., Sweden versus Macedonia. Possible explanations for these signi�cant di�erences 
may be related to the magnitude of deaths in these countries. A�er October 2020, when our study was published 
in a preprint server for Health Sciences, new articles were published with similar  results51–54.

Our results are di�erent from those published by Flaxman et al. �e authors applied a very complex calcula-
tion that NPIs would prevent 3.1 million deaths across 11 European  countries44. �e discrepant results can be 
explained by di�erent approaches to the data. While Flaxman et al. assumed a constant reproduction number 
(Rt) to calculate the total number of deaths, which eventually did not occur, we calculated the di�erence between 
the actual number of deaths between 2 countries/regions. �e projections published by Flaxman et al.44 have 
been disputed by other authors. Kuhbandner and Homburg described the circular logic that this study involved. 
Flaxman et al. estimated the Rt from daily deaths associated with SARS-CoV-2 using an a priori restriction that Rt 
may only change on those dates when interventions become e�ective. However, in the case of a �nite population, 
the e�ective reproduction number falls automatically and necessarily over time since the number of infections 
would otherwise  diverge55. A recent preprint report from Chin et al.56 explored the two models proposed by 
the Imperial  College44 by expanding the scope to 14 European countries from the 11 countries studied in the 

Table 2.  Comparisons using the 4-point criteria. Comparability was considered if at least 3 out of 4 of the 
following conditions were similar: a) population density, b) percentage of the urban population, c) Human 
Development Index and d) total area of the region. Similarity was considered adequate when a variation in 
conditions a), b) and c) was within 30%, while, for condition d), a variation of 50% was considered adequate 
(Further details are in Auxiliary Supplementary Material—4 point criteria). *Linear regression.

Region/country (controlled) Region/country (not controlled) Comparability p Value*

Austria Serbia 4–4 0.055

Bahrain City of Porto Alegre, RS, Brazil 4–4 0.911

Belgium Israel 4–4 0.114

Canada Australia 4–4 0.965

Czech Republic State of Alagoas 3–4 0.3501

Denmark Turkey 3–4 0.911

Finland State of Goiás 4–4 0.268

City of Fortaleza, CE, Brazil City of Belo Horizonte, MG, Brazil 4–4 0.301

France Ukraine 3–4 0.623

Germany Qatar 3–4 0.892

Greece Bulgaria 4–4 0.275

Ireland Croatia 4–4 0.711

Italy State of São Paulo 3–4 0.928

Japan Israel 3–4 0.102

Kuwait Luxembourg 3–4 0.060

City of Manaus, AM, Brazil Qatar 3–4 0.524

Macedonia Romania 3–4 0.6169

Netherlands City of Brasília, Brazil 3–4 0.459

New York City City of São Paulo, SP, Brazil 3–4 0.645

Norway Saudi Arabia 3–4 0.379

Portugal United Arab Emirates 3–4 0.248

Russia United States of America 3–4 0.557

Slovenia Poland 4–4 0.875

South Korea Lebanon 3–4 0.645

Spain State of Minas Gerais 3–4 0.853

State of Acre State of Amapá 4–4 0.803

State of Amazonas Colombia 3–4 0.638

State of Pará Libya 3–4 0.681

State of Roraima State of Rondônia 3–4 0.042

Sweden State of Bahia 4–4 0.131

Switzerland State of Espírito Santo 3–4 0.745

Tokyo, Japan City of São Paulo, SP, Brazil 4–4 0.731

United Kingdom State of Rio Grande do Sul 3–4 0.084
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original paper. �ey added a third model that considered banning public events as the only covariate. �e authors 
concluded that the claimed bene�ts of lockdown appear grossly exaggerated since inferences drawn from e�ects 
of NPIs are non-robust and highly sensitive to model  speci�cation56.

�e same explanation for the discrepancy can be applied to other publications where mathematical models 
were created to predict  outcomes14–18. Most of these studies dealt with COVID-19 cases 33,34 and not observed 
deaths. Despite its limitations, reported deaths are likely to be more reliable than new case data. Further explana-
tions for di�erent results in the literature, besides methodological aspects, could be justi�ed by the complexity of 
the virus dynamic, by its interaction with the environment, or they may be related to a seasonal pattern that was, 
by coincidence, established at the same time when infection rates started to decrease due to seasonal  dynamics57. 
It is unwise to try to explain a complex and multifactorial condition, with the inherent constant changes, using 
a single variable. An initial approach would employ a linear regression to verify the in�uence of one factor over 
an outcome. Herein we were not able to identify this association. Our study was not designed to explain why the 
stay-at-home measures do not contain the spread of the virus SARS-CoV-2. However, possible explanations that 
need further analysis may involve genetic  factors58, the increment of viral load, and transmission in households 
and in close quarters where ventilation is reduced.

�is study has a few limitations. Di�erent from the established paradigm of randomized clinical trial, this is 
an ecological study. An ecological study observes �ndings at the population level and generates  hypotheses59. 
Population-level studies play an essential part in de�ning the most important public health problems to be 
 tackled59, which is the case here. Another limitation was the use of Google Community Mobility Reports as a 
surrogate marker for staying at home. �is may underestimate the real value: for instance, if a user´s cell phone 
is switched o� while at home, the observation will be absent from the database. Furthermore, the sample does 
not represent 100% of the population. �is tool, nevertheless, has been used by other authors to demonstrate 
the e�cacy in reducing the number of new cases a�er  NPI60,61. Using di�erent methodologies for measuring 
mobility may introduce bias and would prevent comparisons between di�erent countries. �e number of deaths 
may be another issue. Death �gures may be underestimated, however, reported deaths may be more relevant than 
new case data. �e arbitrary criteria used for including countries and regions, the restrictive comparisons, and 
our de�nition of an area as COVID-19 controlled are open for criticism. Nonetheless, these arbitrary criteria 
were created a priori to the selection of the countries. With these criteria, we expected to obtain representative 
regions of the world, compare similar regions, and obtain accurate data. By using a HAQI of ≥ 67, we assumed 

Figure 2.  Heat map comparing di�erent regions with COVID-19. �e bar below represents p-values for the 
linear regression.
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that data from these countries would be accurate, reliable, and health conditions were generally good. Neverthe-
less, the global analysis of the regions ( n = 3741 comparisons) overcame any issue of the restrictive comparison. 
Indeed, the global comparison con�rmed the results found in the restrictive one; only 1.6% of the death rates 
could be explained by staying at home. Also, our e�ective sample size in all studies is only 25 epidemiological 
weeks, which is a very small sample size for a time series regression. �e small sample size and the non-stationary 
nature of COVID-19 data are challenges for statistical models, but our analysis, with 25 epidemiological weeks, 
is relatively larger than previous publications which used only 7  weeks62. A short interval of observation between 
the introduction of an NPI and the observed e�ect on death rates yields no sound conclusion, and is a case 
where the follow-up period is not long enough to capture the outcome, as seen in previous  publications44,45. �e 
e�ects of small samples in this case are related to possible large type II errors and also a�ect the consistency of 
the ordinary least square estimates. Nevertheless, given the importance of social isolation promoted by world 
 authorities63, we expected a higher incidence of signi�cant comparisons, even though it could be an ecological 
fallacy. �e low number of signi�cant associations between regions for mortality rate and the percentage of stay-
ing at home may be a case of exception fallacy, which is a generalization of individual characteristics applied at 
the group-level  characteristics64.

�ere are strengths to highlight. Inclusion criteria and the Healthcare Access and Quality Index were incor-
porated. We obtained representative regions throughout the world, including major cities from 4 di�erent con-
tinents. Special attention was given to compiling and analyzing the dataset. We also devised a tailored approach 
to deal with challenges presented by the data. To our knowledge, our modeling approach is unique in pooling 
information from multiple countries all at once using up-to-date data. Some criteria, such as population density, 
percentage of urban population, HDI, and HAQI, were established to compare similar regions. Finally, we gave 
special attention to the residual analysis in the linear regression, an absolutely essential aspect of studies using 
small samples.

In conclusion, using this methodology and current data, in ~ 98% of the comparisons using 87 di�erent 
regions of the world we found no evidence that the number of deaths/million is reduced by staying at home. 
Regional di�erences in treatment methods and the natural course of the virus may also be major factors in this 
pandemic, and further studies are necessary to better understand it.

Methods
Rationale and approach for analyzing the time series data. �e proposed approach was tailored to 
present a way to evaluate the in�uence of time spent at home and the number of deaths between two countries/
regions while avoiding common problems of other models presented in the literature. We focused on detect-
ing the variation of the di�erences between the number of deaths and how much people followed stay-at-home 
orders in two regions in each epidemiological week.

For instance, let us consider two similar regions we shall call ‘Stay In county’ and ‘Go Out county’. Both 
regions started with the same number of cases. A�er the �rst 1000 cases were recorded, Stay In county declared 
that all people should stay at home, while Go Out county allowed people to circulate freely. A�er a few epide-
miological weeks, we examine the data collected on the number of deaths in both counties and how much time 
people stayed at home by using geolocation so�ware. If the di�erence between the number of deaths in Stay 
In county and Go Out county (variable A) is a�ected by the di�erence of the percentage of time people stayed 
at home in these two areas (variable B), then we can consider that the di�erence in the number of deaths by 
COVID-19 is in�uenced by the di�erence in the percentage of time people stayed at home. Both e�ects can be 
detected using linear regression and careful examination of the problem.

Time series on COVID-19 mortality (deaths/millions) display a non-stationary pattern. �e daily data present 
a very distinct seasonal behavior on the weekends, with valleys on Saturdays and Sundays followed by peaks on 
Mondays (Figure S1). To account for seasonality, one may introduce dummy variables for Saturdays, Sundays, 
and Mondays, regress the number of deaths in these dummy variables, and then analyze the residuals. How-
ever, in most cases, the residuals are still non-stationary, and special treatment would be required in each case. 
Although this approach may be feasible for a few series, we are interested in analyzing hundreds of time series 
from di�erent countries and regions. Hence, we need a more e�cient way to deal with this amount of data. �e 
covariates present another issue in regressing the daily time series of deaths/staying at home. �e covariates are 
typically correlated with error terms due to public policies adopted by regions/countries. Mechanisms control-
ling social isolation are intrinsically related to the number of deaths/cases in each location. An increase in the 
death rate may cause more stringent policies to be adopted, which increases the percentage of people staying 
at home. �is change causes an imbalance between the observed number of deaths and staying at home levels. 
In a regression model, this discrepancy is accounted for in the error term. Hence, the error term will change in 
accordance with staying at home levels.

Data aggregation by epidemiological week is a plausible alternative (Figure S2). In this way, arti�cial seasonal-
ity, imposed by work scheduled during weekends and the e�ect of governmental control over social interaction, 
in a regression framework, are mitigated. �e drawback is that the sample size is signi�cantly reduced from 
187 days (Figure S1) to 26 epidemiological weeks (Figure S2).

Aggregation by epidemiological week, however, still yields non-stationary time series in most cases. To 
overcome this problem, we di�erentiated each time series. Recall that if Ztdenotes the number of deaths in the 
t-th epidemiological week, we de�ne the �rst di�erence of Zt as

Intuitively, �Zt denotes the variation of deaths between weeks t  and t-1, also known as the �ux of deaths. 
�e same is valid for the staying at home time series. �is simple operation yielded, in most cases, stationary 

�Zt = Zt − Zt−1
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time series, veri�ed with the so-called Phillips-Perron stationarity  test65. In the few cases where the resulting 
time series did not reject the null hypothesis of non-stationarity (technically, the existence of a unitary root, in 
the time series characteristic polynomial), this was due to the presence of one or two outliers combined with the 
small sample size. �ese outliers were usually related to the very low incidence of COVID-19 deaths by the 9th 
epidemiological week when paired with countries with a signi�cant number of deaths in that same week, thus 
resulting in an outlier which cannot be accounted for by linear regression.

To investigate pairwise behavior, we propose a method to assess the relationship between deaths and stay-
ing at home data between various countries and regions. For two countries/regions, say A and B, let YA

t  and YB
t

denote the number of deaths per million at epidemiological week t  for country A and B respectively, while XA
t  

and XB
t  denote the staying at home at epidemiological week t  for A and B, respectively. �e idea is to regress the 

di�erence �Y
A
t − �Y

B
t = �

(

Y
A
t − Y

B
t

)

 on �X
A
t − �X

B
t = �

(

X
A
t − X

B
t

)

 . Formally, we perform the regression

where β0 and β1 are unknown coe�cients and εt denotes an error term. Estimation of β0 and β1 is carried out 
through ordinary least squares. �e interpretation of the model is important. We are regressing the di�erence in 
the variation of deaths between locations A and B into the di�erence in the variation of staying at home values 
between the same location.

If the number of deaths in locations A and B have a similar functional behavior over time, then YA
t − Y

B
t  tends 

to be near-constant, and �
(

Y
A
t − Y

B
t

)

 tends to oscillate around zero. If the same applies to �
(

X
A
t − X

B
t

)

 , then 
we expect β1  = 0 ; consequently, we conclude that the behavior, between A and B, is similar and the number of 
deaths and the percentage of staying at home are associated in these regions. �e other non-spurious situation 
implying β1  = 0 occurs when the variation in the number of deaths in locations A and B increases/decreases over 
time following a certain pattern, while the variation in the percentage of “staying at home” values also increases/
decreases following the same pattern (apart from the direction). In this situation, we found di�erent epidemio-
logical patterns as in the variation in the number of deaths, and in the staying at home values, in locations A and 
B were on opposite trends. However, if these patterns were similar (proportional), this would be captured in the 
di�erence and, as a consequence, in the regression. �is means that the di�erent trends were near proportional 
and, hence, the variation in staying at home is associated with the variation in deaths.

In the section below “De�nition of areas with and without controlled cases of COVID-19”, each country/
region was classi�ed into a binary class: either controlled or not controlled areas for COVID-19. �e proposed 
method allows for insights regarding the association of the number of deaths and staying at home levels between 
countries/regions with similar/di�erent degrees of COVID-19 control. Assumptions related to consistency, e�-
ciency, and asymptotic normality of the ordinary least squares, in the context of time series regression, can 
be found  in66. Since we are comparing many time series, to avoid any problem with spurious regression, we 
performed a cointegration test between the response and covariates. In this context, this is equivalent to test-
ing the stationarity of εt , which was done by performing the Phillips-Perron test. Residual analysis is of utmost 
importance in linear regression, especially in the context of small samples. �e steps and tests performed in the 
residual analysis are described in the statistical analysis section.

Study design. �is is an ecological study using data available on the Internet.

Setting—data collection on mobility. Google COVID-19 Community Mobility  Reports31 provided 
data on mobility from 138  countries67,68 and regions between February 15th and August 21st, 2020. Data regard-
ing the average times spent at home was generated in comparison to the baseline. Baseline was considered to be 
the median value from between January 3rd and February 6th, 2020. Data obtained between February 15th and 
August 21th 2020 was divided into epidemiological weeks (epi-weeks) and the mean percentage of time spent 
staying at home per week was obtained.

Data collection on mortality. Numbers of daily deaths from selected regions were obtained from open 
 databases67,68 on August 27st, 2020.

Inclusion criteria for analysis. Only regions with mobility data and with more than 100 deaths, by August 
26th, 2020, were included in this study. �is criteria has been chosen since the majority of epidemiological 
studies start when 100 cases are  reached69,70. For data quality, only countries with Healthcare Access and Qual-
ity Index (HAQI) of ≥  6771 were included. �e HAQI has been divided into 10 subgroups. �e median class 
is 63.4–69.7. �e average in this median class is 66.55 (rounding up to 67). By choosing a HAQI of ≥ 67, we 
assumed that data from these countries were reliable and healthcare was of high quality. For Brazilian regions, 
a HAQI was substituted for the Human Development Index (HDI), and those with < 0.549 (low) were excluded.

�ree major cities with > 100 deaths and well-established results (Tokyo, Japan; Berlin, Germany, and New 
York, USA) were selected as controlled areas.

Dataset of COVID‑19 cases and associated data to reduce bias. A�er inclusion of the countries/
regions, further data were obtained to reduce comparison bias, including population density (people/km2), 
percentage of the urban population, HDI, and the total area of the region in square kilometers. All data were 
obtained from open  databases72–74.

�
(
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(
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Definition of areas with and without controlled cases of COVID‑19. Regions were classi�ed as 
controlled for cases of COVID-19 if they present at least 2 out of the 3 following conditions: a) type of transmis-
sion classi�ed as “clusters of cases”, b) a downward curve of newly reported deaths in the last 7 days, and c) a �at 
curve in the cumulative total number of deaths in the last 7 days (variation of 5%) according to the World Health 
 Organization75. An example is shown in Figure S3.

Data from the cities (Tokyo, Berlin, New York, Fortaleza, Belo Horizonte, Manaus, Rio de Janeiro, São Paulo, 
and Porto Alegre) were obtained from o�cial government  sites76–79. Tokyo, Berlin and New York were chosen 
for having controlled the COVID-19 dissemination, for representing 3 di�erent continents, and for similarity to 
major Brazilian cities (Fortaleza, Belo Horizonte, Manaus, Rio de Janeiro, São Paulo, and Porto Alegre).

Merged database. Di�erent databases from the sites mentioned above were merged using Microso� Excel 
Power Query (Microso� O�ce 2010 for Windows Version 14.0.7232.5000) and manually inspected for consist-
ency.

Processing the data—cleaning. Data collected from multiple regions were processed using Python 3.7.3 
in the Jupyter  Notebook80 environment through the use of the Python Data Analysis Library in Google Colab 
 Research81. Details of preprocessing are described in Python script (Supplement). Brie�y, a�er taking the sum 
of deaths/million per epi-week, and the average of the variable “staying at home” per epi-week, non-stationary 
patterns were mitigated by subtracting  weekt by  weekt-1.

Time series data setup and variables. Details regarding the pre-processing and methodological details 
were presented on the Approach for analyzing the time series data section. Our variables were the di�erence in 
the variation of deaths between locations A and B (dependent variable—outcome), and the di�erence in the 
variation of staying at home values between the same location (independent variable).

Comparison between areas. Direct comparison, between regions with and without controlled COVID-
19 cases, was considered in two scenarios: 1) Restrictive if, at least 3 out of 4 of the following conditions were 
similar: a) population density, b) percentage of the urban population, c) HDI and d) total area of the region. Sim-
ilarity was considered adequate when a variation in conditions a), b), and c) was within 30%, while, for condition 
d), a variation of 50% was considered adequate. 2) Global: all regions and countries were compared to each other.

�e restrictive comparison used parameters related to how close people may have made physical contact. �e 
major route of transmission for COVID-19 is from person-to-person via respiratory droplets and direct personal 
and physical contact within a community  setting82,83.

Statistical analysis. A�er data preprocessing, the association between the number of deaths and staying at 
home was veri�ed using a linear regression approach. Data were analyzed using the Python model statsmodels.
api v0.12.0 (statsmodels.regression.linear_model.OLS; statsmodels.org), and double-checked using R version 
3.6.184. False Discovery Rate proposed by Benjamini-Hochberg (FDR-BH) was used for multiple  testing85.

We checked the residuals for heteroskedasticity using White’s  test86; for the presence of autocorrelation using 
the Lagrange Multiplier  test87; for normality using the Shapiro–Wilk’s normality  test88; and for functional speci-
�cation using the Ramsey’s RESET  test89. All tests were performed with a 5% signi�cance level and the analysis 
was performed with R version 3.6.184.

Data from 30 restrictive comparisons were manually inspected and checked a third time using Microso� Excel 
(Microso�). A heat map was designed using GraphPad Prism version 8.4.3 for Mac (GraphPad So�ware, San 
Diego, California, USA). Graphs plotting the number of deaths/million and staying at home over epidemiological 
weeks were obtained from Google  Sheets90.

Data Availability
�e Python and R scripts are available at https ://gist.githu b.com/rsava ris66 /eccfc 6caf4 c9578 d676c 134fa c74d3 fe. 
Auxiliary Supplementary Material data is available at this link. (https ://docs.googl e.com/sprea dshee ts/d/1itCP 
JLWCX ORYDT xBY0M 21VJf 7PEyS 4B0K0 0lOoN pqrA/edit?usp=shari ng).
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