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The motions and wakes of freely falling disks were studied and it was found that the diverse mo-
tions of the disks exhibit a systematic dependence on the Reynolds number Re, and the dimension-
less moment of inertia 7*. The relation between I'* and Re along the boundary separating stable and
unstable pitching oseillations of the disk was determined. The Reynolds number for stable motion
of a disk with large 7* is 100, in agreement with the Reynolds number for stability of the wake of a
fixed disk. Slightly unstable disks of large I'* were stabilized by reducing the moment of inertia. The
highest Reynolds number for stable disk motion was 172. At higher Reynolds numbers the disks
exhibited periodie pitching and translational oscillations. The laminar wake behind certain of the
oscillating disks consisted of a staggered arrangement of two rows of regularly spaced vortex rings
similar to the wake observed behind liquid drops by Margarvey and Bishop. The dependence of the
dimensionless frequency of oscillation on I* and Re was determined along the boundary for stable
motion and at higher Reynolds numbers when the wake was turbulent. Tumbling motions of the
disks were observed when the Reynolds number was large, Re > 2000, and I'* was greater than a
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certain value, I* = 1072

1. INTRODUCTION

HE steady or unsteady motion of bodies with

poor aerodynamic shapes cannot, at the present
state of development of fluid mechanics, be cal-
culated from the equations of motion for the flow.
Therefore, for our understanding of the fluid me-
chanical aspeets of the body motion and flow field
"we must rely on the results of systematic experi-
mental investigations in which the significant param-
eters are varied over a wide range. This paper gives
some results on various features of the steady and
unsteady motion and flow over freely falling disks.
The disk was chosen for these studies because when
the flow is directed normal to the face of the disk,
it represents an extreme example of a poor aero-
dynamic shape,

Some aspects of the flow field about a disk and
other bluff bodies are already known. A summary
of the known phenomena may be found in Gold-
stein.' At very low Reynolds numbers, when the
inertial forces of the fluid can be neglected and the
flow is steady (Stokes flow), Oberbeck® has com-
puted the drag coefficient and the flow field near
the disk. At higher Reynolds numbers, when inertial
forces in the fluid first become important, Oseen®
has computed a correction term to the drag coeffi-

* On leave of absence at the Joint Institute for Laboratory
Astrophysics, University of Colorado, Boulder, Colorado.

! Modern Developments in Fluid Dynamics, edited by
8. Goldstein (Oxford University Press, Oxford 1938), Vol. 2,
chap, XIII. -

2 A. Oberbeck, Crelles J. 81, 62 (1876).

2 C. W. Oseen, Arch. Math, Phys. 24, 108 (1915).

cient computed by Oberbeck. At Reynolds numbers
above 100 the flow field in the wake becomes un-
stable and steady flow about the disk is no longer
observed. In the case of two-dimensional bluff bodies
the wake instability produces a Karmén vortex
street.* In three dimensions, where the geometry
is more complicated, the wake flow is periodic®'®
but not as simple as the two-dimensional case, be-
cause the vorticity that appears in the wake is not
aligned in one direction when it is formed. Rosen-
head, in an appendix to Stanton and Marshall’s
report,” has given an excellent discussion of the
possible eddy systems in the wake of circular disks,
We shall refer to his discussion later in the paper.
At higher Reynolds numbers the flow in the wake
behind the body becomes turbulent. Roshko’ has
described the turbulent wake, which includes vestiges
of the Kdrman vortex trail, for the case of two-
dimensional bluff bodies. The three-dimensional
turbulent wake structure is more complicated and
has not been studied in as much detail as the two
dimensional turbulent wake. In the flow field and
wake of a freely falling disk, one may expect to
find vestiges of these phencmens. In addition, new
phenomena that are caused by the motion of the
disk as it moves about under the influence of the
aerodynamic forees will appear.

+ Th, von Kérmén, Nachr. Ges. Wiss, Géttingen Math.
Phys, K1, 509 (1911); 547 (1912).

s T, B. Stanton and D. Marshall, Gt. Brit. Aero. Res. C.
Rep. Mem, No. 1358 (1930). .

¢ L. F. G. Simmons and N. 8. Dewey, Gt. Brit. Aero. Res.
C. Rep. Mem. No. 1334 (1930).

7 A. Roshko, NACA Report 1191 (1954).
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TasLe I. Abbreviated table of data for the disk drag coefficient at low Reynolds
numbers in the stable region.

Test d X 10 t/d X 108 P2 1 » X 102 U Re Cp
no, (em) (em) (g/cm3) (g/em3) (em?/sec) {cm/sec)
1 3.18 12.0 7.84 1.20 31.2 1.55 1.58 17.3
2 3.18 10.0 7.84 1.18 11.4 2.91 8.10 4.16
4 7.62 3.3 7.84 1.16 15.3 3.15 15.7 2.88
7 15.2 1.67 7.84 1.17 19.0 3.63 29.1 2.14
10 7.62 3.3 7.84 1.13 6.95 4.05 44 .4 1.78
11 7.62 3.3 7.84 1.12 5.48 4.41 61.3 1.54
13 3.18 10.0 7.84 1.08 2.14 5.05 74.8 1.62
14 15.2 1.67 7.84 1.13 6.66 4.62 106.0 1.38

We began the present investigation with the aim
of identifying and understanding the more interest-
ing and important features of the flow field and
motion of a free disk. In our description of the un-
steady phenomensa we will be concerned primarily
with the dimensionless parameters upon which the
unsteady motion and flow field depend. After our
investigation was well under way, we found the
excellent paper of Schmiedel® in which many features
of the steady and unsteady flow field and motions
of freely falling disks and spheres are described.
Schmiedel’'s work covers the range of Reynolds
numbers from creeping motion up to Reynolds
numbers of the order of 300. We will describe the

8 J. Schmiedel, Physik Z. 29, 594 (1928).

flow phenomena using Schmiedel’s results and ideas
at low Reynolds numbers and will add our new
observations in the low Reynolds number range and
at higher Reynolds numbers.

2. EXPERIMENTAL APPARATUS

The experiments were performed by dropping
disks made from materials of varying density into
containers filled with tap water or with solutions
of distilled water and glycerol. The disks were made
from homogeneous metals or plasties whose speeific
gravity was greater than one. All the disks were
made by machining thin sheets of the disk material
on a high-speed lathe. The disks were flat and
square-edged. The large disks were easily clamped

TasLe I1. Abbreviated table of data for the boundary between stable and unstable
pitching oscillations of a disk.

Test d X 10 t/d X 108 Pz P1 v X 102
no. (cm) (em) (g/cm3) (g/cm)? (em?/sec) (em/see) Re I* X 108 Motion
1 6.35 42.0 7.84 1.15 8.36 14.1 107.0 14.1 U
2 6.35 42.0 7.84 1.15 8.95 14.2 101.0 14.0 B
3 6.35 42.0 7.84 1.16 9.56 14.6 97.3 13.9 50
5 6.35 38.0 7.84 1.15 8.75 13.2 96.0 12.7 B
8 3.18 32.0 7.84 1.09 3.12 10.2 103.0 11.2 B
9 6.35 30.0 7.84 1.14 7.10 12.2 109.0 10.1 U
10 6.35 30.0 7.84 1.14 7.22 11.9 104.0 10.1 B
11 6.35 30.0 7.84 1.15 8.36 12.2 93.0 10.0 SO
12 6.35 20.0 7.84 1.14 6.70 10.2 160.0 6.75 B
i4 3.18 16.0 7.84 1.07 1.99 6.63 106.0 5.76 B
17 3.18 12.0 7.84 1.06 1.78 6.10 109.0 4.36 B
20 5.08 11.2 7.84 1.10 3.13 6.57 107.0 3.94 B
22 5.08 10.0 7.84 1.10 3.21 6.63 112.0 3.51 B
24 5.08 8.85 7.84 1.07 2.50 5.46 111.0 3.12 B
26 6.35 8.0 7.84 1.10 2.98 5.63 120.0 2.81° U
27 6.35 8.0 7.84 1.10 3.08 5.73 118.0 2.81 B
28 6.35 8.0 7.84 1.10 3.22 5.73 113.0 2.80 SO
29 25.4 1.0 7.84 1.14 7.88 4.81 155.0 0.34 SO
30 25.4 1.0 7.84 1.14 7.68 4.84 160.0 0.34 B
31 25.4 1.0 7.84 1.14 6.98 4.48 163.0 0.34 U
33 15.2 1.67 7.84 1.11 4.33 4.82 170.0 0.52 B
35 7.62 3.33 7.84 1.07 2.32 5.25 167.0 1.20 B
38 5.08 5.0 7.84 1.06 2.20 5.656 130.0 1.80 S0
39 5.08 5.0 7.84 1.05 1.84 4.92 136.0 1.84 U
41 7.62 6.66 7.84 1.10 3.81 6.23 125.0 2.31 B
47 16.2 2,50 7.84 1.08 2.68 4.76 180.0 0.89 U
48 10.2 2.50 7.84 1.09 2.92 4.93 172.0 0.88 B
49 10.2 2.50 7.84 1.08 2.83 3.25 170.0 0.89 850
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Tasir III. Abbreviated table of data for regular pitching oscillations and for tumbling motion of disks.
Test d t/d X 102 p2 I* X 108 v X 103 U nd/U X 10 Re Cp
no, (em) (em) (g/cm?) (ecm?/sec)  (em/sec)
3 2.54 6.9 1.69 5.73 10.4 9.72 3.06 2370 2.51
6 - 2.54 2.9 1.14 1.63 10.4 3.26 5.13 800 1.93
8 2.55 3.3 1.73 2.80 10.4 6.31 4.25 1550 3.03
9 2.54 3.5 7.62 13.1 10.4 38.1 (a) 9300 0.80
10 1.27 12.6 7.62 47 .2 10.4 38.1 (a) 4640 1.43
11 1.26 5.9 1.11 3.19 10.4 3.96 3.96 478 0.99
13 1.26 6.7 1.74 5.68 10.4 7.44 3.03 900 2.20
14 1.27 6.4 2.64 8.30 10.4 12.7 1.80 1540 1.67
18 3.76 1.8 1.21 1.08 10.4 3.02 5.78 1080 3.08
20 3.18 5.1 2.62 6.58 8.4 15.9 2.58 6010 2.06
33 2.54 6.5 2.64 8.45 6.7 17.6 1.97 6670 1.72
43 2.57 6.2 1.30 3.98 12.7 6.50 3.97 1380 2.26
49 2.54 6.5 2.64 8.45 15.0 17.9 1.98 3040 1.66
65 3.81 6.3 1.32 4.07 13.8 7.74 4.02 2140 2.52
66 3.81 6.3 1.32 4.07 7.0 7.40 4.16 4050 2.75
67 11.4¢ 1.6 1.18 0.90 9.8 3.60 6.39 4210 4.82
68 15.2¢ 1.1 1.17 0.64 9.8 3.51 6.04 5480 4.70
69 20.3¢ 0.38 1.01 0.19 9.8 1.43 8.74 3160 (b)
70 22.9¢ 0.76 1.19 0.44 9.8 3.48 8.38 7930 5.67
71 30.5¢ 0.52 1.20 0.30 9.8 3.23 9.62 10 100 5.76
72 17 .8¢ 1.3 1.37 0.84 9.8 5.64 6.18 10270 5.09
73 7.62 2.1 48.04 165.0° 43.3 (a) 2000
74 29.9 2.39 0.026 26.6 165.0¢ 104.8 (a) 19 000 2.74

& Tumbling motion.

b Disk weight inaccurate

¢ Tested in towing tank.

d I, measured directly.

e Tested in air, ;» = 1. 15 X 1073 g/cm3.

on the rotating head stock with a rotating rubber
pad mounted on the tail stock. Small, thin disks
were glued on the end of a rod clamped in a chuck.
The glue used was Eastman 910 adhesive. In this
way, very thin, flat disks were made. The disks
were removed from the rod with a razor blade and
soaked in an Epoxy resin solvent until clean. The
dimensions and density of the various disks were
measured and are given in Tables I, II, and III.

The fluid containers were 11-, 15-, and 30-cm
diam. plexiglass tubes of various lengths. A rec-
tangular plexiglass container, 30 X 30 X 120 cm,
was used for photographs of the disk motion and
flow field. The effect of container size on the motion
and flow field of the disks was appreciable only when
large amplitude pitching oscillations were observed.
These effects are discussed in Secs. 3B, 3D, and 3E.

The rate of descent of the disks was obtained by
stop-watch measurements of the time required for
the disk to fall a known distance. The frequency of
disk oscillation was always low enough to allow the
observer to measure an average frequency by count-
ing the number of oscillations in a measured time
interval. The temperature of the tap water was
measured and its viscosity was obtained from the
tables of Bingham and Jackson.’ The specific gravity
of the glycerol and distilled water solution was

¢ E. C. Bingham and R. F. Jackson, Bull. Bur. Stds. 14,
75 (1918).

measured with a float-type hydrometer. From the
temperature and specific gravity of the glycerol and
water solutions the coeflicient of viscosity was ob-
tained by interpolation from the tables published
in the Handbook of Chemistry and Physics.'® We
have checked our experimental procedures and ap-
paratus by comparing our drag coefficients with
those measured by Schmiedel® for Reynolds numbers
less than 100. The comparison is shown in Fig. 5.
3. DESCRIPTION OF THE DISK MOTION AND FLOW
FIELD

The detailed motion and flow field of freely falling
disks at very low Reynolds numbers are well docu-
mented in the literature. We will describe the se-
quence of events as the Reynolds number of the
falling disk increases and will supplement the dis-
cussion with results from the literature and from
our investigation.

A. Flow at Very Low Reynolds Numbers
(Stokes Flow)

At very low Reynolds numbers, Re = Ud/,
where U is the speed of fall, d the disk diameter,
and » the kinematic viscosity, Schmiedel® observed
that a disk will fall vertically with the same orienta-
tion that it had initially. Gans' has shown that

19 Handbook of Chemistry and Physics, edited by C. Hodg-
man (Chemical Rubber Publishing Company, Cleveland
1960), 42nd ed. pp. 2019 and 2212.

1 R. Gans, Sitzber. Akad. Miinchen 41, 197 (1911).
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F1a. 1. Vertical descent of a stable plexiglass disk in water;
disk diameter 0.637 cm, disk thickness 0.0407 cm, Re = 100.
The black screw heads along the sides of the container are
10.2 cm apart.

same conditions as Fig. 1.

Fia. 2. Flow field in the wake of a stable disk,
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at low Reynolds numbers where ereeping motion
obtains there is no aerodynamic moment produced
by fluid pressure on a body that has three mutually
perpendicular planes of symmetry. Schmiedel® men-
tions that experiments in this range were very diffi-
cult because it was nob easy to orient the disks
initially with their faces horizontal, but gives no
data about the Reynolds number range in which
this motion was found. Squires and Squires’ in-
vestigated the sedimentation of thin disks at very
low Reynolds numbers but did not mention the
range of Reynolds numbers in which a disk will
maintain its initial orientation, Examination of their
tabulated data on the drag of disks falling with
faces parallel and normal to the direction of motion
shows that no drag measurements for disks falling
edge on (with the face parallel to the direction of
motion) were reported above a Reynolds number
of 0.39. We have not investigated in detail the bound-
ary below which the disk attitude depends only
on the initial orientation. On one occasion we ob-
served a vertical fall of a disk with its face parallel
to the vertical at Re = 1.9. We attempted to repeat
the experiment but the disk fell repeatedly at a
slight angle to the vertical and hit the side of the
container,

It is certain that a Reynolds number of the order
of 1 marks the upper limit of the Reynolds number
range in which the disk falls vertically and main-
tains its initial orientation.

B. Steady Laminar Flow Above Re = 1

When the Reynolds number is greater than ap-
proximately 1 but less than approximately 100, a
disk can be released with any initial orientation
and will adjust itself to a horizontal attitude. The
disk will then fall vertically and steadily with its
face normal to the direction of motion. In this
Reynolds number range the drag coeflicient {see
Fig. B) is greater than the Stokes flow result for
creeping motion computed by Oberbeck® but lies
below the drag computed by Oseen® in which the
approximate effeet of the inertial forees is con-
sidered. We believe that the inertial forees of the
fluid are responsibleé for the tendency of the disk
to fall face down. In this connection Schmiedel®
mentions Kirchhoff’s proof'® that the fluid pressure
on an ellipsoid of revolution in translational motion

121, Squires and W, Sqmres Jr., Trans, Am. Inst. Chem.
Engr. 33, 1 (1037).

G, Klrchhoﬁ Crelles J. 71, 237 (1869); H. La.mb Hydro-
dynamics (Dover Pubhcatxons, Ine., New York, 1945) 6th
ed., chap. VI, pp. 160-177,
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F1a. 3. Release of vorticity from the wake of the disk of Fig. 1
after stopping at the bottom of the eontainer,

in an ideal fluid produces a torque which vanishes
only when the ellipsoid moves in the direction of
one of the three principal axes. Of these three pos-
sible equilibrium states of motion Kirchhoff showed
that only motion in the direction of the smallest
axis is absolutely stable. The thin disk is the limiting
case of an ellipsoid of revolution and XKirchhoff’s
result suggests the reason for the observed orienta-
tion and stable motion of the disk in spite of the
fact that the viscous flow about the disk and in the
wake is hardly that of an ideal fluid.

The steady motion and flow field about the disk
were observed visually and photographs of the in-
teresting features are shown in Figs. 1, 2, 3, and 4.
The disks were painted with a concentrated solution
of aniline dye (Methyl Blue Chloride, Allied Chemi-
cal and Dye Corporation) and allowed to dry before
they were dropped in the water. ,

In Fig. 1 a steadily falling disk is shown. The wake
is perfectly straight affer the initial oscillation
ceases, The dark region behind the disk contains
fluid in rotational motion that has passed near the
disk and has carried away dye from the surface.
A close up picture of the slowly rotating fluid in
the wake is shown in Fig. 2. The circular streaks
are caused by inhomogeneities in the rotating dyed
fluid, which is in the shape of a distorted torus.
Stanton and Marshall® mention that in 1877 Reyn-
olds first pointed out the existence of the vortex
ring behind a circular disk. A very small fraction
of the dyed fluid in the vortex ring is deposited in
the thread like wake. The features of this steady
flow field are quite similar to the steady flow be-
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Fia. 4. Vortex ring formed after release of vorticity from the
wake of the disk of Fig. 1.

hind spheres® or behind drops of liquid falling
through a less dense liquid.**

When the disk reaches the bottom of the container
and stops it releases the vorticity carried by the
fluid behind the disk. Figures 3 and 4 show the
details of the release. The released vorticity takes
the form of a vortex ring that is connected to the
front of the disk by a thin axisymmetric sheet of
dyed fluid. In the photographs, Figs. 3 and 4, the
optical images of the disk and vortex ring are
formed by reflected light from the lower side of the
container.

We have measured the steady drag coefficient
of the disks

weight — buoyant force

CD = %pl U27|'7‘2 ) (1)

where p, is the fluid density, U is the terminal
velocity, and r is the disk radius. The drag coefli-
cients in the Reynolds number range 1 < Re < 105

® Schmiede!(®

O Present Investigation

Oberbeck(Z) N”‘N
1 L IR | Lot L
1o 10 10 100
Re

Fra. 5. Drag coefficient as a function of Reynolds number for
thin disks in steady motion,

4 R. H. Magarvey and R. L. Bishop, Phys. Fluids 4, 800
(1961); Can. J. Phys. 39, 1418 (1961).
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are compared with the measurements of Schmiedel®
in Fig. 5. We have obtained good agreement with
Schmiedel’s results and can conclude that our simple
experimental methods give satisfactory accuracy.
Schmiedel® also considered the influence of the con-
tainer wall on his drag coefficients and concluded
that the influence was small. We have used almost
the same diameter container in relation to disk
diameter that Schmiedel used and can also state
that the wall influenced the drag by no more than
a few per cent.

C. Damped Pitching Oscillations

In the Reynolds number range from approxi-
mately 1 to 100, damped pitching oscillations of
the disk about a diameter were sometimes observed
(see Fig. 6). These oscillations remind one of Kir-
chhoff’s"® integration of the complete equations of
motion for the case of a solid of revolution that
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F1c. 6. Stroboscopic picture showing the damping of the
transient oscillatory motion of a plexiglass disk in distilled
water. Repetition rate approximately 11 per sec, disk diam-

eter = 0.637 cm, disk thickness = 0.0407 cm, Re = 100.
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moves through an ideal fluid with its axis confined
to one plane. Kirchhoff showed that regular pitching
oscillations of the solid can oceur about an axis
normal to the plane of motion. The observed oscil-
lations were excited by inhomogeneities in the fluid
or by disturbances of the initial attitude when the
disk was released. Evidence of damped oscillations
caused by improper initial conditions can be ob-
gserved in the wake trail at the top of Fig. 1. Figure 7
shows random excitation of oseillations caused by
the disk falling at the same Reynolds number ag
the disk of Fig. 1, but through a medium that was
not at rest. Whenever the disk oscillates or is dis-
turbed during its fall it releases a horseshoe-shaped
loop of vorticity that is connected by a vortex sheet
to the dyed fluid immediately behind the disk.
Rosenhead, in an appendix to Stanton and Mar-
shall’s report,® discusses the reason why horseshoe-
shaped vortex loops are observed when an axisym-
metric wake is disturbed. The discussion relies upon
the impossibility of a helical discharge of vorticity'®
and the instability of axisymmetric sheaths or rings
of vorticity.

The damping of the pitching oscillations was very
great at low Reynolds numbers and decreased mono-
tonically as the Reynolds number increased until
at Reynolds numbers of the order of 100 the damping
was very small. When the damping was very large
the disk could be released with any desired inclina-
tion to the horizontal and would immediately assume
a horizontal face-down attitude without oscillating.
At higher Reynolds numbers damped pitching oseil-
lations were observed. The pitehing oscillations were
confined to a vertical plane normal to the diameter
about which the disk first oscillated. Detailed ob-
servations of the frequency of oscillation and the
amount of damping were not made in the Reynolds
number range below Re = 100. ‘

D. Boundary Between Stable and Unstable
Pitching Oscillations

When the Reynolds number was greater than
100 we observed that many of the disks were un-
stable. Small pitching oscillations about a diameter
with little translational motion of the center of
mass (see Fig. 6 for example) increased in amplitude
until appreciable translational motion of the center
of mass in a vertical plane normal to the diameter
defining the pitching oscillation was observed. Once
established, the larger amplitude motion was quite
periodie and regular and would persist until the

15 H. Jeffreys, Proc. Roy. Soo. (London) A128, 376 (1930).
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disk reached the bottom of the container. On the
other hand some disks, made of different materials
or with different dimensions, exhibited only damped
pitching oscillations which resulted in a steady de-

Fig. 7. Vertical descent of a stable plexiglass disk in a
disturbed medium (agitated water) showing horseshoe-shaped
vortex loops released when disturbances are encountered. -
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Fia. 8. Dimensionless moment of inertia I*, as a function
of Reynolds number near the boundary separating stable
and unstable oscillations of thin, freely falling disks.

scent at the same Reynolds number. We have in-
vestigated the boundary between the stable and
unstable oscillations as a function of the dimension-
less parameters pertinent to the phenomena.

The variables governing the phenomena are the
fluid density p;, the disk density p,, the average
speed of fall U, the disk diameter d, the disk thick-
ness ¢, and the fluid viscosity u. From these six
dimensional quantities three independent dimension-
less numbers may be formed, among which will be
obtained a functional relation governing the sta-
bility problem.

The three dimensionless numbers chosen are: the
dimensionless moment of inertia of the disk,

I* = I/Pld5 = 7"P2t/6491d, (2)

formed from the ratio of the moment of inertia of
a thin disk about a diameter and a quantity pro-
portional to the moment of inertia of a rigid sphere
of fluid about its diameter, d; the Reynolds number,

Re = pUd/u; 3)
and the thickness ratio of the disk,
T = t/d. 4

This choice of dimensionless parameters was made
in order to display the dynamic or inertial effect of
the disk embodied by the parameter I*. I* and the
dimensionless frequency of oscillation, nd/U, are
the dimensionless parameters which arise naturally
in the inertial terms of the equations of motion for
the rotation of the disk about the mass center.
The thickness ratio of the disk will always enter
as an inertial effect through the dimensionless mo-

ment of inertia I*, and will affect the pitching
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motion. But, if the thickness ratio 7, is small, disks
of different thickness ratio should not have ap-
preciably different aerodynamic characteristics.

We have made numerous observations of the
motion of thin disks falling in solutions of glycerol
and distilled water to locate the boundary separating
the damped stable motion of the disk from the
unstable motion that occurred for Re > 100. The
disks used for these tests were made from steel
shim stock as described in Sec. 2. The thickness
ratio 7, was always less than 0.04.

The basic experiment was very simple: the disks
were dropped in quiescent liquid and their motion
observed. The results of the tests are shown in
Table IT and Fig. 8. If the amplitude of disk oscil-
lation increased it was recorded as unstable U. If
the amplitude of oscillation was damped and the
oscillations ceased before the disk reached the bottom
of the container it was recorded as stable S. If the
oscillation was visibly damped but so slowly that
it did not stop oscillating before reaching the bottom
of the 120-cm container it was recorded as SO, but
was considered to be stable. If the disk oscillation
amplitude appeared to be constant it was labeled
B for boundary. Each test with each disk was run
a number of times in doubtful cases until the issue
was decided by the type of motion that appeared
most frequently. For large I*, I* > 2 X 107°,
the decision whether a disk was 8, SO, B, or U
was easy to make; but for smaller I* I* < 2 X 107,
the decision became progressively more difficult,
and repeated tests were necessary. At the lowest
value of I*, I* = 3.37 X 107* fewer tests were
required to determine the location of the stability
boundary than were required at the maximum stable
Reynolds number, Re = 172, for I* = 7.5 X 107*.

For determination of points near the stability
boundary it was always necessary to use the 120-cm
container because the motion was only very slightly
damped. It was often necessary to allow the liquid
to settle for about an hour after stirring. We made
special tests and found that our results were always
repeatable near the stability boundary if we allowed
the liquid to remain at rest for an hour or more after
stirring. On one occasion we found a combination
of disk and fluid in which the disk was observed to
be very slightly unstable with very slowly in-
creasing amplitude of oscillation. We covered the
liquid and allowed it to settle over a weekend. When
the test was repeated two days later the results
were the same. We are confident that no destab-
ilizing effects of disturbances in the fluid were over-
looked. We did not find any effect of wall interference
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on the results of the stability tests, and were able
to reproduce the results in beoth small- and large-
diameter containers. The only influence of the walls
that we noticed was a tendeney for disk oscillations
to cease when the disk was approximately one
diameter from the bottom of the container.

The results of the stability tests, shown on the
plot of Fig. 8, can be compared with the work of
others. Schmiedel,® whose work stimulated our sta-
bility investigation, reporfed steady disk motion
below Re = 80 for all his disks (which were made
from gold, silver, and steel, and had a large value
of I*). However, we had found very early that a
relatively thick plexiglass disk, with a low value of
I*, exhibited steady motion at a Reynolds number
of 183.

Stanton and Marshall® are quoted by Simmons
and Dewey® to have observed the onset of wake
oscillations behind a disk mounted in a small water
channel at Re = 195. However, in their own tests,
Simmons and Dewey reported the onset of wake
oscillations behind a disk with the same thick-
ness ratio, r = 0.1, mounted in a wind tunnel at
Re = 100. Upon reading Stanton and Marshall’s
paper we discovered that their water tunnel was
s0 narrow that the flow was practically a fully de-
veloped laminar pipe flow. Simmons and Dewey
overlook the fact that Stanton and Marshall men-
tion that they have almost a parabolic velocity
profile in their tunnel and, in addition, base their
Reynolds number on the mean velocity. It is easy
to understand the discrepancy between the results
of the two investigations if we realize that the vor-
tieity in a fully developed laminar pipe flow will
always be opposite in sense of rotation to the vor-
ticity generated by a disk placed in the center of
the flow. Therefore, sufficient vorticity for wake
instability cannot be generated in the presence of
the paraboliec velocity profile until higher Reynolds
numbers are attained.

We decided that the cause of the unexplained dif-
ference between Schmiedel’s, Simmons and Dewey’s,
and our own first stability tests, which gave Reyn-
olds numbers for steady motion of 80, 100, and 183,
respectively, resided in the inertial forces produced
by the disk motion. This supposition is confirmed
by our final results, Fig. 8, on the variation of the
Reynolds number at which instability occurs as a
function of I*. For large I* the relatively large
moment of inertia of the disk causes it to behave
almost as if it were a fixed disk, and the instability
of motion begins at Re = 100, which coincides with
the result of Simmons and Dewey® for a disk
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mounted in a wind tunnel. When I'* is reduced the
Reynolds number of the stability boundary in-
creases and reaches a maximum value at Re = 172
and I* = 8 X 107*. We believe that the increase
in the Reynolds number for the onset of unstable
motion with decreasing I* is caused by a favorable
phase relationship between the disk pitching motion
and the generation, distortion, and motion of the
vorticity behind the disk. We are presently investi-
gating the phase relationship between the position,
aerodynamic torque, and vortex shedding of a large
disk undergoing forced oscillations in a wind tunnel.
We hope to gain a better understanding of the
mechanisms which control the disk stability and
motion from these tests.

We have not been able to explain the lower
Reynolds numbers, Re = 80, that Schmiedel® found
for the stability boundary of his disks. We can
mention two possible reasons for the discrepancy:
Tirst, Schmiedel may not have allowed his liquid
to come completely to rest. Second, Schmiedel re-
corded disk oseillations with a movie camera whose
field of view was approximately 13 X 13 em, and
may not have noticed slightly damped oscillations.

E. Regular Pitching and Translational Oscillations

The motion of the falling disks in the unstable
region at Reynolds numbers greater than those on
the boundary for stable motion was investigated in
some detail. In the unstable region the most com-
mon type of motion observed was a pitching motion
accompanied by a large-amplitude translational
motion of the disk in a plane normal to the pitching
axis. A definite frequency could be assigned to the
oscillation in every case in which the translational
motion was confined to a vertical plane. A slight
rotation of the plane of translational motion about
a vertical axis was sometimes observed. The fre-
quency of oscillation, speed of descent, and ampli-
tude of motion were always the same as in the case
of no rotation. A definite spiral motion of the disk
about a vertical axis was sometimes observed if
the surface normal to the disk face did not lie in
a vertical plane when the disk was released or if
the disk met a disturbance in the fluid as it fell.
The spiral motion was irregular and difficult to
repeat. The irregularity of the motion prevented
any quantitative measurements of the frequency
of rotation, speed of descent, or amplitude of the
spiral motion. We have discarded the tests in which
spiral motion occurred.

We have found that the unsteady wake of a disk
executing small amplitude oscillations near the
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Fra. 9. Staggered arrangement of two rows of equally
spaced (5 cm) vortex rings left in the wake 40 sec after passage
of a disk which exhibited oscillatory pitching motion as it
fell almost vertically, Re = 170: (a) View normal o plane
of oscillation (b) view with camera 60 cm to the right in the
plane of oscillation near the top of (a).

boundary for stable motion is laminar and contains
two rows of staggered, equally spaced horseshoe-
shaped vortex loops on either side of the wake. When
the intensity of the vorticity in the horseshoe-shaped
vortex loops is relatively large the loops break away
from the wake and form a staggered array of two
rows of closed vortex rings. An example of this
type of wake is shown in Fig. 9. The pattern is
very similar to that observed by Margarvey and
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Bishop'* behind nonoscillating drops of liquid above
a certain eritical Reynolds number.

Figure 10 shows some features of the flow field
at a relatively high Reynolds number in the turb-
ulent wake of a disk in the case of regular pitching
oscillations of large amplitude. This motion was
first photographed and described by Schmiedel.®
From the wake flow of Fig. 10, it appears that the
disk flies in curved descending ares carrying with
it bound vorticity and releasing a vortex at the
extremes of the motion. The released vortices are
connected to each other by two trailing vortices
from the edges of the disk.

Within this mode of oscillation there appeared a
considerable variation in the frequency of the oseil-
lation and the amplitude of the translational and
pitching motion. When the disks had a large mo-

Fig. 10. Wake of a freely falling disk which exhibited
regular translational and pitching oscillations. Test no. 8 of
Table III: Re = 1547, I* = 2,80 X 1073, nd/U = 0.43,
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ment of inertia in comparison to a given volume of
liquid, large I*, the pitching amplitude, frequency
of oscillation, and falling speed were large and the
amplitude of translational motion was small. When
the amount of inertia was reduced, I* small, the
pitching amplitude, frequency of oscillation, and
falling speed were small and the amplitude of
translational motion became very large. The disks
often encountered the sides of the container when
I* was small. We were fortunate to be allowed
access to the University of Michigan ship model
towing tank for free fall tests of large plastic disks
at a time when the tank water had not been agi-
tated for a few days. We found large-amplitude
oscillations, typically of the order of a meter, for
tests 67 to 72 of Table III. On one occasion we
tested a polystyrene disk of one foot diameter with
I* = 1.24 X 107*. The amplitude was so large that
the disk glided slowly out of view down the tank
and was not seen again! In this type of motion the
slow oscillations were seldom confined to a single
vertical plane because the disks were very sensitive
to disturbances at the extremes of their motion
which often caused a slight change in the attitude
of the disk and resulted in a slight rotation of the
vertical plane of oscillation.

Data from representative tests in this mode of
motion are collected in Table I1I. In the problem
of disk oscillations the frequency = enters as a
variable that must be added to the variables al-
ready discussed in the stability boundary investi-
gation, Sec. 3D. Another dimensionless number,
nd/U, the dimensionless frequency, is added to
the previous dimensionless numbers I*, Re, and 7.

Using the same scheme as before we have found
it possible to order the data on a plot (see Fig. 11)
of Reynolds number versus 7*, in which nd/U enters
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Fie. 11. Map of the dimensionless moment of inertia I*%,
and the Reynolds number for freely falling disks which
exhibited regular pitching oscillations or tumbling motion.
The numbers on the map indicate the location of each point
and the magnitude of nd/U X 102
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Fre. 12. Dir_nensic_mless frequency of oscillation nd/U, as a
function of dimensionless moment of inertia I*, along the
boundary between stable and unstable pitching motion of
freely falling disks.

as a parameter. For this plot we also measured the
frequency of oscillation of a few disks on the sta-
bility boundary. The data on the frequency of oscil-
lation along the stability boundary are recorded
in Ilig. 12. Using these data we have labeled each
point in Fig. 11 with the measured value of the
dimensionless frequency and sketched in curves of
constant nd/U. At low Reynolds numbers the di-
mensionless frequency of oscillation nd/U depends
on both I* and Re. At higher Reynolds numbers
the dimensionless frequency nd/U becomes inde-
pendent of Re. This is a behavior one might expect
when viscous effects are confined to a thin boundary
layer and the acrodynamic force and moment coeffi-
cients change only slowly with Reynolds number.
At large Reynolds numbers, Re = 10%, a cross plot
from Fig. 11 of nd/U vs I* reveals that there is an
approximately linear functional relationship be-
tween I* and nd/U (see Iig. 13). We have no ex-
planation for this apparently simple behavior.

We have used our data (Table III) to compute
the weight of the disks when immersed in fluid.
An average upward force coefficient Cp was defined
and entered in Table III. The fluid mechanical
meaning of this foree coefficient is not of much
interest because in each case the motion is different.
A plot of O vs Re was made but the results showed
a wide scatter. Schmiedel® also mentions that his
drag coeflicient data were widely scattered in the
region of regular oscillation.

We have not been able to include Schmiedel’s®
data on the dimensionless frequency of oscillating
disks in our Fig. 11. Schmiedel does not agree with
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Fra. 13. Dimensionless frequency of oscillation nd/U, as
a function of dimensionless moment of inertia I*, for freely
falling disks at a high Reynolds number, Re = 10,
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our location for the stability boundary (Fig. 8)
and his dimensionless frequency is in general 409,
higher than ours when Re = 250. Near the boundary
for stable motion there is better agreement. The
qualitative dependence of nd/U on I* and Re is
the same for Schmiedel’s data and ours. It is also
significant that Schmiedel’s drag coeflicients are
much greater (twice as great) than those we have
measured in the range of Reynolds number and I*
where the disks oscillate. Schmiedel mentions that
he tested a few aluminum disks whose dimensionless
frequengy of oscillation differed in an inconsistent
way from his other observations. Unfortunately,
he did not include these data in his paper.

We have noticed that the thickness ratio = has
some effect on the value of the dimensionless fre-
quency nd/U. The greatest discrepancy in nd/U
for disks of different 7 was found at Re = 3000
and I* = 6.5 X 107°. In this case (see Fig. 11) the
value of nd/U is increased by approximately 309,
when 7 is increased from 0.05 to 0.063. We also
made a few tests with disks having sharp, beveled
edges. The location of the data on the plot of Fig. 11
and the value of nd/U changed very little, but the
speed of fall and frequency of oscillation were in-
creased when the edge was beveled. We believe that
our data for larger.r display the general features
of the dependence of nd/U on I* and Re, but may
differ somewhat if compared with results for smaller
values of = at the same Re and I*,

We have also noticed an effect of the container
diameter on the dimensionless frequency of oscilla~
tion, nd/U. A number of disks were dropped in
small containers and in the ship model towing tank.
It was found that the value of nd/U was at most
159, higher for disks of large I* that exhibited large
amplitude pitching oscillations and approached the
wall of the small container at the extremes of the
oscillations.

F. Tumbling Motion of Disks

When I* became larger the amplitude of pitching
oscillation increased. We have observed a few tests
with heavy metal disks which exhibit a tumbling
motion when falling in water. This type of motion
can be observed when a coin is dropped in a pool
of water. In this motion I* is of the order of 107*
or greater. When the disk is released it may complete
one or two oscillations of increasing pitching ampli-
tude and then completely overturn on the next
cycle. Once the disk has overturned it falls quite
rapidly in an apparently random manner. The disks
usually hit the container sides. Their ultimate loca-
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tion on the bottom of a large container could never
be predicted. We also made a disk with a balsa
wood frame covered with microfilm. When dropped
in air (test 73, Table III) the value of I* was quite
large and the disk tumbled. Another disk was made
of styrofoam and dropped in air (test 74, Table III);
it also had a large I* and tumbled. All the tests
in which the disks tumbled are shown by crosses
on Fig. 11. The lowest value of I* for which we ob-
served the tumbling motion was I* = 1.3 X 107°
We have not made any attempt to define the bound-
ary for tumbling motion, although no essential dif-
ficulty should be encountered.

Kirchhoff’s'® result on the integral of the equations
of motion for an ellipsoid of revolution in an ideal
fluid also includes the case of complete revolutions
(overturning) of the disk. However, in an ideal
fluid one would not find a random dispersion of the
disk at the bottom of the container and the motion
would be confined to a vertical plane if given the
proper initial conditions.

4. CONCLUSIONS

An orderly description of the gross features of
the motion of freely falling disks has been given.
The Reynolds number for instability of the wake
behind a fixed disk has been shown to be 100, in
agreement with the investigation of Simmons and
Dewey.® In the region of unstable laminar wakes
behind disks executing regular pitching oscillations
we have observed a staggered array of regularly
spaced closed vortex loops similar to the con-
figuration observed by Magarvey and Bishop'* be-
hind drops of liquid. Some new results have been
obtained on the relation between I* and Re along
the boundary between stable and unstable motions
of freely falling disks and on the dependence of
nd/U on I* and Re for regular pitching oscillations.
It should be possible to determine the relation be-
tween I* and Re along the boundary separating
the tumbling motion and regular pitching oscilla-
tions of falling disks.

ACKNOWLEDGMENTS

We wish to thank Professor A. M. Kuethe and
Mr. Otto Walchner for many helpful discussions.
We are grateful to Mr. Robert Marcel, Mr. Patrick
MecSorley, and Mr. ¥red Roos, who helped us con-
duct some of the tests.

This work has been done for the Aeronautical
Research Laboratories, Office of Aerospace Research,
United States Air Force.



