
Staying FIT: Efficient Load Shedding Techniques for
Distributed Stream Processing

Nesime Tatbul
ETH Zurich

tatbul@inf.ethz.ch

Uğur Çetintemel
Brown University

ugur@cs.brown.edu

Stan Zdonik
Brown University

sbz@cs.brown.edu

ABSTRACT

In distributed stream processing environments, large numbers of

continuous queries are distributed onto multiple servers. When one

or more of these servers become overloaded due to bursty data

arrival, excessive load needs to be shed in order to preserve low

latency for the query results. Because of the load dependencies

among the servers, load shedding decisions on these servers must

be well-coordinated to achieve end-to-end control on the output

quality. In this paper, we model the distributed load shedding prob-

lem as a linear optimization problem, for which we propose two al-

ternative solution approaches: a solver-based centralized approach,

and a distributed approach based onmetadata aggregation and prop-

agation, whose centralized implementation is also available. Both

of our solutions are based on generating a series of load shedding

plans in advance, to be used under certain input load conditions.

We have implemented our techniques as part of the Borealis dis-

tributed stream processing system. We present experimental re-

sults from our prototype implementation showing the performance

of these techniques under different input and query workloads.

1. INTRODUCTION
Distributed stream processing systems (e.g., [3, 5, 16, 19]) have

recently gained importance because distribution is the principle way

that we can scale our systems to cope with very high stream rates.

Distribution is a crucial issue in applications such as Internet-scale

dissemination, in which content from many sources is aggregated

and distributed to an audience of many millions of listeners. Also,

many streaming applications are naturally distributed, as in the ex-

ample of distributed sensor networks, where the processing ele-

ments are the sensors themselves.

In distributed stream processing systems, large numbers of con-

tinuous queries are distributed onto multiple servers. These queries

are essentially dataflow diagrams in the form of a collection of op-

erator chains that receive and process continuous streams of data

from external push-based data sources. Real-time monitoring ap-

plications are especially well-suited to this kind of systems. In this

domain, providing low-latency, high-throughput answers to queries

is highly important.

Data streams can arrive in bursts which can have a negative ef-

fect on result quality (e.g., throughput, latency). Provisioning the

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
theVLDBcopyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23­28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978­1­59593­649­3/07/09.

system for worst-case load is in general not economically sensible.

On the other hand, bursts in data rates may create bottlenecks at

some points along the server chain. Bottlenecks may arise due to

excessive demand on processing power at the servers, or bandwidth

shortage at the shared physical network that connects these servers.

Bottlenecks slow down processing and network transmission, and

cause delayed outputs.

Load management has been an important challenge for large-

scale dynamic systems in which input rates can unexpectedly in-

crease to drive the system into overload. At the same time, some

measure of quality of service must be maintained. Common load

management techniques include adaptive load distribution, admis-

sion control, and load shedding. The choice of a specific technique

depends on the characteristics of the workload, resource allocation

policies, and application requirements.

This paper studies load shedding. Load shedding aims at drop-

ping tuples at certain points along the server chain to reduce load.

Unlike TCP congestion control, there are no retransmissions and

dropped tuples are lost forever. This will have a negative effect on

the quality of the results delivered at the query outputs. The main

goal is to minimize the quality degradation.

Load shedding techniques have been proposed for data stream

processing systems for the single-server case (e.g., [7, 17, 22]). In

distributed stream processing systems, however, each server node

acts like a workload generator for its downstream neighbors. There-

fore, resource management decisions at any server node will affect

the characteristics of the workload received by its children. Be-

cause of this load dependency between nodes, a given node must

figure out the effect of its load shedding actions on the load levels

of its descendant nodes. Load shedding actions at all nodes along a

given server chain will collectively determine the quality degrada-

tion at the outputs. This makes the problem more challenging than

its centralized counterpart.

1.1 Motivating Example
Node BNode A

cost = 1

cost = 2
sel = 1.0

cost = 3

cost = 1
sel = 1.0

sel = 1.0 sel = 1.0
r1 = 1

r2 = 1

Figure 1: Motivating example

Consider a simple query network with two queries that are dis-

tributed onto two processing nodes, A and B (Figure 1). Each small

box represents a subquery with a certain cost and selectivity. Cost

159

Plan Reduced rates at A A.load A.throughput B.load B.throughput Result

0 1, 1 3 1/3, 1/3 4/3 1/4, 1/4 originally, both nodes are overloaded

1 1/3, 1/3 1 1/3, 1/3 4/3 1/4, 1/4 B is still overloaded

2 1, 0 1 1, 0 3 1/3, 0 optimal plan for A, but increases B.load

3 0, 1/2 1 0, 1/2 1/2 0, 1/2 both nodes ok, but not optimal

4 1/5, 2/5 1 1/5, 2/5 1 1/5, 2/5 optimal

Table 1: Alternate load shedding plans for node A of Figure 1

reflects the average CPU time that it takes for one tuple to be pro-

cessed by the subquery, and selectivity represents the average ratio

of the number of output tuples to the number of input tuples. Both

inputs arrive at the rate of 1 tuple per second. Potentially each node

can reduce load at its inputs by dropping tuples to avoid overload.

Let’s consider node A. Table 1 shows various ways that A can re-

duce its input rates and the consequences of this in terms of the load

at both A and B, as well as the throughput observed at the query

outputs (Note that we are assuming a fair scheduler that allocates

CPU cycles among the subqueries in a round-robin fashion). In all

of these plans, A can reduce its load to the capacity limit. How-

ever, the effect of each plan on B can be very different. In plan 1,

B stays at the same overload level. In plan 2, B’s load increases to

more than twice its original load. In plan 3, B’s overload problem

is also resolved, but throughput is low. There is a better plan which

removes overload from both A and B, while delivering the highest

total throughput (plan 4). However, node A can only implement

this plan if it knows about the load constraints of B. From A’s point

of view, the best local plan is plan 2. This simple example clearly

shows that nodes must coordinate in their load shedding decisions

to be able to deliver high-quality query results.

1.2 Contributions and Outline
A load shedder inserts drop operators on selected arcs in order

to reduce the load to a manageable level. A drop operator sim-

ply eliminates a given fraction of its inputs probabilistically. We

call a set of drop operators with given drop levels at specific arcs

a load shedding plan. In practice, a load shedder cannot spend

large amount of time determining the best plan at runtime, when

the system is already under duress. Instead, in this work, we run

an off-line algorithm to build a set of plans in advance that can be

quickly invoked for different combinations of input load.

For the distributed case, the simplest way to run the off-line al-

gorithm is to have each node send its requirements to a central site

at which the coordinated load shedding plans are built. As we shall

see, this allows us to formalize distributed load shedding as a linear

optimization problem which can be solved with a standard solver.

Unfortunately, the centralized approach does not scale as the

number of nodes grows large. Moreover, since the solver can take a

long time to run, it is not very useful as a tool for replanning when

the environment is highly dynamic. A dynamic environment is one

in which the selectivities, processing costs, and network topology

are likely to change often. In these cases, the previously computed

load shedding plans will likely not be desirable, therefore, a new

set of plans must be constructed. For these large and potentially dy-

namic environments, we describe a distributed algorithm that does

not require the high-level of communication that the centralized ap-

proach demands. We also show that this distributed algorithm can

incrementally compute changes to the previous plan in response to

local changes in the environment, thereby making it more respon-

sive than a centralized version.

This paper is organized as follows: In Section 2, we first briefly

describe our system model and the underlying assumptions that we

make. Then, in Section 3, we present a precise formulation of the

distributed load shedding problem. In Section 4, we discuss the

architectural aspects of our solution to this problem. Our solver-

based centralized approach is detailed in Section 5, while Section

6 provides the details for our distributed solution alternative. In

section 8, we present experimental results that show the efficiency

of our techniques. We discuss related work in Section 9, and finally

conclude with a discussion of future directions in Section 10.

2. MODELS AND ASSUMPTIONS
We study the distributed load shedding problem in the context

of our Borealis distributed stream processing system [3]. Borealis

accepts a collection of continuous queries, represents them as one

large network of query operators, and distributes the processing of

these queries across multiple server nodes. Each node runs an in-

stance of the Aurora query processing engine [4] that is responsible

for executing its share of the global query network 1.

Data streams are modeled as append-only sequences of relational

tuples. These data streams are run through the queries which are

composed of our well-defined set of operators, including Filter,

Map, Aggregate, Join, and Union [4]. Additionally, we have sev-

eral types of load reducing drop operators that we use for load shed-

ding. In this paper, we focus on drops with probabilistic behavior,

namely, Random Drop and Window Drop. Random Drop discards

individual tuples based on a drop probability, whereas Window

Drop does so in units of whole windows. Window Drop is specif-

ically used for windowed aggregation queries to maintain subset

results [23].

In line with our previous work, we adopt a subset-based approx-

imation model [22, 23]. In other words, the output resulting from

a load shedding plan only includes tuples from the original query

answer. Additionally, we assume that the quality metric (a.k.a.,

quality score) to maximize is the total weighted query throughput.

Throughput-based metrics for scheduling and load shedding have

also been commonly used by previous work (e.g., [5, 6]). We al-

low different weights to be assigned to different queries to enable

prioritization and to deal with the potential fairness problem.

For the purposes of this paper, we treat the query operators as

black boxes with certain cost and selectivity statistics, which are

obtained by observing the running system over time. However, we

would like to note here that additional techniques are required to

handle complex operators such as Aggregate and Join. We han-

dle aggregation queries using our Window Drop approach [23],

which directly complements this work by making sure that any

drops placed upstream from aggregates are Window Drops rather

than Random Drops. For join queries, we adopt the same cost

model earlier proposed by Ayad and Naughton [6]. This work also

uses Random Drops for load shedding on join queries with count-

based windows, and tries to maximize the query throughput, but for

the single server case.

Bottlenecks in a distributed setting may arise both due to the lack

of required processing power and also due to bandwidth limitations.

In this paper, we limit our scope to the CPU problem. Finally, in

this paper, we mainly focus on tree-based server topologies, while

1
To clarify our terminology, a query network is essentially a horizontal
query execution plan on which tuples flow from parents to children.

160

Node 2 Node N
drop location

Node 1

r1

c2,D cN,D

sN,1

sN,D

c1,1
s1,1

s1,D s2,D

c2,1
s2,1

cN,1

rD

x1

xD

s2

1

s2

D

sN
1

sN
D

s1

sD

p1

pD
c1,D

ζ1 ζ2 ζN

rj rate on arc j

xj drop selectivity on arc j

ci,j cost of processing tuples at node i coming from arc j

si,j selectivity of processing tuples at node i coming from arc j

si
j
partial selectivity of processing tuples coming from arc j
down to node i

sj
total selectivity of processing tuples coming from arc j
down to the outputs

pj weight of output j

ζi fraction of the dedicated CPU capacity at node i

Figure 2: Linear query diagram and notation

the query network itself can have both operator splits and merges.

3. THE DISTRIBUTED LOAD SHEDDING

PROBLEM

3.1 Basic Formulation
We define the distributed load shedding problem as a linear op-

timization problem as follows. Consider a query diagram as shown

in Figure 2, that spans N nodes, each with a fixed dedicated CPU
capacity ζi, 0 < i ≤ N . Assume that we designate D arcs on this
diagram as drop locations where drop operators can be inserted.

Note that in a linear query diagram without operator splits, drop

locations are the input arcs [22]. For a drop location dj on arc j,
0 < j ≤ D, let ci,j represent the total CPU time required at node i,
to process one tuple that is coming from arc j, and similarly, let si,j

represent the overall selectivity of the processing that is performed

at node i on tuples that are coming from arc j. Assume that rj rep-

resents the data rate on arc j, and sj represents the overall selectiv-

ity of the query from arc j all the way down to the query outputs
(i.e., sj =

QN

i=1
si,j), where each output has a throughput weight

of pj . Lastly, we denote the partial selectivity from arc j down to
the inputs of node i by si

j (i.e., for 1 < n ≤ N, sn
j =

Qn−1

i=1
si,j ,

and for n = 1, s1

j = 1.0).
Our goal is to find xj , i.e., the fraction of tuples to be kept at

drop location dj (or drop selectivity at dj), such that for all nodes

i, 0 < i ≤ N :
D

X

j=1

rj × xj × s
i
j × ci,j ≤ ζi (1)

0 ≤ xj ≤ 1 (2)

D
X

j=1

rj × xj × sj × pj is maximized. (3)

This optimization problem can be stated as a linear program (LP)

as follows. We have a set ofN linear constraints on processing load
of the nodes, which we call load constraints, as given by (1). We

have a set of D variables xi on drop selectivities, which can range

in 0 ≤ xi ≤ 1, as given by (2). Our goal is to find assignments to
xi to maximize a linear objective function that represents the total

weighted throughput as given by (3), subject to the set of constraints

(i.e., (1) and (2)).

Next, we will extend this basic formulation to query diagrams

with operator splits and operator merges. We will show the formu-

lation for these cases on representative examples. Generalization

from these examples to any given query network topology is rela-

tively straightforward.

3.2 Operator Splits
We have operator splits in a query network when output from

an operator fans out to multiple downstream operators which fur-

ther lead to separate query outputs. Note that if split branches

merge downstream in the diagram, we do not consider this as a

split case. Split is an interesting case because shedding load up-

stream or downstream from a split may result in different quality

degradation at the outputs due to sharing. Therefore, all output arcs

of a split constitute potential drop locations [22].

We illustrate the problem formulation for operator splits on a

single-node example with two levels of splits shown in Figure 3.

Let xi denote the drop selectivity on a particular drop location, and

ci and si denote the processing cost and selectivity of a given oper-

ator, respectively. The variables shown with capital letters denote

the total drop selectivity at various points in the query network. We

can formulate the optimization problem for our example as follows:

r(x1c1 + As1c2 + Bs1s2c3 + Cs1s2c4 + Ds1c5 + Es1c6) ≤ ζ (4)

0 ≤ x1 ≤ 1 (5)

0 ≤ A, D, E ≤ x1 (6)

0 ≤ B, C ≤ A (7)

{r(Bs1s2s3p1 + Cs1s2s4p2 + Ds1s5p3 + Es1s6p4)} is maximized. (8)

We create a variable for each path prefix (e.g., x1, A = x1x2,

and B = x1x2x3), which we call prefix variables. We express

our load constraints in terms of the prefix variables, as in (4). We

define constraints on each prefix variable of length k such that
its value is constrained between 0 and the values of its matching

prefix variables of length k − 1 (e.g., 0 ≤ x1x2x3 ≤ x1x2).

We express our objective function in terms of the longest prefix

variables on each path (e.g., x1x2x3, x1x2x4, x1x5, and x1x6).

Then we solve our problem for the prefix variables. Finally, we

plug in the values of the prefix variables to obtain values of the

original variables. In our example, we would solve for the pre-

fix variables {x1, A, B, C, D, E} to obtain the original variables
{x1, x2, x3, x4, x5, x6} as follows: x1 = x1, x2 = A

x1
, x3 =

B
x1x2

, x4 = C
x1x2

, x5 = D
x1

, x5 = E
x1
.

3.3 Operator Merges
Two streams merge on a query diagram via binary operators. We

have two binary operators: Union and Join. Although these two

operators have very different semantics, they require a common

Prefix Variables:
s1

s2
x2

x5

x6

x3

x4

c2

c5

s5

c6

s6

c3

s3

c4

s4

p2

p3

p4

x1 c1

p1

C = x1 ∗ x2 ∗ x4

B = x1 ∗ x2 ∗ x3

A = x1 ∗ x2

E = x1 ∗ x6

D = x1 ∗ x5

A

D

E

B

C

r

Figure 3: Two levels of operator splits

161

Join/Union
r1

r2

s1

s2

x1

w1

w2
x2

pc4

s4

c3

s3

c1

c2

Figure 4: Merging two streams via Join or Union

formulation capturing the fact that the output rate of a binary oper-

ator is the sum of contribution from both input branches, and that

we may want to shed different amounts from each input branch

depending on its relative contribution to the output as well as its

relative contribution to the processing load.

Consider the example query segment in Figure 4. Let ci denote

the operator costs, si denote the operator selectivities, and wi de-

note the average window sizes (in tuple counts) for the inputs. For

Union, w1 = w2 = 1 and s3 = 1.0. For Join, we follow the same
cost model as in related work [6]. In this model, join selectivity

is the percentage of tuples satisfying the join predicate relative to

a cartesian product, and it is symmetric relative to the two inputs.

Thus, in Figure 4, each tuple from the top branch of the Join joins

withw2 ∗s3 tuples and produces r1 ∗x1 ∗s1 ∗w2 ∗s3 output tuples

per time unit (and similar for the bottom branch). Furthermore, the

cost of join for each arriving tuple on the top branch includes the

cost of inserting this tuple into window w1, invalidating any expir-

ing tuples fromw1, and probingw2 for matching tuples. We use an

average cost c3 to represent these steps for both sides of the join.

Based on this cost model, we formulate the optimization problem

for the merge scenario shown in Figure 4 as follows:

r1x1(c1 + s1c3 + s1w2s3c4) + r2x2(c2 + s2c3 + s2w1s3c4) ≤ ζ (9)

0 ≤ x1, x2 ≤ 1 (10)

{r1x1(s1w2s3s4)p + r2x2(s2w1s3s4)p} is maximized. (11)

4. ARCHITECTURAL OVERVIEW
In the previous section, we showed how to formulate one in-

stance of the distributed load shedding problem for a specific obser-

vation of the input rates. When we solve such a problem instance,

we obtain a load shedding plan. This plan essentially shows where

drop operators should be inserted into the query network, and what

the drop selectivity should be for each of them. We will describe

how we generate a load shedding plan in Sections 5 and 6. In this

section, we discuss the architectural aspects of our solution.

During the course of system execution, input rates and hence

the load levels on the servers will vary. Therefore, there is a need

to continuously monitor the load in the system and react to it using

the appropriate load shedding plan. We identified four fundamental

phases in the distributed load shedding process:

1. Advance Planning: In this phase, the system prepares itself

for potential overload conditions based on available metadata about

the system. The idea is to do as much of the work in advance

as possible so that the system can react to overload fast and in a

light-weight manner. More specifically, in this phase, we generate

a series of load shedding plans together with an indication of the

conditions under which each of these plans should be used.

2. Load Monitoring: As the system runs, we continuously watch

the system load by measuring the input rates and estimating the

load level on each server accordingly.

3. Plan Selection: If an important change in system load is de-

tected during the monitoring phase, then we decide what action to

take. This is achieved by selecting the right load shedding plan

from the many computed during Advance Planning.

Phases Centralized Distributed

Advance Planning coordinator all

Load Monitoring coordinator all

Plan Selection coordinator all

Plan Implementation all all

Table 2: Four phases of distributed load shedding

4. Plan Implementation: In this final phase, the selected plan is

put into effect by inserting drops into the query network.

In a distributed stream processing environment, the Plan Im-

plementation phase will always be performed at multiple servers

in a distributed fashion. The first three phases however, can be

performed in various ways. In this work, we study two general

approaches, based on an architectural distinction regarding where

these three phases should be performed:

Centralized Approach. In the centralized approach, Advance Plan-

ning, Load Monitoring, and Plan Selection are all performed at one

central server. One of the servers in the system is designated as

the “coordinator node”. It contacts all the other participant nodes

in order to collect their local system catalogs and statistics. By do-

ing so, it obtains the global query network topology and the global

statistics about various run-time elements in the system (e.g., oper-

ator cost and selectivity). Based on the collected global metadata,

the coordinator generates a series of load shedding plans for other

servers to apply under certain overload conditions. These plans are

then uploaded onto the associated servers together with their unique

plan id’s. Once the plans are precomputed and uploaded onto the

nodes, the coordinator starts monitoring the input load. If an over-

load situation is detected, the coordinator selects the best plan to

apply and sends the corresponding plan id to the other servers in

order to trigger the distributed implementation of the selected plan.

Distributed Approach. In the distributed approach, all four phases

of distributed load shedding are performed at all of the participat-

ing nodes in a coordinated fashion. There is no single point of

control. Instead, the collective actions of all the servers result in a

globally effective load shedding plan. In this paper, we propose a

distributed approach in which the needed coordination is achieved

through metadata aggregation and propagation between neighbor-

ing nodes. More specifically, each node maintains a Feasible Input

Table (FIT) as its metadata. This table shows what makes a feasible

input load for a node and its server subtree. Using its FIT, a node

can shed load for itself and for its descendant nodes.

Table 2 summarizes the four phases of the distributed load shed-

ding process and where each phase takes place for the two general

classes of approaches. In this paper, we focus on two specific ap-

proaches that fall under these two classes: (i) a solver-based ap-

proach, and (ii) a FIT-based approach. The solver-based approach

is fundamentally a centralized approach that requires a coordina-

tor, while the FIT-based approach is inherently designed as a dis-

tributed approach, but its centralized implementation is also avail-

able. Next, we present these two alternative approaches in detail.

5. ADVANCE PLANNING WITH A SOLVER
As shown in Section 3, the distributed load shedding problem

can be formulated as a linear optimization problem. Our solver-

based advance planning technique is based on constructing this

formulation at a central coordinator and solving it using an off-

the-shelf LP solver tool [1].

Given a global query network with statistics on its operator costs

and selectivities, the coordinator node first derives the necessary

metadata described in Section 3 (including drop locations, path

prefixes, partial and total path selectivities, load and rate factors).

162

Given this metadata, the coordinator can formulate a standard linear

program for a specific observation of the input rates as illustrated

in Section 3. For each such LP, the coordinator calls the simplex

method of the GNU Linear Programming Kit (GLPK) [1]. The

solution produced by GLPK consists of value assignments to all

the prefix variables and the value of the objective function. From

the prefix variables, we can obtain value assignments to all origi-

nal variables, each representing the drop selectivity on a particular

drop location on the global query network.

The final step is to prepare the local load shedding plans. We go

through the list of all drop locations. Each such location resides

on a specific server node. For each drop location d on node i, we
create a drop operator with its drop rate determined by the drop

selectivity assignment from the LP solution, and add that operator

to the load shedding plan of node i. As a result, we obtain one load
shedding plan for each node.

5.1 Region­Quadtree­based Division and
Indexing of the Input Rate Space

Given an infeasible (i.e. overloaded) point in the multi-dimension-

al input rate space, we can generate an optimal plan using the LP

solver. However, as part of the Advance Planning phase, we need

to generate not only one, but a series of load shedding plans to be

able to handle any potential overload condition. In order words,

we must map each infeasible point to a load shedding plan that

will render that point feasible for all the servers. For a large query

network, this space can be very large. Thus, it is not practical to

exhaustively consider each possible infeasible point; we certainly

do not want to call the solver for too many times. Instead, we care-

fully pick a subset of infeasible points for which we call the solver

to generate optimal plans. Then for the rest of the infeasible points,

we try to reuse the generated plans with small modifications. Note

that for such points, we certainly can not guarantee optimal plans.

Instead, we create plans whose output scores do not deviate from

the score of an optimal plan by more than a specific percent error

ǫ. For example, given ǫ = 10%, it would be acceptable to reuse
an existing load shedding plan with a score ≥ 45 for an infeasible
point pwhose actual optimal score would be 50 if we instead called
the solver for p.
Our solution is based on dividing the multi-dimensional input

rate space into a small number of subspaces such that all infea-

sible points in a given subspace can be handled using a similar

load shedding plan. To divide our space into subspaces, we ex-

ploit an interesting property of the throughput metric. The through-

put score of an infeasible point q is always greater than or equal

to the throughput score of another infeasible point r, when q is

larger than or equal to r along all of the dimensions. This is be-

cause for q, the LP solver gets to choose from a larger range of rate
values and therefore has more degrees of freedom to find a solu-

tion with higher objective value. As a result, given a percent error

threshold ǫ, and any infeasible point s such that r < s < q: if
(q.score − r.score) ≤ ǫ

100
∗ q.score, then s can reuse the plan

for r with a minor modification. The minor modification simply
involves scaling point s to match point r along all dimensions, and
is much cheaper to perform than calling the solver for s.
In order to tackle the problem in a systematic way, we use a

region-quadtree-based approach to subdivide the space [18]. This

approach also gives us the opportunity to build a quadtree-based

index on top of our final subspaces which will make the Plan Se-

lection phase much more efficient.

We will now illustrate our approach on the example shown in

Figure 5. We assume that the maximum rate along each input di-

mension is given so that we know the bounds of the space that we

r = (50, 50)

s = (60, 75)

p = (0, 0)

EC

G D

F H

K

J

M

L

q = (100, 100)

(a) Space division for Solver

B

J K L M

F G H

C D E

A

I

(b) Space index for Solver

Figure 5: Region-Quadtree-based space division and index

are dealing with (e.g., (100, 100) in Figure 5(a)). We start by gen-
erating optimal load shedding plans for the two extreme points of

our input rate space by calling the solver for each and comparing

their scores. Thus, we compare the score of the bottom-most point

of this space (e.g., p in Figure 5(a)) with the score of its top-most
point (e.g., q in Figure 5(a)). If the percent difference is above the
given ǫ value, then we must further divide each dimension of this
space into 2 (e.g., giving us 4 subspaces B, C, D, E in Figure 5(a)).

Then we repeat the same procedure for each of these 4 subspaces.

When we find that the score difference between two extreme points

of a subspace is below the ǫ threshold, then we stop dividing that
subspace any further. All infeasible points in a given rectangle must

reuse the load shedding plan that corresponds to the bottom-most

point of that rectangle. For example, in Figure 5(a), assume that

the score of point r is within ǫ distance from the score of point
q. Then, all infeasible points in the subspace between these two
extreme points (i.e., the subspace E) can safely reuse the load shed-

ding plan generated for point r. Assume s is such a point. In order
for s to use the plan at r, s must additionally be scaled to match r.
This is accomplished by an additional reduction on the input rates.

In our example, we need to reduce s = (60, 75) to r = (50, 50) by
adding drops of (50

60
, 50

75
). With these additional drops, s can now

safely use the plan for r without violating ǫ.
Note that, during the space division process, as we get closer

to the origin, we may come across some feasible points. If we

ever find that the top-most point of a subspace is already a feasible

point, it means that all points in that subspace must also be feasible.

Therefore, there is no need to generate any load shedding plans

for that subspace. Hence, we can stop dividing that subspace any

further (e.g., subspace F).

At each iteration of the space division process, we produce a

number of new subspaces. To note an important implementation

detail, we place these subspaces into a priority queue based on their

percent error. Then at each step, we pick the subspace at the top of

the queue with the highest error value to divide next. This allows

us to stop the space division any time a given error threshold is met.

At the end of the space division process, we obtain a set of dis-

joint subspaces, each of which is mapped to a load shedding plan

at a certain infeasible point in the space. During the Plan Selection

phase, we will have to search through these subspaces in order to

locate the one that contains a particular infeasible point. In order

to make this search process more efficient, we further organize our

subspaces into an index. The subspaces can be very conveniently

placed into a quadtree-based index during the space division pro-

cess described above. Figure 5(b) shows the index that corresponds

to the space division of Figure 5(a).

163

5.2 Exploiting Workload Information
We have so far assumed that all of the input rate values in the

multi-dimensional space have an even chance of occurrence. In this

case, we must guarantee the same ǫ threshold for all of the input rate
subspaces. However, if the input rate values are expected to follow

an uneven distribution and if this distribution is known in advance,

then we could exploit this information to make the Advance Plan-

ning phase much more efficient. More specifically, given an input

rate subspace with probability p and percent error of ǫ, the expected
error for this subspace would be p ∗ ǫ. We must then subdivision
the input rate space until the sum of expected errors over all disjoint

subspaces meets the ǫ threshold. Thus, instead of strictly satisfying
the ǫ threshold for all subspaces, we ensure that on the average the
expected maximum error will be below some threshold. Again in

this case, we store the subspaces to be divided in a priority queue,

but this time we rank them based on their expected errors.

6. ADVANCE PLANNING WITH FIT
Our distributed approach to Advance Planning is based on meta-

data aggregation and propagation from leaf servers towards the

root/input servers. Each leaf server first generates a Feasible In-

put Table (FIT) which shows the input rate combinations that are

feasible (i.e., not causing overload) for that node. This table is

then propagated to the parent server. When a parent server receives

FITs from its child servers, it maps them from its outputs to its own

inputs, merges the mapped tables into a single table, removes the

table entries that may be infeasible for itself, and finally propagates

the resulting FIT to its own parents. This process continues until

the input servers are reached. Using its FIT, a node can then shed

load for itself and on behalf of its descendant nodes without any

need for further communication.

In this section, we first describe the structure of FIT, followed

by a detailed description of how it is generated at the leaf servers,

merged and propagated through the non-leaf servers, and finally

used for load shedding.

6.1 Feasible Input Table (FIT)
Given a server node withm input streams, the FIT for this node
is a table with m + 2 columns. The first m columns represent the
possible rate combinations for them inputs; the (m + 1)th column
shows the “complementary local load shedding plans” that would

be needed when a certain input rate combination is observed; and

the last column represents the corresponding output quality score

(i.e., total weighted throughput). For example, (0.3, 0.1, null, 0.4)
is a FIT entry for node B of Figure 1. In this case, since the query

network is simple, no complementary local plans are necessary.

Complementary local plans may be needed when the local query

network has splits. In this case, each branch of the split may have a

different total cost and selectivity. Due to this difference, dropping

from some branches may be more desirable than directly dropping

from the input. However, this is completely a local issue and need

not be exposed to the parent. Instead, we allow a node to create

FIT entries for input rate points which are in fact not feasible, and

support these input points with complementary local load shedding

plans that drop tuples at split branches to provide actual feasibility.

We refer such FIT entries as “feasible with a plan”. We will present

the details of local plan generation in the next section.

6.2 FIT Generation at Leaves
In this section, we describe FIT generation at a leaf server. We

first describe how FIT points are chosen, regardless of the query

network topology. Then we describe how complementary local

plans are generated when there are splits in the query network.

infeasible

triangle

feasibility

g
lo

b
a

l
m

fr
lo

c
a

l
m

fr

global mfr local mfr

global
feasibility

boundary

r1

r2

rmax
2

rmax
1

Figure 6: Choosing FIT points (mfr = maximum feasible rate)

6.2.1 Choosing FIT Points

Unlike the solver-based approach which focuses on generating

load shedding plans for infeasible points, the FIT-based approach

tries to identify the feasible points such that infeasible points can be

mapped to one of these feasible points by simply scaling down their

rate values (i.e., by inserting drops at the corresponding input arcs).

Like in the solver-based case, however, generating and considering

all possible input rate combinations would be both inefficient and

unnecessary. Therefore, we apply a few tactics in order to choose a

reduced number of FIT points, while still providing that we meet a

certain error threshold on quality so that we stay close to an optimal

load shedding plan.

Exploiting Error Tolerance. In order to meet the ǫ error thresh-
old, we select sample points along each input dimension that are

a certain spread value apart from each other. For a given dimen-

sion, we first compute the maximum feasible rate. For example,

the top input of node B of Figure 1 can process a maximum rate

of 1/3. Next we generate sample points between 0 and the max-

imum feasible rate, determining the spread at each step based on

the previous sample value. In our example, the next sample point

after 1/3 would be 1/3∗ (1− ǫ
100

). This ensures that the maximum
percent error on a given input dimension is at most ǫ. Since the to-
tal weighted throughput is a linear summation of all the input rates,

the total error would also have a maximum percentage of ǫ.
Excluding Redundant Points. As discussed in Section 5.1, given

two points p and q in the multi-dimensional input rate space, if
p ≥ q along all of the dimensions, then p.score ≥ q.score. As-
sume further that p and q are feasible points. Given an infeasible
point r where r > p and r > q, if we need to scale r down to
one of these two feasible points, we must always prefer p over q
since it has a larger score. This means that we only need to store

in FIT, the feasible points which are on the outer boundary of the

global feasibility space. This way, the number of FIT points can

be reduced. Unfortunately, at the leaf level, it is not possible to

know the exact global feasibility boundary without knowing about

the feasibility constraints of the upstream nodes. On the other hand,

we can easily identify a region below the global feasibility bound-

ary, whose points can safely be excluded from the leaf FIT. We

call this region the “feasibility triangle”. This triangle is computed

by making a bottom-up pass from our leaf node towards the root,

at each node keeping track of the smallest maximum feasible rate

along each input dimension. To clarify, in Figure 6, we illustrate a

2-dimensional input rate space. The bottom triangle is the feasibil-

ity triangle whereas the top L-shaped region is the infeasible region.

The global feasibility boundary (shown with dotted lines) is guar-

anteed to lie somewhere in the white region between the dashed

lines. Thus, at the leaf level, we must generate FIT entries for all

the sample points in this white region. To give a concrete example,

node B in Figure 1 has maximum feasible rates of 1/3 and 1 locally,

and a bottom-up pass from B to A reveals that maximum feasible

164

cost = 1
sel = 1.0

cost = 2
sel = 1.0

cost = 5
sel = 1.0

r

Figure 7: Splits supported by complementary plans

rates are 1/3 and 1/2 globally. As a result, the triangle between (0,

0), (1/3, 0), and (0, 1/2) constitutes the feasibility triangle and can

be excluded from B’s FIT.

6.2.2 Generating Complementary Local Plans

We next discuss why complementary local plans are needed and

how they are generated.

Consider the query network in Figure 7. The input splits into two

branches. The top branch saves 2 processing units per dropped tu-

ple, whereas the bottom branch saves 5 processing units per dropped

tuple. Also, dropping from the input saves 8 processing units while

causing a loss of 2 output tuples. Dropping from the bottom branch

is clearly the most beneficial. Therefore, the node should drop com-

pletely from the bottom branch before starting to drop from its in-

put. If the input rate is r, then 5∗r out of the total load of 8∗r should
be handled locally. Thus, from parent’s perspective this node ap-

pears as if it could tolerate an input rate up to 1/3. Any excess input

rate between 1/8 and 1/3 will be transparently handled with local

plans. For example, given r = 0.2, we must shed 60% of the load
on the bottom branch. By doing so, we end up with a total through-

put of 0.28. If we instead shed all of the excess load from the input

(37.5%), then our score would be 0.25. Using complementary local

plans both increases transparency between the neighboring nodes

and also enables us to maximize output quality by always shedding

from the branch with the least loss in quality per dropped load.

The local plans at a leaf server are generated as follows:

• We make a list of all drop locations (i.e., split and input arcs).

• For each drop location, we compute the quality/load ratio.

• We greedily sort the drop locations in ascending order of their
ratios. More specifically, after the drop location with the small-

est ratio is included in the sorted list, the ratios of the remaining

dependent drop locations are updated. This process continues

until all the drop locations are included in the sorted list.

• As before, we determine the maximum feasible rate (after the
local plans have been applied) along each input dimension, and

choose a sample of FIT points that are properly distanced as

explained in Section 6.2.1.

• For each FIT point that is feasible with a plan, we go through
the sorted list of drop locations, each time picking the one with

the smallest ratio. Each drop location can save up to a certain

amount of load based on its load factor. Depending on our ex-

cess load amount, we should pick enough drop locations from

the list that would in total save us the required amount of load.

The local load shedding plan will then consist of drop operators

to be placed at the selected drop locations.

Note that error in quality is still kept within the ǫ threshold by
choosing FIT points accordingly and by selecting the local drop

locations in an optimal order. The formal proof is omitted here due

to space limitations.

6.3 FIT Merge and Propagation
In this section, we describe FIT generation at non-leaf nodes

based on FIT merge and propagation from their child nodes.

Assume two server nodes like A and B as in Figure 1, where

A is upstream from B. After we compute FIT for leaf node B as

explained in the previous section, we propagate it upstream to A.

The feasible points in B’s FIT are expressed in terms of B’s inputs,

which correspond to the rates at A’s outputs. To be able to propa-

gate the FIT further upstream, we have to first express B’s FIT in

terms of A’s inputs. Each input i of A follows a query path to pro-
duce a certain output. Along this path, the rate of i changes by a
factor determined by the product of the operator selectivities (say

seli). Therefore, given an output rate r, the corresponding input
rate for i is r

seli
. To obtain A’s FIT, we first apply this reverse-

mapping to each row of B’s FIT; the corresponding score for each

row stays the same. Then, we eliminate from the resulting FIT the

entries which may be violating A’s load constraint.

In addition to this simple linear query network/single server chain

case, there are three special cases to consider:

• If there is a split along the path from an input i to multiple out-
puts, and if all child branches of the split map to the same input

rate value, then we just propagate that value as described above.

Otherwise, we propagate the maximum of all input rates. The

assumption here is that any additional reduction will be per-

formed by applying tuple drops at remaining branches of the

split. The additional reduction is stored as a complementary lo-

cal load shedding plan associated with that particular FIT entry,

and need not be propagated further upstream.

• If there is a merge of two inputs i and j via a binary operator
and if we want to propagate an output rate r upstream from this
operator, then we need to generate all (ri, rj) rate pairs that can
potentially result in r. If the operator is a Union, then all rate
pairs that sum up to r needs to be generated. If it is a Join with
input windows of wi and wj , and selectivity s, then all rate
pairs where ri ∗ s ∗wj + rj ∗ s ∗wi = r needs to be generated.

• If node A has multiple child nodes, then the FITs of these chil-
dren are combined by merging rows from each FIT with the

rows from the other FITs. Any new entry violating A’s load

constraint has to be eliminated. The resulting score is the sum

of the children’s row scores.

Note that merging multiple FITs at a parent may generate a large

number of new FIT entries. To deal with this problem, we employ

a number of heuristic tactics. For example, if multiple entries are

very similar in their rate and score values, we delete all but the

one which would cause the smallest processing load. Similarly, if

multiple entries have similar rate values, we only keep the one with

the largest score. We omit the rest of the tactics to save space.

6.4 Point­Quadtree­based Division and
Indexing of the Input Rate Space

When FITs are propagated all the way from leaves to the roots,

we obtain one FIT per node that represents the feasible points for

the complete subtree under this node. Next we want to divide

the multi-dimensional input rate space for this node into subspaces

where each subspace can be mapped to a unique FIT entry. Con-

sider a 2-dimensional space. Let p(x1, y1) be a FIT point in this
space. Any infeasible point q(x2, y2) where x2 ≥ x1 and y2 ≥ y1

could potentially be mapped to p. In fact, if the given bounds of
our 2-dimensional space are (xmax, ymax), then the complete sub-
space between p and (xmax, ymax) could be mapped to p. How-
ever, we might like to map some portions of this subspace to other

FIT entries that might possibly have higher quality scores. In or-

der to come up with the best mapping, we do the following: As-

sume that t is the top-most point of our multi-dimensional input
rate space. For each FIT point p, we first map the subspace between

165

A C

B

E

F

G H

D

(a) Space division for FIT

C

BA D E

F

G H

(b) Space index for FIT

Figure 8: Point-Quadtree-based space division and index

p and t to p. Then we compare the score of FIT entry p with the
scores of the FIT entries for the already existing subspaces. If we

find a subspace S whose score is larger than the new subspace N ,
then we must reduce our new subspace by subtracting S from N .
On the other hand, if we find a subspace S whose score is smaller
than the new subspace N , then we must reduce S by subtracting
N from S. When we do this for each FIT entry, we end up with a
disjoint space division where each subspace is mapped to the FIT

entry with the highest possible score. Figure 8(a) illustrates how

such a division may look like.

As in the solver-based approach, we build a quadtree-based in-

dex on top of our space subdivision. However, in the FIT case,

instead of dividing the space into regular subspaces and creating

plans along the way, we start with a set of plan points and create

the subspaces of irregular size based on the existing plan points.

Therefore, we end up with a “point-quadtree” [18].

7. PUTTING IT ALL TOGETHER
In this section, we briefly summarize how the other three phases

of distributed load shedding (i.e., Load Monitoring, Plan Selection,

and Plan Implementation) are performed.

Centralized Case. In the centralized approach, the coordinator

periodically measures the input rates at the root nodes. Based on

the derived input metadata and load factors, the coordinator can

estimate the CPU load at each server for the observed input rates.

If the CPU load on one or more of the servers is estimated to be

above the capacity, then the coordinator searches the quadtree index

to locate the load shedding plan to be applied. Otherwise, no server

is overloaded and any existing drops in the query plan are removed.

In the case of overload, the coordinator sends the id of the se-

lected plan to each of the server nodes to trigger the Plan Imple-

mentation phase at these servers. Furthermore, inputs may require

additional scaling so that the infeasible point exactly matches the

plan point. This additional scaling information is also sent to the

input servers as additional drops to complement the selected plan.

In the Plan Implementation phase, each server node locates the

load shedding plan from its precomputed plan table that was up-

loaded earlier by the coordinator, and changes the query network

by removing redundant drops and adding new drops as necessary.

Distributed Case. In the distributed approach, all nodes periodi-

cally measure their local input rates and estimate their local CPU

load based on these observed input rates. If an overload is detected,

a node uses its local quadtree index (built on top of its local FIT)

to locate the appropriate local load shedding plan to be applied.

Previously inserted drops, if any, must be removed from the local

query plan. Note that in all cases, except when local complemen-

tary plans are needed due to splits, parent nodes ensure that all the

nodes in their subtree only get feasible input rates.

The quadtree is used in a similar way as described above, except

that instead of sending plan id’s to others, each node directly ap-

plies the selected local plan. Again, inputs that require additional

scaling are handled in the same way as in the centralized case.

8. PERFORMANCE STUDY

8.1 Experimental Setup
We implemented our approaches as part of the load shedder com-

ponent of our Borealis distributed stream processing system. We

conducted our experiments on a small cluster of Linux servers, each

with an Athlon 64 1.8GHz processor. We created a basic set of

benchmark query networks which consisted of “delay” operators,

each with a certain delay and selectivity value. A delay operator

simply withholds its input tuple for a specific amount of time as

indicated by its delay parameter, busy-waiting the CPU. The tuple

is then either dropped or released to the next operator based on the

selectivity value. As such, a delay operator is a convenient way to

represent a query piece with a certain CPU cost and selectivity. We

used synthetic data to represent readings from a temperature sensor

as (time, value) pairs. For our experiments, the data arrival rates

were more important than the actual tuple contents. We used the

following workload distributions for the input rates:

• standard exponential probability distribution with a λ parame-
ter which is commonly used to model packet inter-arrival times

in the Internet, and

• real network traffic traces from the Internet Traffic Archive [2].

We present results on the following approaches:

• Solver. The centralized solver-based algorithm that is based on

the maximum percent error threshold (ǫmax).

• Solver-W. A variation of Solver that takes workload informa-

tion into account and is based on the expected maximum per-

cent error threshold (E[ǫmax]).

• C-FIT. The centralized implementation of the FIT-based ap-

proach that is based on ǫmax.

• D-FIT. The distributed implementation of the FIT-based ap-

proach that is based on ǫmax.

8.2 Experimental Results

8.2.1 Effect of Query Load Distribution

In this experiment, we investigate the effect of query load im-

balance on plan generation time. Figure 9 shows the collection of

query networks that we used for this experiment. Each query net-

work simply consists of two chain queries. Each chain query is

composed of two delay operators that are deployed onto two dif-

ferent servers. The numbers inside the operators indicate the pro-

cessing cost in milliseconds. We apportioned the processing costs

such that the total costs of the query networks on each server are

the same, while ensuring that there is some load imbalance between

two chain queries, (increasing as we go from Figure 9(a) to Figure

9(e)). In Figure 9, we also show the approximate feasibility bound-

ary for the input rates for each query network. Basically, all input

rate combinations below this boundary are feasible for both of the

servers, while the points on the opposite side represent overload

conditions where load shedding would be needed.

In Figure 10(a), we compare the plan generation time for Solver

and C-FIT, fixing ǫmax at 5%. Both of these approaches guarantee

that the maximum error in total quality score will not exceed 5%.

C-FIT can generate plans with the same guarantee in significantly

166

r1

r2
40

4056

56

10 17

10

17

r2

r1

(a) Query Network 1

10

r1

r2
32

3264

64

15

1510

r2

r1

(b) Query Network 2

10

r1

r2
24

2472

72

10

13

13

r2

r1

(c) Query Network 3

r1

10

r1

r2
16

1680

80

10

12

12

r2

(d) Query Network 4

r1

10

r2

r1

r2

8888

1011

11

8 8

(e) Query Network 5

Figure 9: Query networks with different query load distributions and feasibility boundaries

 1

 32

 1024

 32768

1048580

 1 2 3 4 5
query network

Solver
C−FIT

p
la

n
 g

en
er

at
io

n
 t

im
e

(m
se

c,
 i

n
 l

o
g

sc
al

e)

(a) Solver and C-FIT (ǫmax = 5%)

 1

 32

 1024

 32768

1048580

 1 2 3 4 5
query network

Solver
Solver−W

p
la

n
 g

en
er

at
io

n
 t

im
e

(m
se

c,
 i

n
 l

o
g

sc
al

e)

(b) Solver and Solver-W (λ = 5, exp. ǫmax = 1.44%)

Figure 10: Effect of query load imbalance

shorter time (note the logarithmic y-axis), while Solver turns out to

be more sensitive to query load distribution than C-FIT. In Figure

10(b), we compare the plan generation time for Solver and Solver-

W. In this case, we assumed an exponential distribution for the in-

put rate workload with λ = 5. When we ran Solver fixing ǫmax at

5%, this produced plans for whichE[ǫmax] turned out to be around
1.44% on the average. Then we used this value as a threshold for

Solver-W. As can be seen on our graph, Solver-W takes the work-

load distribution into account to guarantee the given expected emax

value in much shorter time. Both Solver approaches show similar

sensitivity to query load distribution.

8.2.2 Effect of System Provision Level

Next, we investigate the effect of expected system provision level

on plan generation efficiency for the Solver-W. In order to estimate

the provision level, we consider two types of workload: (i) one with

a standard exponential workload distribution with parameter λ, and
(ii) a real network traffic trace from the Internet Traffic Archive

[2]. For the former case, we change the system provision level by

varying λ. For the latter case, we use an existing trace from the
archive, but we change the query cost in order to create different

provision levels.

Figure 11(a) shows how plan generation time for the Solver-W

increases with increasing λ for the five query networks of Figure 9.
As λ increases, fewer input rate combinations will fall below the
feasibility boundary while more will be above it (i.e., the system

will appear as if it is less-provisioned). To provide more insight, in

Figure 12, we provide a color-map of joint exponential probability

distribution for two inputs, where axes correspond to input rates

and the brightness of an area indicates the expected probability of

occurrence. The high probability area shifts up as we increase λ,

affecting that area’s contribution toE[ǫmax]. As we increase λ, we
thus expect the plan generation to take more time, as the solver has

to be called for more points. Also as in the previous section, as the

query load imbalance increases, the plan generation time increases.

We repeated the same experiment with the TCP traces from the

Internet Traffic Archive (ITA). Figure 11(b) shows this workload

distribution, which essentially looks a lot like an exponential dis-

tribution. We first used the query network in Figure 9(b) (i.e., (64,

32)), which corresponds to a provision level of about 20%. We then

reduced the query costs proportionally (e.g., (56, 28), (48, 24), and

so on) in order to create increasingly higher provision levels with

the same workload distribution. Figure 11(c) presents our result,

which clearly shows that as the system is provisioned better, the

plan generation time decreases.

8.2.3 Effect of Operator Fan­out

To examine the effect of operator fan-out on Solver and C-FIT,

we used a single server deployment of a query tree with 2k query

branches that are fed by a single input stream. These queries share

one common operator. Thus, load shedding plans would either

place a drop at the input arc or at the split arcs downstream from this

common operator. As seen in Figure 13, as we increase the degree

of sharing in the query network, both approaches spend more time

in plan generation. Although Solver can generate plans slightly

faster than C-FIT at a fan-out value of 2, C-FIT starts to outper-

form Solver at higher fan-out values. Thus, C-FIT scales better

with increasing operator fan-out.

8.2.4 Effect of Input Dimensionality

The number of input dimensions is an important factor that can

expectedly degrade the performance of plan generation. In this sec-

167

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 3 4 5 6 7 8 9 10

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

lambda

Query network 1
 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 3 4 5 6 7 8 9 10

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

lambda

Query network 2

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 3 4 5 6 7 8 9 10

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

lambda

Query network 3

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 3 4 5 6 7 8 9 10

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

lambda

Query network 4

 16

 64

 256

 1024

 4096

 16384

 65536

 262144

 1 2 3 4 5 6 7 8 9 10

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

lambda

Query network 5

(a) Effect of λ (exp. ǫmax = 1 %)

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 50 100 150 200

p
ro

b
ab

il
it

y
 d

en
si

ty

TCP packets per 1−second window

(b) TCP workload from ITA

 0

 500

 1000

 1500

 2000

 2500

 3000

 20 30 40 50 60 70

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c)

% provision level
 80 90 100

(c) Effect of provision (exp. ǫmax = 1 %)

Figure 11: Effect of workload distribution and provision level on Solver-W plan generation

λ = 1

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(a) λ = 1

λ = 3

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(b) λ = 3

λ = 5

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(c) λ = 5

λ = 7

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(d) λ = 7

λ = 9

r
1

r
2

2 4 6 8 10 12 14 16 18 20

2

4

6

8

10

12

14

16

18

20

(e) λ = 9

Figure 12: Exponential workload distribution for different λ values

 0

 20

 40

 60

 80

 100

 2 4 8 16 32

p
la

n
 g

en
er

at
io

n
 t

im
e

(m
se

c)

operator fan−out

Solver
C−FIT

Figure 13: Effect of operator fan-out (ǫmax = 1%)

tion, we examine how our algorithms are affected from increasing

input dimensionality.

Figure 14(a) shows how E[ǫmax] converges in time for query
networks with 2, 4, and 8 input streams. In this experiment, we used

the query network of 9(b) (i.e., (64, 32)) for the two-dimensional

case. Then we increased the number of inputs while proportionally

decreasing the query costs for the higher-dimensional cases (i.e.,

(32, 16, 32, 16) and (16, 8, 16, 8, 16, 8, 16, 8)) and assumed an ex-

ponential distribution with λ = 3. Not surprisingly, as we increase
the number of input dimensions, the plan generation time signifi-

cantly increases. As shown in Figure 14(b), the situation is worse

for C-FIT (and similarly for the Solver, which is not shown). For

example, to ensure a 10%maximum error for 8 inputs, C-FIT needs

to run for about an hour. These results demonstrate the ”curse of

dimensionality”. In practice, however, the outlook is better. First,

plan generation is an off-line process; it is performed in advance of

the overload, potentially using idle cycles. Second, the generated

plans are often reusable. Third, if the query network consists of a

number of disjoint fragments, then each fragment is handled sepa-

rately. Therefore, the queries can as well be deployed to the server

nodes in such a way that the number of inputs for each connected

query network fragment does not exceed a certain threshold. Fi-

nally, the number of input dimensions could always be reduced by

merging several inputs into one. We should also mention that, in

our experience with stream-oriented queries for the financial ser-

of inputs # of FIT entries bytes/entry

2 46 52

4 984 96

8 42472 184

Table 3: Effect of dimensionality (ǫmax = 10%)

vices domain, the number of input streams are generally few.

8.2.5 Overhead Analysis for Distributed FIT

FIT is a distributed algorithm by design. As such, it can pro-

vide all the features of distributed algorithms such as avoiding hot

spots and single point of failures. It is hard to provide quantita-

tive evidence for why D-FIT would beat the coordinator-based ap-

proaches. However, as mentioned earlier, it is clear that there are

certain settings where D-FIT would be preferable (e.g., multi-hop,

resource-limited sensor networks) due to its ability to dynamically

react to changes. In this section, we analyze overhead issues asso-

ciated with D-FIT, that would bear importance in such settings.

Our main criteria in the overhead analysis is how much FIT

information needs to be communicated between two neighboring

nodes. Since complementary local plans associated with FIT en-

tries are not actually being sent to the parent, FIT entry size is sim-

ply proportional to the number of input dimensions. Therefore, we

will focus on the number of FIT entries rather than the total byte

size. For the same reason, operator fan-out, which affects the size

of the complementary plan column of FIT, is not very interesting.

As a result, we identified three major sources of overhead for FIT

size: (i) the number of input dimensions, (ii) magnitude of the ǫmax

threshold, and (iii) query load.

As Table 3 clearly shows, for a given ǫmax threshold and a fixed

query load, when we have more inputs, we need to represent a

higher number of feasible input combinations, which consequently

requires a higher number of FIT entries. For 2 inputs, Figure 15(a)

details the effect of ǫmax and query load. As we reduce the query

load, a larger portion of the input rate space becomes feasible and

this increases the number of FIT entries. Another interesting point

is that if there is operator fan-out in the query plan, where some por-

168

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384 65536 262144

ex
pe

ct
ed

 %
 m

ax
 e

rr
or

plan generation time (msec, in logscale)

d = 2

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384 65536 262144

ex
pe

ct
ed

 %
 m

ax
 e

rr
or

plan generation time (msec, in logscale)

d = 4

 0

 20

 40

 60

 80

 100

 1 4 16 64 256 1024 4096 16384 65536 262144

ex
pe

ct
ed

 %
 m

ax
 e

rr
or

plan generation time (msec, in logscale)

d = 8

(a) Convergence of exp. ǫmax for Solver-W

 1

 32

 1024

 32768

1048580

% max error

d = 2
d = 4
d = 8

pl
an

 g
en

er
at

io
n

tim
e

(m
se

c,
 in

 lo
gs

ca
le

)

 15 20 25 10

(b) Effect of dimensionality on C-FIT

Figure 14: Effect of input dimensionality

tion of the query can be handled with complementary local plans,

then the query appears less costly to the parent node, and therefore,

we would have a higher number of feasible point entries in the FIT.

Thus, it is not the actual query load, but the load after local plans

are applied that determines the needed FIT size. Figure 15(a) also

shows that, if the ǫmax threshold is increased, allowing a larger dis-

tance from optimal quality plans, then the number of required FIT

entries decreases in a dramatic way. This suggests that ǫmax can

actually be adaptively adjusted to trade off plan quality for reduced

communication overhead. This could also be used as a remedy to

the high dimensionality problem.

One major advantage of D-FIT over the centralized approaches

is that it enables efficient handling of certain dynamic changes in

load conditions. Depending on the nature of the change, there may

be cases where it would be sufficient to only update the local FIT, or

propagate it only to a small number of upstream nodes. Yet in other

cases, it would be possible to send deltas to the parent rather than

the complete FIT. We identified two important cases to analyze: (i)

changes in operator selectivity, and (ii) changes in query load due

to operator movement between neighboring nodes. Figure 15(b)

shows the sensitivity of FIT to operator selectivity change. In this

experiment, we used two chain queries. One of the operators in one

of these queries initially has a selectivity of 1.0. We compute the

FIT to be sent to the parent node. Then we decrease the selectivity

and recompute the FIT. We then measure what fraction of the new

FIT entries must be communicated to the parent in order to stay

within some distance from the actual quality score. We find that as

the change in selectivity increases, we need to send more entries

in order to achieve a certain difference threshold. Similarly, for a

given selectivity change, we need to send more entries if we want

to stay within a smaller difference from the actual quality score.

Figure 15(c) shows the sensitivity of FIT to load movement. In this

case, we again use two chain queries similar to the ones in Fig-

ure 9. Then we reduce the delay parameter of a parent operator,

while adding that same amount to the delay parameter of the down-

stream child operator (e.g., parent-to-child-8 means that we moved

8 units of load from parent to child). We see that as the amount of

load moved gets bigger, it requires more FIT entries to be sent to

the parent. In the case for parent-to-child-24, the load movement

causes a complete reversal in load balance. Therefore, it is not even

possible to to reduce the communication overhead beyond 8%, no

matter how large a difference we allow.

9. RELATED WORK
The load shedding problem has been explored extensively for

centralized stream processing. In our earlier work with Aurora,

drop operators are selectively inserted into running query plans

to maximize various QoS-based optimization metrics [22]. This

work also utilized load shedding plans that are computed off-line

to ensure fast response to overload. STREAM introduced several

techniques, one of which provides a statistical approximation for

aggregation queries [7]. TelegraphCQ proposed an adaptive load

shedding approach, called data triage, which creates summaries of

data instead of dropping them [17]. Ayad and Naughton focused

on load shedding for join queries in order to maximize the query

throughput [6].

The overload management problem has also been studied in the

context of push-based data dissemination systems. For example,

the Salamander pub-sub system supports application-level QoS poli-

cies by allowing clients to plug in their data flow manipulation

modules at any point in the data dissemination tree [15]. These

modules can prioritize, interleave, or discard certain data objects to

adapt to changing workload and network conditions. Unlike our ap-

proach, Salamander does not try to coordinate the flowmodification

actions performed at different points on the data distribution tree.

Another example is the data stream dissemination system studied

by Shah et al., which selectively disseminates data updates among

a network of data repositories to preserve user-defined coherency

requirements [20].

A recent, closely related work comes from Amini et al., who

proposed a two-tiered approach that combines long-term operator

placement and short-term CPU scheduling to maximize throughput

in a distributed stream processing system [5]. This is a control-

based (closed-loop) solution that continually adjusts the buffer sizes

at each node to achieve high throughput and low latency, while en-

suring stability in the presence of varying workload and bursts. Be-

sides other differences, our solution uses an open-loop approach to

create parametric load shedding plans that can limit the deviation

from the optimal plan.

Distributed load shedding is also relevant to the congestion con-

trol problem in computer networks [13]. Various IP-layer archi-

tectures have been proposed to maintain Internet QoS including

IntServ [9] and DiffServ [8]. OverQoS, an overlay-based QoS ar-

chitecture, uses application-level techniques to prioritize packets

that have higher utility for the application [21]. Our upstreammeta-

data propagation technique resembles the pushback mechanism de-

veloped for aggregate congestion control [14], where a congested

router can request its upstream routers to limit the rate of an aggre-

gate (i.e., a certain collection of packets sharing a common prop-

erty) primarily to defend against DoS attacks. In our FIT-based

approach, nodes also specify their feasible input rates to their par-

ents, but it is the responsibility of the parent to decide how to reduce

outgoing stream rates to maximize system throughput.

We also note that our off-line load shedding plan generation ap-

proach can be regarded as an instance of parametric query opti-

mization [10, 11, 12], where a set of candidate query plans, each

of which is optimal for some region of the parameter space, is pre-

computed and the appropriate one chosen at run-time based on the

169

 0

 1000

 2000

 3000

 4000

 5000

 1 2 3 4 5

of

 F
IT

 e
nt

ri
es

% max error

(28, 20)
(42, 30)
(56, 40)

(14, 10)

(a) Effect of ǫmax and query load

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
ri

es
 to

 b
e

se
nt

% difference threshold in quality score

sel = 0.2

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
ri

es
 to

 b
e

se
nt

% difference threshold in quality score

sel = 0.4

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
ri

es
 to

 b
e

se
nt

% difference threshold in quality score

sel = 0.6

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50 60

fr
ac

tio
n

of
 n

ew
 F

IT
 e

nt
ri

es
 to

 b
e

se
nt

% difference threshold in quality score

sel = 0.8

(b) Sensitivity to selectivity change

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

fr
ac

ti
o

n
 o

f
n

ew
 F

IT
 e

n
tr

ie
s

to
 b

e
se

n
t

% difference threshold in quality score

parent−to−child−8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

fr
ac

ti
o

n
 o

f
n

ew
 F

IT
 e

n
tr

ie
s

to
 b

e
se

n
t

% difference threshold in quality score

parent−to−child−16

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9 10

fr
ac

ti
o

n
 o

f
n

ew
 F

IT
 e

n
tr

ie
s

to
 b

e
se

n
t

% difference threshold in quality score

parent−to−child−24

(c) Sensitivity to load movement

Figure 15: D-FIT overhead

observed parameter values. Unlike previous instances of the prob-

lem that studied standard query optimization in single-server en-

vironments, our solution addresses throughput optimization under

overload in distributed settings.

10. SUMMARY AND FUTURE WORK
In this paper, we have studied the problem of load shedding

in distributed stream processing. We have shown how it differs

from previous centralized solutions, and we have offered several

new practical algorithms for addressing the problem. We presented

our main solution approach, a distributed algorithm that we call D-

FIT that works by transmitting its load requirements locally to its

parents. We also investigated several centralized solutions – a lin-

ear programming solution (Solver), a variant on Solver that takes

a workload history into account (Solver-W), and a centralized ver-

sion of our distributed algorithm (C-FIT).

As we have said earlier, the purely distributed version of our al-

gorithm D-FIT is especially useful when the underlying query envi-

ronment is dynamic as in a distributed sensor network. We believe

that the distributed algorithm would also scale better in large-scale

deployments. Our current results from small-scale cluster deploy-

ments look promising. Verifying the practicality and effectiveness

of our approaches in larger-scale deployments is left as future work.

The current study restricts the topology of the overlay network to

be a tree. In the future, we will try to relax this assumption by look-

ing at other topologies directly, or by reducing a non-tree topology

by cutting it into a tree of non-tree clusters. In each cluster, a given

node may need to communicate with nodes other than its parent.

Solutions here might include using C-FIT for each cluster and D-

FIT for communication between the clusters.

In this paper, we restricted our focus on the CPU problem only.

We will also investigate the overload problem under bandwidth

constraints. This may require pushing the load shedding actions

farther upstream to reduce bandwidth usage, even if the upstream

node itself is not overloaded.

Acknowledgments. We would like to thank Çağatay Demiralp for

his help with MATLAB. This work has been supported in part by

the NSF under the grants IIS-0086057 and IIS-0325838, and by

ETH under the grant 0-42386-06.

11. REFERENCES
[1] The GNU Linear Programming Kit (GLPK).

http://www.gnu.org/software/glpk/.
[2] The Internet Traffic Archive. http://ita.ee.lbl.gov/.
[3] D. Abadi, Y. Ahmad, M. Balazinska, U. Çetintemel, M. Cherniack,
J. Hwang, W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul,
Y. Xing, and S. Zdonik. The Design of the Borealis Stream
Processing Engine. In CIDR Conference, Asilomar, CA, 2005.

[4] D. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey,
S. Lee, M. Stonebraker, N. Tatbul, and S. Zdonik. Aurora: A New

Model and Architecture for Data Stream Management. VLDB

Journal, 12(2), August 2003.
[5] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure. Adaptive
Control of Extreme-scale Stream Processing Systems. In IEEE

ICDCS Conference, Lisboa, Portugal, July 2006.
[6] A. Ayad and J. F. Naughton. Static Optimization of Conjunctive
Queries with Sliding Windows Over Infinite Streams. In ACM

SIGMOD Conference, Paris, France, June 2004.
[7] B. Babcock, M. Datar, and R. Motwani. Load Shedding for
Aggregation Queries over Data Streams. In IEEE ICDE Conference,
Boston, MA, March 2004.

[8] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss.
An Architecture for Differentiated Services. IETF RFC 2475,
December 1998.

[9] R. Braden, D. Clark, and S. Shenker. Integrated Services in the
Internet Architecture: An Overview. IETF RFC 1633, June 1994.

[10] S. Ganguly. Design and Analysis of Parametric Query Optimization
Algorithms. In VLDB Conference, New York City, NY, August 1998.

[11] A. Hulgeri and S. Sudarshan. Parametric Query Optimization for
Linear and Piecewise Linear Cost Functions. In VLDB Conference,
Hong Kong, China, August 2002.

[12] Y. E. Ioannidis, R. T. Ng, K. Shim, and T. K. Sellis. Parametric query
optimization. In VLDB Conference, Vancouver, Canada, August
1992.

[13] V. Jacobson. Congestion Avoidance and Control. ACM SIGCOMM

Computer Communication Review, 18(4), August 1988.
[14] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and

S. Shenker. Controlling High Bandwidth Aggregates in the Network.
ACM SIGCOMM Computer Communication Review, 32(3), July
2002.

[15] G. R. Malan, F. Jahanian, and S. Subramanian. Salamander: A
Push-based Distribution Substrate for Internet Applications. In
USENIX USITS Symposium, Monterey, CA, December 1997.

[16] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh,
and M. Seltzer. Network-Aware Operator Placement for
Stream-Processing Systems. In IEEE ICDE Conference, Atlanta,
GA, April 2006.

[17] F. Reiss and J. Hellerstein. Data Triage: An Adaptive Architecture
for Load Shedding in TelegraphCQ. In IEEE ICDE Conference,
Tokyo, Japan, April 2005.

[18] H. Samet. The Quadtree and Related Hierarchical Data Structures.
ACM Computing Surveys, 16(2), June 1984.

[19] M. A. Shah, J. M. Hellerstein, and E. Brewer. Highly-Available,
Fault-Tolerant, Parallel Dataflows. In ACM SIGMOD Conference,
Paris, France, June 2004.

[20] S. Shah, S. Dharmarajan, and K. Ramamritham. An Efficient and
Resilient Approach to Filtering and Disseminating Streaming Data.
In VLDB Conference, Berlin, Germany, September 2003.

[21] L. Subramanian, I. Stoica, H. Balakrishnan, and R. Katz. OverQoS:
An Overlay Based Architecture for Enhancing Internet QoS. In
USENIX NSDI Symposium, San Francisco, CA, March 2004.

[22] N. Tatbul, U. Çetintemel, S. Zdonik, M. Cherniack, and
M. Stonebraker. Load Shedding in a Data Stream Manager. In VLDB

Conference, Berlin, Germany, September 2003.
[23] N. Tatbul and S. Zdonik. Window-aware Load Shedding for

Aggregation Queries over Data Streams. In VLDB Conference,
Seoul, Korea, September 2006.

170

