STCP: A Generic Transport Layer Protocol for
Wireless Sensor Networks

Yogesh G. lyer
Telecommunications Engineering Program
University of Texas at Dallas
Email: yogesh@student.utdallas.edu

Abstract—We consider the issue of designing a generic trans-
port layer protocol for energy-constrained sensor networks. We
present the requirements for such a transport protocol and
propose Sensor Transmission Control Protocol (STCP). STCP
is a generic, scalable and reliable transport layer protocol where
a majority of the functionalities are implemented at the base
station. STCP offers controlled variable reliability, congestion
detection and avoidance, and supports multiple applications in
the same network. We present the design and implementation
of STCP and evaluate the protocol with different scenarios and
network characteristics.

I. REQUIREMENTS OF A GENERIC TRANSPORT LAYER

Sensor networks are deployed for a wide range of appli-
cations in the military, health, environment, agriculture and
office domain. Every application has different characteristics
and requirements such as sensed data type, rate of data
transmission and reliability. Existing transport layer protocols
for sensor networks are either tailored for certain applications
or assume that the nodes employ a particular network layer or
MAC layer protocol. As a result, their approaches may not be
applicable across many sensor network deployments.

Heterogenity: Sensor nodes may have multiple sensors
(light, temperature, seismic, etc.) with different transmission
characteristics. Packets from a sensor for an application consti-
tute its data flow. Each flow can be either continuous or event-
driven. In continuous flow applications, nodes transmit packets
periodically to a base station. In event-driven applications,
nodes transmit data only when a pertinent event occurs.
Both types of flows may exist in the same network. The
transport layer protocol should support multiple heterogeneous
applications in the same network.

Reliability: Every application may require different reliabil-
ity. For example, in military surveillance, data transmitted by
the sensor nodes must always reach the base station. While
in temperature monitoring, a few packets may be lost. The
transport protocol should exploit this variable reliability model
and save network resources.

Congestion Control: Packets from all the nodes in the
network converge at nodes located near the base station.
These nodes forward more packets and hence, there is a
possibility of congestion close to the base station. High data
rates, sudden burst of data and collisions are other reasons of
congestion in sensor networks [13]. Nodes might drop packets
due to memory limitations and energy spent in forwarding

Shashidhar Gandham
Dept. of Computer Science
University of Texas at Dallas
Email: gshashi@utdallas.edu

S. Venkatesan
Dept. of Computer Science
University of Texas at Dallas
Email: venky@utdallas.edu

these dropped packets is effectively wasted. Congestion also
increases latency. Hence, the transport layer should support
congestion detection and avoidance.

It is desirable to design a transport layer protocol that can
support multiple applications in the same network, provide
controlled variable reliability, address congestion issues, re-
duce latency and maximize throughput. We propose Sensor
Transmission Control Protocol (STCP) and show, through
simulations, that it meets these requirements.

We summarize the requirements of a transport layer protocol
for sensor networks as follows:

1) Generic: The transport layer protocol should be indepen-
dent of the application, Network and MAC layer proto-
cols to be applicable for several deployment scenarios.

2) Heterogeneous data flow support: Continuous and event-
driven flows should be supported in the same network.

3) Controlled variable reliability: Some applications re-
quire complete reliability while others might tolerate the
loss of a few packets. The transport layer protocol should
leverage this fact and conserve energy at the nodes.

4) Congestion detection and avoidance: The congestion
detection and avoidance mechanism helps in reducing
packet retransmissions, thereby conserving energy.

5) Base station controlled network: Since sensor nodes are
energy constrained and limited in computational capa-
bilities, majority of the functionalities and computation
intensive tasks should be performed by the base station.

6) Scalability: Sensor networks may comprise of large
number of nodes, hence the protocol should be scalable.

7) Future enhancements and optimizations: The protocol
should be adaptable for future optimizations to improve
network performance and support new applications.

Il. SYSTEM MODEL

We consider sensor networks where each node is equipped
with one or more sensing devices, a low computation proces-
sor, limited battery-supplied energy and a short-range wireless
transceiver. The nodes are preconfigured with a unique
identifier. We assume that the base station has adequate
energy, memory and processing power to implement all the
functionalities of STCP. Sensor nodes and the base station
communicate via bidirectional multihop wireless links. If the
base station can reach all the nodes in a single hop, it would

enhance the performance of our solution, but this is not a
requirement. The maximum transmission range of each node is
fixed for its lifetime as 10m. The transceiver exhibits first order
radio model characteristics [15]. According to this model,
energy dissipated to run the transmitter or receiver circuitry
is constant per bit transmitted or received and energy spent in
transmitting a bit over a distance d is proportional to d2.

We assume that clocks of all the nodes in the network are
synchronized with that of the base station for continuous flow
applications. Clock synchronization for sensor networks is
addressed in [7], [9]. Nodes employ a network layer algorithm
for routing packets. The sensor nodes and base station com-
municate on the same frequency and employ either a TDMA
or CSMA/CA Medium Access Control (MAC) protocol.

I1l. RELATED WORK

We first examine TCP [11] and UDP [5] for sensor net-
works. The TCP protocol stack is complex to be implemented
in a resource constrained sensor node. The overhead from
headers can be quite large, particularly for small messages.
Consider a simplex connection. TCP is designed to make the
receiver side as simple as possible. It acknowledges the sender
for reliability and for flow control mechanism. However, for
sensor networks, the receiver (base station) has unlimited
energy and hence, should control the communication. Also,
TCP provides complete reliability, which is not required in
many sensor deployments. UDP is a best-effort service and
does not guarantee reliable delivery of information.

Reliable Multi-Segment Transport (RMST) [4] is designed
to run in conjunction with directed diffusion network layer
algorithm [3]. There is a dependency on the network layer.
RMST is a selective NACK-based protocol and works in two
modes of operation: caching and non-caching. In the caching
mode, intermediate nodes cache data fragments which may
cause buffer overflow due to memory limitations. Also, the
timer associated for detecting fragment loss at every node
is fixed and do not adapt to adverse network conditions.
RMST does not guarantee reliability when a node fails before
successfully transmitting the fragments or when a node fails
after receiving all the fragments. Moreover, RMST does not
address the issue of congestion in sensor networks.

Event-to-Sink Reliable Transport (ESRT) [2] is designed
for networks with data-centric applications. The underlying
assumption is that the base station is interested in reliable
detection of events from the collective information provided
by numerous sensor nodes. ESRT does not support end-to-
end reliable data delivery. In ESRT, the base station controls
the network congestion by requesting nodes to increase or
decrease the rate of transmission depending on current network
characteristics. In real world applications, nodes can transmit
data only when they detect an event; varying the transmission
rate of nodes may not be practical across all applications.

Pump Slowly, Fetch Quickly (PSFQ) [1] is proposed for
reliable reprogramming of nodes in a sensor network. It
provides a mechanism for reliable broadcast of data from the
base station to sensor nodes. This is appropriate for control

and management in the reverse direction. Note that bulk of the
communication in sensor networks is from sensor nodes to the
base station. PSFQ can be used to compliment our solution if
necessary.

IV. STCP: SENSOR TRANSMISSION CONTROL PROTOCOL

STCP provides a generic, scalable and reliable transport
layer paradigm for sensor networks. Majority of STCP func-
tionalities are implemented at the base station. Each node
might be the source of multiple data flows with different char-
acteristics such as flow type, transmission rate and required
reliability. STCP supports networks with multiple applications
and provides additional functionalities such as controlled vari-
able reliability and congestion detection and avoidance.

A. Data transmission sequence in STCP

Before transmitting packets, sensor nodes establish an as-
sociation with the base station via a Session Initiation Packet.
The session initiation packet informs the base station of the
number of flows originating from the node, the type of data
flow, transmission rate and required reliability. When the base
station receives the session initiation packet, it stores all the
information, sets the timers and other parameters for each
flow, and acknowledges this packet. It is important for the
sensor node to wait for the ACK to ensure that the association
is established. The nodes can now start transmitting data
packets to the base station. In the reverse path, the base station
transmits an ACK or NACK depending on the type of flow.

B. STCP Packet formats

The format of session initiation packet is shown in Figure 1.
The session initiation packet for STCP is motivated by the
concept of multiple-streams in SCTP [10]. If there are multiple
sensing devices in a sensor node and some or all of them
will be transmitting their sensed data, the node can transmit
a single session initiation packet. Note that the source node
will transmit packets associated with each flow independently,
since the transmission characteristics may be different.

Seguence Number (16) Flows (8) Options (8)
Clock (32)
Flow Id#1 (8) | Flow Bit (8) | Trans. Rate (8)| Reliability (8)
Flow Id#2(8) | Flow Bit(8) | Trans Rate (8)| Reliability (8)

Flow Id #N (8) ‘ Flow Bit (8) | Trans. Rate (8)| Reliability (8)

Fig. 1. Session Initiation Packet Format

The first field in the packet is the sequence number (16
bits long) which is zero for the session initiation packet.
Flows indicate the number of flows originating at the node.
The local clock value at the time of transmission is included
in the Clock field. Flow Id is used to differentiate packets

from different flows. The Flow Bit field specifies whether the
flow is continuous or event-driven. For continuous flows, the
Transmission rate field indicates the rate at which a packet
will be transmitted by the source node. The Reliability field
gives the expected reliability required by the flow.

Sequence Number (16) | Flow Id (8) | CN (1)

=

Options (7) Clock (32)

Fig. 2. STCP Data Packet Header

STCP data packet header is shown in Figure 2. The Se-
quence number for a data packet is a non-zero positive integer
which distinguishes it from a session initation packet. The
Flow Id indicates the flow type which helps the base station
identify the characteristics of the packet for that node. The
packet header includes a Congestion Notification (CN) bit field
for supporting congestion detection and avoidance. The Clock
field gives the local time at which the packet was transmitted.
The base station uses the clock value to calculate the Estimated
Trip Time (ETT) for that node and flow Id.

ACK/

ence Number (16
Sequence Number (16) NACK (1)

Flow 1d (8) | CN (1) Options (6)

Fig. 3. STCP Acknowledgement Packet

STCP acknowledgement packet is shown in Figure 3. All
fields are as explained before. The ACK / NACK bit represents
a positive or negative acknowledgement.

STCP uses the 32 bit clock field in conjunction with the
sequence number field to avoid issues related to wraparound.
All the three packets have an Options field for future purposes.

C. Continuous Flows

Since the base station knows the rate of transmission from
the source, the expected arrival time for the next packet can
be found. The base station maintains a timer and sends a
negative acknowledgement (NACK) if it does not receive a
packet within the expected time.

When the base station receives a packet from a sensor node,
it calculates the Estimated trip time! (ETT) for the packet to
reach the base station. The base station calculates an expected
time for successive packets by one of the following methods:

1) Timeout is calculated by the expression (T + axETT),
where T is the time between successive transmissions
and alpha () is a positive integer that varies with ETT.

2) The second approach is Jacobson/Karels algorithm [14]
which considers the variance of the trip time. We use
ETT instead of Round trip time.

In the first approach, the base station constantly checks to
see if it has received a packet within (T + axETT) time units
for each sensor node. If a packet has been received within time,
it decreases alpha («) by 0.5. If a packet is lost (timeout) or if
the base station receives a packet after transmitting a NACK
for it, it increases alpha («) by 0.5.

1ETT = Current clock value at base station - Clock value in packet.

In the second approach, we modify Jacobson/Karels algo-
rithm by considering ETT. The base station dynamically varies
the values of delta (d), mu (x) and phi (¢) in the following
expressions:

SampleETT = base station clock - packet clock value
Difference = SampleETT - EstimatedETT
EstimatedETT = EstimatedETT + (§ x Difference)
Deviation = Deviation + §(|Difference| - Deviation)
TimeOut = uxETT + ¢ xDeviation

Sensor nodes retransmit packets only on receiving a NACK.
No state information is maintained. The transmitted packets
are buffered for possible retransmission. To prevent buffer
overflow, a buffer timer is maintained, which periodically
fires when the buffer size reaches a threshold and the buffer
is cleared. The timer depends on the rate of transmission
of packets and existing network conditions. For example, if
packets are lost frequently, then the packets are cached in the
buffer for a longer time for retransmission.

If the source node does not receive a NACK, the packet
must have reached the base station, unless the NACK is lost.
So the base station maintains a record of all packets for which
it has sent a NACK. If a NACKed packet arrives, the base
station clears the corresponding entry from the record. The
base station periodically checks this record and, if it finds an
entry, retransmits a NACK.

D. Event-driven Flows

In event-driven flows, the base station cannot estimate
arrival times of data packets. Thus, clock synchronization
is not needed. Because of reliability requirement, positive
acknowledgements (ACK) are used by source to know if a
packet has reached the base station.

The source node buffers each transmitted packet till an
ACK is received. When an ACK is received, the corresponding
packet is deleted from the buffer. The nodes maintain a buffer
timer that fires periodically. When the timer fires, packets in
the buffer are assumed to be lost and are retransmitted.

E. Controlled Variable Reliability

Sensor nodes specify the required reliability for each flow
in the session initiation packet. For continuous flows, the
base station calculates a running average of the reliability.
Reliability is measured as the fraction of packets successfully
received. Even if the base station does not receive a packet
within the expected time interval, it will not send a NACK
if the current reliability satisfies the required reliability. The
base station transmits NACKs only when the reliability goes
below the required level.

For event-driven flows, the base station calculates reliability
as a ratio of packets received to the highest sequence numbered
packet received. The sensor node, before transmitting a packet,
calculate the effective reliability assuming that the packet will
not reach the base station. If the result is still more than
the required reliability, the node does not buffer the packet,
thus saving memory space. If the node receives an ACK, the
reliability increases.

F. Congestion Detection and Avoidance

Congestion detection and avoidance is an important as-
pect in sensor networks. The random early detection (RED)
mechanism designed by Floyd and Jacobson [12] proposes
that an intermediate node drop a packet when it experiences
congestion. The source is, therefore, effectively notified by a
subsequent timeout or a NACK. Since dropping of packets is
detrimental to sensor networks, we consider other solutions.
In Ramakrishnan and Jain’s DECDbit [6], intermediate nodes
monitor the load experienced and explicitly notify the end
nodes by setting a binary congestion bit in the packets.

STCP adopts this method of explicit congestion notification
with some modification. Each STCP data packet has a conges-
tion notification bit in its header. Every sensor node maintains
two thresholds in its buffer: ¢;,uer and tpigher. When the
buffer reaches t;,,¢-, the congestion bit is set with a certain
probability. The value of this probability can be determined by
an approach similar to that employed in RED. When the buffer
reaches txigner, the node will set the congestion notification
bit in every packet it forwards.

On receiving this packet, the base station informs the
source of the congested path by setting the congestion bit
in the acknowledgement packet. On receiving the congestion
notification, the source will either route successive packets
along a different path or slow down the transmission rate.
Note that the nodes rely on the network layer algorithm to
find alternate routes.

G. Data-centric Applications

In data-centric applications, collective network-wide infor-
mation is of interest. A few examples are monitoring of
seismic activity, finding maximum temperature in the network,
etc. In such applications, the intermediate nodes may aggregate
the correlated data as part of the data aggregation process.

Since the number of source nodes may be very high,
acknowledging all the source nodes by an ACK or NACK will
deplete network resources and energy. Hence, for data-centric
applications, STCP does not provide any acknowledgement
scheme, similar to UDP. It assumes that data from different
sensors are correlated and loss tolerant to the extent that events
are collectively and reliably sent to the base station. This view
is supported by the authors in ESRT [2].

V. SIMULATION RESULTS

To understand the end-to-end behavior of wireless sensor
networks, we performed extensive simulations of STCP using
TinyOS Simulator (TOSSIM) [8].

A. Simulation setup

We simulated networks with 50, 75 and 100 sensor nodes
randomly distributed in a 100m.x100m. square sensor field.
The transmission range of the nodes was set to 10 meters. Each
sensor node was provided with an initial energy of 0.5 J. We
assumed the radio dissipates 50 nJ/bit to run the transmitter
or receiver circuitry and 0.1 nJ/bit - m? for the transmitter
amplifier to achieve an acceptable SNR [15]. The data packet

length was fixed as 200 bits. To route packets from the
sensor nodes to the base station, we implemented distributed
Dijkstra’s shortest path algorithm. The simulator had a default
CSMA MAC layer protocol for channel access. Simulations
were run for 1000 simulator seconds unless stated otherwise.
On an average, sensor nodes in the network transmitted a
packet every 50 simulator seconds for continuous flows and
at random intervals for event-driven flows.

To evaluate the performance of STCP, we identified the
following metrics. We describe them in detail with results to
support our protocol design:

« Number of NACKSs for varying alpha («).
« Average packet latency.
« Energy spent for different reliability.

B. Number of NACKs for varying alpha («)

For continuous flows, the base station maintains a timer for
successive packets from a sensor node. We evaluated two types
of timers at the base station:

1) Timeout calculated by the expression (T + axETT).

2) Jacobson/Karels timeout mechanism which considers the

variation of the trip time.

Consider the case where timers are implemented by the
expression (T + axETT). ETT value of the previous packet
is considered because it would give the base station a fairly
accurate indication of the current network condition. Another
approach would be to use a weighted average of ETT over
several packets. We choose ETT instead of hop-count because
we observed that the packet trip time for nodes having the
same hop-count were very different. This is due to different
network characteristics in individual nodes’ neighborhood.
The base station waits for more than (T + ETT) time units
to compensate for unpredictable network delays due to link
instability, node failures and channel contention. To study the
effect of improper timeouts, we conducted several simulations
by varying alpha («) for different ETT ranges.

Before simulating STCP, our intuition was that nodes near
the base station will have a small ETT value as packets traverse
a few hops, and hence a small value of alpha (a) should be
enough to wait for the next packet. Packets from nodes that
are far away from the base station will traverse long paths,
have a high value of ETT, and hence alpha (a)) should be high
to compensate for network delays.

After simulating several scenarios, we found that the nodes
that were closer to the base station had a smaller ETT value.
However, as they were in the forwarding path for several
nodes, their packets experienced a high variance in ETT.
Hence, a higher value of alpha («) was required to compensate
for variation in ETT. Nodes that were further away from the
base station had a comparatively high ETT. Here a small alpha
(o) value was enough to wait for the next packet because
the variation in ETT was negligible. The base station thus
dynamically changes the waiting time for the next packet
corresponding to ETT and network conditions.

We assumed ideal network conditions for this simulation
setup to observe the number of unnecessary NACKSs trans-

aaa
W
wN e

NACKs

L L I I
0.5-1.0 10-15 15-20 >2.0

0-02

0.2-05

ETT (sec.)

Fig. 4. NACKs for a 50 node network

mitted by the base station. We observed that the number of
NACKSs was very high for low values of alpha («), especially
for lower ETT. As alpha () increases, the number of NACKs
decreased. From Fig. 4, for ETT (0 - 0.2 sec), o = 4 would give
the correct waiting period without transmitting unnecessary
NACKs. For nodes with higher ETT, a small value of alpha
(o) was sufficient to compensate for delays.

BPONOWR

I
[
oNnwR

a
a
a
a
a
o
a

[]
]
=]
=
=
—_
—_
I «
Il «
| K]

NACKs
B
1
3

40
20
[

L m L
0-02 02-05 05-1.0 1.0-15 15-20 >20

ETT (sec.)

Fig. 5. NACKs for a 100 node network

From Fig. 5, we observe that the number of NACKSs trans-
mitted is more for ETT (0.2 - 0.5 sec). This is because when
network size increases, latency increases due to congestion
and channel contention. Hence, the ETT values for nearby
nodes also increases and fall in the second range. As before,
lower values of alpha («) in this range causes more number
of unnecessary NACKs to be transmitted.

From the above results, we were interested in finding the
optimum? value of alpha (a) for all ETT ranges considering
the network as a whole. As network conditions change, the
base station dynamically varies alpha («). Fig. 6 shows the
optimum values of alpha(«) after 1000 simulator seconds for
different network sizes of 50, 75 and 100 nodes. An interesting
observation is that alpha («) is very high for low ETT values
in a 100 node network compared to a 50 node network; and

20ptimum value is the smallest value at which unnecessary NACKSs are
not transmitted.

alpha («) is almost the same for higher ETT. This supports
the fact that nodes near the base station face more congestion,
which increases with network size.

24

Il 50 nodes
[75 nodes

221 o0 B 100 nodes

201 -
18 |
16 ~
141 4

75
12+ -

alpha (a)

0r 75 4

75

75
50

50 75

0-02

02-05 0.5-1.0 1.0-15

ETT (sec)

Fig. 6. Optimum apha(«) for different network sizes

We implemented Jacobson/Karels timeout mechanism and
experimented with different combinations of delta (), mu
(1) and phi (¢). After several simulations, we observed an
ideal value of delta (d) to be between 0.3 and 0.5. For a
100 node network, varying mu (x) and phi (¢), we obtained
the following values where the base station does not transmit
unnecessary NACKSs:

e« FOrETT(0-0.2),pu=1land ¢ =8

e For ETT (0.2-05), u=3and ¢ =6

o For ETT (0.5-1.0), u=6and ¢ =6

o« FOr ETT (1.0-15),u=7and ¢ =5

o FOor ETT (1.5-20),x=9and ¢ =5

e FOr ETT (> 2.0), p=11and ¢ = 4

We observe that the Jacobson/Karels timeout mechanism
was analogous to our intuition. This is because of the variance
considered in the equations to calculate the timeout period. As
seen in the previous experiment, nodes near the base station
observed a high variance in ETT, hence a high value of phi
(¢) was observed for lower ETT. We obtained an interesting
result for ETT greater than 2.0 seconds. We observed that
1% of the packets were NACKed too early. We traced ETT
and its variance for all the nodes falling in this ETT range.
We observed that in the same time interval, ETT decreased
for some nodes while it increased for others. Since the base
station dynamically varies the value of mu (i) and phi (¢) to
decrease waiting time when ETT reduced for some nodes, it
had a negative effect on other nodes in the same range.

C. Average packet latency

An important goal of a transport layer protocol is to reduce
packet latency. For finding the average packet latency, we
implemented both continuous flows and event-driven flows
in the same network. One-fourth of the nodes generated a
continuous flow, one-fourth generated an event-driven flow
and the remaining nodes generated both type of flows in
the network. We introduced packet losses in the network
by dropping packets at intermediate nodes and observed the

average latency. Latency was measured as the time taken by a
packet to reach the base station from the time it was generated.
From Fig. 7, we observe that the latency is proportional to
ETT because packets from far away nodes have to traverse
many hops to reach the base station. We also observe that the
maximum average latency observed was less than 2.5 seconds
for a 100 node network.

2.8

T
—=— 50 nodes
-~ 75 nodes
~- 100 nodes

26

2.4

22

2

Latency (sec.)

18

L L L L
02-05 05-1.0 1.0-15 15-2.0 >20

ETT (sec.)

Fig. 7. Average packet latency

D. Energy spent for different reliability

We simulated a 100 node network for 5000 simulator
seconds to study the energy spent in the network for different
levels of reliability. Nodes generated both continuous and
event-driven flows in the same network. To simulate an error-
prone network and generate packet loss, every node was forced
to randomly drop 30% of the packets flowing through them.

- 50%

“l f\ﬁ&vj vvva WV\%’X\{’}Y%V%N V%NKJ x@; (

b4

Energy spent (J)

Time (x100 sec.)

Fig. 8. Energy consumption for a 100 node network

Fig. 8 shows the energy spent in the network every 100
seconds. We observe that the nodes spend significant amount
of energy in providing complete reliability to the applications.
After 5000 seconds, the total energy spent in the network
for providing 100% reliability was 2.78 J, 1.06 J for 75%
and 0.77 J for 50% reliability. The energy spent in providing
100% reliability was 2.61 times the energy spent for 75%
reliability and 3.59 times the energy spent for 50% reliability.
Through the controlled variable reliability mechanism, STCP
saves considerable energy and increases network lifetime.

V1. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented Sensor Transmission Con-
trol Protocol (STCP): a generic, scalable and reliable transport
layer protocol for sensor networks. Data flows generated by
sensors were classified as continuous and event-driven. Based
on flow characteristics, rate of transmission and required relia-
bility, STCP adapts itself to maximize throughput in an energy-
efficient manner. Most of the functionalities of STCP are
implemented at the base station, thereby saving considerable
energy at the sensor nodes. We implemented our protocol
in TinyOS and conducted exhaustive simulation experiments
using TOSSIM. We studied the impact of incorrect timers and
verified that the latency induced was within tolerable limits.
We also showed that STCP increases network lifetime through
controlled variable reliability.

In the future, we plan to implement STCP on a real sensor
test-bed and compare the results with those obtained in our
simulations. We also plan to study the effect of different MAC
layer and network layer algorithms on STCP.

ACKNOWLEDGEMENT

We would like to thank NIST for partly supporting this work
through a STTR grant.

REFERENCES

[1] C. Wan, A. Campbell, L. Krishnamurthy. PSFQ: A Reliable Transport
Protocol for Wireless Sensor Networks. In Proc. of WSNAO2, Atlanta,
Georgia, USA, Sept. 2002.

[2] Yogesh S., O. B. Akan, lan F. Akyildiz. ESRT: Event-to-Sink Reliable
Transport in Wireless Sensor Networks. In Proc. of MobiHoc03,
Annapolis, Maryland, USA, June 2003.

[3] C. Intanagonwiwat, R. Govindan, D. Estrin. Directed diffusion: A
scalable and robust communication paradigm for sensor networks. In
Proc. of MobiCOM ' 00, Boston, Massachussetts, August 2000.

[4] F Stann, J. Heidemann. RMST: Reliable Data Transport in Sensor
Networks. In Proc. of SNPA, Anchorage, Alaska, April 2003.

[5] J. Postel. RFC 768: User Datagram Protocol. August 1980.

[6] K. Ramakrishnan and R. Jain. A Binary Feedback Scheme for Conges-
tion Avoidancein Computer Networks. ACM Transactions on Computer
Systems, May 1990.

[71 P Blum, L. Meier, L. Thiele. Improved Interval-based Clock Synchro-
nization in Sensor Networks. In Proc. of IPSNO4, Berkeley, California,
USA, April 2004.

[8] Philip Levis, Nelson Lee, Matt Welsh and David Culler. TOSSIM:
Acurate and Scalable Simulation of Entire TinyOS Applications. Pro-
ceedings of 1st International Conference on Embedded Networked
Sensor Systems, 2003.

[9] Qun Li, D. Rus. Globa Clock Synchronization in Sensor Networks.

IEEE Infocom04, Hong Kong, China, March 2004.

R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor,

I. Ryting, M. Kalla, L. Zhang, V. Paxson. RFC 2960: Stream Control

Transmission Protocol. Network Working Group, Oct. 2000.

RFC 793. Transmission Control Protocol. Sept. 1981.

S. Floyd and V. Jacobson. Random Early Detection Gateways for

Congestion Avoidance. IEEE/ACM Transactions on Networking, August

1993.

S. Tilak, N. B Abu-Ghazaleh and W. Heinzelman. Infrastructure

Tradeoffs for Sensor Networks. In Proc. of WSNAO2, Atlanta, Georgia,

USA, Sept. 2002.

[14] V. Jacobson. Congestion Avoidance and Control. Proceedings of the
ACM SIGCOMM Symposium, August 1988.

[15] W.R. Heinzelman, A. Chandrakasan and H. Balakrishnan. Energy-
effi cient communication protocol for wireless micro sensor networks.
Proceedings of the 33rd Annual Hawaii International Conference on
System Sciences, 2000.

[10]

[11]
[12]

[13]

